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ABSTRACT
The application of deep learning-based (DL) network intrusion
detection systems (NIDS) enables effective automated detection
of cyberattacks. Such models can extract valuable features from
high-dimensional and heterogeneous network traffic with mini-
mal feature engineering and provide high accuracy detection rates.
However, it has been shown that DL can be vulnerable to adversarial
examples (AEs), which mislead classification decisions at inference
time, and several works have shown that AEs are indeed a threat
against DL-based NIDS. In this work, we argue that these threats
are not necessarily realistic. Indeed, some general techniques used
to generate AE manipulate features in a way that would be incon-
sistent with actual network traffic. In this paper, we first implement
the main AE attacks selected from the literature (FGSM, BIM, PGD,
NewtonFool, CW, DeepFool, EN, Boundary, HSJ, ZOO) for two
different datasets (WSN-DS and BoT-IoT) and we compare their
relative performance. We then analyze the perturbation generated
by these attacks and use the metrics to establish a notion of "attack
unrealism". We conclude that, for these datasets, some of these
attacks are performant but not realistic.
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1 INTRODUCTION
Machine learning-based (ML) applications have been utilized to
provide different security solutions, such as malware detection [6],
spam detection [14], network intrusion detection system (NIDS) [11].
The recent integration of Deep Learning (DL) with automated fea-
ture engineering has improved both the effectiveness and efficiency
of NIDS models [5]. However, DL-based models can be vulnerable
to so-called Adversarial Examples (AEs), inputs crafted to induce
misclassification at training or inference times [39]. This vulnera-
bility can be exposed by injecting malicious inputs to subvert the
learning process (poisoning attack), adding slight perturbations
to the original inputs in order to cause misclassification (evasion
attack), or probing the model to obtain confidential information
(oracle attack) [3].

The current literature employs generic adversarial examples
generation approaches to assess the resilience of DL-based NIDSs
against adversarial traffic [1, 2]. However, these approaches were
mainly designed for unconstrained domains (i.e., image processing).
For image recognition, the adversary can perturb any arbitrary
amount of pixels, and the features can be amended independently.
For NIDS, the traffic data must preserve some domain constraints
which restrict how features can be perturbed, e.g., interdependence
between the values of several features, features with fixed values,
features with a limited range of values [5].

We assess the performance of these attacks along with their
realism in terms of the compliance of their outputs with the traffic
domain constraints. The assessment was conducted for the attacks
in two setups, targeted and untargeted, against multi-classification
DL-based NIDSs. We use the Unrealism Index metric, which is an
average of percentages of void AEs and features perturbation to
measure the realism of the attack. Our contributions are:

(1) We establish a list of 11 AEs attacks against NIDS (7 white-
box and 4 black-box) based on the critical analysis of 15
academic papers (Section 3)

(2) We introduce a new notion of Unrealism Index (Section 4.4).
(3) We implement these attacks against a multi-classifier DL-

based NIDS for two different datasets, demonstrating and
comparing their relative performances without constraints
(Section 5.1).

(4) We finally analyse the realism of these attacks network by
taking traffic constraints into account (Section 5.2).

2 BACKGROUND AND RELATEDWORK
In this section, we first outline the main DL-based schemes for NIDS.
Then, we present the fundamental principles of adversarial machine
learning. Lastly, we describe the network traffic constraints that
must be maintained to generate valid adversarial flow.
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2.1 Deep-Learning based Network Intrusion
Detection Systems

Machine learning approaches have been used for Anomaly-based
NIDS to detect anomalies and novel attacks by comparing the net-
work packets to a profile of benign traffic to discover any deviation
from the norm. Shallow ML approaches demand labeling training
datasets and manual feature engineering by domain experts, which
are difficult and time-consuming tasks [4]. Therefore, they are im-
practical in the real world due to the high dynamicity and large scale
of modern networks. On the other hand, DL techniques can auto-
matically extract different representations for feature learning at dif-
ferent processing layers. They provide end-to-end problem anomaly
detection solutions because they can discover complex correlations
and map raw input directly to the output [4]. DL-based architec-
tures for NIDS are classified into three major groups discriminative,
generative, or hybrid [4]. Discriminative or supervised models learn
the decision boundaries between the classes from labeled training
datasets and are used for traffic classification tasks. These models in-
clude Deep Neural Network (DNN) [15, 18, 19, 27, 28, 33, 38, 40–42]
and Convolutional Neural Network (CNN) [17, 18, 20, 27, 38]. Gen-
erative or unsupervised models learn the probability distribution of
each class from unlabeled training datasets, and they can be used
for clustering and dimensionality reduction. These models include
Auto-Encoder (AE) [20], Restricted Boltzmann Machine (RBM) [25],
Deep belief Network (DBN) [36], and Recurrent Neural Network
(RNN) [17, 18, 25, 38]. Hybrid architectures combine generative and
discriminative models, such as Generative Adversarial Networks
(GAN) [35].

