Check for
Updates

ALGORITHM 142

TRIANGULAR REGRESSION

W. L. HAFLEY aAnD J. S. LeEwis

Aluminum Company of America, Pittsburgh, Penn.

procedure (rireg (n, nob, dep, pmax);
real pmaz; integer n, nob, dep;
comment irireg is a multiple regression procedure which
develops and inverts only the upper triangular portion of a
correlation matrix of order n. The 7,jth (< ;) matrix element
is r(c;+7) where the ¢’s are cram numbers (ref. Algorithm 67,
J. Caffey, Comm. ACM 4, July 1961). dep < n dependent
variables are regressed simultaneously. Read (u) is an input
procedure for single elements. The input consists of nob ob-
servations on n variables. The first dep variables are con-
sidered dependent and the remaining n — dep are considered
independent variables. Independent variables are dropped
when the pivotal element exceeds pmazx during the inversion.
Total variable storage is 14 4+ 3n + n(n+1)/2;
begin integer 11, 42, i3, cl, ¢2, ¢3, df; integer array c[l:n];
real d, p, a; real array r[lin(n+1)/2)], v(l:n], m[l:n];
initial: df := 0; for {1 : = 1 step 1 until n do m[il] := 0;
for 71 : = 1 step 1 until n(n+1)/2 do r[il1] : = 0;
for 71 := 1 step 1 until nob do
begin for i2 : = 1 step 1 until n do Read (v[i2]);
cl :=0; fori2:=1stepl until » do
begin d : = v[i2]; m[i2] := m[i2] + d;
for 23 := 122 step 1 until n do
begincl :=¢l +1; rlcl]:=rlcl] + v[#3] X d end
end 72;
end 71;
correlation: c¢l:=1; a:=1/nob; foril:=1step luntilndo
begin v[il] : = 1/sqrt(r[cl]— (m[c1112) X a);
rlel] i=1; cl:i=¢l +n — it
end 71;
cl:=1; for ¢1:=1stepl until ndo
begind := a X m[21]; p = o[il]; ¢l := ¢l 4+ 1;
m[el] 1= d;
for :2 := 41 + 1 step 1 until n do
begin r[cl] : = (r[cl]—dXm[:2]) X »[2] X p;
end 2;
end 71;
comment variable ¢ may be dropped from the
regression by setting »; = 0 and df equal to the
number of variables dropped;

input:

eram: 11:= —n; 2:=n4+1; fori3 := 1stepl until n do
begin i1 := i1 + i2 — 43; ¢[li3] 1= 41
end 71;

inversion: for il := dep + 1.step 1 until n do

begin ¢l := ¢[tl1]; if v[z1] % 0 then
begin p := 1/r[c14+41]; if p > pmaz then
begindf:=df +1; goto YY end else
begin r[cl441] := p; for 12 := 1 step 1
until 721 — 1 do
begin ¢2 := ¢[i2]; a:= p X r[c2+11];
for i3 : = 12 step 1 until n while 73 # i1 do

7t

J. H. WEGSTEIN, Editor

begin if 13 < 71 then
begin ¢3 := c[i3]; d:= rlc3+71] end

else d : = —r[c1413];
rle2+143] 1= r[c2+i3] +d X a
end 73;
end 72;

for 72 : = 71 4+ 1 step 1 until n do

beginag : = p X rlc14+22]; ¢2:= c[:2];
for i3 : = 42 step 1 until = do
rle2+123] 1 = r[c2+13] — a X rlc1+13];

end 12;

ZZ: for 12 := 1 step 1 until z1 — 1 do
begin ¢2 : = c[i2+:l]; 7[c2] 1= — p X r[c2}]
end 12;

for 72 := ¢1 4+ 71 + 1 step 1 until n + cl do
rli2] 1= p X r[i2]
end
end else
YY:beginp:=0; ricl4+i1]:=0; goto ZZ end
coeff: d := 1/(nob—n+dep—I+df); for il := 1 step 1 until
dep do
if v[71] > 0 then
begina :=0; p:= 1/v[i1]; ¢l := c[1]; fori2 := dep
+1 step 1 until n do
begin if 7[i2] £ 0 then

begin 7[c1+142] 1= —r[c14+42] X v[i2] X p; a :=
a + rlel+142] X m[i2]
end
end :2;

vfil] := @Q—rlel+41]) X d/(v[71]12)

comment: v[l:dep] now contains the mean square
deviations from regressions for the dependent vari-
ables. The coeflicients of determination R? may be
obtained as r{cl-+41] — 1;

rlel+71] := m[il] — a else

begin ¢l := ¢[il]; for 72 := ¢l 4 ¢l step 1 until
¢l +ndorfi2] :=0
end
end

comment The r-array now contains the constants and coefhi-
cients of regression, and the inverse of the correlation matrix of
the independent variables that have been kept. The following
example will help to locate the information in the r array.
Example: n =6 dep = 3

