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ABSTRACT

Combining the challenges of streaming data and multi-label learning,
the task of mining a drifting, multi-label data stream requires

methods that can accurately predict labelsets, adapt to various

types of concept drift and run fast enough to process each data

point before the next arrives. To achieve greater accuracy, many

multi-label algorithms use computationally expensive techniques,

such as multiple adaptive windows, with little concern for runtime

and memory complexity. We present Aging and Rejuvenating kNN

(ARKNN) which uses simple resources and efficient strategies to

weight instances based on age, predictive performance, and similarity
to the incoming data. We break down ARKNN into its component

strategies to show the impact of each and experimentally compare

ARKNN to seven state-of-the-art methods for learning from multi-

label data streams. We demonstrate that it is possible to achieve

competitive performance in multi-label classification on streams

without sacrificing runtime and memory use, and without using

complex and computationally expensive dual memory strategies.
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1 INTRODUCTION

As the amount of continuously generated data produced by everyday
systems and devices increases, so does the need to accurately and
efficiently mine data streams. Not only must models be able to
make predictions for incoming data in real time, but they must
also be able to incorporate new data and update in response to
the constantly evolving nature of the stream [3]. Many methods
have been proposed for responding to concept drift, including
sliding windows, adaptive windows and evolving ensembles [9].
To improve accuracy, these methods often sacrifice simplicity and
require substantial resources to run but resources are limited and
as the data increases in complexity, their resource use becomes
prohibitive. Multi-label streaming data [28] is a good example of
complex data for which many proposed solutions require significant
resources. It is common for multi-label classification methods to
rely on multiple classifiers or multiple windows of short-term and
long-term data. The complexity of the methods is dependent on
the number of labels, which may be high [28].

In this paper, we present a series of resource efficient techniques
to age and rejuvenate instances in a single data window. Each
technique builds on the previous, with the final combined method,
Aging and Rejuvenating kNN (ARKNN), weighting each data instance
within the window based on its age, past performance, and similarity
to the incoming data. Aging techniques allow us to decrease the
importance of older and worse performing data, allowing ARKNN
to respond to concept drift and prune data that contributes to
error. Rejuvenation techniques allow us to keep beneficial instances
without the complexity of multiple windows. We experimentally
compare each added modification to demonstrate the impact of
each technique on performance, runtime and memory use. The
final ARKNN method is then experimentally compared to seven
state-of-the-art multi-label streaming methods. We demonstrate
that performance of ARKNN is better or comparable to that of state-
of-the-art methods, while the average runtime of ARKNN is one
fifth the next fastest model and its average memory use is 1/50th
of the time of its nearest competitor.


https://doi.org/10.1145/3555776.3577625
https://doi.org/10.1145/3555776.3577625
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3577625&domain=pdf&date_stamp=2023-06-07

SAC ’23, March 27 - March 31, 2023, Tallinn, Estonia

The main contributions of this paper are:

o ARKNN: a fast and memory efficient algorithm for multi-
label classification on data streams using instance aging and
rejuvenation.

o A detailed analysis of the impact of six techniques to age,
rejuvenate and prune data to respond to concept drift and
improve performance with minimal resource cost.

o A thorough experimental study comparing the predictive
performance, runtime, and memory use of ARKNN against
seven state-of-the-art algorithms for multi-label classification
on data streams across 37 datasets.

The rest of the paper is organized as follows. Background on data
streams, multi-label learning and related windowing, aging and
rejuvenation techniques is given in Section 2. A description of each
of the six proposed techniques and how they build upon one another
is detailed in Section 3. Section 4 describes the experimental setup,
with experimental results and discussion presented in Section 5.
Concluding remarks and future work are presented in Section 6.

2 BACKGROUND

Resource Efficient Data Mining

Most machine learning literature focuses on the accuracy and
predictive power of machine learning algorithms. In many cases,
however, computing resources are limited. As more data is collected
and available to be mined, this problem is unlikely to diminish. In
recent years, attention has been drawn to energy efficient data
mining, particularly energy efficient deep learning. Others have
suggested techniques for measuring energy and resources with
the goal of making it easier for researchers to evaluate resource
consumption when comparing methods. Mining streaming data
is one scenario where resource efficiency is highly important, as
the speed of the data can quickly make resources scant. However,
less research works in this area focus on minimizing resource
consumption [10].

