
Exploring Game Balance in the Scandinavian Fox Game with
Monte-Carlo Tree Search

Anton Janshagen
KTH

Sweden
anton.janshagen@gmail.com

Olof Mattsson
KTH

Sweden
olof.mattsson103@gmail.com

Figure 1: Modern adaptation from Magtoys (photo: Author)

ABSTRACT
This paper explores ifMonte-Carlo Tree Search (MCTS) can perform
well in Fox Game, a classic Scandinavian strategy game. MCTS is
implemented using a cutoff in the simulation phase. The game state
is then evaluated using a heuristic function that is formulated using
theoretical arguments from its chess counterpart. MCTS is shown
to perform on the same level as highly experienced human players,
using limited computational resources. According to popular belief,
as can be seen in online forums, the asymmetry in Fox Game leads
to imbalances which favors the foxes. However the experiments in
this paper show that, contrary to popular belief, it is the sheep that
are favored, and quite heavily so. It is also shown that the game

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’22, September 5–8, 2022, Athens, Greece
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9795-7/22/09. . . $15.00
https://doi.org/10.1145/3555858.3555919

can be made more balanced by reducing the number of sheep at
the start of the game from 20 to 18.

CCS CONCEPTS
• Computing methodologies → Game tree search; Heuristic
function construction; Intelligent agents.

KEYWORDS
Fox Games, Game Balance, Artificial Intelligence, Monte-Carlo Tree
Search

ACM Reference Format:
Anton Janshagen and Olof Mattsson. 2022. Exploring Game Balance in
the Scandinavian Fox Game with Monte-Carlo Tree Search. In FDG ’22:
Proceedings of the 17th International Conference on the Foundations of Digital
Games (FDG ’22), September 5–8, 2022, Athens, Greece. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3555858.3555919

1 INTRODUCTION
The Fox Game (Swedish: Rävspel or Svälta räv) studied in this paper
is a classic Scandinavian board game, and is said to have roots back
to the 15th century, but it is unclear how similar those versions

https://doi.org/10.1145/3555858.3555919
https://doi.org/10.1145/3555858.3555919
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555858.3555919&domain=pdf&date_stamp=2022-11-04

FDG ’22, September 5–8, 2022, Athens, Greece

were to the modern ones. Fox Game is a perfect information board
game that, despite its simplicity, contains sophisticated strategy.
It is similar to Chinese checkers and Fox-and-Geese in regards to
both rules and game board.

The interest in Artificial Intelligence (AI) for board games has
grown considerably in recent years.Monte-Carlo Tree Search (MCTS)
specifically, is a search algorithm that has gained much popularity
when making intelligent bots for board games. This is a form of
AI that decides on the next move by a look-ahead search, scouting
sequences of possible moves and counter-moves through a process
of trial-and-error. In 2016 Deepminds AI AlphaGo, which combines
MCTS and neural networks, was the first AI to beat a professional
Go-player, which had been a longstanding goal in AI development
[1]. Since then, similar combinations of MCTS and neural networks
have achieved super-human strength in other demanding board
games such as Hex, Shogi and chess. This paper examines if, and if
so how, MCTS can be used to create a strong AI for Fox Game, and
with said AI explore game balance and strategies for Fox Game.

To the best of our knowledge, there is no AI for the Scandina-
vian Fox Game in the literature. However, Fox-and-Geese, a related
Fox Game, has been solved through a game specific algebraic de-
composition, using exhaustive search on massive computers [2].
By contrast, in this paper, the Scandinavian Fox Game is analyzed
using a more scalable and generic approach.

The main differences between Fox-and-Geese and the Scandi-
navian Fox Game are; (i) the former has only one fox, making the
number of game states much smaller; (ii) in Fox-and-Geese the fox
can only capture one goose per turn by jumping over it, while the
fox in Fox Game can capture several sheep per turn; and (iii), the
fox is never removed from the game in Fox-and-Geese, but in Fox
Game one or both foxes can be captured. The complete set of rules
for the Scandinavian Fox Game is described in section 2. All these
features makes the Scandinavian Fox Game much more complex,
and the method used in [2] infeasible.