TLTy Ty |Ts T Te ba b1 bat b

™Ts \Te T Tu bo2 112 oz by
Tie \Ta T T bos by bas bss

Tie Tz 718 rll 1‘12 1‘13

T Tac 722 p23

T'21 733

The variances and covariances of the regression coefficients for
the jth dependent variable can be determined by—
Var (b;;) = ¥ X v; X ;2
Covar (bibe;) = 1% X v; X v; X vg;
end trireg

Communications of the ACM 603

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355580.369124&domain=pdf&date_stamp=1962-12-01

ALGORITHM 143

TREESORT 1

Arraur F. Kaurg, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 1(UNSORTED, n,SORTED,k);
value n, k;

integer n, k; array UNSORTED, SORTED;

comment TREESORT 1 is a revision of TREESORT (AL-
GORITHM 113) which requires neither the “packed’’ array m
nor the machine procedures pack, left half, right half, and mini-
mum. The identifier infinity is used as nonlocal real variable
with value greater than any element of UNSORTED:;

begin integer 7, j; array ml [1:2Xn—1];
integer array m% [1:2Xn—1];

procedure minimum; if ml [2X1] £ ml[2X1+1] then
begin ml[i] : = m1[2X1]; m2[7] : = m2[2X<] end else
begin ml[i] : = ml2Xi+1]; m2[] := m22Xi+1] end mini-

mum;

for ¢ := nstep l until2 X n — 1 do begin m1[i] : = UNSORTED
[t—n-+1]; m2[] := 7 end

for i := n — 1 step —1 until 1 do minimum;

for j := 1 step 1 until k£ do
begin SORTED [j] := ml{l]; < := m2[l]; ml[i] := infinity;

for ¢ := 7 + 2 while 7 > 0 do mintmum end
end TREESORT 1

ALGORITHM 144

TREESORT 2

Artuaur F. Kavrg, JR.

Westinghouse Electric Corp., Pittsburgh, Penn.

procedure TREESORT 2 (UNSORTED,n,SORTED, k, ordered);
value n, k;
integer n, k;
dure ordered;
comment TREESORT 2 is a generalized version of TREESORT
1. The Boolean procedure ordered is to have two real argu-
ments. The array SORTED will have the property that ordered
(SORTEDI:, SORTEDI;]) is true when j > ¢ if ordered is a
linear order relation;
begin integer 7, j; array ml [1:2Xn—1]; integer array m2
f1:2Xn—1];
procedure minimum; if ordered (m1{2X3], m1[2Xi4+1]) then
begin m1[i] : = ml2X1z]; m2[i] : = m2[2X1] end else
begin ml[i] := ml[2Xi+1]); m2[i] : = m2[2X1i+1] end mini-
mum;
for i := nstep l until 2 X n — 1 do begin ml1[t] : = UNSORTED
[t—n+1]; m2[Z]) := 7 end
for i := n — 1 step —1 until 1 do minimum;
for j := 1 step 1 until k do
begin SORTED] := ml[l]; i := m2(l]; mll] : = infinity;
for i := 7 + 2 while ¢ > 0 do minimum end
end TREESORT 2

array UNSORTED, SORTED; Boolean proce-

ALGORITHM 145
ADAPTIVE XNUMERICAL
SIMPSON’S RULE
Witniam MarsHaLL McKEEMAN®
Stanford University, Stanford, Calif.

* This work was supported in part by the Office of Naval
Research under contract Non4 225(37).