Streaming Data

Streaming data refers to the situation where data is arriving
as a potentially unbounded sequence. Formally, a data stream is
an ordered sequence of data S = {s1,82,... St,...}, where the
data instance s; arrives at time t. Streaming data presents both
the problem of never having all the data available and having a
limited amount of time to process instance s; before instance s;41
arrives and creates a backlog. Further complicating data streams, it
is generally assumed that the stream is not static.

Concept Drift

A concept drift is a change in the distribution of the incoming
instances that may cause a change in the decision boundaries [12].
A wide variety of strategies for dealing with concept drift have
been proposed, usually broken into two categories - continuously
evolving methods and concept drift detectors [9]. Drift detectors
use an outside method to monitor the performance of the learner.
As the stream continues, if the detector encounters a sufficient
loss in performance, it will trigger the learner to update or re-train
based on newer data. A benefit of concept drift detectors is that the
model only re-trains upon the detection of drift, saving resources
when the model is stable. A disadvantage is that drift detectors are
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most effective for abrupt drift, where the data distribution changes
suddenly.

However, concept drift may also appear as gradual or incremental
drift. During gradual drift, instances from both the old concept and
the new concept appear for some time together, with instances
from the new concept slowly becoming dominant. In incremental
drift, the old concept slowly transitions into the new concept. Both
take place more slowly than abrupt drift, without a sharp divide
between the two concepts. This makes gradual and incremental
drifts difficult for drift detectors to detect. To handle slower drifts,
many models incorporate a method for continuously evolving.

Sliding, Fading and Adaptive Windows

Continuous methods typically involve mechanisms to update
the classification model as new information arrives and forget older
concepts [9]. One of the most basic methods is to use a first-in,
first-out sliding window. In its most basic form, a sliding window is
a window of size m in which each data instance is stored. Once the
window is full, as the newest instance arrives at time s;, the oldest
instance in the window s;_p, is discarded. Using this mechanism,
the model trained on the window slowly evolves with the stream,
forgetting older concepts.

Sliding windows are an efficient method for forgetting older
information, but while data is still in the window, all instances
are valued equally. However, for a drifting stream, more recent
information is often seen as more valuable. This leads to the definition
of damped windows or fading windows [9]. In fading windows, a
fading factor or decay function is used to weight older information,
such that newer information has a higher weight and has a greater
impact on the predictions. In this way, older instances in the window
are not yet forgotten, but if the concept has shifted, the classifier
will update more quickly because of the higher weight of new data.
Fading windows are popular in pattern mining and finding frequent
itemsets [7, 15, 26]. Fading or aging is also a common technique used
in weighting ensembles of classifiers [11, 13] and fading windows
can also be used to detect drift or evaluate classifiers [8, 20].

Forgetting mechanisms and drift detectors can also be used
together. Adaptive size windows act as traditional sliding or fading
windows, but monitor the incoming data to change the window
size and abruptly forget information in the presence of abrupt
concept drift [9]. Other methods use multiple windows. The popular
adaptive windowing technique ADWIN monitors the data over
two windows [5]. When a change is detected, the older window is
abruptly dropped. Another mechanism uses two windows as short
and long-term memories, summarizing past data into the long-term
memory whenever the short-term memory is reduced due to a
drift [14]. Multiple window methods can be very effective, but by
requiring that multiple windows be maintained and updated, they
often suffer from time and memory complexity.

Multi-Label Streaming Data

While complexity is a concern for all data stream mining, it is a
particular challenge for multi-label classification of streaming data.
Multi-label data refers to the situation where each data instance
can be classified as belonging to multiple classes simultaneously.
The classes are not mutually exclusive. In contrast to multi-class
classification, each instance has the form s = (x, y) where y is the
single relevant class, in multi-label classification s = (x,Y) where



Aging and rejuvenating strategies for fading windows in multi-label data streams

Y € {0, 1}/F! and L is the set of all possible labels. Just as the number
of instances and the number of features in traditional single-label
classification are assumed to be large, the number of possible labels,
|L], may be huge, increasing the complexity of the problem.

Methods for multi-label learning are split into two categories -
algorithm adaption methods and problem transformation methods.
Problem transformation methods convert a multi-label problem
into multiple single-label problems. On the other hand, algorithm
adaptation methods adapt existing techniques for single-label data
to multi-label data. Ensembles of classifiers are also popular for
multi-label classification.

Most methods for multi-label classification on data streams
prioritize predictive performance rather than minimizing complexity.
Many of the state-of-the-art multi-label streaming classifiers use
ensembles or multiple windows of data, which are resource-intensive
[2, 16, 17, 19, 22]. However, when multi-label data arrives as a
stream, it has all the issues associated with the velocity of the
stream that single-label data has. Each arriving instance must be
processed prior to the arrival of the next and in real-world scenarios,
resources are likely to be limited.

