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ABSTRACT
The hybrid MPI+X programming paradigm, where X refers to
threads or GPUs, has gained prominence in the high-performance
computing arena. This corresponds to a trend of system architec-
tures growing more heterogeneous. The current MPI standard only
specifies the compatibility levels between MPI and threading run-
times. No MPI concept or interface exists for applications to pass
thread context or GPU stream context to MPI implementations ex-
plicitly. This lack has made performance optimization complicated
in some cases and impossible in other cases. We propose a new
concept in MPI, called MPIX stream, to represent the general se-
rial execution context that exists in X runtimes. MPIX streams can
be directly mapped to threads or GPU execution streams. Passing
thread context into MPI allows implementations to precisely map
the execution contexts to network endpoints. Passing GPU execu-
tion context into MPI allows implementations to directly operate
on GPU streams, lowering the CPU/GPU synchronization cost.
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1 INTRODUCTION
Modern high-performance computing applications are more and
more dependent on additional runtimes besides MPI to manage
the increased number of cores per node and myriad limited on-
node resources such as shared memory, network interfaces, and
computational accelerators. Increasingly, applications are being
deployed by using a hybrid MPI+X model, where X refers to a
threading runtime such as OpenMP or an accelerator runtime such
as CUDA.

The first step in MPI+X was to make MPI compatible with a
threading runtime. Since 1997, MPI has introduced four thread
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compatibility levels: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
MPI_THREAD_SERIALIZED, and MPI_THREAD_MULTIPLE. When the
appropriate thread level is chosen, threaded applications can work
correctly with MPI without MPI specifically acknowledging the
runtime. MPI implementations also can be made GPU aware. Recent
MPICH [5], MVAPICH [13], and Open MPI [12] releases are able to
detect GPU buffers without hints from users and make MPI work
without a GPU-specific MPI interface. The application can benefit
from an MPI+GPU compatibility level similar to the MPI thread
levels. Currently, the GPU compatibility level is simply assumed.

While MPI+Threads is successful on the compatibility side of
MPI+X, the performance side has been a multi-decade struggle.
With MPI+Threads—in particular, at the MPI_THREAD_MULTIPLE
thread level—applications today are still likely to meet dismal per-
formance. This performance is due to the extra critical sections
introduced by MPI communications. Much research has been done
on both the application side [14] and implementation side [1, 11, 16]
to address the performance of MPI+Threads. To reach good perfor-
mance, applications need to make sure that the communications
can happen concurrently, and the implementations need to map
the communications to multiple communication channels to allow
the communication to proceed in parallel. Without an explicit MPI
interface, making the latter mapping to match the application layer
concurrency remains an art. Mismatch will result in either incor-
rect results or the introduction of extra thread contention and bad
performance.

The performance story of MPI+GPUs is different from that of
MPI+Threads. Accelerators typically require special runtime to
coordinate between CPU and accelerator executions. The launching
and synchronization between CPU context and accelerator context
are carried out by the accelerator runtime. A key performance factor
here is how to minimize the launching and synchronization cost. To
optimize the performance, we need MPI operations to be enqueued
to an accelerator execution context and then let the accelerator
runtime manage its actual execution. In order to realize this new
mode of MPI operations, new MPI interfaces that work directly
with accelerator execution context are needed.

A common theme from the pursuit of performance in MPI+X is
the need for MPI to have the concept of execution context. In this
paper we survey the current status of MPI+Threads and MPI+GPUs
and propose a new MPI concept, called MPIX stream, that can be
used to represent execution context from other runtimes. MPIX
stream allows explicit coordination for MPI+Threads and enables
direct GPU runtime operation for MPI communications.
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2 BACKGROUND
2.1 MPI’s Execution Model
Among the four MPI thread levels, only MPI_THREAD_MULTIPLE
requires clarification on its execution model. The other three are all
serial execution model enforced by applications. For MPI_THREAD_-
MULTIPLE, the current guiding principle is as follows: “When a
thread is executing one of these (MPI) routines, if another concur-
rently running thread also makes an MPI call, the outcome will be
as if the calls executed in some order” [6]. In another words, MPI is
an outcome-dictated serial execution model.

A naïve implementation of the serial execution model is to im-
pose a global critical section for everyMPI call and yield only during
its progress loop. With the global critical section, if two threads
concurrently call MPI communication functions, both threads not
only are serialized at the point of the MPI operation but also incur a
significant cost from the synchronization, resulting in performance
worse than if all communications are called from a single thread.
However, an implementation is allowed to “optimize,” making some
parts or whole communications parallel as long as the outcome is
not affected.

What is an outcome in MPI? Unfortunately, this is not clearly
specified in the MPI standard and thus is a source of ambiguity and
debate. Nevertheless, some consensus has been reached on what is
and what is not an outcome. For example, a message delivery order
is not an MPI outcome. A second sequentially issued message is
allowed to be delivered before the first one. On the other hand, a
message matching order is an MPI-defined outcome. Two sequen-
tially issued sends that both match the same receive are guaranteed
to match the first one before the second one. If we ignore outcomes
that are outside the MPI standard, then an MPI implementation can
execute some of the communications in parallel as long as there is
no matching order between them. For example, messages issued
from different communicators are matched independently. If asser-
tions that no wildcard tag matching will be used, then messages
using different tags can also be carried out in parallel.