INTEGRATION BY

real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real a, b, eps;

604 Communications of the ACM

begin comment Integral will numerically approximate the
integral of the function F between the limits ¢ and b by the
application of a modified Simpson’s rule. Although eps is a
measure of the relative error of the result, the actual error
may be very much larger (e.g. whenever the answer is small
because a positive area cancelled a negative area). The pro-
cedure attempts to minimize the number of function evalua-
tions by using small subdivisions of the interval only where
required for the given tolerance;
integer level;
real procedure Simpson (F, a, da, Fa, Fm, Fb, absarea,est,eps);
real procedure F; real a, da, Fa, Fm, Fb, absarea, est, eps;
begin comment Recursive Simpson’s rule;
real dz, x1, 22, estl, est2, est3, F1, F2, F3, F4, sum;
dr := da/3.0; zl :=a 4 dz; 22 := zl1 + dz;
Fl:= 40 X Fla+dz/2.0); F2:= F(zl);
F3 :=F(x2); F4:= 40X F(a+2.5Xdx);
estl 1= (Fa+F14-F2) X dz/6.0;
est2 .= (F24+Fm-+F3) X dz/6.0;
estd 1= (F3+F4+Fb) X dz/6.0;
absarea : = absarea-abs (est) + abs(estl) + abs(est2) + abs(estd);
sum := estl 4 est2 4 esi3;
level : = level + 1;
Simpson : = if (abs(est-sum) = eps X absarea /\ est = 1.0) \/
level = 7 then sum
else Simpson (F, a, dx, Fa, F1, F2, absarea, esil, eps/3.0)
+ Simpson (F,zl,dx, F2, Fm, F3, absarea, est2, eps/3.0)
+ Simpson (F,22,dx, F3, F4, Fb, absarea, est3, eps/3.0);

I

level 1= level —1;
end Simpson;
level 1= 1;
Integral : = Simpson (F, b-a, F(a), 4.0 X F((a+b)/2.0), F(®),
1.0, 1.0, eps)

end Integral 13

ALGORITHM 146
MULTIPLE INTEGRATION
WiLLiam MarsHALL McKEEMAN*

Stanford University, Stanford, Calif.
* This work was supported in part by the Office of Naval Re-
search under contract Non4 225(37).

real procedure Multiplelniegral (F) limits: (a, b) order: (n)
tolerance: (eps);
real procedure F; real array a, b; real eps; integer n;
begin comment F is a function of n variables which are stored
in an internal array z. MultipleIntegral approximates the
multiple integral of F between the n pairs of limits stored in
the parameter arrays a and b. For a mesh of k steps on each
axis, the number of function evaluations required for an
integral of nth order is approximately kTn. One consequence
is that the practical limit on = is quite small. Another is that
any inefficiency in the (undefined) procedure Integral will
reflect itself to the nth power in MuliipleIntegral. The adap-
tive procedure Integral is recommended;
real array z[l:n41]; integer axis;
real procedure Integral (F) limits: (a, b) tolerance: (eps);
real procedure F; real q, b, eps;
begin comment The body of procedure Integral is left
undefined. For it one may substitute any procedure of the
same name that evaluates the integral of a function of a single
variable between the real limits @ and b;
end Integral;
real procedure MI(y); real y;

begin comment Recursive multiple integration;
zlaxis] 1= y;
axris = axis —1;
MI := if axzis = 0 then F(z) else
Integral (M1, alaxis], blazis], eps/n);

axts = axis +1;
end MI;
axis i1=n + 1;

MultipleIntegral : = MI(0)
end MultipleIntegral

ALGORITHM 147

PSIF

D. Awmir

Ministry of Defense, Israel

real procedure psif(z, a, tan, In) exit: (errexit);

value z, a; label errezit; real procedure fan, in;

comment Computes the logarithmic derivative of the factorial
function defined by:

(@) T'@+4+1)

Y@ = = T+ 1)

We make use of the expansion: (1) ¥(z) = Inz + 1/2x —
1/12z% + 1/120z* — 1/2522% + ¢, (2) ¢ < 1/240z2 and of the re-
cursion relation, (3) ¥ (z) = ¥(x+n) — Q/G@+1)+. .. +1/(z+n)).
For ¢ < —1 weuse: 4) ¥(—z) = ntan =(x+0.5) + ¥(z—1).
The value of z is increased up to a. Then ¥ is calculated by (3)
and (1). The error is then less than 1/24008;
begin real psi, pei; psi 1= 0;
ifz > —1 Az # 0 then go to pos;
if z = 0 then begin psi : = —0.5772156649; go to exit end;
begin integer z1; zl1 := z;
if x = z1 then go to errezit end
comment psi is infinite;
per := 3.141592654; =z := —z — 1;
st 1= pei X tan(peiX (x+0.5));
pos: ifz = a then go to large;
z:i=z + 1; pst:= psi —1/z;
large: begin realy; y := 1/x;
psi = psi + In(z) + y/2—y 1 2/12 + y T 4/120—y 1 6/252;
extt: psif 1= psi;
end psif

go to pos;

