
leads to a much better tree than making them from bot tom
to top. However, the bottom-to-top method is much more
convenient to program, and it can be used if the new
branches from a given node are attached from right to left.
The tree begins looking as in Figure 3.

The preceding criterion of excellence was only the num-
ber of total multiplications. Clearly if n is an unknown
variable, the Binary Method is the best to use. In fact this
method would be quite suitable to incorporate in the hard-
ware of a binary computer, as an exponentiation operator.

If y is floating point, there is of course a point of diminish-
ing returns when n gets large, since it will eventually be
better to take logarithms and exponentials. Since the Tree
Method uses r multiplications at level r it is possible to
stop generating the tree at a certain point and we then
have a set of all the "interesting" values of n. The tree in
Figure 3, for example, shows all n for which it is known
that y'~ needs 6 or less multiplications. The Factor Method,
on the other hand, is valuable when n is large and an
application requires frequent calculation of y~.

A system manual (which will not be mentioned here by
name) has a subroutine for "float to fix exponentiation"
of y T n which uses n - 1 multiplications since it says
"there is small probability of this routine being used with
a very large n." This may seem to be a valid point at first;

but it didn't take long before a user had to calculate yTO a
very large number of times, and so the user rewrote the
subroutine. This remark is included here to offer some
justification for having a good power method.

REFERENCES

1. See TODD, JOHN. A Survey of 25umerical Analysis, pp. 3-4.
McGraw-Hill, 1962.

2. OSTROWSKI, A. M. Studies in Mathematics and Mechanics
Presented to R. yon Mises, pp. 40-48. Academic Press, Inc.,
1954.

3. FLOYD, R. An algorithm for coding efficient arithmetic opera-
tions. Comm. ACM ~ (Jan. 1961), 50-51.

EDITOR'S NOTE. Since much usage may be made of
these methods in the floating-point mode, one could con-
sider also the relative timing of multiplication and divi-
sion. In some machines these have even been equal. Thus,
for y31 other possibilities exist, using " D " to indicate a
division:

Binary (8) S X S X S X S X ~ X 1 X 1 X 3 X 1 X T X 1 X i s X i
Factor (7) X1X2X2X6X~2X6X1

Division (6) XiX2X4XsXi¢D1

The reader is invited to t ry n 127 and see if some algorithm
could be derived for mixed operations.

A Decision Matrix as the Basis for a
Simple Data Input Routine

G. J. VASILAKOS
Datatrol Corporation, Silver Spring, bid.

Currently a great deal of time and effort is being spent
on the development of bigger and better compiler languages,
multiprogram executive systems, etc. Since the implementation of
of new methods and procedures is not instantaneous, but rather
occurs by an evolutionary process, we should be concerned
also with the problem of maintaining, improving and incorpo-
rating new ideas into existing systems. It is with this somewhat
neglected area that the author is interested. A method employ-
ing a decision matrix is presented for the handling of a stand-
ard systems programming problem, that of providing a data
input routine.

I n t r o d u c t i o n

Motivation for this project came from an analysis of
several current systems which revealed that the routines
for handling input character data strings had been coded
in an ad hoc manner, brute-force, do-it-any-way-you-can
method. The technique to be outlined may either suggest
that recoding of these programs could be worthwhile or

it may at least provide some useful ideas for people de-
signing their own input routines. However, it is not our
purpose to suggest a format for a general data input
routine. Thus the details of the program to be described,
which in itself is fairly simple-minded and somewhat re-
strictive, are not to be construed as recommended specifi-
cations but are provided only for the purposes of illus-
tration.

We are concerned with the analysis of character strings
which conform to a fairly universally accepted format for
defining input data. Basically this involves categorizing
data items as falling into one of three general classes:
alphanumeric, hollerith or numeric. Alphanumeric and
hollerith information consists of character strings which
are translated into the corresponding internal machine
representation by the input routine and placed in the
computer memory. The distinction is usually made to
identify character strings which can be manipulated by
the program (alphanumeric), and strings which are fixed
(hollerith) and can only be altered by re-assembling or
recompiling. Numeric data is converted to an appropriate
binary representation (we will restrict ourselves to binary
machines) and then placed in memory. An input string
can contain any of the three data types mixed in any
order. A format statement can be used to communicate
information about the organization of the data string to
the input routine, or the routine can determine this from
the context of the input string.

C o m m u n i c a t i o n s o f t h e ACI~ 599

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355580.369082&domain=pdf&date_stamp=1962-12-01

1. (terminator)

2. (a-element)

3. (h-signal)

4. (h-element}

5.