Related Work

Beringer and Hiillermeier proposed an instance method for
data stream mining that used changes to the window of stored
data to update a classifier in response to concept drift [4]. While
they consider the similarity and age of instances, their method is
concerned with determining which instances should be removed
from the window, not with the weighting of instances. Using weights
to adapt classifiers is more common for ensemble methods. Wozniak
et al. use accuracy weighted ensembles to adapt to concept drift
[24]. Rejuvenation methods are much less common than aging
and accuracy-based weighting. A few proposals have analyzed
rejuvenation techniques for weighting base classifiers in ensembles
[24, 25], but no work has proposed rejuvenating the instances
themselves.

For multi-label data, Wang et al. proposed an ensemble of MLKNN
classifiers using confidence, time, and distance to weight the base
classifiers [21]. Roseberry et al. used a punitive method to remove
instances with poor historic accuracy [18]. This was followed by
with a method to enable and disable specific labels based on the
most recent past performance [19].

3 PROPOSED TECHNIQUES

Sliding window model - SLI

As a baseline for comparing our proposed aging and rejuvenation
techniques, the first technique uses a simple first-in, first-out sliding
window. This model is denoted as SLI. For this model, a simple
sliding window of size m is used. For the first m instances of the
model, the window fills. As shown in Figure 1, once the window is
full, as each new instance s; arrives, the instance s;—, is removed.
Within the window, all instances are weighted equally.

For the prediction phase of SLI, a simple multi-label k-nearest
neighbor classifier was used. To minimize computational complexity,
our kNN uses a simple majority vote [1]. As an instance arrives, the
k-nearest neighbors are found using the cosine distance, D¢ (s, n) =
1-Sc (s, n) where S is the cosine similarity of the instance s and the
neighbor n. For each label I independently, the algorithms predicts
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Figure 1: Sliding window.

label I is relevant if a majority of the nearest neighbors labelsets
contain . Formally, the relative frequency (rf) of the label among
the set of nearest neighbors NNy is defined as

k
1
rf= E;:ﬂ.l(niENNk, yl'l=1)

where y;, is the [th label of the ith nearest neighbor. Each predicted
label z; is defined as

0 otherwise

{1, ifrf>05
z =

The full algorithms for SLI is shown in Algorithm 1.

Algorithm 1: Sliding window model (SLI)
Require:k, m

1 while stream.hasMorelnstances() do

2 s « stream.nextInstance()

3 votes[] «— {0}

4 for n € window.neighbors(s, k) do
5 L for label | € L do

L votes[l].add(n.l)

7 for label l € L do
8 L z(l) « argmax(votes[l])
9 window.add(s)

10 if window.size() > m then
11 L window.removeOldest ()

As a lazy learner, kNN is a good method to test the effectiveness
of the techniques we are applying to the stored data. An advantage
of the mechanisms presented here is that they act upon the data,
and can be applied in many scenarios using different classifiers,
which makes them flexible and applicable to different situations.

Fading window model - FAD

Our first mechanism for responding to concept drift is a fading
window model, denoted FAD. Here, each instance is added to the
window with weight w = 1. With the arrival of each new instances,
the weight of each instance is multiplied by a constant fading factor
d € [0, 1]. Using this simple mechanism, when the prediction for
instance s; is made, the oldest instance in the window, s;—;,, has
the lowest importance and the newest, s;—1, has the highest. As
with the basic sliding window, when the window is full, the oldest
instance is removed. Figure 2 illustrates the fading window, with
instance weight depicted using shades of gray.
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Figure 2: Fading window.

The prediction for FAD is performed by a kNN similar to that
used with SLI, but here the weights of each instance are taken into
consideration using weighted voting, such that

k
1
rf:El;wn,-*Jll(nieNN, yiy = 1)

where wy, is the weight of the ith nearest neighbor. The fading
window mechanisms within ARKNN are shown in Algorithm 2,

labeled FAD.

Query-based rejuvenation model - QBR

The query-based rejuvenation model, QBR, implements the first
mechanism to rejuvenate instances. For both the sliding window
model and the fading window model, an instance will always be
removed from the window once m more recent instances were
added. Aging instances out in this manner promotes more recent
information and allows a model to adapt to concept drift. However,
it is not always the case that the instance that has been in the
window longest is the least-valuable instance.

window
O...Oom..... < .
Sl-ﬂ'| sl-‘ S\
[— ]
0 weight 1

Figure 3: Rejuvenating window.

