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ABSTRACT
Smart contracts are programs that are executed on the blockchain
and can hold, manage and transfer assets in the form of cryptocur-
rencies. The contract’s execution is then performed on-chain and is
subject to consensus, i.e. every node on the blockchain network has
to run the function calls and keep track of their side-effects includ-
ing updates to the balances and contract’s storage. The notion of gas
is introduced in most programmable blockchains, which prevents
DoS attacks from malicious parties who might try to slow down
the network by performing time-consuming and resource-heavy
computations. While the gas idea has largely succeeded in its goal
of avoiding DoS attacks, the resulting fees are extremely high. For
example, in June-September 2022, on Ethereum alone, there has
been an average total gas usage of 2,706.8 ETH ≈ 3,938,749 USD per
day. We propose a protocol for alleviating these costs by moving
most of the computation off-chain while preserving enough data
on-chain to guarantee an implicit consensus about the contract
state and ownership of funds in case of dishonest parties. We per-
form extensive experiments over 3,330 real-world Solidity contracts
that were involved in 327,132 transactions in June-September 2022
on Ethereum and show that our approach reduces their gas usage
by 40.09 percent, which amounts to a whopping 442,651 USD.

CCS CONCEPTS
• Computer systems organization→ Peer-to-peer architectures.
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1 INTRODUCTION
Transactions [23].To enable smart contract functionality, Ethereum-
like blockchains support a wider notion of transactions than Bitcoin.
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More explicitly, a transaction is no longer limited to transferring
money between people, but it can also: (i) Deploy a contract’s code
on the blockchain, so that everyone knows about the code and the
code is then immutable; or (ii) Call a contract’s function, providing
its parameters. See [17] for a more detailed treatment and [18] for
examples. Moreover, each contract has its own address that can be
used for sending money, in the form of the base cryptocurrency, e.g.
Ether, to it. One can also send money to a contract at the same time
as calling one of its functions. All nodes in the network keep track
of the blockchain, which includes a specific order of all transac-
tions [10]. Therefore, it is easy to reach consensus about the state of
variables in every contract. We say that a computation is performed
on-chain if it has to be executed by all the nodes.

Gas [10]. Given that every function call has to be executed by every
node of the network in order to reach a consensus about the state of
the contracts and the balances of each person/contract, the whole
system is vulnerable to a DoS attack such as calling a function
with infinite runtime. To defend against such attacks, each basic
atomic operation is assigned a specific amount of gas, roughly pro-
portionate to its real-world cost of execution for the nodes, and the
originator of each function call has to pay a transaction fee covering
the overall gas usage of the call. This fee is paid to the miner, not to
every node. This is so that the miners are incentivized to solve the
proof-of-work problem or its variants [6]. Indeed, the miners aim to
maximize their transaction fee payoffs [21]. Although using gas has
been successful in deterring DoS attacks, it has had the unfortunate
unintended consequence of costing the blockchain users a huge
amount of money in transaction fees [9] and has also been a source
for many vulnerabilities [3, 5, 8]. The Ethereum Foundation admits
the problem of high gas fees in its official documentation [12]. Due
to these prohibitive costs, many smart contracts are constrained to
simple programs with limited functionality.

Our Contribution. We present a secure and trustless solution
that moves most of the computations in a smart contract off-chain
and ensures only a small 𝑂 (1) gas cost for every function call.
Moreover, it saves enough implicit data on the blockchain to be
able to reconstruct the execution and final state of the contract. Our
method has the following advantages:
• Our experimental results on 3,330 real-world smart contracts and
327,132 real-world transactions during June-September 2022 on
Ethereum show that our approach significantly lowers gas usage
by 40.09 percent, which amounts to 469.86 ETH or 442,651 USD.

• Assuming that all contract parties are honest, they are guaranteed
to reach a consensus about the state of the contract at the end of its
implicit off-chain execution, and the protocol will succeed without
any extra costly on-chain computations. If a party or parties are
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dishonest, our protocol simulates the run of the contract on-chain.
It ensures that the dishonest party is always identified and charged
for the gas. Thus, our protocol possesses the following desirable
properties: (a) all parties are strictly incentivized to be honest1,
and (b) honest participants have no risk of being penalized.

• Our protocol is in principle applicable to virtually all smart con-
tracts on any programmable blockchain, regardless of the language
used to program them.