2.2 Adversarial Machine Learning
Fundamentals

DL models can be misled towards incorrect decisions with high
confidence because of intently crafted perturbations added to the
original inputs, so-called Adversarial examples (AEs) [12, 23]. In
other words, an adversarial example is a data instance with tiny
intentional feature perturbations that deceive the machine learning
models and cause them to make false classification decisions. Most
of adversarial examples generation approaches insert a calculated
perturbation (𝛾 ) to the original input (𝑥 ) to produce a new version
(𝑥∗) (i.e., adversarial input) while reducing the distance between
the original input (𝑥 ) and the adversarial one (𝑥∗), and shifting the
classification decision to the aimed adversarial outcome [10, 12, 23].
The robustness of AEs generation techniques depends on their abil-
ity to produce AEs as close as possible to the original examples.
Adversarial attacks are mainly categorized into poisoning attacks,
evasion attacks, and inference attacks [12]. In poisoning attacks,
the adversary inserts adversarial examples into the training data
to degrade the model performance after deployment. In evasion
attacks, the adversary manipulates the inputs to deceive the model
and induce misclassification decisions. In oracle attacks, the ad-
versary crafts adversarial inputs to observe model outputs. The
collected pairs of inputs and correspond outputs are used to build
a substitute model that maintains most of the targeted model func-
tionality. The adversary then can design costumed attacks over the
substitute model that can transfer to the targeted model.

2.3 Network Traffic Constraints
Adversarial examples generation techniques were initially intended
for unconstrained domains (e.g., image recognition). In such do-
mains, the features are independent and can be perturbed arbitrarily.
However, network traffic features are constrained by some charac-
teristics such as [5]:

• Every feature can have a continuous, categorical, or binary
value.

• The values of some features can be highly interdependent
and correlated.

• The values of some features can be constant and unmodifi-
able.

The binary feature can take either 1 or 0, the categorical feature
takes a value that belongs to one category at once, and the numeric
feature can only take a value within the allowed range. For instance,
some features are linearly related, and others are immutable, such as
protocol type or connection flag. The adversarial perturbationsmust
maintain the above constraints to generate valid and functional
flow.

3 MAJOR AES ATTACKS AGAINST NIDS
This section outlines and discusses previous studies that employed
adversarial evasion techniques to prove their effectiveness in evad-
ing and degrading the performance of DL-based NIDS models. The
current literature states the vulnerability of detection models to
generic evasion adversarial attacks and regards them as significant
threats. However, these studies did not verify the practicality of the
generated adversarial traffic for real-world attacks.

Yang et al. [42] employed three black-box attacks: a substitute
model, Wasserstein Generative Adversarial Networks (WGANs),
and ZOO, to induce a DNN classifier to misclassify the attack traces
as normal traffic. Despite the realism of the attack outputs not
being investigated, the employed attacks suffer from practicality
issues. The substitute model attack fails to manifest the function-
ality and structure of the targeted model fully. On the other hand,
ZOO is computationally extensive as it requires querying the tar-
geted model for estimating the gradients. In a real-world scenario,
the NIDS limits the number of queries the adversary can make to
prevent potential suspicious probing attempts. Finally, GANs still
suffer from unstable training, model collapse, vanishing gradients,
and convergence failure.

Warzyński and Kołaczek [41] showed that the FGSM attack
completely compromised a DNN binary classifier over the NSL-
KDD dataset. Accordingly, they confirmed that the FGSM attack,
designed for image recognition, can be applied to the network
traffic domain. Clements et al. [13] claimed the vulnerability of
DL-based NIDS to AEs through an assessment of the robustness of
Kitsune, a lightweight DL-NIDS for IoT networks, to FGSM, CW,
and ENM attacks using the Mirai dataset. Wang [40] indicated that
different levels of effectiveness were achieved by FGSM, DeepFool,
and CW attacks and identified their feature pattern usages. The
author claimed that the most selected features to be perturbed
by these techniques could contribute more to the vulnerability
of DL-based NIDS to adversarial traffic. However, the study did
not analyze how these features were being manipulated to verify
whether the perturbations resulted in consistent traffic instances.
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The attacks were carried out against an MLP classifier over the
NSL-KDD dataset.

Peng et al. [33] demonstrated a drop in the performance of
DNN, SVM, RF, and LR classifiers against PGD, MI-FGSM, L-BFGS,
and SPSA attacks over the NSL-KDD dataset. Ibitoye et al. [19]
compared the performance of Self-Normalizing Neural Networks
(SNN) and DNNs under the FGSM, BIM, and PGD attacks using the
BoT-IoT dataset. The authors concluded that while DNNs outper-
formed SNNs in the accuracy rate, the SNNs were more resilient to
AEs. Jeong et al. [20] analyzed the efficiency of Autoencoder and
CNN under FGSM attack over the NSL-KDD dataset.

Huang et al. [18] assessed the efficiency of three port-scan attack
detecting models for SDN environments: MLP, CNN, and LSTM
under the FGSM attack. Martins et al. [28] showed a deterioration in
the mean performance of DT, RF, SVM, NB, NN, and DAE classifiers
under FGSM, DeepFool, and CW attacks. Sriram et al. [38] analyzed
the performance of LSTM, SMR, CNN, AB, DNN, RF, SVM, RF,
NB, DT, KNN, and LR classifiers against FGSM attack using the
NSL-KDD dataset.

