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ABSTRACT
Logical languages provide rigid formalisms for theories with vary-
ing expressive and scalable powers. In ontology engineering, it is
popular to to provide a two-folded formalization of a theory; an
expressive FOL formalization, and a decidable SROIQ fragment.
Such a task requires a systematic and principled translation of the
set of FOL formulas to achieve a maximally expressive decidable
fragment. While no principled work exists for providing guidelines
for the translation of FOL theories into SROIQ knowledge bases,
this paper contributes with such a translation procedure.

CCS CONCEPTS
• Computing methodologies� Knowledge representation
and reasoning; Description logics; Ontology engineering;

KEYWORDS
First-order Logic, Description Logics, Translations
ACM Reference Format:
Fatima Danash and Danielle Ziebelin. 2023. Translating FOL-theories into
SROIQ-Tboxes: . In Proceedings of ACM SAC Conference (SAC’23).ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3555776.3577870

1 INTRODUCTION
Logical languages provide rigid formalisms for theories, standards,
and knowledge domains. Several languages have been designed
with varying expressive powers and scalable complexities. For the
Semantic Web [12], which is the next step in the evolution of the
World Wide Web, the goal is to have a standard formal represen-
tation that is expressive enough to model any knowledge domain,
yet decidable enough to be read, understood, and compiled by ma-
chines. Thus, the trade-off arises between the expressivity and the
decidability properties of logical languages. The Web Ontology
Language [11] (OWL), a World Wide Web Consortium (W3C) rec-
ommendation language for the SW, achieves a balance between
these requirements as based on the SHOIN [8] logical language.
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SHOIN is a logic from the family called Description Logics [2]
(DLs). DLs form a decidable fragment of the expressive First-Order
Logic [13] (FOL), thus, a compromise between expressivity and
scalability. As a semantic web standardization, the latest version of
OWL; OWL2DL [1] is based on the SROIQ [6] logic which is the
most expressive (yet decidable) commonly used DL.

In ontology engineering, it is becoming more popular to of-
fer a two-folded formalization of a knowledge domain; a FOL-
formalization as an initial reference ontology capturing the domain
of interest with a wide expressive power, and a DL-formalization as
a secondary lightweight ontology [5] supporting its implementation
and application in the semantic web. The passage from the former
(FOL-formalization) to the latter (DL-formalization) is a highly crit-
ical task that allows for the transition from expressive theories to
building semantic web applications for the world wide web. To
fulfill this task, a translation is required to guide a systematic and
principled rewriting of the set of formulas present in the theory.
The investigation on the extant literature concerning the transition
from FOL to SROIQ (e.g. [10] and [7]) reveals a noticeable effort
made on adding rule fragments to DLs within different integration
manners, but no principled work or even tools providing guidelines
for the translation of FOL theories into SROIQ knowledge bases.

In this paper, we build a translation procedure that takes as
input an FOL-theory and gives as an output a SROIQ knowledge
base. The procedure consists of six consecutive steps, in which
a particular logical formalism/serialization of the initial theory
is computed in each. Some operations call for syntactic/semantic
checks to qualify a subset of the inputted set. Other steps allow for
choice making when options arise.

2 TRANSLATION PROCEDURE
In this section, we illustrate the translation procedure’s steps as
shown in figure 1. The procedure takes as input a set of axioms 𝑆
corresponding to a theory 𝑇 formalized in FOL. Each step of the 5
steps comprises an input set 𝑆𝑖 , where 0 ⩽ 𝑖 ⩽ 4, resembling the
theory’s serialization in a specific logical formalism e.g. 𝑆1 is the
set of axioms in clausal form 𝐶𝐹 , the operation(s) to be performed
on each axiom in 𝑆𝑖 , and an output set 𝑆𝑖+1 which forms the input
of the next step. The final output of the translation corresponds to
a SROIQ serialization as a liter version (decidable fragment) of
the initial inputted FOL serialization.

2.1 Transforming to Clausal Form (𝐶𝐹 )
⊲ Input: 𝑆0 set of 𝑛 formulas in first-order logic. For each axiom, we
apply the following four operations.
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Figure 1: The different steps of the translation procedure and their corresponding operations, starting from a set 𝑆0 in first-order
logic, and resulting in structured set 𝑆6 of SROIQ axioms.