The QBR model uses a naive mechanism to rejuvenate the weight
of any instance that is queried as a nearest neighbor while making
a prediction. As in the fading window model, the weight of all
instances slowly decreases over time, but the rejuvenation allows
instances that have been utilized to reset their weights, making
these instances more important to the model. In addition, rather
than removing the instance that has been in the window longest
when the window is full, QBR removes the instance with the lowest
weight from the window. Figure 3 depicts a rejuvenating window.
Rather than removing the oldest instance s;—,, on the left, the
instance with the lowest weight is removed, regardless of its position
in the window. Contributions for QBR in ARKNN are shown in
Algorithm 2.

Accuracy-based rejuvenation model - ABR

Rejuvenating instances allows us to keep valuable information
that is positively contributing to the model. However, just because
an instance was queried as a neighbor, does not mean that it had
a positive contribution. It’s quite possible that one or more of the
nearest neighbors had negative impact. This might be because the
concept had shifted or that some or all of the nearest neighbors were
no longer relevant. It might also happen that an instance is simply
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noise, in which case it will negatively impact the classifier as long as
it is in the window. While we want to keep positively contributing
instances in the window longer, we also want to remove instances
from old concepts and noisy instances as quickly as possible.

The window used for ABR looks like the QBR window in Figure 3,
except that the method of rejuvenation has changed. Rather than
just rejuvenate an instance that has been queried, ABR uses the
predictive performance of each of the queried instances to rejuvenate
them. After having predicted the labelset of the test instance, we
conduct a posterior analysis of the contribution of the queried
instances. When an instance n is queried as a nearest neighbor,
its labelset Y, is checked against the labelset Y; of the arriving
instance s;. For any label I, the neighbor n is contributing true
values if y; € Yy equals y;, € Y;, such that the total number of
true labels is:

L
true, = Z 11 (ys, = Y1, Yi, € Yn, Yy, € Ys)
1=0
The accuracy of the neighbor n is defined as accuracy, = true,/L,
where L is the number of possible labels.

The rejuvenation is computed using the accuracy of the neighbor
nrelative to the global accuracy of the window. The latter is computed
prequentially as each prediction is made, comparing the predicted
labelset to the true labelset. To rejuvenate n, its weight is first
updated as follows

weightn+ = accuracyn — accuracyindow

then set to zero if negative, i.e., weight, = max(0, min(weightp, 1)),
so that weight, € [0, 1].

In this way, instances that are performing better than the window
overall are rejuvenated. Their weight is increased and they will
contribute more to future predictions and remain in the window
longer. Conversely, instances that are preforming worse that the
window overall will age. Their weight will decrease so they have
less impact on future predictions. They will be removed from the
window if they continue to negatively impact predictions, allowing
the learner to respond to concept drift faster. The ABR sections of
ARKNN are shown in Algorithm 2, denoted with ABR.

Pruning instances model- PRU

Lowering the weight of an instance reduces how much impact
that instance has on future predictions. Despite the low weight,
however, these instances are still in the window, using resources and
potentially acting as nearest neighbors. The pruning instance model,
PRU, adds a mechanism to prune the worst performing instances.
As each instance arrives, the predicted labelset is determined and
the weights of the neighbors are updated as in the ABR model. After
the weight of each instance is faded, any instance with a weight
below a given fitness factor f is removed from the window. If most
instances are preforming well and pruning does not occur, the
instance with lowest weight is removed when the window exceeds
size m. Figure 4 illustrates a pruned window, with weights depicted
as shades of gray.

The fading and accuracy-based rejuvenation mechanism ensure
that the weights of older and more poorly performing instances
will drop quickly. Pruning allows us to remove obsolete or noisy
instances faster, helping to more quickly adapt the model to concept
drift. In addition, pruning reduces the overall size of the window,
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Figure 4: Pruned Window.

resulting in fewer distance computations and comparisons when
making predictions and training the model, improving the runtime
and memory use of the model. Pruning contributions to ARKNN
are shown in Algorithm 2, noted as PRU.

Distance-weighted voting - DWV

The last mechanism added to ARKNN is distance weighted voting,
which is a well-known tactic. When predicting the labelset for
each incoming instance s, each vote is weighted not only by the
weight of the nearest neighbor, computed as in ABR, but also by
the distance of that neighbor from s. Thus, the vote takes into
consideration not just the age and performance of the neighbor,
but also its similarity to s. The distances between the neighbor n
and the incoming instance s is computed as the cosine difference,
D¢ (s,n) =1 - Sc(s,n) where Sc is the cosine similarity and D¢ €
[0,2]. We want to give closer neighbors a higher weight, so the
weight is adjusted by a factor of 2 — D¢ (s, n), such that

k
1
rf =2 W x (2=Dc(s,m) + 1| (ni € NN, y; = 1)
k i=0

The distance weighting contributions to ARKNN are shown in
Algoritm 2, denoted DWV.