6. (sign}

7. (integer)

8. (fixed point number}

9. E

10. E (sign)

11. (exponent)

1
(alpha)
not E

2,M

2,M

4,M

4,M

ERR

ERR

• ERR

ERR

ERR

2

(digit)

7,MN

2,M

4,M

4,M

8,MN

7,MN

7,MN

8,MN

ll,ME

3

i,TAH

4,M

4,M

ERR

ERR

1,TN

1,TF

ERR

4

+ 1 -

6,SS

ERR

4,M

4,M

ERR

ERR

ERR

ERR

10,SE

5

E

2,M

2,M

4,M

4,M

ERR

ERR

ERR

5,SD

ERR

4,M

4,M

ERR

5,SD

8,SD

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

8 9

) $

ERR END

ERR TAH

ERR , ERR

1 ,TAH

ERR

ERR

ERR

ERR

ERR

ERR

ERR

TN

TF

ERR ERR

ERR ll,ME ERR ERR ERR ERR ERR ERR ERR

ERR ll,ME 1,TF ERR ERR ERR ERR ERR TF

FIG. 1. Decision matrix for input scan

I t is not the purpose of this article to get deeply involved
in a detailed discussion of a well-known method of speci-
fying the construction of input information. For the reader
unfamiliar with this type of representation, the input /out -
put section of reference [1] is suggested reading.

Our intent is to describe the actual analysis of the input
character string, and we are not concerned with the
methods used for getting the data from input devices or
the way in which a programmer can request allocation of
the translated or converted data to memory locations.
The technique to be outlined is applicable to any binary
computer. However, a program using this approach has
been writ ten and checked out for an I B M 7090 and
therefore some references in the discussion are directly
related to the hardware characteristics.

T h e P r o g r a m

The program processes a continuous input character
string of any length. The basic syntactic component of
any string is a data field. Fields can be one of three types;
alphanumeric, hollerith or numeric. Any number of data
fields can be grouped to form a logical record. Any number
of logical records can comprise a complete input file.

Alphanumeric fields can contain alphabetic characters,
digits and some special characters. However, they must
ahvays begin with an alphabetic character. Hollerith fields
are enclosed within left and right parentheses and can
contain any characters except (,), or the special end-of-
logical record character $. Numeric fields can be either
integer, fixed point oi" floating point. They conform to the
normal, rules of formation for numeric data.

The program analyzes input information by context.
Tha t is, no format statement is used to specify the input data
construction. The syntax rules are such tha t the characters

of any input string uniquely define the types of fields and
their grouping into logical records.

In order to save further lengthy description of field,
record and file organization, and yet to uniquely define
their construction, the syntax for input string formation is
given below. A blank is denoted by the character " ~ ".
The notat ion is consistent with tha t used in the report on
ALGOL 60 [2].

Definition of Elementary Characters

(alpha) ::= A I B I O I D I E I F I G I ~ I I ! J I K ! L I M I NI
O I P I Q I R I S l T I U I V I W I X l Y I Z l = I / ! *

(digit) ::= 0 l l [2 1 3 t 4 1 5 1 6 1 7 l s ! 9
(sign) ::= + [-
(terminator) ::= , I ~] (terminator} (terminator)

Definition of Alphanumeric and Hollerith Fields

(a-element) ::= (alpha}] (a-element) (alpha)] (a-element} (digit)
(alphanumeric field} ::= (a-element)(terminator)t (a-element } $
(h-signal) ::= ((digit)[((alpha}[((sign)[((terminator)[(.
(h-element) ::= (h-signal}] (h-element) (digit} I (h-signal)

(alpha) 1 (h-element) (sign)] (h-element}
(terminator)] (h-element) .

(hollerith field) ::= (h-element))

Definition of Numeric Fields

l integer) ::= (digit) [(sign) (digit}] (integer) (digit)
(integral part) ::= (integer) . I (sign) . (digit} I • (digit)
fixed point number) ::= (integral part) [

(fixed point number} (digit)
(exponent} ::= E (sign} (digit) I E (digit) I (exponent} (digit)
(floating point.number) ::= (fixed point number) (exponent) l

(integer) (exponent)
(numeric element) ::= (integer) 1 (fixed point number) [

(floating point number)
(numeric field) ::= (numeric element) (terminator) [

(numeric element} $

600 Communications of the ACM

Defin i t ion of Logical Records and Fi le

(subfield ::= (a-element) [(numeric element) [(terminator}
(field) ::= (subfield} (terminator} t (hollerith field) I (field) (field)
(logical record} ::= (field} $ [(field} (subfield} $ [(subfield} $
(file element} ::= (logical record} I (file element} (logical record}
(file} ::= (file element} (physical file indicator}

Defined below are a few sample data fields and a possible
input string which might be formed from them.