2.1.1 Negation Normal Form (NNF). Simplify the formula, using
logical equivalences, andmove negations inwards so that it contains
connectives of the form ∀, ∃, ∧, ∨, and ¬ only.

2.1.2 Prenex Normal Form (PNF). Demarcate the variables of the
formula, by renaming different variables that have same notation,
and move all the quantifiers to the left.

2.1.3 Skolem Normal Form (SNF). Remove all existential quanti-
fiers by replacing an existentially quantified variable e.g. 𝑥 by a
Skolem constant if 𝑥 is not preceded by universally quantified vari-
ables, and by a Skolem function in terms of the universally quantified
variables that precede 𝑥 otherwise.

2.1.4 Clausal Normal Form (CNF). Distribute disjunctions over
conjunctions so that the formula becomes a set of conjunctions of
disjunctions.

All four operations formulate a sequence of transformations
which guarantees that the final form of 𝑎, as a set of clauses, is
the simplest and best form for the rewriting of 𝑎 as (a group of)
rule(s) as required by step 2.2. The resulting set of axioms 𝑆1 is not
equivalent to 𝑆0, but a sub-set of 𝑆0 (𝑆1 ≤ 𝑆0) where 𝑆1 |= 𝑆0, but
the converse is not true.

2.2 Rewriting as Horn Rules (𝐻𝑅)
⊲ Input: 𝑆1 set of𝑚 clauses in clausal form. For each clause 𝐶𝑖 in
𝑆1, let 𝑛 and𝑚 be the numbers of non-negated and negated atoms
respectively. Let𝐴, 𝐵, and𝐶 be atoms of𝐶𝑖 resembling unary/binary
predicates.

• if 𝑛 ⩽ 1, then 𝐶𝑖 is a horn clause.
– if 𝑛 = 1, then𝐶𝑖 which is a positive horn clause of the form
¬𝐴∨¬𝐵∨𝐶 is rewritten into [¬(𝐴∧𝐵)∨𝐶] ≡ [𝐴∧𝐵 → 𝐶].

– if𝑛 = 0, then𝐶𝑖 which is a negative horn clause of the form
¬𝐴∨¬𝐵∨¬𝐶 can be rewritten into one of the following𝑚
favorable options e.g. [¬(𝐴 ∧ 𝐵) ∨ ¬𝐶] ≡ [𝐴 ∧ 𝐵 → ¬𝐶],
in comparison to any of the 𝑛 options e.g. [¬(𝐴∧𝐵∧𝐶)] ≡
[𝐴 ∧ 𝐵 ∧𝐶 → ∅].

• if 𝑛 > 1, then 𝐶𝑖 is not a horn clause, and has the form
¬𝐴∨𝐵 ∨𝐶 . However, it is still possible to force the clause to
be rewritten in the horn implication form by qualifying any
of the 𝑛 atoms for the rule’s head e.g. [¬(𝐴 ∧ ¬𝐵) ∨ 𝐶] ≡
[𝐴 ∧ ¬𝐵 → 𝐶] as possible favorable options.

This step is critical in establishing an implication form of 𝐶𝑖
preparing the formula to have the form of inclusion axioms. The
resulting set of horn rules 𝑆𝐻𝑅 of all axioms is equivalent to the
inputted set 𝑆1 (𝑆𝐻 ≡ 𝑆1).

2.3 Qualifying Expressible rules (𝐻𝑅𝐸)
⊲ Input: 𝑆2 (= 𝑆𝐻𝑅) set of𝑚 horn rules in their implication form.
Each rule 𝑅𝑖 (𝑎1 ∧ 𝑎2 ∧ .. ∧ 𝑎𝑛 → ℎ in 𝑆2) shall satisfy the two
syntactic restrictions below to be qualified for the upcoming steps
of the translation.

2.3.1 Enclosed-rule constraint. Restricts the variables in the head
of the rule ℎ to be present in at least one of the body’s atoms 𝑎𝑖 for
1 ⩽ 𝑖 ⩽ 𝑛 i.e. enclosed-variables.