The interest for Fox Game lies partly in its cultural value as a
traditional Scandinavian board game, and partly in the fact that
it is asymmetrical. Although several papers have been published
about exploring board games with MCTS, [1] for example, they are
mostly focused on symmetrical games such as Hex, Shogi or Chess.
In this paper it is explored if MCTS is able to handle the effects of
an asymmetric game, such as the fact that the players interact with
the board in different ways, and that the number of moves available
differs considerably.

The rest of the paper is organized as follows. Section 2 explains
the history and rules of Fox Game. Section 3 describes how MCTS
works, and explains certain variations of MCTS. Section 4 describes
the heuristic function created in this paper to evaluate any board
state in Fox Game. Section 5 describes how, and why, the experi-
ments in the paper were made, as well as the obtained results of the
experiments. In section 6, we discuss the results and other aspects
of the paper. Finally, in section 7, we summarize the results of the
paper.

2 FOX GAME
Fox Game is an old Scandinavian game that is a mixture of many
different games. It has also evolved into different variants over the

years. One effect of this is that there are several different sets of
rules for the game, and since the game is not played competitively
by professionals, there is no consensus on which are the best. In
figure 1 a modern adaptation of Fox Game can be seen, and figure
2 shows the game board used in this paper in its starting position.

The following rules are the same in all variants of Fox Game,
and variations of them will be discussed below. The game is a turn-
based two player game, where one player plays as 20 sheep (purple
pieces), and the other player plays as 2 foxes (red pieces). The goal
of the sheep is to move 9 sheep into the pasture (marked in green)
on the other side of the board. The foxes do not have a goal of their
own, but they simply try to stop the sheep from achieving their
goal. The sheep may only move one tile at a time, either side to side,
or forward, but not diagonally or backwards. The foxes however
may move one tile at a time along all lines on the board.

Figure 2: Our implementation of Fox Game in its starting
position

The foxes can also capture sheep, and thereby remove them from
the board. This can be done when a fox is standing next to a sheep,
and the space on the other side of the sheep is empty. The fox
may then move to the other side of the sheep while simultaneously
removing the sheep from the board. If the fox is then put in a
position where it may capture another sheep, it can immediately
move and capture it without having to wait for the sheep to make
a move first. See figure 3 for reference. The foxes cannot jump over
each other.

(a) Starting position (b) Intermediate position (c) End position

Figure 3: Fox capturing two sheep in one turn

As mentioned above, there are certain alterations of the rules
that deal with special situations that may arise when playing Fox
Game. The following two rules can be found in many rule-books

Exploring Game Balance in the Scandinavian Fox Game with Monte-Carlo Tree Search FDG ’22, September 5–8, 2022, Athens, Greece

online, but are not present in all of them. However we have included
them in this paper for reasons described below.

The first one is that the foxes not only may jump over the sheep
to capture them, but must do so if presented with the opportunity,
even if the fox has already jumped once this turn. The purpose of
this rule is to give the sheep the possibility to sacrifice a sheep in
order to lure a fox from, or into, a certain position. Particularly this
stops the foxes from staying in the pasture and physically stopping
the sheep from entering, as the sheep can force the fox to move
away. One instance of this scenario can be seen in figure 4.

Figure 4: The fox is forced to jump out of the pasture which
allows the sheep to win

Another additional rule described in [5] is that not only the sheep
can be captured, but also the foxes. The foxes are not captured in
the same way as the sheep. They are instead captured if, on their
turn, they have no possible move. So if a fox has no available move
on the start of its turn, it is removed from the board. This rule is
necessary as the foxes otherwise can stay in the pasture to block the
sheep from entering and thereby never lose. A fox being captured
can be seen in figure 5.

Figure 5: The upper fox cannotmove and is thereby captured

A situation that is implicitly clear when humans play, but needs
to be specified when bots play, is how to interpret the situation
where the sheep cannot reach the pasture, but the foxes are not able
to capture the sheep either. If for example the situation in figure 6
arises, the sheep has no reasonable chance to win, but they can stay
back forever, and thereby never lose. Our solution to this was to set
a limit of how many turns in a row the sheep may move sideways.