Piplai et al. [35] leveraged GANs as a defensive mechanism
against AEs, and to solve the class imbalance that is common in net-
work traffic datasets. GANs involve training two neural networks
competing each other, where the Generator craft AEs to deceive the
Discriminator. However, their experimental results demonstrated
that the FGSM attack defeated the GANs classifier. Debicha et al.
[15] concluded that the FGSM, BIM, and PGD attacks significantly
deteriorated the performance of a DNN detection model. Maarouf
et al. [27] compared the resilience of C4.5, KNN, ANN, CNN, and
RNN traffic classifiers against ZOO, PGD, and DeepFool attacks
using the SCX VPN-NonVPN and NIMS datasets. The authors con-
cluded that DL models are more robust to AEs than conventional
ML ones.

Pacheco and Sun [32] claimed the feasibility of FGSM and CW
attacks to reduce the performance of DT, SVM, and RF classifiers
over the BoT-IoT and UNSW-NB15 datasets. Fu et al. [17] assessed
the robustness of CNN, LSTM, and Gated (GRU) to the FGSM attack
over the CICIDS2018 dataset. Merzouk et al. [30] analyzed the out-
puts of FGSM, BIM, DeepFool, and CW attacks. The experimental
evaluation was carried over a binary MLP classifier using the NSL-
KDD dataset. The scope of this study was relatively narrow, being
primarily concerned with a few white-box attacks implemented for
a binary classifier and in the untargeted setup only.

The previous studies focused on compromising DL-based NIDS
using generic evasion adversarial attacks. Although these attacks
might result in AEs with high Evasion Rates, the realism of these
attacks was not considered.

Furthermore, most studies focused on the impact of adversarial
attacks in traditional IP networks [15, 17, 20, 28, 30, 33, 35, 38, 40–
42]. On the other hand, security risks in other networking envi-
ronments such as WSN, SDN, and IoT must be assessed as they
are emerging and expanding over the upcoming years. Less re-
search considered these different contexts [13, 18, 19, 32]. More-
over, the outdated dataset NSL-KDD was used by most of the stud-
ies [15, 20, 30, 33, 38, 40–42]. This dataset is ideal and outdated
and does not reflect modern network complexity. Additionally, the
studies did not verify their experimental results by utilizing an
additional network dataset in order to prove the effectiveness of

the adversarial evasion attacks among different datasets [13, 15, 18–
20, 20, 30, 33, 35, 38, 40–42].

Recent research in malware detection has proposed adversar-
ial problem-space attacks that preserve the malicious functional-
ity [16, 26, 34, 37]. Similarly, in the network anomaly detection
domain, techniques such as Generative Adversarial Networks and
Reinforcement Learning have been leveraged to design function-
ality and domain constraints preserving adversarial attacks for
network traffic [29]. However, the scope of this study is to assess
the validity of the generic adversarial attacks as they are still be-
ing used to assess the robustness of DL-based NIDS to adversarial
attacks.

Based on the previous related works, no research has verified
the realism of adversarial flow and its compliance with network
domain constraints for a multiclass DL-based NIDS. Furthermore,
we validated the outputs of widely used white-box and black-box
evasion attacks in targeted and untargeted setups over two recent
traffic datasets representing different contemporary networking
contexts. Table 1 demonstrates the attacks used by the literature
to assess the resilience of a wide spectrum of conventional and
DL-based NIDS and whether domain constraints verification was
conducted for produced adversarial network traffic or not.

White-Box Black-Box C. V.?

Ref.
Attacks BIM CW DeepFool FGSM NewtonFool PGD ZOO HSJ EN Boundary

[41] ✓

[40] ✓ ✓

[42] ✓

[13] ✓ ✓ ✓

[18] ✓

[19] ✓ ✓ ✓

[28] ✓ ✓ ✓

[33] ✓

[30] ✓ ✓ ✓ ✓ ✓

[20] ✓

[38] ✓

[32] ✓ ✓

[15] ✓ ✓ ✓

[17] ✓

[27] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with Related Works

4 EXPERIMENTAL SETUP
This section provides detailed information about the implementa-
tion of the experiments. It describes the used datasets, dataset pre-
processing procedure, attack implementation, and targeted model
architecture. Then, we explain the used metrics to evaluate the
performance of the detection model, and realism of the crafted ad-
versarial traffic by measuring its compliance with network domain
constraints.

4.1 Datasets
We utilized two recent datasets that represent advanced network-
ing environments a wireless sensor network (WSN-DS) and an IoT
network (BoT-IoT).WSN-DS contains 374,661 records representing
normal traffic and four different types of DoS attacks, namely: flood-
ing, TDMA, grayhole, and blackhole [7]. BoT-IoT compromises a
approximately 3.6 million records in its proposed scaled version of
the best 10 features [22]. It represents normal IoT network traffic
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and various attacks that include DDoS, DoS, Keylogging, Data ex-
filtration, OS and Service Scan. Table 2 shows the features we used
in both datasets for the experiments.