2.3.2 Connected-rule constraint. Assures that for each pair of vari-
ables 𝑥 and 𝑦 in 𝑟𝑖 , there exists a sequence 𝑧1, 𝑧2, ..., 𝑧𝑛 such that
𝑧1 = 𝑥 , 𝑧𝑛 = 𝑦, and for 1 ⩽ 𝑗 ⩽ 𝑛 there is a binary predicate 𝑅 in 𝑟𝑖
such that 𝑅(𝑧𝑖 , 𝑧𝑖+1) or 𝑅− (𝑧𝑖+1, 𝑧𝑖 ), i.e. connected-variables.

These constraints ensure the passage from the initial open-world
assumption of FOL, to the intended closed-world assumption of DL.
Since a variable that is not enclosed or not connected results in an
open-world view i.e. could be bound to any predicate, which yields
to an inexpressible rule. The resulting set of expressible horn rules
𝑆𝐻𝑅𝐸 is a sub-set of the inputted set 𝑆2 (𝑆𝐻 ≤ 𝑆2).

2.4 Constructing the rule graph (𝐺𝑅)
⊲ Input: 𝑆3 (= 𝑆𝐻𝑅𝐸 ) set of expressible horn rules in their implication
form. For each horn rule 𝑅𝑖 apply the following steps to construct
the graph 𝐺𝑅𝑖 . Note that for the remaining part of the paper, we
refer to the unary and binary predicates of 𝑅𝑖 as concepts and roles
respectively.

2.4.1 Conceptualizing 𝐺 . Conceptualize the rule 𝑅𝑖 as a directed
labeled graph𝐺𝑅𝑖 , following [4], defined as𝐺 = ⟨𝑉 , 𝐸, 𝐿, 𝐻 ⟩ where;

• 𝑉 is a finite set of the variables of 𝑅𝑖 resembling the vertices
of the graph;

• 𝐸 is a finite set of the roles in the body of 𝑅𝑖 resembling the
edges of the graph, such that a role 𝑆 (𝑥,𝑦) is added to 𝐸 in
the form of an edge 𝑆𝑥𝑦 ;

• 𝐿 is a finite set of label sets corresponding to each variable in
𝑅𝑖 of the form 𝐿 = {𝐿𝑥1 = {𝐶1,𝐶2}, 𝐿𝑥2 = {𝐶2,𝐶3}, ..., 𝐿𝑥𝑛 =

{𝐶1,𝐶3}} where 𝐿𝑥1, 𝐿𝑥2, ..., 𝑎𝑛𝑑𝐿𝑥𝑛 are the label sets of the
variables 𝑥1, 𝑥2, ..., 𝑎𝑛𝑑𝑥𝑛 respectively, 𝐶1,𝐶2,𝐶3 are con-
cepts in 𝑅𝑖 which the variables satisfy, and 𝐿 resembles the
labels of all the vertices of the graph;

• 𝐻 is the head of 𝑅𝑖 written in the form of an assertion; either
a concept assertion of the form 𝑥 : 𝐶 if the rule is concept-
headed i.e.𝐶 (𝑥), or a role assertion of the form 𝑥,𝑦 : 𝑅 if the
rule is role-headed i.e. 𝑅(𝑥,𝑦).
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2.4.2 Simplifying 𝐺 . Simplify the roles and concepts in 𝐸 and 𝐿

by removing edges and labels that do not alter the satisfiability
of the rule. Such edges/labels correspond to roles/concepts that
subsume other roles/concepts in 𝐸/𝐿 i.e. are entailed (implied) by
other edges/labels within 𝐸/𝐿, thus they do not further constraint
𝐺 . We simplify 𝐺 = ⟨𝑉 , 𝐸, 𝐿, 𝐻 ⟩ where 𝑉 = {𝑥,𝑦, 𝑧} according to
the rules:

Simplifying roles: For each role in 𝐸, apply the following rules
in order until no rule is applicable anymore. Let R be the role
hierarchy of the roles in 𝐸.