2 PRELIMINARIES
Smart Contracts. Ethereum smart contracts are stored on the
blockchain in a stack-based assembly-like format called EVM (Ethereum
Virtual Machine) bytecode [10]. Various high-level languages are
compiled to this bytecode, such as Solidity [14], which is a strongly-
typed language loosely inspired by Javascript, and Vyper [15],
which is similar to Python. Solidity is currently the most widely-
used language for writing smart contracts in Ethereum [4, 13]. Each
contract consists of a number of functions. A function can be public,
meaning that it can be invoked by anyone who creates a transaction
calling this function, as well as other smart contracts, or it can be
private to the contract. There are two types of space for storing
data in a contract: (i) a memory which is the working space of the
contract and is erased after each transaction, and (ii) a persistent
storage whose contents are not erased in between transactions and
are permanently stored by all nodes on the network. Accordingly,
there are three types of variables in a Solidity smart contract:
• State variables are the ones saved in the storage. The values of
these variables collectively define the state of the contract. Every
node on the blockchain keeps track of storage variables.

• Local variables are available only during the execution of a single
transaction, then discarded when it is ended.

• Global variables [10] are special variables that provide information
about the current block and the state of the blockchain.

Ethereum’s Gas Model [23]. On Ethereum, executing each EVM
bytecode operation costs a well-defined number of units of gas.
See [10, Appendix A] for a complete table of gas costs. Generally,
operations on storage are much costlier than memory. When a user
initiates a transaction, she can set two values: (a) the maximum
amount 𝑔𝑚 of gas that she is willing to pay for, and (b) the price
𝜋 , in ether, that she is willing to pay for each unit of gas. Based on
these, a miner can choose which transactions to include in her block
and in which order. When the transaction is included in a block and
mined, every node on the blockchain executes it. This execution
begins by taking a deposit of 𝑔𝑚 ·𝜋 from the initiator’s account and
then running the called function while keeping track of the total
gas used until this point. There are three cases: (i) If the function
terminates using 𝑔 units of gas and 𝑔 ≤ 𝑔𝑚, then the miner is paid
a transaction fee of 𝑔 · 𝜋 and the rest of the deposit, i.e. (𝑔𝑚 −𝑔) · 𝜋 ,
is reimbursed to the initiating user. Moreover, any updates to the
storage are saved by all nodes on the blockchain; (ii) If the function
throws an exception/error, then all of its effects are reversed and
the storage is returned to its status before this function call and
the gas deposit is divided exactly as in the last case; (iii) Otherwise,
an out-of-gas exception is triggered, causing the user to lose her

1More formally, the only Quasi-strong Nash equilibrium [7] is when every participant
is honest.

deposit, which is paid to the miner in its entirety, and the storage
state of all affected contracts to revert to right before the current
transaction. Out-of-gas errors are a common and serious security
vulnerability in smart contracts [1, 2]. However, avoiding them
is an orthogonal issue and our approach ensures the exact same
behavior in the optimized low-gas version of the contract as in the
original. Blocks in Ethereum can use a maximum amount of gas
called blocksize [10]. The limit can change based on the demand in
the network but is at most 30 million units of gas per block.

3 OUR PROTOCOL

Fundamental Idea. The main idea behind our approach is quite
simple and elegant. LetP be the set of parties who intend to interact
with the contract C. Then, it suffices to ensure that all members
of P are in agreement about the current state of C and there is
no need to force every other node in the network to constantly
keep track of C’s state, as well. Such an agreement in P can be
obtained off-chain by storing only a small amount of information
on-chain. More specifically, if we store C’s code and a list of all
function calls on-chain, without actually executing the function
calls, then (i) we avoid paying gas fees for the execution of function
calls, (ii) any member of P can execute all the function calls in
the right order off-chain, i.e. on her own machine, and they will
all reach the same final state, and (iii) this final state is uniquely
determined by the information that is stored on the blockchain.
So, if a party Alice ∈ P is dishonest, we can run all the function
calls on-chain, identify the dishonest party Alice, and penalize her.
Our idea above is similar to the concept of lazy evaluation [19]
in programming languages theory [20]. However, in the context
of smart contracts, we take lazy evaluation to the extreme and
apply it (i) only to on-chain computations, and (ii) at the level of
function calls. Hence, we opt for a lazy approach that triggers an
on-chain execution only when two parties in Alice, Bob ∈ P have
a disagreement about the current state.