If the sheep have not moved forward after a set number of turns
they lose. We think this is a reasonable interpretation of the rules,
as the foxes have successfully stopped the sheep from reaching the
pasture. Throughout the paper the number of turns needed for the
sheep to lose in this way is 10.

Figure 6: The sheep can prolong the game inevitably

3 MONTE-CARLO TREE SEARCH
MCTS is a best-first tree search algorithm [6]. The algorithm creates
a search tree where it evaluates different nodes in the tree based
on Monte-Carlo simulations, and gradually moves further down
the tree to get more and more precise evaluations of the different
states.

The first node of the tree is the root node. It represents the
current game state, and is the only node without a parent node. The
children of each node represent all of the legal moves that can be
made from the board state corresponding to the parent node. Beside
what the board state looks like, all nodes contain information about
their evaluation, the number of times they have been visited, which
player is to make the next move, and pointers to their parent and
children nodes.

MCTS consists of four main steps which can be seen in figure 7.
The first step is to select from which node, i.e. which game state,
to visit next, this phase is called tree traversal. The process is done
recursively from the root node until a node without children is
reached. The selection between a node’s children is done by picking
the child with the highest UCB1-value according to equation (1),
whereQi is the value of the node,vi is the number of times the node
has been visited, and vpi is the number of visits of the parent node
[6]. The first term is the average value of the node per visit, and
is called the exploitation term, and the second term is responsible
for widening the search tree, and is called the exploration term. C
is a constant that is chosen to balance the depth and width of the
search tree. The optimal value of C will depend on the branching
factor of the search tree, and is therefore game dependent. It can be
seen from the UCB1 formula that a node with zero visits will have
infinite UCB1-value, and will therefore always be chosen. If several
children have infinite UCB1-value, one will be picked randomly.

UCB1i =
Qi
vi
+C

√
ln(vpi)

vi
(1)

FDG ’22, September 5–8, 2022, Athens, Greece

Figure 7: Overview of the Monte-Carlo Tree Search algo-
rithm

When a leaf node has been reached in the tree traversal phase,
the expansion phase starts. In this phase all of the possible child
nodes are created, and a node is chosen at random.

The third phase is called playout. Here random moves are made
from the game state associated with the leaf node, until the game
ends. The result of the game is one for a win, and minus one for a
loss.

The last part of the algorithm is backpropagation. The result
from the playout is propagated back through the tree, and each
visited node’s value and number of visits is updated. Since every
node is associated with a player, the value of a nodemust be updated
based on if that player won the playout or not.

The process above is then repeated a certain number of times,
known as the number of simulations. The more simulations you
allow the algorithm, the more precise the evaluation will be. MCTS
will not solve a game completely, but it will converge to the best
solution given enough simulations [6]. The process can also be run
for a specific amount of time, and the number of simulations will
then vary depending on how long time one simulation takes.

After a desired number of simulations has been made, or after a
certain amount of time, the most promising child node of the root
is chosen as the move to make. This can be done in two different
ways, either by picking the child of the root with highest average
value per visit, or by picking the child with the most number of
visits. Since the child with the highest average value will have many
visits, according to equation (1), these approaches yield the same
choice in most cases. In this paper the latter approach was used.

3.1 Cutoff
The idea of MCTS is that the nodes’ values can be assessed with
random simulations since a better position will lead to wins more
often than a worse position when making random playouts from
both positions. However this difference becomes smaller the more
moves are made in the playout phase, because the difference drowns
in the large randomness of the long playout. It can therefore be
beneficial to introduce a cutoff in the playout phase after a certain
number of random moves have been made. The game state can

then be evaluated using a heuristic function. This can increase
the performance of MCTS in games that require a large number
of moves before either side wins, but it introduces the need for a
heuristic function.

3.2 Heuristic Function
A heuristic function for a game can be made in different ways, and
include many different metrics. The output of the heuristic function
should represent the probability of victory based on the current
game state, and is therefore the same for both players.