Features WSN-DS BoT-IoT
Binary is_CH, JOIN_S, Join_R N/A
Numeric Who_CH, Dist To CH, Con-

sumed_Energy, ADV_S, ADV_R,
SCH_S, SCH_R, Rank, DATA_S,
DATA_R, Data_Sent_To_BS,
dist_CH_To_BS, send_code,

Seq, state_number,
Stddev, Min,
Max, Srate, Drate,
N_IN_Conn_P_SrcIP,
N_IN_Conn_P_DstIP

Categorical N/A Proto

Table 2: Used Features in the Datasets

4.2 Dataset Pre-processing
Data pre-processing is a crucial stage to convert raw inputs into an
understandable format by the ML algorithm. The first step in this
stage is One-Hot Encoding which converts categorical features
into numeric ones. We applied this step to the BoT-IoT dataset.
However, there was no need for one-hot encoding for the WSN-Ds
as the dataset does not contain categorical features. The second step
is standardization, in which all numeric features are converted into
a standard scale. Min-Max Normalization was used to transform
the features into a scale between 0 and 1. This step is essential
as the dataset has feature values with different scales drawn from
different distributions or tainted by outliers. Furthermore, normal-
ization prevents the features with large values from dominating
others which causes imbalanced results. This method converts the
maximum value into 1, the minimum value into 0, and the other val-
ues into decimals between 0 and 1. It is calculated via the following
equation:

𝑋 (𝑛𝑜𝑟𝑚) = 𝑋 − 𝑋 (𝑚𝑖𝑛)
𝑋 (𝑚𝑎𝑥) − 𝑋 (𝑚𝑖𝑛) (1)

where X denotes the feature value,𝑋𝑚𝑖𝑛 the minimum feature value,
𝑋𝑚𝑎𝑥 the maximum feature value.

4.3 Adversarial Attacks & Target Model
The Adversarial Robustness Toolbox (ART) library[31] was used
to generate the AEs using the examined approaches and with the
default parameters. The target model was a Feed-Forward Deep
Neural Network (FF-DNN) implemented using the Keras library
with a TensorFlow backend. The architecture of the model and
the training parameters are demonstrated in Table 3. The imple-
mentation of the experiments was conducted on a Google Colab
Notebook, and it is publicly available on Google Colab1.

4.4 Evaluation Metrics
We selected Evasion Rate (ER) as the primarymetric to evaluate the
performance of the attack. ER refers to the proportion of perturbed
attack instances misclassified as benign by the detection model. The
higher achieved ER by the approach indicates a more performant
attack.

𝐸𝑅 =
𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑑 𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑅𝑒𝑐𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑅𝑒𝑐𝑜𝑟𝑑𝑠
× 100 (2)

1https://colab.research.google.com/drive/1sRty5Is-iFazdgOuuafg6v𝐷𝑜𝑂𝐼9𝑁𝑁𝐻𝑐?𝑢𝑠𝑝 =

𝑠ℎ𝑎𝑟𝑖𝑛𝑔

Parameter Value
No. of hidden layers 3
Layer 1 128 neurons
Layer 2 64 neurons
Layer 3 32 neurons
Dropout 0.25
Optimizer ADAM
Activation function ReLU and Sigmoid
Learning rate 0.01
Epoch 100
Batch Size 64

Table 3: Feed-Forward DNN Model Parameters

To measure the realism of the attack, we consider three metrics.
• Approaches producing adversarial examples by manipulat-
ing all the features are unlikely to lead to realistic attacks; the
adversary cannot have control over all of the traffic features
to change them in a fine-grained manner. Furthermore, such
massive manipulation breaks the semantic links between the
correlated features. We introduce the metric PF measuring
feature perturbation:

PF =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜 𝑓 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
× 100 (3)

• Adversarial examples that do not comply with the network
domain constraints given in Section 2.3, e.g. by introducing
out-range values to the continuous features, assigning non-
binary values to the binary features, and triggering multiple
categories at once for categorical features, are unlikely to
correspond to realistic traffic. We introduce a generic metric
VAE𝑏 :

VAE𝑐 =
𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔 𝑏

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑒𝑐𝑜𝑟𝑑𝑠
× 100 (4)

We consider in the following𝑉𝐴𝐸𝑜𝑜𝑟 ,𝑉𝐴𝐸𝑛𝑏 and𝑉𝐴𝐸𝑚𝑐 for
the constraints out-range, non-binary and multi-categories,
respectively.

• The Unrealism Index (UI) is calculated by averaging the
metrics above that are relevant to a particular dataset.

UI𝑊𝑆𝑁−𝐷𝑆 =
PF + VAE𝑜𝑟 + VAE𝑛𝑏

3
× 100 (5)

UI𝐵𝑜𝑇−𝐼𝑜𝑇 =
PF + VAE𝑜𝑟 + VAE𝑚𝑐

3
× 100 (6)

5 EXPERIMENTAL RESULTS & ANALYSIS
In this section, we report and analyze the outcomes of executing
the attacks in targeted (T) and untargeted (U) setups over the two
datasets. Table 4 shows assessment results of attacks performance
and unrealism over the two datasets, using the metrics introduced
in the previous section, presented in decreasing order based on
Evasion Rate. For further investigation, the attacks outputs are
available on Google Colab2.

Figures 1 and 2 demonstrate the correlation between Evasion
Rate and Unrealism Index of the attacks over the WSN-DS and BoT-
IoT datasets, respectively. Figures 3 and 4 demonstrate the average
percentages of void adversarial examples for each validation metric
2https://colab.research.google.com/drive/1sRty5Is-iFazdgOuuafg6v_DoOI9NNHc?
usp=sharing
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Attack Setup
WSN-DS BoT-IoT Avg.