(1) if (a) R contains a RIA of the form 𝑅1 ◦ 𝑅2 ◦ ... ◦ 𝑅𝑛 ⊑ 𝑆 ,
and (b) 𝐸 contains the roles 𝑅1

𝑥1𝑥2, 𝑅
2
𝑥2𝑥3, ..., 𝑅

𝑛
𝑥𝑛𝑥𝑛+1, and

𝑆𝑥1𝑥𝑛+1, or their inverses, then remove 𝑆𝑥1𝑥𝑛+1 from 𝐸.
(2) if (a) R contains a RIA of the form 𝑅 ◦𝑅 ⊑ 𝑅 i.e.𝑇𝑟𝑎(𝑅), and

(b) 𝐸 contains the roles 𝑅𝑥𝑦, 𝑅𝑦𝑧 , and 𝑅𝑥𝑧 , or their inverses,
then remove 𝑅𝑥𝑧 from 𝐸.

(3) if (a) R contains a RIA of the form 𝑆 ⊑ 𝑅− , and (b) 𝐸 contains
the roles 𝑅𝑥𝑦 and 𝑆𝑦𝑥 , then remove 𝑆𝑦𝑥 or 𝑅𝑥𝑦 from 𝐸.

(4) if (a) R contains a RIA of the form 𝑆 ⊑ 𝑅, and (b) 𝐸 contains
the roles 𝑅𝑥𝑦 , and 𝑆𝑥𝑦 , and (c) 𝑅 ≠ 𝑆 , then remove 𝑅𝑥𝑦 .

Simplifying concepts: For each variable labels’ set𝐿𝑖 = 𝐶 𝑗 𝑓 𝑜𝑟1 ⩽ 𝑗 ⩽ 𝑛

in 𝐿,apply the following rules until no rule is applicable anymore.
Let T be the concepts hierarchy consisting of general concept inclu-
sion axioms (GCIs) of the concepts in 𝐿.

(1) if
⋂

𝐶 𝑗 ∈𝐿𝑖
𝐶 𝑗 ≡ ⊤ in T , then empty 𝐿𝑖 i.e. 𝐿𝑖 = ∅.

(2) if 𝐶 𝑗 ⊑ 𝐶 𝑗 ′ in T , then remove 𝐶 𝑗 ′ i.e. 𝐿𝑖 = 𝐿𝑖 − {𝐶 𝑗 ′ }.

2.4.3 Identifying the root 𝐺𝑟𝑜𝑜𝑡 . Identify the root of 𝐺 which is
a (set of) variable(s) depending on the form of the rule’s head 𝐻 .
If the rule is concept-headed i.e. 𝐻 = 𝑥 : 𝐶 , then the root is a
single variable expressed 𝐺𝑟𝑜𝑜𝑡 = {𝑥}. If the rule is role-headed i.e.
𝐻 = 𝑥,𝑦 : 𝑅, then the root is a path of variables starting by 𝑥 in
𝐺 to 𝑦 in 𝐺 and encompassing all the vertices in between 𝑥 and 𝑦,
expressed 𝐺𝑟𝑜𝑜𝑡 = {𝑥, .., 𝑦}.

Constructing a conceptualization of a rule as a graph helps to
visualize the links between the variables of the rule and the overall
shape of the rule (e.g. a tree or a cycle), and make the necessary
operations (simplification and identification of root). Roles’ sim-
plification maximizes the possibility that 𝐺 satisfies the semantic
restrictions required later. Concepts’ simplification minimizes the
label’s set of each vertex by removing subsumers and maintaining
(a list) of the most specific concepts. And last, identifying the root of
𝐺 is the key to the next step’s conversion. The resulting set of rule
graphs 𝑆𝐺 is equivalent to the inputted set 𝑆3 (𝑆𝐺 ≡ 𝑆3).

2.5 Converting into 𝑆𝑅𝑂𝐼𝑄 axioms
⊲ Input: 𝑆4 (= 𝑆𝐺 ) set of rules graphs in their simplified form. For
each rule graph 𝐺 perform the subsequent operations to convert it
to a SROIQ inclusion axiom 𝐴, and prepare next step’s inputs 𝐼
and R𝑁𝑆 resembling the proposition builders and the set of non-
simple roles in 𝑆4, respectively.