Aging and Rejuvenating kNN - ARKNN

The final ARKNN algorithm is given in Algorithm 2. Taking
mechanisms from each iteration presented in Section 3, ARKNN
includes the following mechanisms:

e a fading window reducing the weight of each instance over
time by a fading factor § as in FAD.

e accuracy-based rejuvenation of instances based on their
accuracy relative to the window accuracy as in ABR.

e distance weighted voting as in DW'V.

e instance pruning of all instances with a weight below a
fitness threshold f as in PRU.

e removal of the instance with the lowest weight to maintain
a window of size m as in QBR.

The time-complexity for computing the k-nearest neighbors is
O(mkd) where m is the maximum size of the window, k is the

number of neighbor used, and d is the dimensionality of the data.

To make a multi-label prediction using the weighted votes from the

k neighbors takes O(k|L|) time, where |L| is the number of labels.

The combined the complexity of ARKNN is O (mkd + k|L|).

This is the same complexity as the baseline sliding window
model (SLI) shown in Algorithm 1. While ARKNN employs multiple
mechanisms to improve prediction capabilities and the classifiers
ability to react to concept drift, all of these strategies are simple
strategies that act on a single window of stored instances and are
very resource efficient. Additionally, since these strategies act on
the window of instances, they are highly flexible and could easily
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be incorporated into models using different base classifiers other
than kNN.

Algorithm 2: Aging and Rejuvenating kNN - ARKNN

Require:k : number of neighbors, m : window size,
d : fading factor, f : fitness threshold
1 while stream.hasMorelnstances() do

2 s « stream.nextInstance()

3 votes[] « {0}F

4 true[] «— {0}k > ABR
s | of] « {0}k > DWV
6 for n € window.neighbors(s, k) do

7 o|n] = 2 — distance(n, s) > DWV
8 for label l € L do

9 votes|l].add(n.lxn.w=o[n]) > FAD, DWV
10 L if n.l = s.l then true[n] + = 1; > ABR
11 relativeAcc = true[n] /L — windowAcc > ABR
12 n.w = n.w + relativeAcc; 0 <w <1 > ABR
13 for label l € L do

14 L z(l) « argmax(votes[l])

15 windowAcc.update() > ABR
16 for i € window do

17 iwx=0 > FAD
18 | if i.w < f then window.remove(i); > PRU
19 window.add(s)

20 if window.size() > m then

21 worst « argmin(window.getWeight) > QBR
22 window.remove(worst) > QBR

4 EXPERIMENTAL SETUP

This section introduces the experimental setup used to compare
the proposed methods with the state of the art. The experiments
are designed to answer the following research questions:

e RQ1: Does instance aging improve the predictions of the
nearest neighbor classifier?

e RQ2: Do instance rejuvenation strategies allow us to retain
relevant concepts in the stream?

e RQ3: Do instance pruning and distance-weighted voting
improve the classifier’s predictions?

e RQ4: Are the proposed strategies competitive against other
state of the art methods, particularly short and long-term
memory based classifiers?

Algorithms. Table 1 enumerates the strategies proposed and
the state of the art algorithms. The source code for all methods is
available at https://github.com/canoalberto/ARKNN to facilitate the
reproducibility of the experiments. All window-based methods are
evaluated with a window size of 1,000 instances.

Datasets. Table 2 shows the 37 multi-label datasets evaluated and
their properties. These include the number of instances, features,
labels, cardinality, and density. The lower the density the more
sparse positive labels are in the dataset.
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Table 1: Algorithms compared in the experiments.

Ref Acronym Algorithm
] SLI Sliding window
2 - FAD Fading window with instance aging
E § QBR Query-based instance rejuvenation
fhot 2 ABR Accuracy-based instance rejuvenation
§ 2 PRU ABR with instance pruning
S = DWV PRU with distance-weighted voting
& ARKNN Aging and Rejuvenating kNN
[27] MLKNN Multi-label kKNN
T [17] MLSAMKNN ML Self-Adjusting Memory kNN
&£ [18] MLSAMPKNN ML Self-Adjusting Memory Punitive kNN
:g [19] MLSAKNN ML Self-Adjusting kNN
e (2 AESAKNNS  Adaptive Ensemble of SAKNN Subspaces
5“’ [22] OMK Online Memory k-Means
[23] ODM Online Dual Memory

Table 2: Multi-label datasets and their properties.