Our Protocol. Our protocol is implemented as a “wrapper” con-
tractW, also written in Solidity, which includes a slightly modified
version of the code of C, as well as additional functionality. The
developer should deployW to the blockchain, instead of directly
deploying C. Obtaining W from C is a well-defined algorithmic
process and we provide a free and open-source tool that performs
this task (See Section 4). More specifically, for every function C.𝑓
there is a corresponding function W .𝑓 with minor changes. Ad-
ditionally,W allows the developer to set values for the following
state variables upon its deployment on the blockchain:
• The deposit 𝑑 that each user should put down to ensure the gas
costs of on-chain execution can be billed to this user in case of
dishonest behavior;

• A positive integer 𝑡 used as a time limit for challenges, whose
use-case will become apparent in the withdrawal and challenge
process described below;

• The maximum amount of gas that each user is allowed to consume
in executing functions of C;

• The maximum amount of gas that each single function call to a
function in C is allowed to consume;

• The maximum number of allowed function calls of C.
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By enforcing one or more of the maximum values above, the
developer must ensure that all gas usage in the contract’s lifetime
is covered. Using the values chosen by the developer, W provides
the following additional functionality:
(1) Joining. Before being able to interact with C’s functionality in

W, a user/party Paul ∈ P has to explicitly joinW by calling
W .join() and providing a deposit of 𝑑 ether. This deposit will
remain in the contract’s custody as long as Paul is a party to
the contract and will be used to compensate for gas usage if
Paul’s dishonest behavior triggers an on-chain execution.

(2) Virtual Banking. Since W is lazy in running functions call of
C and avoids running them on-chain by default, any money
transfers by these calls is also not executed on-chain. To enable
the functionality of money transfers between C and the partici-
pants, W acts as a bank and allows each joined user to deposit
and withdraw ether to W . The balances used in C’s functions
will then refer to the user’s balance inW, rather than her ether
balance on the blockchain. TheseW-balances are not explicitly
stored on-chain. Each party in P keeps track of them off-chain
on their own machine. The contract C has aW-balance as well.

(3) Ledger.W keeps track of an on-chain internal ledger (as a state
variable) which is a sequence of deposits and withdrawals by
the users to W’s bank and also the function calls requested by
the users to functions of C.

(4) Depositing Ether. A party Paul can deposit ether toW at any
time. The deposited ether will be under the control ofW and
an entry will be added to W’s ledger certifying the amount
that Paul deposited. This entry is added on-chain. Upon seeing
this entry, all participants in P update their off-chain version
of Paul’s W-balance accordingly.

(5) Lazy Function Call.W has a dedicated function which is named
requestCall and can be utilized by a party Paul who wants to
call a function in C. To call C.𝑓 , Paul has to create a transaction
that calls W .requestCall containing following parameters:
• The name 𝑓 of the function that should be called,
• The maximum amount 𝑔𝑚 of gas that may be used by 𝑓 ,
• The parameters that should be passed to 𝑓 ,

• the amount of money that should be paid from Paul’s W-
balance to C’s W-balance. This is only applicable if C.𝑓 is
payable, i.e. if it can accept payments.
Upon receiving the items above,W .requestCall first checks
that Paul is not exceeding the maximum gas usage allowed by
the developer. If this limit is exceeded, then the function call is
ignored. Otherwise, instead of running C.𝑓 orW .𝑓 on-chain,
requestCall adds an entry to the internal ledger. This entry
includes all the parameters (a-d) above, as well as a record of
the values of all global variables such as block.number and
msg.sender = Paul. This is all the information that can possi-
bly be needed for executing the call to 𝑓 , but the call itself is
not executed on-chain. When a call request record is added to
the ledger inW, every party in P performs that function call
off-chain on their own machine and updates their own copy of
the state variables in C and the W-balances accordingly.

(6) Withdrawing Ether. The parties can decide to withdraw ether
from theirW-balance at any time in two steps. Although the
W-balances are not explicitly stored inW, all parties have exe-
cuted function calls off-chain and are aware of all W-balances.

• Step 1: The party Alice ∈ P calls W .requestWithdraw(𝑥)
and specifies the amount 𝑥 she wishes to withdraw as a pa-
rameter. This request is added to theW-ledger.

• Step 2: If no other party challenges the withdrawal until 𝑡
blocks after Step 1, then Alice can call the dedicated function
W .withdraw and receive the desired amount of money.

(7) Challenging. Suppose a party Alice ∈ P requests a withdrawal
of 𝑥 ether from her W-balance. Although W-balances are not
explicitly stored in W on-chain, Bob ∈ P knows whether
Alice has a W-balance of at least 𝑥 because all operations
(lazy function calls, deposits, withdrawals) are all simulated by
every other party off-chain on his own machine. If Bob finds
out that Alice is trying to withdraw more than herW-balance,
then Bob can challenge the withdrawal at index 𝑗 by calling a
function named W .challenge( 𝑗). When a challenge occurs,
then either Alice is dishonest and trying to withdraw more
than her balance or Bob is dishonest and stopping Alice from
withdrawing her money. In such a case, the wrapper contract
W initiates an on-chain evaluation.

(8) Leaving. Any party can call W .leave() and leave W at any
time to get their deposit 𝑑 back as long as they do not have
an active withdrawal request. A withdraw request is active
if (i) the current time is within 𝑡 blocks after the request, or
(ii) the request has been challenged and the ensuing on-chain
evaluation has not concluded yet.