2.5.1 Folding 𝐺 . Qualify tree rule graphs only, i.e. 𝐺 must not
contain cycles when considered as an undirected graph, and shrink
𝐺 to have 𝑉 equivalent to 𝐺𝑟𝑜𝑜𝑡 . This operation is referred to as

folding since the vertices of 𝐺 that are not in the 𝐺𝑟𝑜𝑜𝑡 set, are
folded back into a neighbor vertex [4]. The folding uses the rolling-
up technique [14] which allows tree-like structures to be expressed
as concept expressions. Thus, for each vertex 𝑧 of 𝐺 that is a leaf
node and does not appear in𝐺𝑟𝑜𝑜𝑡 , we fold 𝑧 into a neighbor vertex
𝑦 by using the edge between 𝑧 and𝑦 i.e. 𝑅𝑧𝑦 . This is done by rolling-
up 𝑧 into 𝑦 as follows;

(1) eliminating 𝑅𝑧𝑦 from 𝐸; by rolling the edge into a concept
expression and adding it to 𝑦’s set of labels 𝐿𝑦 :
• if 𝐿𝑧 ≠ ∅, then 𝐿𝑦 = 𝐿𝑦 ∪ ∃𝑅. ⋂

𝐶𝑖 ∈𝐿𝑧
𝐶𝑖

• if 𝐿𝑧 = ∅, then 𝐿𝑦 = 𝐿𝑦 ∪ ∃𝑅.⊤
(2) eliminating 𝑧 from 𝑉 ; 𝑉 = 𝑉 − {𝑧}

2.5.2 Composing axioms. Compose the axiom(s) 𝐴 from 𝐺 as gen-
eral concept inclusion axioms or role inclusion axioms based on 𝐺 .
■ if𝐺 is concept-headed i.e. it has the form𝐺 = ⟨{𝑥},∅, 𝐿𝑥 , 𝑥 :

𝐶𝑟𝑜𝑜𝑡 ⟩, then𝐺 is converted into a single axiom𝐴 of the form⋂
𝐶𝑖 ∈𝐿𝑥

𝐶𝑖 ⊑ 𝐶𝑟𝑜𝑜𝑡 i.e. a general concept inclusion axioms.

■ if𝐺 is role-headed i.e. it has the form𝐺 = ⟨{𝑥1, ..., 𝑥𝑛}, {𝑅𝑥1,𝑥2,
𝑅𝑥2,𝑥3, ..., 𝑅𝑥𝑛−1,𝑥𝑛}, {𝐿𝑥1, 𝐿𝑥2, ..., 𝐿𝑥𝑛}, 𝑥1, 𝑥𝑛 : 𝑅𝑟𝑜𝑜𝑡 ⟩, then
𝐺 must not contain concepts but only roles to be converted
to role insertion axiom(s). Thus we apply the following;

(1) for every vertex 𝑥𝑖 in 𝑉 , rewrite its label 𝐿𝑥 𝑖 as a role
expression using a fresh role, and fresh concept. Let 𝐶′ be
a fresh concept that is the intersection of all 𝑥 ’s labels as
𝐶′ =

⋂
𝐶𝑖 ∈𝐿𝑥

𝐶𝑖 , and 𝑅𝐶′ be an auxiliary property associated

to 𝐶′ as 𝐶′ ≡ ∃𝑅𝐶′ .𝑆𝐸𝐿𝐹 . Thus, each instance of 𝐶′ will
have the role 𝑅𝐶′ with itself, and the existence of such
a loop implies that the individual upon which 𝑅𝐶′ loops
over is an instance of 𝐶′. This results in emptying 𝑉 , and
𝐺 becoming a set of edges only in which there is a single
path between 𝑥1 and 𝑥𝑛 .

(2) convert the list of roles in 𝐸 into a role inclusion axiom
Ω ⊑ 𝑅𝑟𝑜𝑜𝑡 , where Ω is the concatenation of the roles in 𝐸

in the form of Ω = 𝑆𝑥1,𝑥2 ◦ ... ◦ 𝑆𝑥𝑛−1,𝑥𝑛 .