Field Type

AB345 alphanumeric
12.3E-4 floating point number
123 integer
(PAGE ~ N0.24) hollerith field
12.3 fixed point number

Input String

AB345, 12.3E--45 ~ 123 # ~ (Page # No.24), 12.3 ~$

Although not shown in the syntax, restrictions were
placed on the magnitude of numeric fields (for implemen-
tat ion purposes). The syntax above does not provide for
handling physical end-of-record marks, since it was felt
their inclusion would add nothing but length to this paper.
For coding purposes, the routine which supplies the scanner
with an input character was programmed to ignore physical
record marks.

Figure 1 shows the construction of the decision matrix
employed for the scanning of input character strings. The
columns and rows are related where possible to the syn-
tactic element which they represent as having been formed
from the input characters. The cells in the matrix can
contain two types of information, separated for readabili ty
by commas. Integers indicate the next setting of the row
index. Alphabetic names refer to blocks of coding to
execute before looking at the next input character. These
coding blocks perform the following functions:

M - - move character to output
MN - - accumulate as binary integer
SS - - set sign of number
SD - - set decimal point position
TAH - - terminate alphanumeric or hollerith field
ME - - accumulate as binary integer for exponent
SE - - set sign of exponent
TN - - terminate integer field
TF - - terminate and float binary number
ERR - - print field error message
END - - terminate scan

The method of processing is as follows : Initially set the
current syntactic element to terminator, i.e., row index
= 1. Get an input character and set the column index ac-
cording to the syntactic category of the input character.
Examine the contents of the matrix cell determined by the
current values of the row and column indices. I f the cell
contains an integer, then set the row index for the next
input character to this value. If the address of coding to
be executed is given, then perform these instructions. In
any event, always go back and get the next input character
unless a signal was given for input scan termination.

Undefined input character constructions are treated as
field errors. When an end-of-logical-record is recognized,
the scan is terminated and the condition reported to a
higher level calling routine. Physical end-of-file marks are

Input Row Column New Row
Character Index Index Index

A 1 1 2
E 2 5 2
$ 2 3 1

1 1 2 7
7 6 8

2 8 2 8
$ 8 9 - -

Function

Set row index = 1.
Move character to output.
Move character to output.
Terminate alphanumeric field;

set row index = i.
Accumulate as binary integer.
Set decimal point position.
Accumulate as binary integer.
Terminate and float number; re-

turn to calling routine.

FiG. 2. Illustration of processing a logical record

handled by the I / O select routine which feeds the scanner
an input character.

For illustration, consider a simple two-field logical
record : AE ~ 1.25 The character " ~ " is a blank. Fig-
ure 2 shows the values assumed by the column and row
indices, and the coding blocks executed during each step
in processing this logical record.

S u m m a r y a n d C o n c l u s i o n s

Employing the decision matrix technique for analyzing
the construction of an input character string proved su-
perior to an ad hoc approach in several ways. One, it
provided relatively fast execution times. Secondly, once
the syntax rules were decided upon and the matrix con-
structed, the programming itself became rather trivial, the
reason being tha t the logic was concisely and clearly con-
tained in the matrix itself. Thirdly, probably the most
important advantage gained in our case was tha t the
technique allowed simple modification of the syntax rules.
By altering the contents of matrix cells, or at most by
increasing the matrix size, the syntax and semantics of
expected input strings can be drastically altered. This does
not necessitate any recoding of the input scan, and at most
requires the addition or replacement of blocks of coding to
handle the new definitions.

I t is suggested tha t this technique would prove useful
for controlling the scan of a format s ta tement specifying
the organization of information for output data, or, con-
versely, for scanning a format s ta tement describing the
construction of input data, if this approach was used as
opposed to our example in which the context of the input
string determined the type of information.

One characteristic evident from the formation of our
matrix is the number of empty cells, for example, or filled
with E R R in this example. This can be generally true of
applications of decision matrices to this type of process.
This could result in a considerable amount of wasted space
for more complex processes requiring larger matrices. This
disadvantage can be overcome, however, by employing a
densely packed matrix structure. For instance, see [3].

REFERENCES

1. IBM 709/7090 FORTRAN Reference Manual. Form 28-6054-2
(1961).

2. NAUR, P. (Ed.) Report on the Algorithmic Language ALGOL
60. Comm. A C M 3 (May 1960).

3. HELLERMAN, I{. Addressing multidimensional arrays. Comm.
A C M 5 (Apr. 1962), 207.

C o m m u n i c a t i o n s o f t h e A C M 6 0 1