Dataset Instances  Features Labels Cardinality = Density
20NG 19,300 1,006 20 1.0289 0.0514
Bibtex 7,395 1,836 159 2.4019 0.0151
Birds 645 260 19 1.0140 0.0534
Bookmarks 87,856 2,150 208 2.0281 0.0098
CAL500 502 68 174 26.0438 0.1497
CHD49 555 49 6 2.5802 0.4300
Corel16k 13,766 500 153 2.8587 0.0187
Corel5k 5,000 499 374 3.5220 0.0094
Emotions 593 72 6 1.8685 0.3114
Enron 1,702 1,001 53 3.3784 0.0637
Eukaryote 7,766 440 22 1.1456 0.0521
Eurlex-sm 19,348 5,000 201 2.2133 0.0110
Flags 194 19 7 3.3918 0.4845
Genbase 662 1,186 27 1.2523 0.0464
GnegativePseAAC 1,392 440 8 1.0460 0.1307
HumanPseAAC 3,106 440 14 1.1851 0.0847
Hypercube 100,000 100 10 1.0002 0.1000
Hypersphere 100,000 100 10 2.3138 0.2314
Imdb 120,919 1,001 28 1.9997 0.0714
Langlog 1,460 1,004 75 1.1801 0.0157
Mediamill 43,907 120 101 4.3756 0.0433
Medical 978 1,449 45 1.2454 0.0277
Nuswide-BoW 269,648 500 81 1.8685 0.0231
Nuswide-cVLAD 269,648 128 81 1.8685 0.0231
Ohsumed 13,929 1,002 23 1.6631 0.0723
PlantPseAAC 978 440 12 1.0787 0.0899
Reuters-K500 6,000 500 103 1.4622 0.0142
Scene 2,407 294 6 1.0740 0.1790
Slashdot 3,782 1,079 22 1.1809 0.0537
Stackex-chess 1,675 585 227 2.4113 0.0106
Tmc2007 28,596 500 22 2.2196 0.1009
VirusGO 207 749 6 1.2174 0.2029
Water-Quality 1,060 16 14 5.0726 0.3623
Yahoo-Society 14,512 31,802 27 1.6704 0.0619
Yahoo-Computers 12,444 34,096 33 1.5072 0.0457
Yeast 2,417 103 14 4.2371 0.3026
Yelp 10,806 671 5 1.6383 0.3277

Metrics. Dozens of metrics are used to evaluate the performance
of multi-label classifiers [6]. The most representative metrics are
subset accuracy, accuracy, and F-Measure. Given n instances and
L labels, a true labelset Y¥; = {y;1 ...y;r} and a predicted labelset
Z;i ={zi1 ...z}, the example-based metrics are defined as:
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Subset accuracy

1 n
;;wn:zn

Yi N Z;|
Accuracy Z :Yl UZl
1 l
1 2x|Yinz;
F-Measure = —ZM
n &4 Y[ +1Z]

Moreover, data stream algorithms are expected to be of low
computational and memory complexity. Therefore, we must jointly
assess the classification metrics, the runtime (seconds), and the
memory consumption (RAM-Hours). All methods are run on an
AMD 5950X 16-core CPU with 64 GB RAM and Ubuntu 22.04.

5 RESULTS

Comparison of the proposed techniques

First, we evaluate each the proposed techniques to analyze their
effectiveness, starting with instance aging using the fading window.
Table 3 shows the average and the rank for the subset accuracy,
accuracy, f-measure, runtime and RAM-hours for each of the six
techniques detailed in Section 3 across all 37 evaluated datasets.

To evaluate the impact of instance aging using a fading window,
we compare the fading window model (FAD) with the baseline
sliding window model (SLI). Experiments show that weighting
using a fading window does increase all subset accuracy, accuracy,
and F-measure. It has worse runtime and RAM-hours, but the impact
here is very minimal. This demonstrates that although the fading
mechanism is very simple, it does result in improved predictions at
very low cost.