One common and traditional way to design a heuristic function
is to consider both the value of the pieces left for each player, and
where those pieces are situated on the board. The value of the
remaining pieces is called the material part, and the value of the
pieces’ positions is called the positional part. An example of this
can be read about in [3], where a heuristic function is made for
chess. The evaluation compares, for example, how many pawns are
left for each player, while also considering that defended pawns are
worth more than those who are easily captured by the opponent.

A common dilemma with heuristic functions discussed in [6] is
that more complex functionsmay give amore accurate evaluation of
the board state, but they can as a trade off be more computationally
expensive. This means that fewer simulations can be made in the
same amount of time, and they may therefore produce worse results
than simpler functions even if the evaluation from the complex
heuristic function is better.

4 METHOD
All code was written in Python 3.8 using the libraries numpy and
pygame for calculations and visualization respectively.

4.1 Heuristic Function for Fox Game
The heuristic function used in this paper took inspiration from its
chess counterpart in [3]. The material part consists of a weighted
sum of the difference between the number of pieces of each sort
for each player: Hmat = wf (F1 − F2) +ws (S1 − S2). But since the
players have zero pieces of one type the function simplifies to
Hmat = wf F −wsS , where F is the number of foxes and S is the
number of sheep. But we are really only interested in the relative
value of the pieces, i.e. wf

ws
. So one simplification that can be made

is to setws = 1 andwf = q, where q is how many sheep one fox is
worth. This however means that the magnitude of the material part
depends heavily on q, but the output should be a probability and
thus be less than or equal to one. This was fixed by normalizing
the coefficients with (ws +wf), i.e. (1 + q).

The positional part of our heuristic function used a piece-square
table (PST) that assigns a value to each square. For every square that
is occupied by a sheep, the associated value according to matrix (2)
is summed to a variable V , which is used in the heuristic function
in equation (3). The positional function only considers the sheep
because observations showed that they needed help to know in
which direction to move. Also a reasonable PST for the foxes is
less obvious, and we wanted to influence the strategies of the AI as
little as possible. The values of the PST were chosen by us based
on prior knowledge of the game, but the idea is to encourage the
sheep to move towards their goal.

Exploring Game Balance in the Scandinavian Fox Game with Monte-Carlo Tree Search FDG ’22, September 5–8, 2022, Athens, Greece

PST =

− − 0 0 0 − −

− − 1 1 1 − −

2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 5 5 5 4 4
− − 6 6 6 − −

− − 7 7 7 − −

(2)

The positional part was reduced by a factor 0.1 so that the ma-
terial and positional part have the same order of magnitude. The
heuristic function also contains a parameter k , between zero and
one, that balances the material and positional parts relative to each
other.

All the variables in the heuristic function (F , S and V) were
subtracted by their initial value to ensure that the function evaluates
the game state to zero at the start of a game. The sum is also
multiplied by a factor b that varies the overall magnitude of the
function.

The heuristic function is mapped to values between negative
one and one with the hyperbolic tangent function (tanh) to ensure
that the result from a win or loss is worth more than a result from
an evaluation by the heuristic function.

The heuristic function (3), is stated from the perspective of the
foxes, so it is close to one if the foxes are winning, and close to
negative one if the sheep are winning. The evaluation for the sheep
is the negative value of equation (3).

H = tanh(b[kHmat + (1 − k)Hpst])

Hmat =
q

1 + q
(F − 2) −

1
1 + q

(S − 20)

Hpst = −0.1(V − 38)

(3)

5 EXPERIMENTS AND RESULTS
As a game lasts about 200 to 250 moves (when AIs play) a basic
version of MCTS, without cutoff, would not be reasonable to use
in the experiments. All experiments therefore used cutoff and a
heuristic function. Most of the experiments were performed by
letting agents with different constant-values play against each other.
The agents played the same number of games with both pieces
because, as can be seen in the results, the sheep are heavily favored.

The experiments considered how altering constant-values in the
heuristic function changed the strength of the agents, and how the
number of simulations and cutoff-value affected their performance.
The AI was then tested against human players, and an attempt to
balance the game was made.

The results that follow consists of approximately 1000 AI-played
games, where some of them were played against humans.