This strategy raises two issues. First, the consensus is not univer-
sal. Certainly outcomes occur outside those specified by the MPI
standard. For example, what if the serialization or parallelization
of the communication is an application-intended outcome? Second,
communicators or tags are not perfect identification of concurrent
execution context. Using communicators or tags to sideload the
expression of parallelism may result in convoluted code yet still
not necessarily be able to achieve perfect parallelization.

2.2 Network Endpoints
Modern high-speed interconnection fabrics are designed with ca-
pabilities to support communication by multiple execution threads.
Generally, this is done by allowing separate fabric resources to
be allocated. In this paper we refer to these allocated fabric re-
sources as network endpoints. Communications can be carried out
concurrently from separate endpoints. The network endpoints are
abstractions over hardware capability and may include software
contexts such as address table, message queues, and completion
event queues. In libfabric [9], a network endpoint may be repre-
sented by a domain, an endpoint, or a scalable endpoint. In UCX [10],
a network endpoint is typically represented by a UCP worker.

MPI implementations that utilize network endpoints also need
to allocate their own internal communication context to isolate
global states that are needed during a communication. For best per-
formance, these implementation-level contexts need to be matched
to the network endpoints. Both MPICH and Open MPI have imple-
mented such communication contexts. In MPICH, it is referred to as
the virtual communication interface (VCI) [17]. In OpenMPI, it is re-
ferred to as the communication resources instance (CRI) [11]. In this
paper we generally refer to these contexts as network endpoints.

Network endpoints are a finite resource. More endpoints beyond
a hardware’s capability will be serialized at the hardware anyway
and will incur more overhead in managing the multiple endpoints.
A limit is often imposed by a network library and sometimes by a
network driver. It is common to have a limit matching the number
of cores in a node.

Concurrent access to a single network endpoint is not allowed,
or it will result in data race and state corruption. Thus, a critical
section around the access of each network endpoint is necessary
unless it can be guaranteed that concurrent usages will not occur.

2.3 Nonlocal Nature of Communication
While both thread contexts and network endpoints are local process
concepts, a communication necessarily involves a pair of network
endpoints from both the local process and the remote process.When
one does not specify a network endpoint in a communication, as
is the case with the current MPI standard, the implementation
chooses a default network endpoint for both the local process and
remote process. If this default choice is a constant choice, then
all communications are serialized on both the sender side and the
receiver side. Implicit schemes or semi-explicit schemes via hints
can be used to hash the network endpoints’ choice in order to
achieve parallel communications. The hashing algorithm must be
deterministic and consistent for both the sender side and receiver
side. If the sender side sends a message to a remote endpoint that
does not expect to receive it, either the message will get lost or
heavy synchronization will occur in order to move the message to
the receiving context.

Implicit hashing schemes often employ certain enforcement poli-
cies. A typical policy is to enforce a one-to-one mapping of end-
points. If we assign a sequential id to each network endpoint in a
process, then a one-to-one mapping allows communications only
between network endpoints with the same id. With this policy, net-
work endpoints can be easily determined by hashing common val-
ues between sender and receiver, such as communicator id, sender
and receiver ranks, and tags.

Another policy is to allow the sender to send from any network
endpoint but receive only from a default network endpoint. With
this policy, the sender side can easily achieve concurrent sends by
hashing local information or even by random assignment. Since
messages are all received by a single network endpoint, however,
the overall message rates are limited by the single receiving thread.

The two policies match to the two common communication
patterns illustrated in Figure 1: the one-to-one pattern and the N-
to-1 pattern. In a one-to-one pattern, one thread from one process
communicates only to one thread in other processes. An example of
a one-to-one pattern is the stencil application, where a partition for
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Figure 1: Typical MPI+Threads communication patterns: (a)
one-to-one pairwise mapping; (b) N-to-1 mapping.
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Figure 2: Communication patterns in a 2-D stencil partition.

a single thread only shares a halo region with another thread in the
neighbor processes (see Figure 2). Note that the pairing of threads
may depend on the geometry layout and may not correspond to
the ordering of the thread numbers. In an N-to-1 pattern, multiple
threads may send messages to other processes, but a single thread
in each process is dedicated to receive all messages. An example
of an N-to-1 pattern is a task-based application, where multiple
threads run tasks and generate events and where a single progress
thread polls and responds to events.

2.4 GPU Queuing Stream
Graphics processing units (GPUs) are common components today in
high-performance computing clusters. GPU programming imposes
its own execution model. A common concept in GPU program-
ming is an abstract execution queue. In NVIDIA’s CUDA runtime,
this is referred to as a CUDA stream. Unlike a thread, calls do not
directly run on the execution queue. Instead, the operations are
enqueued, and the GPU runtime will dispatch the operations to
GPU kernels asynchronously. The execution queue can be general-
ized as an execution graph with explicit dependency. An execution
graph may allow the GPU runtime more flexibility in optimiza-
tions. A sequential queue, on the other hand, often contains explicit
synchronizations that may prevent optimization.