Comparing the results for the query-based rejuvenation model
(OBR) to those for FAD, we actually see a decrease in performance.
QBR preforms worse than FAD, and actually worse than SLI, across
all metrics. It is clear that this naive method for rejuvenation is not
beneficial and that instances should not be rejuvenated solely for
being queried as a nearest neighbor. This reflects the importance of
the adaptation to concept drift as the most similar instances in the
window do no longer necessarily provide meaningful information
to the classifier. Looking at the accuracy-based rejuvenation model
(ABR), however, we see that rejuvenation of instances improves the
classification performance. Here, instances are rejuvenated based
on the accuracy of their contributions to predictions. Across subset
accuracy, accuracy and F-measure, ABR consistently performs better
than FAD. Therefore, instances and concepts strengthened by the
accuracy-based rejuvenation strategy are relevant and beneficial to
the classification model.

Looking at subset accuracy, accuracy and F-measure for the
pruning model (PRU) and the distance-weighted voting model
(DWV) we also see incremental improvements in predicting. Pruning
all instances below a fitness threshold provides slight gains in
these metrics and distance-weighted voting still more. Interestingly,
the average runtime and RAM-hours of PRU are the worst of the
six models, we don’t see improvements in resource use until we
add in the distance-weighted voting. This demonstrates the inter-
connectivity of the strategies. The aging, rejuvenation and distance-
weighting strategies improve the accuracy of the classification
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Table 3: Comparison of the proposed aging and rejuvenating
strategies over the average performance on 37 multi-label
datasets. The last row averages the ranks across all metrics.

Avg. Perf. SLI FAD QBR ABR PRU Dwv
Subset acc. 0.2790  0.2943  0.2642  0.3221 0.3345 0.3353
Accuracy 0.3904 04138 03724 0.4364 0.4477 0.4486
F-Measure 0.4817  0.4963  0.4624 0.5173  0.5275 0.5285
Runtime 0.0740  0.0745 0.0755 0.0760  0.0798  0.0757
RAM-Hours 6.13E-3 6.51E-3 7.17E-3 7.79E-3 8.55E-3 6.87E-3
Rank SLI FAD QBR ABR PRU DwWV
Subset acc. 4.2162 42703 41892  3.1622  2.7973  2.3649
Accuracy 4.2838  3.8243  4.4054 3.1622 29865 2.3378
F-Measure 3.3378  3.7973  3.8649  3.8243  3.4730 2.7027
Runtime 2.8784 35135 3.3919  4.0270  4.9865  2.2027
RAM-Hours  3.1000  3.7571  3.6571 4.2000 4.4286 1.8571
Avg. Rank 3.5632  3.8325 3.9017 3.6751 3.7344 2.2931

model. Consequently, the pruning mechanism and the accuracy-
based rejuvenation, which rejuvenates based on instance accuracy
as compared to the whole window accuracy, can more easily identify
poorly performing instances for removal, reducing the window
size and improving performance. The combined DWV model, with
all the techniques working together, shows the best average rank
across all five metrics, demonstrating that pruning and distance-
weighted voting improve the classifier’s predictions and that the
six proposed techniques complement each other.
Comparison with other Multi-Label kNN classifiers

Our second experiment was to compare ARKNN against state-of-
the-art multi-label classifiers. Focusing on algorithms that also use
a k-nearest neighbors method, we chose seven recent multi-label
streaming classifiers as reference algorithms. Most of the compared
algorithms use self-adjusting or dual windows as techniques for
adapting to concept drift. Table 4 shows the average performance
and the corresponding ranks for the subset accuracy, accuracy, F-
measure, runtime, and RAM-hours for ARKNN and each of the
seven compared algorithms across all 37 datasets.
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Looking at just the predictive performance (subset accuracy,
accuracy, and F-measure), ARKNN does not achieve the best results.
AESAKNNS has the highest average for all three metrics and the
highest rank for two of the three. This is mainly because AESAKNNS
is an ensemble method. However, ARKNN is a close contender.
When looking at the subset accuracy, accuracy and F-measure,
only AESAKNNS and ODM consistently outperform ARKNN and
the differences are small. Looking at the runtime and memory use,
ARKNN is clearly superior. The average runtime for ARKNN is 1/5th
of the average runtime of AESAKNNS, the next fastest competitor.
In addition, the ranks show that AESAKNNS is on average the
second slowest algorithm, whereas ARKNN is consistently fast, on
average ranking as the fastest. Similarly, the average RAM-hours
for ARKNN are 1/50th of the RAM-hours for OMK, and ARKNN
also achieves that best rank for RAM-hours. Looking at the overall
average rank across all five metrics, ARKNN clearly out-performs
the other methods. The Nemenyi critical value is 1.7261 for a = 0.05
indicating statistical differences between ARKNN and all methods
expect MLSAKNN and ODM for the average rank.