ER PF VAE UI𝑊𝑆𝑁 −𝐷𝑆 ER PF VAE UI𝐵𝑜𝑇 −𝐼𝑜𝑇 ER UIVAE𝑜𝑟 VAE𝑛𝑏 VAE𝑜𝑟 VAE𝑚𝑐

- Clean - 2 0 0 0 0 0.06 0 0 0 0 1.03 0

W
hi
te
-b
ox

BIM T 84.59 92.69 100 98.79 97.16 45.43 85.27 98.38 93.73 92.46 65.01 94.81
PGD T 84.59 92.69 100 98.79 97.16 45.43 85.27 98.38 93.73 92.46 65.01 94.81
CW2 T 36.36 44.94 0 34.36 26.43 0.89 33.53 0.47 0.83 11.61 18.63 19.02
FGSM T 12.51 100 100 100 100 3.85 100 100 100 100 8.18 100
CW T 2 98.5 0 97.92 65.47 0.06 99.8 4.03 99.94 67.92 1.03 66.7
NewtonFool U 22.2 90.63 85.04 89.59 88.42 4.76 90.33 90.47 90.43 90.41 13.48 89.42
BIM U 19.77 91.38 92.9 92.9 92.39 3.83 89.93 94.05 94.05 92.68 11.8 92.54
PGD U 19.77 91.38 92.9 92.9 92.39 3.83 89.93 94.05 94.05 92.68 11.8 92.54
CW2 U 20.26 70.44 0 63.3 44.58 0.01 55.13 1.11 32.45 29.56 10.14 37.07
DeepFool U 7.02 93.13 87.61 92.88 91.21 0.35 94.33 94.04 94.05 94.14 3.69 92.68
FGSM U 4.81 94.25 92.9 92.88 93.34 0.5 95.8 94.05 94.05 94.63 2.66 93.99
CW U 4.22 22 0 3.94 8.65 0.03 43.27 1.85 15.98 20.37 2.13 14.51

Bl
ac
k-
bo
x

EN T 85.02 50.06 0 42.59 30.88 61.65 49.93 0 43.49 31.14 73.34 31.01
HSJ T 100 92.69 0 98 63.56 23.32 47.2 4.14 23.31 24.88 61.66 44.22
Boundary T 91.79 95.31 0 98 64.44 20.38 48.73 1.3 24 24.68 56.09 44.56
ZOO T 1.41 1.81 0.59 0.59 1 0.01 1.07 0.04 0.04 0.38 0.71 0.69
HSJ U 28.1 85.88 0 99.16 61.68 0.48 86.07 58.72 99.74 81.51 14.29 71.6
Boundary U 26.89 91.25 0 99.99 63.75 0.98 93.93 53.4 100 82.44 13.94 73.1
EN U 10.36 34.44 0 5.77 13.4 1.01 41.2 0 14.33 18.51 5.69 15.96
ZOO U 6.86 13.06 13.89 13.96 13.64 0.15 50.07 55.1 52.94 52.7 3.51 33.17

Table 4: Attacks Assessment Results over WSN-DS & BoT-IoT Dataset

Figure 1: Evasion Rate vs. Unrealism Index over WSN-DS Figure 2: Evasion Rate vs. Unrealism Index over BoT-IoT

over the two datasets for white-box and black-box attacks, respec-
tively. The suffixes (-T) and (-U) were added to the attack names to
refer to the attacks in targeted and untargeted setups, respectively.
Lastly, Table 5 displays the validation metrics that were violated
by the attacks over the two datasets. The results were presented
in descending order based on the number of violated validation
metrics scored by the attacks over the two datasets.

5.1 Performance
As reported in Table 4 the model over the BoT-IoT dataset recorded
less ER of 0.06 on the clean attack instances compared to the WSN-
DS model which scored an ER of 2 as shown in Table 4. This dif-
ference can be justified by the imbalance of normal and attacks
data distribution between the two datasets. The attack instances
are the majority of the BoT-IoT dataset records with a percentage
of 99%, while they are the minority in the WSN-DS dataset with a

percentage of 9.2%. However, both models were able to detect the
clean attack traces with high accuracy.

From Table 4, we can see the variation in the attack effectiveness
in terms of ER over the two datasets. Overall, we can observe that
the performance of each attack depend on the dataset type. What
stands out in Figures 1 and 2 is that the attacks overall achieved
higher evasion rates over the WSN-DS compared to the BoT-IoT.
The attacks overWSN-DS achieved ERs between 100-1.44 and 61.65-
0.01 over BoT-IoT. The white-box and the black-box attacks per-
formed better in both setups, targeted and untargeted, over the
WSN-DS dataset compared to the BoT-IoT. Two reasons can justify
that; first, the proportion of benign traffic instances constitutes
about 91% of the WSN-DS dataset, which enriches learning the
characteristics of normal flow behavior by the targeted attacks. The
second reason can be attributed to the number and datatype in a
dataset. The WSN-DS dataset consists of binary and continuous
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Figure 3: White-box Attack Unrealism Metrics Percentages Figure 4: Black-box Attack Unrealism Metrics Percentages