With GPU-aware MPI implementations [15], MPI functions can
be called to send from or receive into GPU memory directly. How-
ever, MPI functions are still implemented to execute entirely in a
CPU context. Thus, full CPU/GPU synchronizations are necessary.
When the application relies on the GPU running computations,
the full CPU/GPU synchronization imposes a great performance
penalty.

To break the performance bottleneck, MPI needs to enable par-
tial CPU/GPU synchronization, directly embed synchronization
into the GPU kernel, or explicitly expose dependency by using a
facility such as a CUDA graph. One way to do so is to pass the GPU
runtime execution context to MPI so that the MPI implementation
can directly operate under the GPU context. In the case of CUDA,
this may mean passing the CUDA stream object into MPI send and
receive functions.

In the GPU execution context, examples including CUDA stream
and SYCL queue are often asynchronous. This poses another chal-
lenge on working with MPI’s execution model. How do we assess
matching order when the issuing order of the operation itself is not
deterministic? Unlike in the MPI+Threads case where a default se-
rialization model makes sense, MPI+GPUs will need a new concept
to accommodate the foreign execution context.

3 PROPOSAL OF MPIX STREAM
We propose a new MPI object, called MPIX stream, and a set of new
APIs to allow users to explicitly identify their thread context and
GPU queuing context. We use the prefix MPIX instead of MPI to
refer to objects and functions that are proposed in this paper and
not (yet) officially part of MPI.

3.1 MPIX Stream
First, we introduce MPIX stream as an abstract concept to facilitate
a direct mapping from user-level runtime execution contexts to MPI
execution contexts. ToMPI, anMPIX stream represents a local serial
execution context. Any runtime execution contexts outside MPI, as
long as the serial semantic is strictly followed, can be associated
to an MPIX stream. Examples include kernal threads, user-level
threads, GPU queuing streams, or even code across multiple threads
with serialized synchronizations.

To illustrate, in the following two pseudocode listings, we use
MPIR_SEND_ON_STREAM to represent an arbitrary MPI operation,
and stream_1 represents a specific MPIX stream object that is
associated with the MPI operation. Because in both listings, the
MPI operations are strictly serialized, both are valid usages of MPIX
stream.
Listing 1: Pseudocode using MPIX stream within a single
thread
{

/* within a single thread */

MPIR_SEND_ON_STREAM(stream_1 , msg1);

MPIR_SEND_ON_STREAM(stream_1 , msg2);

}

Listing 2: Pseudocode using MPIX stream from two threads
with explicit thread synchronization
{
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/* Thread 1 */

MPIR_SEND_ON_STREAM(stream_1 , msg1);

THREAD_BARRIER ();

}

{

/* Thread 2 */

THREAD_BARRIER ();

MPIR_SEND_ON_STREAM(stream_1 , msg2);

}

Note that pseudocode is used in these examples, and in particular,
MPIR_SEND_ON_STREAM is not a proposed API. We will describe the
actual APIs later in this section. The examples also illustrate that it
is the users’ responsibility to map their thread context to the MPIX
stream. This relieves the burden of MPI having to synchronize
between threads, which can be thread runtime dependent.

To create an MPIX stream, one calls MPIX_Stream_create.
int MPIX_Stream_create(MPI_Info info , MPIX_Stream

*stream)

Info hints can be used to create implementation-supported special
streams, for example, a CUDA stream. Otherwise, MPI_INFO_NULL
can be used. Whether the returned stream is backed by distinct
network endpoints is implementation dependent. For MPI thread
contexts, we recommend allocating unique network endpoints for
each new stream. This approach allows programming the applica-
tion with a predictable performance. The implementation should
return failure if it runs out of network endpoints. With unique end-
points and the strict serial execution context, the implementation
may safely skip critical sections in the communication path. At the
extreme end of the strong scaling, even an uncontended critical
section can be too expensive.

The implementation may also assign a single network endpoint
to multiple MPIX streams, allowing applications to create more
streams than available network endpoints. For example, network
endpoints can be assigned to a newly created stream in a round-
robin fashion. This may provide flexibility for some applications.
We note that a per-endpoint critical section is necessary to prevent
concurrent access to network endpoints.

Because network endpoints are finite resources, users should
free the stream to make the resource available for future allocation.
int MPIX_Stream_free(MPIX_Stream *stream)

The network resource can be deallocated only when all the op-
erations using the stream have been completed. We imagine that
whether a deallocation is successful is important feedback for users.
In particular, a failed or delayed deallocation may prevent a future
MPIX_Stream_create from succeeding. Thus, MPIX_Stream_free
may fail with an appropriate error code if the internal resource
deallocation cannot be completed.

GPU streams emphasize lightweight synchronization between
the CPU and accelerator. Thus, having concurrent CPU communi-
cations may not be as important as in multithreaded programming.
In addition, an implementation may choose to use a dedicated
CPU thread to progress all GPU stream communications. Thus,
GPU streams are likely to be assigned with duplicate network end-
points. On the other hand, having dedicated network endpoints for
GPU stream-related communications is likely beneficial so that the

progress thread needs to poll only a few network endpoints rather
than polling global progress and contending with traffic on other
CPU threads.

For backward compatibility, MPIX_STREAM_NULL is defined. Op-
erations on MPIX_STREAM_NULL have the same semantics as do
conventional operations without explicit streams.