2.5.3 Identifying structures. Verify the syntax of role inclusion ax-
ioms to be compliant with one of the forms restricted by the sim-
plicity and regularity constraint of SROIQ, without achieving
decidability (yet), and to form the inputs of the next final step.
Considering RIAs having the form (𝑎 𝑗 ) : Ω ⊑ 𝑅𝑟𝑜𝑜𝑡 , we apply the
following;

• restrict Ω to satisfy one of the following forms; (i) 𝑅 ◦ 𝑅; or
(ii) 𝑅− ; or (iii) 𝑆1 ◦ 𝑆2 ◦ .. ◦ 𝑆𝑛 ; or (iv) 𝑅 ◦ 𝑆1 ◦ .. ◦ 𝑆𝑛 ; or (v)
𝑆1 ◦ .. ◦ 𝑆𝑛 ◦ 𝑅; or (vi) 𝑆 and 𝑆 is simple.

• if Ω is a role composition, then;
(1) for every 𝑆𝑖 in Ω, that is not an inverse role and different

from 𝑅𝑟𝑜𝑜𝑡 ; we define a "proposition builder" I𝑗 to repre-
sent that the axiom 𝑎 𝑗 having index 𝑗 is included in the
TBox, and 𝑎 𝑗 holds some ordering relations between 𝑆𝑖
and 𝑅𝑟𝑜𝑜𝑡 as follows; I𝑗 → (𝑆𝑖 ≺ 𝑅𝑟𝑜𝑜𝑡 )∧(𝑆−

𝑖
≺ 𝑅𝑟𝑜𝑜𝑡 )∧ ..

for all 1 ⩽ 𝑖 ⩽ 𝑛, following [3]. Each proposition builder
I𝑗 is added to the set of proposition builders 𝐼 .

(2) add 𝑅𝑟𝑜𝑜𝑡 to the list of non-simple roles R𝑁𝑆 as follows;
R𝑁𝑆 = R𝑁𝑆 ∪ {𝑅𝑟𝑜𝑜𝑡 }.
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The resulting set of axioms 𝑆𝑆𝑅𝑂𝐼𝑄 (𝑛𝑜𝑛𝑆 ) is a sub-set of the
inputted set 𝑆4 (𝑆𝑆𝑅𝑂𝐼𝑄 (𝑛𝑜𝑛𝑆 ) ≤ 𝑆4).

2.6 Establishing decidability - Generalization
⊲ Inputs: 𝑆5 (= 𝑆𝑆𝑅𝑂𝐼𝑄 (𝑛𝑜𝑛𝑆 ) ) set of SROIQ axioms in their non-
structured form, 𝐼 set of proposition builders, and R𝑁𝑆 set of non-
simple roles. In this final step, the goal is to structure the TBox
by extracting a decidable fragment (structured) of the inputted set.
This is done by applying two rules imposed by the two syntac-
tic constraints of SROIQ; simplicity and regularity [9]. These
constraints target the theory as a whole rather than each single
axiom per separately, to guarantee that the reasoning algorithms
are correct and do terminate [9], and that the satisfiability problem
is decidable [6]. Thus, in contrast to the preceding steps in which
we have treated the inputted sets 𝑆𝑖 as per element, at this step we
deal with all the axioms of 𝑆5 at once.

2.6.1 Simplicity rule. Track all the occurrences of non-simple roles
in 𝑆5 and drop axioms that violate decidability. For each role 𝑅𝑖 in
the set of non-simple role R𝑁𝑆 , for each 𝐴𝑖 in 𝑆5, if 𝐴𝑖 is of the
form; (i) ∃𝑅𝑖 .𝑆𝐸𝐿𝐹 ; or (ii) < | = | > 𝑛𝑅𝑖 .𝐶; or (iii) 𝐼𝑟𝑟 (𝑅); or (vi)
𝐴𝑠𝑦 (𝑅); or (v) 𝐷𝑖𝑠 (𝑅, 𝑆), then drop 𝐴𝑖 , and 𝑆 ′5 = 𝑆5 − {𝐴𝑖 }.