(9) On-chain Evaluation. On-chain evaluation is triggered only
when there is a disagreement about the state of C and a with-
drawal is challenged. Let 𝑖 be the index of the last operation in
the W-ledger that is executed on-chain. Originally, we have
𝑖 = 0, but 𝑖 might have increased in case of previous challenges.
Let 𝑗 be the index of the withdrawal request by Alice in the
W-ledger and suppose the request is challenged by Bob. We
have to simulate all the operations in the range [𝑖 + 1, 𝑗] of the
W-ledger on-chain in order to find the W-balance of Alice at
the time of the request. The contract W maintains a state vari-
able 𝑏 [Paul] for every party Paul ∈ P . This is the W-balance
of Paul immediately after the on-chain execution of the 𝑖-th
entry in theW-ledger, i.e. hisW-balance up until the last op-
eration that is executed on-chain. It also has a state variable
𝑏 [C] which similarly tracks theW-balance of C. If we execute
everything until index 𝑗 − 1 on-chain, then 𝑏 [Alice] would be
the W-balance of Alice at the time she requested to withdraw
𝑥 units. So, we simply have to figure out whether 𝑏 [Alice] ≥ 𝑥 .

Note that a smart contract cannot initiate its own execution and
all function calls have to be initiated by a user. Moreover, the
initiator of a function call has to pay for its gas usage. However,
we would like to ensure that (i) the dishonest party ultimately
bears the gas costs, and (ii) the incurred gas costs are as small as
possible. Hence, the wrapperW holds an auction for the role of
initiator in which anyone can enter a bid for the gas price 𝜋 that
they are willing to charge for the execution. More specifically,
the on-chain simulation contains the following steps:
• Bidding. For 𝑡 blocks after the challenge, any party Ingrid ∈ P
can call the functionW .bid( 𝑗, 𝜋) signifying that she is willing
to initiate the on-chain execution as long as she is paid 𝜋

units of currency (ether) per unit of gas. Note that this is not
necessarily the amount that she really pays the miners per unit
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of gas. Indeed, 𝜋 can be larger than the real unit gas cost, hence
giving some profit to Ingridwho is volunteering to initiate the
on-chain execution. However, this profit is unlikely to be high
as parties can undercut each other. The potentially dishonest
parties Alice and Bob cannot bid. After 𝑡 blocks, the smallest
bidder becomes Ingrid and triggers on-chain simulation.

• Simulating Every Entry of theW-ledger.After Ingrid is chosen
in the bidding process above, she has to call W .simulate(𝑘)
for every 𝑖 + 1 ≤ 𝑘 ≤ 𝑗 in order. This function simulates the
execution of the 𝑘-th entry in theW-ledger on-chain. This will
of course incur gas costs which are paid by Ingrid. However,
W .simulate stores of how many units of gas Ingrid has paid
in 𝑔𝑏 [Ingrid] . If Ingrid fails to call W .simulate(𝑘) within
𝑡 blocks after she calledW .simulate(𝑘 − 1), she loses her de-
posit 𝑑 . Moreover, another bidding process will begin as above
to find a new initiator for the rest of the on-chain simulations.
This ensures that the simulation will be successfully carried
out until index 𝑗 .

4 EXPERIMENTAL RESULTS

Implementation.We implemented our approach, i.e. an automated
tool to obtain the wrapped contract W from any given contract C
in Python 3. We used Slither [16], Web3Py [22], and Hardhat [11]
for parsing smart contracts written in Solidity and simulating the
gas usage on our machine.

Overall Savings in Gas Usage. As benchmarks, we took all the
Ethereum smart contracts that were deployed in Etherscan between
June and October 2022. Some of them were removed either because
they were extremely simple contracts, e.g. basic ERC 20 with no
additional functionality, or because they were not parsable using
our libraries. Thus, we report results over the remaining 3,330
real-world contracts with 327,132 function calls. The total gas
usage was reduced from 51,845,786,705 gas units ≈ 727.09 ETH ≈
1,261,801 USD to 31,058,348,542 gas units ≈ 469.86 ETH ≈ 819,149
USD. So, our approach provided a reduction of 40.09 percent,
corresponding to a whopping 442,651 USD in a short period of
only 121 days. Each contract’s gas usage was, on average, reduced
by 51.65 percent. This shows the significant real-world utility
of our method, as well as the fact that current Ethereum smart
contracts are quite wasteful in terms of gas usage. The average
improvement per transaction was 63,544.49 units of gas ≈ 0.0008
ETH ≈ 1.35 USD. Figure 1 provides more detailed results.
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