features represented in numbers. The attacks could introduce any
arbitrary numbers to these fields with the possibility of generating
successful evasive examples. However, the BoT-IoT dataset contains
continuous features and a categorical feature (proto) as shown in
Table 2. A categorical feature can take one value from a finite set
of possible values. The proto feature can be a value from a set of
five values i.e., arp, tcp, udp, icmp, and ipv6-icmp. After one-hot
encoding, this feature is represented in a binary vector in which
only the corresponding category is assigned to 1, and the others
are zeros. The attacks spread their perturbations to all features and
introduce arbitrary numbers to fields belonging to a categorical
feature that must be zeros, and only one of them can be 1. Such
massive perturbation results in corrupted examples that cannot
evade the detection model and are easily detected. This explains
the terrible performance of the attacks over the BoT-IoT dataset.

It is apparent from Table 4 that the BIM and PGD attacks are the
top performing white-box attacks over the two datasets with ERs
of 65 and 12 in the targeted and untargeted setups, respectively.
The results of our experiments support the findings of previous
research that has demonstrated that multi-step (iterative) pertur-
bation strategies such as PGD and BIM are among the strongest
attacks compared to the single-step attack (e.g., FGSM) [24]. The
multi-step adversarial perturbation generation is an extension of
the single-step method in which it iteratively adds a perturbation
that follows the sign of the gradient with respect to the current
adversarial example of the original input [24]. The PGD attack is
similar to BIM. The differences are that PGD adds more iterations
and uses random initialization. Because of that, they had the same
effect on the detection model as shown in Table 4. Although other
studies support the same finding of us [15, 21], the BIM attack was
reported as performing better than the PGG in [19].

What is striking in Table 4 is that the black-box attacks performed
better than the white-box, with the EN being the best. Although
the EN is optimized to limit total perturbation across feature-space
inputs, it minimizes the number of perturbed features. Therefore,
the high effectiveness of this attack can be attributed to its ability
to produce AEs with minimal perturbation. As a consequence, the

resulting examples become very close to the original examples and
can successfully fool the detection model. The Boundary and HSJ
reported closer ERs. That can be justified by the fact that they are
both from the same family of decision-based attacks, with HSJ is
an extension of the Boundary attack.

5.2 Unrealism
5.2.1 Percentage of Features Perturbation.
As shown in Figure 3 the majority of white-box attacks manipulated
on average above 85% of the features over the two datasets including
BIM, PGD, CW, and NewtoonFool which were the best performing.
However, CW2-T and CW∞-U altered around 35% of the features.
Though, as shown in Table 4 they reported low ERs of 18.63 and 2.13,
respectively. Most of the black-box attacks manipulated around 62%
of the feature, as can be observed from Figure 4. Although the ZOO-
T, ZOO-U, and EN-U attacks were the least, they scored low ERs
between 0.71-5.69 (Table 4).

From these results, it is clear that these attacks altered a vast
amount of the traffic features by over 50%. The unrealism of the
attack can be attributed to the infeasibility of accessing and con-
trolling such amount of features by the adversary in real-world
scenarios. Furthermore, massive features modification will break
the semantic links among the features, invalidating traffic traces
realism.

5.2.2 Out-Range Values.
It is apparent from Figure 3 that the white-box attacks except CW2
and CW∞ generate above 90% AEs that hold out-range values. The
CW2 and CW∞ produce between 0.24-2.02 void AEs. However,
their ERs range between 18.63-1.03, as can be seen in Table 4. The
targeted black-box attacks produced on average less than 2.07% AEs
with out-range values, and 23% in the untargeted setup, as shown
in Figure 4.

Each feature in traffic can take a value within a limited range
of possible values. For instance, the Rank feature in WSN-DS has
originally a range of values between [0,99] which scaled to [0,1]
using min-max normalization for model training. However, the
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BIM-T attack, best performing, introduced values [-0.3,0.57] for
that feature which do not comply with the [0,1] range.

5.2.3 Non-Binary Values.
As can be seen in Figure 3, the majority of white-box attacks intro-
duced non-binary values to the binary features with percentages
of void AEs above 90%, except CW2 and CW∞-U. In the back-box
attacks, Boundary and HSJ generated above 98% void AEs. The
ZOO attack produced the lowest percentage of void AEs. However,
it achieved averaged ERs between 0.71 and 3.51 in targeted and
untargeted setups, respectively.

TheWSN-DS dataset contains three binary features: Is_CH, JOIN_S,
JOIN_R which can take only 0 or 1, as shown in Table 2. However,
the BIM-T attack introduced values between [-0.1,1.3], [-0.3,1.1],
[-0.3,1.09] for those features, respectively. For instance, the Join_S
feature in the WSN-DS dataset denotes whether the join request
was sent from the sensor node to the head of the cluster, which can
be True or False, i.e., a flag value of 1 or 0. Assigning a decimal or
negative value to this feature makes no sense.

5.2.4 Multi-Category Belonging Values.
It is apparent from Figure 3, that the majority of white-box attacks
triggered multiple categories at once for the categorical feature
for above 90% of AEs, except CW2 and CW∞-U. In the untargeted
back-box attacks, Boundary and HSJ generated almost 100% void
AEs. The other attacks produced less than 50%.