5.1 Heuristic Function
The first experiment was to see how altering the different values (k ,
q, and b) in the heuristic function (3), andC in the UCB1 formula (1),
affected the strength of an agent. A base agent with constant-values
based on prior knowledge of the game and of MCTSwas formulated,
and agents with slightly different values played against it. The base
agent used constant-values according to (4). Every altered agent

Table 1: Results from agents with different constant-values
playing against the base agent

Alteration C = 0.5 C = 0.3 q = 14 q = 10
Base agent foxes wins 6 6 4 3
Base agent sheep wins 24 23 27 27
New agent foxes wins 5 7 3 3
New agent sheep wins 25 24 26 27
Base agent win rate 0.50 0.48 0.50 0.53

Alteration k = 0.9 k = 0.7 b = 1.2 b = 0.8
Base agent foxes wins 8 11 3 2
Base agent sheep wins 24 26 25 25
New agent foxes wins 6 4 4 5
New agent sheep wins 22 19 28 28
Base agent win rate 0.61 0.50 0.47 0.45

played against the base agent 60 times, 30 times a sheep and 30
times as foxes.

k = 0.8
q = 12
b = 1
C = 0.4

(4)

When the base agent (k = 0.8,q = 12, b = 1 and C = 0.4) played
against agents with slight variations that affected the heuristic
function the win rates in table 1 were obtained.

5.2 Simulations
For the next experiment we tested how the number of simulations
affected the performance of the agent. This was done partly to
demonstrate that the algorithm works as intended, as a greater
number of simulations should increase the performance, and partly
to find how its performance depends on the number of simulations.
This was done in order to suggest a number of simulations that
balances performance and time consumption.

The experiment was done by having a base agent, according
to equation (4), with 1000 simulations play at least 30 matches
against agents with a different number of simulations for each set
of 30 matches, and recording the results. All agents used the same
heuristic function as the base agent.

The win rate of agents with different numbers of simulations
when playing against an opponent with 1000 simulations can be
seen in figure 8. The win rate increases rapidly for agents with a
low number of simulations, and for agents with a larger number
of simulations the payoff in performance diminishes, this was an
expected result.

5.3 Cutoff
The benefits of the playout phase is that the added randomness
helps the algorithm find strategies that at first might seem inferior.
But without a cutoff, or too high cutoff-value, too much randomness
will make the algorithm worse. The playout is also the most com-
putationally demanding phase of the algorithm. So the cutoff-value

FDG ’22, September 5–8, 2022, Athens, Greece

Figure 8: Win rate against agent with 1000 simulations for
agents with different number of simulations

has to balance both the amount of randomness in the playout phase,
as well as how much time is spent in the playout phase versus the
other phases. It is possible that cutoff-value zero, i.e. immediate
evaluation, is optimal because of the computations needed in the
playout.

The cutoff experiments were divided into two parts. The first part
used the base agent with a constant number of simulations (3000),
but with different cutoff-values between different sets of matches.
More than 30 matches were played between different agents, until
an optimal cutoff-value was obtained.

This first part considered only how much randomness to intro-
duce into the algorithm, while the second part focused on the time
aspect of the cutoff. Here, the agents had the same amount of time
to reach a decision, so the number of simulations had to vary ac-
cordingly. In the first experiment, with cutoff-value zero and five,
the agents had 1.5 seconds, which amounted to about 4500 and
1100 simulations respectively. And in the second experiment, with
cutoff-value zero and two, they had 1 second, which allowed for
about 3000 and 1200 simulations respectively. In this second part
of the experiment at least 50 matches were played between each
pair of agents.

The goal of the second part of this experiment was still to find
an optimal cutoff-value, but only cutoff-values less than the value
found in part one was considered. This is because if a higher cutoff-
value is worse than a lower one when the same number of simu-
lations is used, it will definitely be worse when the same amount
of time is given. However this is not necessarily true for a cutoff-
value less than the optimal value found in part one because a lower
cutoff-value allows for more simulations, which might be more
important than having the optimal cutoff-value, if they are given
the same amount of time.