3.2 Passing Opaque Binary Info Hints
Currently, an MPI_Info object supports values only as strings. A
GPU queuing object not only is not a string but is often opaque to
the user. For example, is a CUDA stream an integer or a pointer,
or could it be neither? To pass an opaque binary as a string, we
need some encoding scheme that users can use to encode and
implementations can consistently decode. We propose a new MPI
function for this purpose.

int MPIX_Info_set_hex(MPI_Info info , const char *

key , void *value , int vallen)

An implementation can choose any binary to ASCII encoding to
implement this function. For completeness, there should be a corre-
sponding MPIX_Info_get_hex function. For this proposal, however,
we focus on how to let users pass the GPU queuing object into MPI.
Since getting the object back from MPI is not critical, we are not
proposing the retrieving function here.

3.3 MPIX Stream Communicator
Once an MPIX stream is created, it is possible to define MPI opera-
tion APIs that directly use the stream as an argument to each opera-
tion. This has two drawbacks, however. First, we will need to create
a new API for every MPI operation, from MPI_Send, MPI_Isend, to
MPI collectives and MPI remote memory access (RMA) operations.
Not only does it take considerable effort to maintain an inflated
standard, but it is also a burden for users to learn these APIs. Second,
it is not sufficient to add only a local stream to an operations argu-
ment. We must add an argument for a remote stream as well unless
we want to restrict to an arbitrary policy. For collectives, this may
require an array of stream arguments, one for every participating
process. Even for one-sided RMA operations, a specific targeting
stream may be critical if the user wants to dedicate a progress
thread to drive passive progress. Unlike local streams, identifying
remote streams per operation is cumbersome for the user.

Thus we propose the MPIX stream communicator.

int MPIX_Stream_comm_create(MPI_Comm parent_comm ,

MPIX_Stream stream , MPI_Comm *stream_comm)

This is a collective operation. Stream information from all pro-
cesses or its network endpoint address can be Allgathered and
stored locally. All conventional MPI operations can be issued to a
stream communicator without additional parameter changes.

If the parent_comm is also a stream communicator, it is treated
as a normal communicator. That is, the stream attached to the
parent_comm is discarded in the new communicator.

Each stream is still local to each process, and streams do not
need to agree in any aspects between processes. In particular, any
process is allowed to use MPIX_STREAM_NULL in constructing the
stream communicator. The operation context is dictated by each
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process’s attached stream. Unless it is MPIX_STREAM_NULL, a strict
serial context per stream is assumed.

One also can mix normal streams with GPU streams. Once again,
the operation context is dictated by its local stream. It is possible to
have a collective where one process is posting immediate operations
when another process is enqueuing its corresponding operation,
and it is up to the GPU runtime to asynchronously execute them.

3.4 MPIX Enqueue APIs
Because an attached local stream dictates the operation mode, it
is feasible to use the same conventional MPI operations without
syntax change for GPU enqueue functions. However, there are
subtle semantic differences between an enqueued operation and a
non-enqueued operation. To an advocate of explicit coding style,
having, for example, MPI_Send enqueue to a GPU stream can seem
a very bad code. Thus we propose the following specific enqueue
APIs.
int MPIX_Send_enqueue(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm)

int MPIX_Recv_enqueue(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , MPI_Status *status)

int MPIX_Isend_enqueue(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm , MPI_Request *request)

int MPIX_Irecv_enqueue(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , MPI_Request *request)

int MPIX_Wait_enqueue(MPI_Request *request ,

MPI_Status *status)

int MPIX_Waitall_enqueue(int count , MPI_Request

array_of_requests [], MPI_Status

array_of_statuses [])

These routines have identical signatures as their conventional
counterparts. It is an error to call the enqueue functions if the com-
municator is not a stream communicator or does not have a local
GPU stream attached. We intentionally omitted MPIX_Waitsome
and MPIX_Waitany, as well as the various test functions, because the
nondeterministic nature of these functions does not work with the
enqueue environment. Moreover, MPIX_Waitall_enqueue must
have requests all issued on the same local stream.

There are semantic differences between enqueuing APIs and
conventional APIs. For example, MPIX_Send_enqueue, as with all
enqueuingAPIs, returns immediately after registering the operation.
A separate progress thread, which may be the GPU runtime thread,
will initiate and complete the communication asynchronously. This
is different from the conventional nonblocking API, e.g., MPI_Isend.
An implementation of MPI_Isend may process the message buffer
and initiate the communication immediately before return, while
both MPIX_Send_enqueue or MPIX_Isend_enqueue will only pro-
cess the buffer and initiate communication after the previous en-
queued operations complete. Both MPIX_Send_enqueue and
MPIX_Isend_enqueue will return immediately after registering
the operation, but MPIX_Isend_enqueue allows the following en-
queued functions to proceed before the communication completes

with a corresponding MPIX_Wait_enqueue. It may appear confus-
ing since both the traditional non-blocking APIs and the new en-
queue APIs are asynchronous. It is worth noting that they are
dealing with two orthogonal kinds of synchronicity. Traditional
non-blocking APIs are mostly concerned with synchronizing data
in the message buffer, while the enqueue APIs are concerned with
synchronization between execution contexts. The former is syn-
chronized by calls such as MPI_Wait, while the latter is sychronized
by calls such as cudaStreamSynchronize. In particular, with the
addition of the enqueue APIs, GPU synchronization calls, such as
cudaStreamSynchronize, are no longer needed for message data
or communication synchronizations.