The BoT-IoT dataset includes a categorical feature proto as shown
in Table 2. A categorical feature contains a limited number of possi-
ble values. The proto feature has five values i.e., arp, tcp, udp, icmp,
and ipv6-icmp. After one-hot encoding, this feature is mapped into
a binary vector containing either 0 or 1. Here, only the associated
category is assigned to 1 and the others to 0. However, the attacks
spread their perturbations overall of the fields that belong to the
encoded categorical feature, which triggers multiple categories at
once.

6 DISCUSSION
In this section, we first summarize the key findings. We then place
our findings in the context of the literature that has employed the
examined attacks to assess the robustness of ML-based NIDS to
adversarial evasive examples. We discuss the literature from two
points of view: First, the compatibility of the generated adversarial
traffic with domain constraints of network traffic; Second, how
likely the adversary can utilize these attacks for real-world scenar-
ios. Finally, we state the study limitations and provide directions
for future work.

6.1 Attack Unrealism
As can be seen in Table 4, the top performant techniques violated
the validation metrics for realistic adversarial attacks. The attacks
vary in the percentages of unrealistic AEs they produce. Some
approaches generated less unrealistic AEs. However, they were the
least performing attacks. On the other hand, the highest effective
attacks created the highest percentages of unrealistic AEs.

We found that all of the attacks introduce non-binary values to
binary features and trigger multiple categories at once to categorical
features, as demonstrated in Table 5. Most of the attacks violate all

of the metrics explained in sections 4.4 and 2.3 over the two datasets
as shown in Tables 5. Although some of the AEs generationmethods
can be theoretically successful, no attackmaintains all of the domain
constraints. These techniques can not lead to practical and realistic
attacks as they violate the network domain constraints. They break
the semantic links among the features due to the high percentage of
perturbed features, as shown in Table 4. These findings indicate that
these attacks result in void data that cannot represent practical and
realistic packets that can be delivered over the network. Therefore,
they cannot be used to prove the resilience of DL-based NIDS to
adversarial evasive flow in a real-world setup.

Attack Setup WSN-DS BoT-IoT
A B C A B D

W
hi
te
-b
ox

BIM T ✓ ✓ ✓ ✓ ✓ ✓
FGSM T ✓ ✓ ✓ ✓ ✓ ✓
PGD T ✓ ✓ ✓ ✓ ✓ ✓
CW∞ T ✓ ✓ ✓ ✓ ✓
CW2 T ✓ ✓ ✓
BIM U ✓ ✓ ✓ ✓ ✓ ✓
DeepFool U ✓ ✓ ✓ ✓ ✓ ✓
FGSM U ✓ ✓ ✓ ✓ ✓ ✓
NewtonFool U ✓ ✓ ✓ ✓ ✓ ✓
PGD U ✓ ✓ ✓ ✓ ✓ ✓
CW2 U ✓ ✓ ✓ ✓ ✓
CW∞ U ✓ ✓ ✓

Bl
ac
k-
bo
x

Boundary T ✓ ✓ ✓ ✓
ZOO T ✓ ✓ ✓ ✓
HSJ T ✓ ✓ ✓ ✓
EN T ✓ ✓ ✓
ZOO U ✓ ✓ ✓ ✓ ✓
Boundary U ✓ ✓ ✓ ✓ ✓
HSJ U ✓ ✓ ✓ ✓ ✓
EN U ✓ ✓

A=%of Perturbed Features over 50% B=Out-Range Values
C=Non-Binary Values D=Multi-Class Values

Table 5: Attacks Unrealism Metrics Over WSN-DS & BoT-IoT

6.2 Attack Infeasibility
Similar to the literature, the implemented attacks work with feature
vectors extracted from pre-processed raw network traffic in the
form of tabular CSV files. Such attacks are known as feature-space
attacks, in which perturbations are applied directly to the inputs of
the detection model. The data processor component in the NIDS
parses raw packets to extract important features analyzed by the de-
tection engine to classify the passing traffic using pre-constructed
ML models. To implement such attacks, the adversary either has
to know what features are parsed on the other side or control the
channel of transforming the raw traffic to the pre-processed ML
model inputs. Acquiring capabilities over the feature set or the
pre-processing pipeline by the adversary is unlikely feasible for
real-world scenarios. Differently, the problem-space attacks involve
manipulating the actual packets and producing new adversarial
ones. The difficulty of these attacks lies in perturbing the origi-
nal raw input that corresponds to the adversarial feature vector.
Although they are challenging to implement, they are feasibly re-
alistic as the adversary can have the capability to craft the packet
contents compared to knowing the feature set or controlling the
pre-processing procedure.

White-box attacks denote scenarios where the adversary can
access everything related to the target system and have complete
knowledge of the model architecture, parameters, hyperparameters,
weights, and configurations. Hence, the adversary can directly craft
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adversarial examples by computing or approximating the model
gradients [9]. To gain such knowledge, the adversary must access
the model source code. However, the source code can be unob-
servable for a commercial NIDS or securely stored on a different
machine for in-house NIDS [8]; hence, these attacks are unlikely
feasible.