This is more clearly shown in Figure 5. The height of each arc
indicates the average rank across all datasets achieved by each
algorithm. A greater height indicates a higher rank and better
performance. Looking at the central circle of wedges indicating
runtime, it clear that MLKNN, with its complex computation of
prior and posterior probabilities, has the worst runtime and that
ARKNN, with its simple instance-based strategies, is the fastest.
Combined with the pink arc indicating memory use, it is clear that
ARKNN is substantially more resource efficient than its competitors
resulting in the best combined performance.

The complex strategies used by state-of-the-art algorithms to
improve predictions and respond to concept drift regularly come at
a steep cost in terms of resource use. MLSAMKNN, OMK and ODM
all use dual short- and long-term memories. MLSAMPKNN and
MLSAKNN use a resource-heavy self-adjusting window. AESAKNNS
is an ensemble method that uses a collection of ADWIN detectors.
These are all state-of-the-art techniques and AESAKNNS and ODM
in particular have excellent predictive power. When classifying
streaming multi-label data, however, resource use is important. In

Table 4: Comparison of the Aging and Rejuvenating KNN (ARKNN) with other multi-label kNN-based classifiers over the
average performance on 37 multi-label datasets. The last row averages the ranks across all metrics.

Avg. Perf. MLKNN MLSAMKNN MLSAMPKNN MLSAKNN AESAKNNS  OMK ODM  ARkKNN
Subset acc. 0.2171 0.2860 0.3074 0.3159 0.3404 0.2501 0.3477 0.3353
Accuracy 0.3023 0.3850 0.4106 0.4400 0.4618 0.3609 0.4565 0.4486
F-Measure 0.3824 0.4687 0.4920 0.5307 0.5539 0.4418 0.5351 0.5285
Runtime 3.2822 5.6077 0.5213 0.4533 0.3503 0.5167 0.4086 0.0757
RAM-Hours  9.67E-1 3.69E+0 1.09E+0 1.26E+0 6.14E-1 3.47E-1 3.52E-1 6.87E-3
Rank MLKNN MLSAMKNN MLSAMPKNN MLSAKNN AESAKNNS  OMK ODM  ARKNN
Subset acc. 6.7162 5.2568 4.4730 4.0676 3.6486 5.1486  3.3243 3.3649
Accuracy 6.7838 5.4595 4.6892 3.5946 3.1622 5.0811 3.6622 3.5676
F-Measure 6.7703 5.3243 4.7162 3.4054 3.0270 5.2703 3.6757 3.8108
Runtime 7.5946 5.0000 4.5405 4.6351 5.5135 4.0135 3.3243 1.3784
RAM-Hours  6.8000 4.9429 5.1143 5.0571 6.6571 3.5714 2.8000 1.0571
Avg. Rank 6.9330 5.1967 4.7066 4.1520 4.4017 4.6170 3.3573 2.6358
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a real-world scenario it is unrealistic to assume that computing
resources are infinite, and the streaming nature of the data requires
that models can make predictions and update as quickly as the
data is arriving. Our experiments demonstrate that ARKNN, using
a collection of simple and highly resource-efficient techniques, can
achieve predictive power competitive with state-of-the-art multi-
label streaming algorithms using much fewer resources.

MLKNN ARKNN
MLSAMKNN ODM
MLSAMPKNN MLSAKNN
OMK AESAKNNS
Subset acc. Accuracy F-Measure Memory Runtime

Figure 5: Stacked ranks of all performance metrics.

6 CONCLUSIONS

We have proposed ARKNN, a method using a combination of simple,
resource efficient techniques to weight instances within a single
updating window to classify streaming, multi-label data. ARKNN
gives greater importance to neighbors that are closer, newer and
better performing, allowing it respond to concept drift and quickly
devalue and remove older concepts and noisy data, while retaining
older information that consistently benefits the model. We have
shown experimentally that each of the mechanisms used by ARKNN
improves the predictive performance of the algorithm, without
increasing its runtime or memory use. In a comprehensive study
using real world data, we have shown that ARKNN has predictive
capabilities that exceed many state-of-the-art methods and are
closely comparable even to the most highly accurate algorithms.
ARKNN achieves this predictive performance while using fewer
resources than any of the compared methods. When evaluating
runtime and memory use, as well as predictive performance, ARKNN
outperforms all compared algorithms, making it an excellent choice
for mining multi-label data streams, where resources are limited.
ARKNN shows that it is possible to achieve excellent predictive
power using methods that are resource efficient. Future works will
also investigate the dynamic relevance of attributes (e.g. Relief
family) in combination with dynamic instance weighting.
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