The enqueue APIs can be extended to collectives and RMA func-
tions. All the extended enqueue functions will have identical func-
tion signatures as their conventional counterparts. They are not
listed here due to the large number of them. For collectives, if some
of the processes are not associated with an enqueuing stream, then
those processes should call the conventional non-enqueue API. For
RMA, enqueuing operations include window synchronizations.

3.5 MPIX Multiplex Stream Communicator
The stream communicator works well for codes that communicate
only to a single thread on a remote process. The communicator
effectively constructs a thread communication group and, similar to
legacy MPI code, can achieve concurrent multithread performance
without any change to the code.

On the other hand, when a thread needs to communicate with
multiple threads of a remote process, it may be necessary to cre-
ate and manage multiple stream communicators. Doing so can be
cumbersome and become unmanageable quickly. For example, two
processes each with 4 threads will need 16 stream communicators
to achieve an all-to-all communications.

To address this usability issue, we propose the MPIX multiplex
stream communicator.
int MPIX_Stream_comm_create_multiple(MPI_Comm

parent_comm , int count , MPIX_Stream

local_streams [], MPI_Comm *stream_comm)

With a multiplex stream communicator, each process can attach
multiple local streams. To use the MPIX multiplex stream commu-
nicator, we propose the following point-to-point APIs.
int MPIX_Stream_send(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm , int src_idx , int dst_idx)

int MPIX_Stream_recv(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , int src_idx , int dst_idx ,

MPI_Status *status)

int MPIX_Stream_isend(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm , int src_idx , int dst_idx ,

MPI_Request *request)

int MPIX_Stream_irecv(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , int src_idx , int dst_idx ,

MPI_Request *request)
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These APIs allow users to explicitly address local and remote
streams via an index. This index can be thought of as a rank for
threads. Unlike the source rank in send and destination rank in
receive, both src_idx and dst_idx are needed in the argument list
since the communicator here does not uniquely identify the local
thread. MPIX_ANY_INDEX can be used to support a wildcard receive.

The multiplex stream communicator is especially useful for an
N-to-1 communication pattern, where one or a few polling threads
are responsible for receiving messages sent from any other thread.
Without multiplex stream communicators, one must create multiple
single-stream communicators and have the polling thread poll each
communicator in turn. With multiplex stream communicators, the
polling thread needs to poll only a single communicator.

4 COMPARISONWITH PREVIOUS EFFORTS
Researchers have been addressing the paradigm of MPI+Threads
for two decades. Many previous efforts have been reported, and this
proposal draws experience from these past efforts. In this section
we compare our work with the previous proposals and alternative
solutions.

4.1 Implicit Method
The implicit method [11, 16] builds on the thesis that MPI already
has a sufficient mechanism to allow users to express the inher-
ent parallelism in their communications. Based on the outcome-
dictated serial execution model, any operations that do not affect
MPI-specified outcomes are candidates for deserialization. In partic-
ular, users can express parallelism using separate communicators.

Using distinct communicators for different thread communica-
tion groups is similar to the usage of stream communicators in our
proposal. However, to write code to fully take advantage of implicit
methods requires knowledge of the particular MPI implementation,
and the behavior is never guaranteed. For example, for a one-to-one
pattern, if the implementation uses a different policy other than
per-communicator mapping, the performance will not be ideal. In
contrast, with our proposal, the mapping to network endpoints
is explicitly identified with the MPIX stream, and its behavior is
guaranteed.

When the communication does not fit into a one-to-one pattern,
one thread may need to use more than one communicator. In a
typical implementation of the implicit method, where network end-
points are assigned to communicators in a round-robin fashion,
when each thread uses multiple communicators, two threads may
still be assigned with the same network endpoint despite using
different communicators. Using MPIX stream, however, network
endpoint assignments are explicit. Thus, using multiple communi-
cators per thread will not be an issue.

One must use fine-grained critical sections with the implicit
method. When there is no thread contention, there will be a slight
performance penalty compared with using a global critical section
because of the overhead of using more locks. On the other hand,
correct usage ofMPIX stream allows implementation to skip locking
altogether, resulting in a performance gain.

4.2 MPI Endpoints Proposal
The MPIX stream proposal has its roots in the MPI endpoints pro-
posal [2]. The multiplex stream communicator is nearly identical to
an endpoints communicator. Both proposals allows direct address-
ing of individual endpoint or thread context.

A key flaw in the endpoint proposal, from our view, is the in-
flation of thread context into virtual processes. To a multithread
programmer, a process and a thread are separate concepts. Between
threads the memory is shared, and thus there is no need for explicit
data exchange. Between processes, explicit messaging is needed,
and that is whereMPI is used. Thus, the process concept and its iden-
tification using ranks are important. With the endpoints proposal,
the process become less identifiable. Users may have to manage
their own endpoint ranks to process the rank translation table. The
endpoints proposal also makes interthread messages equally acces-
sible as interprocess messages. Since users rarely need interthread
messages, this inflation makes MPI more difficult to understand
and use.