ALGORITHM 148

TERM OF MAGIC SQUARE

D. M. CoLuison

Elliott Brothers (London) Ltd., Borehamwood, Herts.

integer procedure magicterm (z,y, n); valuez,y, n; integer
z, Y, n;

comment for the magic square s[l:n, 1:n], magicterm generates
the element s[z, y], where n > 2 and » is odd. De la Loubére’s
method is used;

begin integer b, c;
bi=y—2+(-1)+2; ¢c:=y+y—z;
ifbznthenb:=b0—nelseif b <0thenbd:=b + n;
ifc>nthenc:=c—nelseifc £ 0thenc:= ¢ + n;
magicterm :=b X n + ¢

end magicterm

ALGORITHM 149

COMPLETE ELLIPTIC INTEGRAL

J. N. MERNER

Burroughs Corp., Pasadena, Calif.

comment The following two procedures, along with a test
program were compiled and run by Peter Naur on the DISADEC

computer. Compilation time for the 9 pass compiler was less
than 10 seconds. The elliptic integral of the form

f"” dt
o Va*cos?t -+ b?sin?t

is evaluated by replacing @ and b by their arithmetic and geo-
metric means, respectively. ELIP 2 is a nonrecursive proce-
dure to accomplish the same thing;
real procedure ELIP 1 (a,b); valuea,b; reala, b;
ELIP 1 :=ifabs(a—b) <10 —-8 X a
then 3.14159265/2/a
else ELIP 1 ((a+b)/2, sqrt (aXb));
real procedure ELIP 2 (a,b); valuea, b; reala,b;
begin real C;
L: C:= (a+b)/2; b := sqgrt (aXb); a:= c;
if abs(a—b) <1 —8 X @ then ELIP 2:= 3.14159265/2/a
else go to L end

CERTIFICATION OF ALGORITHM 31

GAMMA FUNCTION [R. M. COLLINGE, Comm.
ACM, Feb. 61]

PereEr G. BEHRENZ

Mathematikmaskinndmnden, Stockholm, Sweden
GAMMA was successfully run on FACIT EDB using Facrr-

ArcoLr 1, which is a realization of ArLcoL 60 for FACIT EDB.

No changes in the program were necessary. The relative error
was as stated in the comment of GAMMA about 1073,

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May 1960).
Contributions should be sent in duplicate to J. H. Wegstein,
Computation Laboratory, National Bureau of Standards,
Washington 25, D. C. Algorithms should be in the Reference
form of ALGOL 60 and written in a style patterned after the
most recent algorithms appearing in this department. For
the convenience of the printer, please underline words that
are delimiters to appear in boldface type.

Although each algorithm has been tested by its contrib-
utor, no warranty, express or implied, is made by the con-
tributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material, and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this depart-
ment is explicitly permitted without any charge. When re-
production is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.

Communications of the ACM 605

REMARK ON ALGORITHM 58

MATRIX INVERSION [D. Cohen, Comm. ACM,
May 61]

PereEr G. BERRENZ

Matematikmaskinnminden,
Sweden

Box 6131, Stockholm 6,

invert was run on Facir EDB using Facir-Angorn 1. Some
changes in the procedure had to be made:

1. ¥ and w had to be declared in the procedure-body as real
Y, w;

2. The last part of the procedure starting with [: = 0; which
should interchange the matrix rows did not work correctly, even
with the corrections proposed by R. A. Conger [Comm. ACM,
June 62]. We propose the following code:

for I := 1 step 1 until n do begin

k 1= z[l]; for j:= [whilek # j do begin

for i := 1 step 1 until » do begin

w = alj, t]; alj, 7} := alk, 7]; alk,] := w end;

1= z[k]; z{k] := z[5]; k := z[j] := 7 end end end inver!

If the matrix ¢ is singular, the value of the pivot element y
will once be zero or very nearly zero and division by zero would
oceur in the course of the ealculation. It would therefore be
advantageous to introduce an empirical tolerance parameter
epsilon into the procedure.