6.3 Literature Drawbacks
Our findings note that the outputs of these attacks are void and unre-
alistic as they do not obey traffic data restrictions. Previous studies
on assessing DL-based NIDS robustness to adversarial attacks ig-
nored the compliance of generated examples with network domain
constraints [13, 15, 17–20, 27, 28, 32, 33, 38, 40–42]. Furthermore,
they did not consider that the required perturbations for generating
the AEs do not directly correlate to modifying the actual network
packets; hence, their incapability for end-to-end attacks was not
taken into account. The authors applied the generic adversarial ex-
amples generation methods to the statistical features collected from
the packet metadata. Moreover, they did not demonstrate how the
adversarial raw packets can be generated. These attacks are known
as feature-space attacks that transform the original feature vector
as an into a new perturbed feature vector. Although such attacks
can be theoretically successful, they operate at the pre-processed
traffic data level, not at the packet level; therefore, the adversary
cannot use them for real-world scenarios. On the other hand, the
problem-space attacks perturb the raw packets to produce new
functional adversarial ones that can result in realistic end-to-end
attacks.

A common drawback in the previous studies is that they assume
the adversary knows everything about the targeted model and
training data, allowing him to directly apply the perturbations to
the model inputs [13, 15, 17–20, 28, 30, 32, 33, 35, 38, 40, 41]. In
real-world scenarios, this assumption is unlikely common as the
adversary in most cases an outsider.

To conclude our discussion of the literature work, the previous
studies have three significant flaws. First, they did not consider the
necessity of maintaining traffic domain constraints in generating
the adversarial flow for preserving the validity and functionality
of attack traces. Second, they assume the adversary can freely
perturb any amount of features that can break the semantic links
among the interdependent features. Lastly, they assume a white-box
threat model, where the adversary has access to the parameters of
the targeted model, which is not commonly feasible in real-world
scenarios.

6.4 Study Limitations
The findings of this study have to be seen in the light of some limi-
tations. Although the metrics we adopted to assess attack realism
help exclude unrealistic attacks, compliance with these metrics does
not ensure their realism. Additionally, the imbalanced distribution
of attacks and normal instances in the selected datasets made it
hard to compare attack performance over the two datasets, so we
could not obtain a generalized measure of their impacts. Therefore,
it is not evident how the performance results would generalize to
other architectures of DL models or other datasets.

6.5 Future work Directions
Future research should work on proposing comprehensive valida-
tion metrics that define rules of realistic adversarial attacks against
ML-based NIDS. Research on designing adversarial attacks for ML-
based NIDS must consider end-to-end real-world attack scenarios.
The attacks must be implemented at the packet level to prove their
feasibility for real-world evasion of ML-based NIDS. Overall, for
realistic attacks, the generated adversarial traffic needs to maintain
the domain constraints and semantic links among the traffic features
without knowledge of the detection model. Furthermore, future
work should incorporate contemporary network traffic datasets
that represent different networking environments and employ more
adversarial attacks to acquire a general measure of their impact.

7 CONCLUSION
The existing literature utilizes the generic adversarial examples
generation approaches to generate adversarial traffic and assess the
robustness of DL-based NIDSs. This study validated the compliance
of the generated adversarial examples with network domain con-
straints of network traffic and discussed the feasibility of utilizing
these examples for real-world attacks. It assessed the outputs of
seven white-box and four black-box attacks widely used in the lit-
erature, and they were implemented in different settings: targeted
and untargeted. Furthermore, we incorporated a wireless sensor
network traffic representing a different networking environment
that has not been investigated and an IoT network traffic.

We demonstrated the effect of adversarial evasion attacks on
the performance of a DL-based NIDS. Overall, the attacks vary in
their performance, and some attacks achieved remarkable Evasion
Rates. However, they result in void adversarial examples that do not
comply with the network traffic domain constraints. The examined
attacks introduce arbitrary and unrealistic perturbations such as
non-binary values to the binary features that only accept 0 or 1,
out-range values to the numeric features that have a fixed range
of possible values, or trigger multiple categories at once to the
categorical features. Furthermore, some of the attacks manipulate
more than half of the traffic features; controlling such amount
of features in a fine-grained manner is unlikely feasible to the
adversary and eventually breaks the semantic links between the
features. Based on these Unrealism metrics, we concluded that
although these attacks can be performant, they are impractical and
unrealistic for DL/ML-based NIDSs.

The literature focus on adversarial attacks that perturb the ag-
gregated and pre-processed traffic features directly. These feature-
space attacks are impractical as they modify features that are al-
ready parsed from the raw packets or aggregated statistically from
the flow connections. They cannot be replayed directly in the net-
work for end-to-end attacks. Thus, practical adversarial attacks
should revolve around problem-space perturbations that directly
amend the raw packets.

Furthermore, the current study assumes that the adversary can
arbitrarily perturb traffic features using the generic approaches,
have complete knowledge about the target model elements, or
freely probe the model for an oracle attack. Such assumptions are
unrealistic. Therefore, future research should be conducted in more
realistic setups that involve: crafting valid examples that comply
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with network traffic domain constraints, black-box threat models,
and minimal knowledge and capabilities over the target model.
These considerations will be addressed in our future studies.
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