In contrast, a multiplex stream communicator maintains the
address via process ranks plus the thread index. This fits the model
of multithreaded application naturally, and thus it is easier to learn
and use.

4.3 MPI-4 Partitioned Communication
Partitioned communication is a new addition to the MPI-4 standard.
One of its motivations is to provide simpler and more effective
multithread optimization [3]. Partitioned communication has an
explicit init stage where implementations can set up strategy and
decide network endpoints mapping to partitions. The actual com-
munications can be triggered by MPI_Pready calls, which can occur
concurrently or out of order.

This should be compared with sending multiple messages from
multiple threads, each message corresponding to a single parti-
tioned data. Using explicit streams, users always can control the
thread-to-message mapping, thus achieving the desired parallelism.
Partitioned communication, on the other hand, is still an implicit
mapping mechanism, although through the init stage implemen-
tations may be able to achieve better mapping than implicit static
mapping can.

However, partitioned communication focuses on the optimiza-
tion of a single parallel region with a single coordinated functional-
ity where individual partitioned data is part of bigger data that can
be described with a single message. It does not solve the concur-
rency issue when there are other messages besides the partitioned
message or when the message cannot be equally partitioned. For
example, an application may need to exchange data on an irregular
region, which cannot use a partitioned scheme.

MPIX stream, on the other hand, lets users explicitly control
thread mapping and thus orchestrate communications across mul-
tiple areas and even orchestrate beyond single parallel regions. The
latter is critical when applications have dedicated threads taking
care of some of the communication needs.

4.4 MPI-4 Sessions
Another new addition to the MPI-4 standard is MPI Sessions [4].
Intuitively from the name, an MPI session is intended as a local
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context to encapsulate all MPI local objects. It can support inde-
pendent, including concurrent, MPI operations from different MPI
sessions.

Most general-purpose objects can be specialized for a particular
purpose. During proposal development, the MPI Forum quickly
discovered that MPI sessions can be used to solve all kinds of issues.
Simply by attaching special attributes or hints to a session, it can
become specific enough to address almost any issue that requires
specific context.

For example, an MPI session can be used as an MPIX stream.
To do so, we need to create an MPI session with MPI_THREAD_-
SERIALIZED thread level, then identify the session with a local
thread context. We can also attach a GPU queueing object to the
session using info hints. The session can proceed to create commu-
nicators, which essentially are stream communicators. From here,
all the semantics proposed for stream communicators can proceed.
The only missing functionality is the multiple stream communica-
tor.

Although this solution via MPI Sessions works, it is not intuitive
and is convoluted. It is difficult to connect the name “session” as
an equivalent to a thread, stream, or network endpoint. To educate
users on such session usages will be difficult. To use sessions in this
way, each session needs to go through a bootstrapping stage until
arriving at a communicator. Compared with the pattern that we
initialize, setting up the common part including the initial collective
communications, and then creating specialized communicators for
special code regions, the code using an MPI session can be difficult
to manage because the code is less separated by purposes.

Unless the MPI standard specifies special usage, an implementa-
tion is unlikely to optimize the usage of an MPI session as an MPIX
stream.

4.5 NVIDIA Collective Communication Library
(NCCL)

NCCL [8] is a library providing selected point-to-point and col-
lective communications between GPU devices. NCCL’s design is
optimized for dense multi-GPU systems, while MPI is geared to-
ward interprocess communications across many nodes in a cluster.
NCCL uses a stream-based enqueue-only API, which our proposed
enqueue APIs are directly modeled after. NCCL being a CUDA-
specific library can directly use CUDA stream in its interface. This
tie to a specific external runtime is undesirable for MPI, which need
be usable for a variety of GPU runtimes. With MPIX_Stream, the
specific tie is limited to the info hints during stream creation, while
the rest of the APIs are portable across different GPU runtimes.

Beside the enqueuing streams, NCCL focuses on communica-
tions between GPU devices, and its communicator is formed by a
collection of GPU devices. On the other hand, MPI communications
are interprocess by default, although self messages are also allowed.
An MPI communicator is always formed by a group of processes,
and each rank addresses a single process.

Lastly, NCCL, being a specialized library, only supports contigu-
ous buffers with intrinsic datatypes, and its operations are limited
to a selected set of operations. Our proposed enqueue APIs, on the
other hand, work for MPI datatypes, and can be readily extended
to all MPI operations.

4.6 Alternative Proposal for GPU Enqueues
Alternative proposals to add GPU enqueue operations to MPI are
to directly add the GPU queue objects to point-to-point operations
as extra arguments.

int MPIX_Send_enqueue(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm , enum MPIX_QUEUE_TYPE type , void

*stream)

int MPIX_Recv_enqueue(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , enum MPIX_QUEUE_TYPE type , void

*stream , MPI_Status *status)

int MPIX_Isend_enqueue(const void *buf , int count ,

MPI_Datatype datatype , int dest , int tag ,

MPI_Comm comm , enum MPIX_QUEUE_TYPE type , void

*stream , MPI_Request *request)

int MPIX_Irecv_enqueue(void *buf , int count ,

MPI_Datatype datatype , int source , int tag ,

MPI_Comm comm , enum MPIX_QUEUE_TYPE type , void

*stream , MPI_Request *request)

int MPIX_Wait_enqueue(MPI_Request *request , enum

MPIX_QUEUE_TYPE type , void *stream , MPI_Status

*status)

int MPIX_Waitall_enqueue(int count , MPI_Request

array_of_requests [], enum MPIX_QUEUE_TYPE

type , void *stream , MPI_Status

array_of_statuses [])

This is essentially the same as skipping the MPIX stream creation
and stream communicator creation and moving the info hint from
the stream directly to each enqueue operation. If we look at only the
listed functions, this is a simpler and more direct way of achieving
it.