To calculate the determinant of the matrix @ it is only necessary
to put three more statements into the code. With these augmenta-
tions ¢nvert should read:

procedure tnvert (n, a, epstlon, determinant);
value n, epsilon; real epsilon, determinant;
array a; integer n;
begin real y, w; integer <, j, k, [, p;
array b, ¢[l:n]; integer array z[1:n];
determinant 1= 1;
followed by the same code as before until:
y := w end end;
determinant : = y X determinant;
if &k # ¢ then determinant : = —determinant;
if abs (y) < epsilon then go to singular;
followed by the same code as before with the changes mentioned
in the certification by R. A. Conger [Comm. ACM, June 62] and
the changes given above. singular should be a nonlocal label
in the main program.

CERTIFICATION OF ALGORITHM 94
COMBINATION {[J. Kurtzburg, Comm. ACM, June,
1962]
R. E. GrENncH*
Reactor Eng. Div.,
Argonne, Tll.
* Work supported by U. S. Atomic Energy Commission

Four changes were required in the algorithm.

1. The last sentence in the comment should read: That initial
combination is also produced after 0, 1, --- , K—1, the last
value in that cyecle;

2. The integer A was declared;

3. Parentheses were replaced by brackets in the subsecript ex-
pressions;

4. A semicolon was inserted at the end of the initiate statement.

After the above changes were made the body of Algorithm 94
was tested on an LGP-30 computer using the Dartmouth College

ALGown-30 translator. The body tested satisfactorily and the time

required to generate one J when K = 5 and N = 15 was 30 seconds.

Various tests should be included if this algorithm is to be used
as a procedure. These tests might include a statement to check if

K > N and if the initial value of J is correct These two possi-

bilities were investigated and it was found that improper J’s are

generated.

Argonne National Laboratory,

606 Communications of the ACM

CERTIFICATION OF ALGORITHM 112

POSITION OF POINT RELATIVE TO POLYGON
M. Shimrat, Comm. ACM, Aug. 1962]

Ricuarp HackER

The Boeing Co., Seattle Wash.

The Boolean procedure POINT IN POLYGON was programmed
in ForTrAN for the IBM 7090. The algorithm gave satisfactory
results except for a case such as the following:

Let the polygon points be: (0, 0), (1, 0), (2, 1), (1, 2), (0, 2).

In this case the procedure would not detect that the point (1, 1)
is in the polygon. However, the correct result was obtained by
changing:

if W<ylll =y > yli+1DA
to read:

if (y0=y[i] = y0 > yL+IDA

CERTIFICATION OF ALGORITHM 115
PERM [H. F. Trotter, Comm. ACM, Aug. 1962]
E. S. PuiLLIPs
Michigan State University, East Lansing, Mich.

PERM was translated into ForTran for the CDC 160-A, and
it performed correctly. For n» = 8, this method requires 2822
seconds. For comparison, Algorithm 8, PERMUTE, was trans-

lated and run on the same machine, requiring 3710 seconds as
opposed to 1316 when run on an IBM 1620.

CERTIFICATION OF ALGORITHM 118
MAGIC SQUARE (ODD ORDER) [D.
Comm. ACM, Aug. 1962]
He~xry C. THACHER, JR.*
Reactor Engineering Div.,
Argonne, Tl
* Work supported by the U. S. Atomic Energy Commission.

The body of the procedure magicodd was tested on the LGP-30
using the Dartmouth Arngowr 60 translator. No syntactical errors
were found. The procedure generated odd-order magic squares
satisfactorily. For orders up to 9, times were as follows (including
output on the Flexowriter):

M. Collison,

Argonne National Lab.,

Order Time(sec)
3 171
5 422
7 804
9 1285
The 3 X 3 square was:
4 3 8
9 5 1
2 7 6

REMARK ON ALGORITHM 133

RANDOM (P. G. Behrenz, Comm. ACM, Nov. 1962)

Perer G. BEHRENZ

Matematikmaskinndmnden,
Sweden

Box 6131, Stockholm 6,

Replace the declarations in the body of the procedure,
integer M35, M36, M37; own integer X;
by:
own integer X, M35, M36, M37;

Thesequence of 233random numbers contains about 15 numbers
which are not really random numbers. For details, see R. W.
Hamming, Numerical Methods for Scientists and Engineers,
p. 384 [McGraw-Hill, 1962].