2.6.2 Regularity rule. Compute all the incompatibilities of differ-
ent regular orders in 𝐼 and track their corresponding axioms to
be dropped. We follow the approach proposed in [3] for tracking
incompatibilities caused by irregularities of contradicting partial or-
ders over a role hierarchy. The approach builds a meta-theory I in
propositional logic and defines the problem of finding subsets of 𝑆5
(i.e. the TBox) that satisfy regularity as a decidable SAT problem. 𝐼 is
the set of proposition builders of the form I𝑗 → (𝑆𝑖 ≺ 𝑅)∧(𝑆−

𝑖
≺ 𝑅)

capturing the fact that the inclusion of axiom 𝑎 𝑗 in the TBox re-
quires both orders 𝑆𝑖 ≺ 𝑅 and 𝑆−

𝑖
≺ 𝑅 to hold in the role hier-

archy. Using 𝐼 , we are able to track incompatibilities whenever
there exists two different regular orders of roles, each indicating
the inclusion in one another in a different direction. For example,
the two proposition builders I5 → (𝑆1 ≺ 𝑆2) ∧ (𝑆−1 ≺ 𝑆2) and
I7 → (𝑆2 ≺ 𝑆1) ∧ (𝑆−2 ≺ 𝑆1) signify that axioms 𝑎5 and 𝑎7 are
incompatible with respect to each other. Such incompatibility is
deduced by means of I5 and I7, and is represented in the meta-
theory as a meta axiomm1:I5 → ¬I7 indicating that for TBox to be
decidable, one of the two axioms cancels the other i.e. TBox − {𝑎5}
or TBox − {𝑎7}.
After computing all the incompatibilities, we have the following:

• 𝑆 ′5 = {𝑎𝑖 }; the initial unstructured set of axioms inputted
• M = {𝑚𝑘 }; the set of meta axioms from the meta level
propositional theory

• U = {𝑎𝑖 }; the set of unstructured axioms in the meta axioms
of the set M i.e. those that cause incompatibilities e.g. 𝑎5
and 𝑎7.

To interpret the above, 𝑆 ′5 −U contains a set of structured (safe)
axioms that comply with the syntactic restrictions. The goal is
however to find the maximal structured set of axioms by finding
the structured subsets ofU. The meta axioms inU can be linked
depending on the axioms they tackle. For instance, if m1 which
captures I5 and I7, is the only meta axiom that captures these two
proposition builders while no other meta axiom does, thenm1 is to

be extracted from M into a sub-theory M1, and axioms 𝑎5 and 𝑎7
are to be removed fromU into a tuple U1 = ⟨{𝑎5}, {𝑎7}⟩ indicating
an ordered subset from U where one set of axioms is to be chosen
to be included in the structured TBox (e.g. in our case either {𝑎5}
or {𝑎7}.

To generalize what preceded, we apply the following:
(1) divide the meta axioms in M into subsets of dependent

meta axioms M𝑛 , where each set M𝑛 contains 𝑚𝑘 ’s that
capture overlapping axioms 𝑎𝑖 i.e. an M𝑛 consists of𝑚𝑘 ’s
overlapping over the roles that are tackled in their axioms.

(2) for each setM𝑛 , specify subsets of axioms within a tuple U𝑛
upon which one should be excluded.

The result is a number of tuples U𝑛 equivalent to that of the
meta theory subsetsM𝑛 , where each tuple presents choices of sets
of axioms that, together, violate decidability, and one set exactly
shall be chosen to be excluded from the TBox. Thus, for 𝑆6 = 𝑆 ′5 −⋃
𝑛
𝐶ℎ𝑜𝑖𝑐𝑒 [U𝑛] i.e. a subset of 𝑆5.

3 CONCLUSION
In this paper, we proposed a procedure for translating FOL theories
into decidable SROIQ fragments. The procedure computes differ-
ent equivalent/subset logical formalisms at each step by performing
operations such as rewriting formulas, syntactic/semantic checks,
graph transformations, and rule-rolling techniques. For the seman-
tic web, developing ontological models from logical formalisms
is widely growing nowadays. Our procedure facilitates the task
of providing the DL-logical formalism, upon which an ontology
implementation is based on, from the original FOL formalism, by
following a systematic and principled translation.
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