The MPIX stream uses separate steps to create the stream and
then the stream communicators. Thus it has more opportunities for
implementations to validate and optimize. It is also easily extensible
by accepting more info hints. It readily extends the functionality to
collectives and one-sided communications without extra APIs. Also,
the stream creation and communicator construction provide error
check opportunities so users can choose to use fallback algorithms
if necessary. Cosmetically, passing an opaque object via a void
pointer reference is less desirable.

Namashivayam et al. in a recent study [7] proposed a new data
object, MPIX_Queue, which is similar to MPIX_Stream but limited
as an abstraction over GPU stream objects. They proposed a similar
set of APIs using MPIX_Queue as a direct argument. Compared to
our proposal, it shares the benefit of MPIX_Stream abstraction, but
lacks the extensibility from the stream communicator construction.

5 PROTOTYPE IMPLEMENTATION
We have implemented a prototype of the stream APIs proposed in
this paper. The prototype is available in the MPICH 4.1a1 release.

5.1 Mapping VCI to MPIX Stream
MPICH internally already maintains a pool of virtual communica-
tion interfaces. With the per-VCI critical section model, each VCI
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uses separate mutexes and accesses dedicated network endpoints.
Communications from separate VCIs can be fully concurrent. For a
detailed discussion of VCIs, see [16].

MPICH currently supports implicit VCI hashing for MPI_THREAD_-
MULTIPLE using traditional APIs. For our prototype implementation,
we separate the pool of VCIs into an implicit pool and an explicit
pool. The size of each pool can be controlled by the user via MPI
tool interface control variables. The total number of VCIs is limited
by both available network endpoints and software limits. More
VCIs will demand larger tables in various internal data structures,
as well as heavier address exchange during initialization, so we ad-
vise users to set the size of VCI pools according to their application
usage. For example, if the application is not using the stream APIs
proposed in this paper, users should leave the reserved VCI pool
size at 0 and set the implicit VCI pool size to match the number of
threads or number of cores they are using. On the other hand, if
the application is using the stream APIs, we expect users want to
control their stream mapping explicitly throughout the application.
Thus, they should leave the implicit VCI pool size at the default, 1,
and set the reserved VCI pool size according to the total number of
allocated streams.

All the functions proposed in this paper are implemented; how-
ever, not all functionality is complete. In particular, one-sided oper-
ations are not explicitly stream-aware. A window created by using
a stream communicator will behave like a conventional communi-
cator with implicit VCI assignment. Point-to-point functions and
collective functions, including nonblocking and persistent varia-
tions, are fully stream-aware.

5.2 GPU Enqueue APIs
The GPU enqueue functionality is implemented only for CUDA
and only through the explicit point-to-point enqueue functions.
The work to extend the functionality to collectives and one-sided
communication is ongoing.

The current implementation uses CUDA’s cudaLaunchHostFunc
to enqueue the MPI operation to the CUDA stream. Not all GPU
runtimes provide host enqueue functions; and even with CUDA,
this is not optimal. The current CUDA implementation incurs a
heavy switching cost for cudaLaunchHostFunc.

A better implementation may use a dedicated host thread to the
progress operation queue and enqueue only the event triggers or
event synchronizations to the kernel queues. Having MPI launch
separate progress threads is another area worth exploring. Having
each runtime spawn hidden progress threads behind the user’s
knowledge is often not optimal.

5.3 Results
To verify our implementation, we conducted a microbenchmark
measurement on an Intel Skylake cluster in the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory. The
nodes in the cluster are connected byMellanox InfiniBand EDR. The
microbenchmark launches a number of threads, and each thread
then sends 8-byte messages to a corresponding thread on another
process. Each thread communicates using a per-thread communi-
cator. The results are shown in Figure 3. Three measurements were
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Figure 3:Multithreadmessage rate on 8-bytemessages using
MPI_Isend/MPI_Irecv.Themessage rate usingMPIX_Stream
is around 20% higher than with implicit VCIs.

taken. The first was with MPICH configured to use the global criti-
cal section. Shown in the red curve, we see that the total message
rate drops as soon as more threads start to compete for the critical
section.

The green curve shows the message rate with MPICH configured
to use the per-VCI critical section. Here traditional MPI communi-
cators are used, and thus MPICH is implicitly hashing the commu-
nications using different VCIs. The microbenchmark is designed
to achieve perfect implicit hashing, and we see good scaling as we
increase the number of threads. Note that the message rate with a
single thread is actually smaller than the corresponding message
rate with the global critical section. The reason is that the per-
VCI critical sections are finer grained and it often takes multiple
critical sections along the communication path—in particular, the
receive path and progress engine—for each message to complete.
Even without contention, the extra locking and unlocking hurt the
performance.

The third curve, shown in blue, is from rewriting the benchmark
to use the proposed stream communicators. Each stream commu-
nicator is attached with a unique MPIX stream object per thread.
Because the semantics of MPIX stream guarantees a serial execution
context, our implementation is able to completely remove locking,
resulting in around 20% gain in the total message rate up to 20
threads.

In our current implementation, atomic variables and atomic
operations are still used to reference count request objects and
completion flags. Even uncontended atomics hurt performance in
these microbenchmarks. Unfortunately, the current MPICH code
structure made it difficult to switch off the atomic operations. This
issue remains on our to-do list.

6 EXAMPLES
In this section we show two examples to illustrate how the pro-
posed APIs will be used. In Listing 3 we show an example hybrid
MPI+OpenMP program for a one-to-one thread communication
pattern. Each thread is represented by a unique MPIX_Stream and
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uses a dedicated stream communicator to send and receive mes-
sages. A good implementation can ensure these communications
happen concurrently without incurring extra locking cost.

Listing 3: Example using MPIX stream communicator with
OpenMP
#define NT 4

int main(void) {

int rank;

int tl;

MPI_Init_thread(NULL , NULL ,

MPI_THREAD_MULTIPLE , &tl);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPIX_Stream streams[NT];

MPI_Comm comms[NT];

for (int i = 0; i < NT; i++) {

MPIX_Stream_create(MPI_INFO_NULL , &streams

[i]);

MPIX_Stream_comm_create(MPI_COMM_WORLD ,

streams[i], &comms[i]);

}

#pragma omp parallel num_threads(NT)

{

int id = omp_get_thread_num ();

char buf [100];

int tag = 0;

if (rank == 0) {

MPI_Send(buf , 100, MPI_CHAR , 1, tag ,

comms[id]);

} else if (rank == 1) {

MPI_Recv(buf , 100, MPI_CHAR , 0, tag ,

comms[id], MPI_STATUS_IGNORE);

}

}

for (int i = 0; i < NT; i++) {

MPIX_comm_free (&comms[i]);

MPIX_Stream_free (& streams[i]);

}

MPI_Finalize ();

return 0;

}

In Listing 4we show an exampleMPI+CUDAprogramusing CUDA’s
asynchronous stream enqueue facility. It is a simple vector compu-
tation, SAXPY. Process 0 generates a portion of the data and sends it
to process 1, which launches the kernel to do the computation after
receiving the data. All memory copies, MPI send/receive, and com-
putation kernels are asynchronously launched to a user-supplied
CUDA stream.

Listing 4: Example using MPIX stream for CUDA stream en-
queue operations
const float a_val = 2.0;

const float x_val = 1.0;

const float y_val = 2.0;

__global__

void saxpy(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a_val * x[i] + y[i];

}

int main(void)

{

cudaStream_t stream;

cudaStreamCreate (& stream);

int rank;

MPI_Init(NULL , NULL);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

float *x, *y, *d_x , *d_y;

MPI_Info info;

MPI_Info_create (&info);

MPI_Info_set(info , "type", "cudaStream_t");

MPIX_Info_set_hex(info , "value", &stream ,

sizeof(stream));

MPIX_Stream mpi_stream;

MPIX_Stream_create(info , &mpi_stream);

MPI_Info_free (&info);

MPI_Comm stream_comm;

MPIX_Stream_comm_create(MPI_COMM_WORLD ,

mpi_stream , &stream_comm);

/* Rank 0 sends x data to Rank 1, Rank 1

performs a * x + y and checks result */

if (rank == 0) {

x = (float *) malloc(N*sizeof(float));

for (int i = 0; i < N; i++) {

x[i] = x_val;

}

MPIX_Send_enqueue(x, N, MPI_FLOAT , 1, 0,

stream_comm);

free(x);

} else if (rank == 1) {

y = (float *) malloc(N*sizeof(float));

cudaMalloc (&d_x , N*sizeof(float));

cudaMalloc (&d_y , N*sizeof(float));

for (int i = 0; i < N; i++) {

y[i] = y_val;

}

cudaMemcpyAsync(d_y , y, N*sizeof(float),

cudaMemcpyHostToDevice , stream);
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MPIX_Recv_enqueue(d_x , N, MPI_FLOAT , 0, 0,

stream_comm , MPI_STATUS_IGNORE);

saxpy <<<(N+255) /256, 256, 0, stream >>>(N,

a, d_x , d_y);

cudaMemcpyAsync(y, d_y , N*sizeof(float),

cudaMemcpyDeviceToHost , stream);

cudaFree(d_x);

cudaFree(d_y);

free(y);

}

MPI_Comm_free (& stream_comm);

MPIX_Stream_free (& mpi_stream);

cudaStreamDestroy(stream);

MPI_Finalize ();

return 0;

}

7 SUMMARY
Wehave surveyed the current status ofMPI+Threads andMPI+GPUs.
Both will need an explicit interface in MPI to allow better arrange-
ments between non-MPI runtimes and MPI. We proposed a new
MPI concept, called MPIX stream, and a set of new APIs that allow
users to communicate their external execution context to MPI im-
plementations in a general and reliable way. The proposed APIs
are implemented in the MPICH 4.1a1 release. Example codes for
typical application patterns are provided for reference.
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