In table 2 the win rates from part one and part two of the cutoff
experiment can be found. In part one both agents used 3000 simu-
lations, and in part two both agents had 1 or 1.5 seconds each to
choose a move.

Table 2: Win rates of agents with different cutoffs

Limiting resource 3000 Simulations
Cutoff: Agent 1 - Agent 2 0 - 5 5 - 10 10 - 20

Agent 1 foxes wins 0 3 0
Agent 1 sheep wins 11 13 15
Agent 2 foxes wins 8 2 0
Agent 2 sheep wins 19 12 15
Win rate agent 1 0.29 0.53 0.50

Limiting resource 1.5 Seconds 1 Second
Cutoff: Agent 1 - Agent 2 0-5 0 - 2

Agent 1 foxes wins 6 8
Agent 1 sheep wins 23 22
Agent 2 foxes wins 2 8
Agent 2 sheep wins 19 22
Win rate agent 1 0.58 0.5

5.4 Strength Versus Humans
To truly see the strength of the agent we let it play against humans.
The agent that played against humans was the base agent from
equation (4) with the optimal cutoff-value from section 5.3. The
agent used 10000 simulations which gave it roughly three seconds
to find a move. All human participants had prior experience of Fox
Game. But since the game is not played competitively by profes-
sionals, we never found anyone with more experience than us to
face the AI.

All human players with limited experience of Fox Game lost
every game, regardless of whether they played as sheep or as foxes.
We, as more experienced players, also lost every game when we
played as foxes, but as sheepwe havemanaged to win several games.
At the moment of writing we estimate that we can win every game
when playing as sheep, but none when playing as foxes.

5.5 Imbalance of Fox Game
As Fox Game is an asymmetrical game it is not certain that the foxes
and the sheep have equal chance of winning. From the data gathered
in the heuristic function experiment 5.1 and cutoff experiment 5.3,
that both use high quality agents with many simulations, it can be
seen that the sheep win 85% of games. So with the rules currently
implementation makes Fox Game a very unbalanced game. It is
therefore interesting to examine how the game can become more
balanced. As all of the variations of the rules described in section
2 plays an important role, it would be undesirable to tamper with
them.

Our proposed solution is to reduce the number of sheep in the
beginning of the game. To test how many sheep is appropriate
to remove 30 matches were played between two copies of the
best agent from the previous experiments with 10000 simulations
each(equivalent to about three seconds), but with different numbers
of sheep at the start of the game. The heuristic function (3) was how-
ever altered to subtract the current amount of sheep and starting
PST-value. So the factor (S −20) inHmat was altered to (S −Sstar t),
and the factor (V − 38) in Hpst was altered to (V − Vstar t). One

Exploring Game Balance in the Scandinavian Fox Game with Monte-Carlo Tree Search FDG ’22, September 5–8, 2022, Athens, Greece

sheep was removed at a time from the row furthest from the pas-
ture until the win rate started to favor the foxes. The sheep were
removed in the pattern shown in figure 9.

(a) One sheep removed (b) Two sheep removed (c) Three sheep removed

Figure 9: Starting positions in the Imbalance of Fox Game
experiment

The win rate of the sheep decreases rapidly as sheep are removed
from the game at the start. This shows how punishing it is for sheep
to lose a piece without gaining terrain in return. But it also makes
it hard to find an appropriate number of sheep to start with. As can
be seen in figure 10, 18 starting sheep is the number of sheep that
has a win rate closest to 50%. However, this number would only be
suitable for skilled players. For novice players, 20 sheep is probably
better because of the difficulty of playing as sheep.

Figure 10: Sheep win rate with different number of sheep at
start of game

6 DISCUSSION
Several discoveries were made from the experiments regarding both
Fox Game and MCTS.

6.1 Strategies for Fox Game
As our initial knowledge of Fox Game and its different strategies
was quite limited, a number of new and interesting discoveries were
made during the work on this paper. Our first impression when
playing the game against each other, as well as several testimonies

online, suggested that the foxes are heavily favored. This is also
what we found when the AI had a low number of simulations. But
the results clearly show that when more advanced players, i.e. our
AI with many simulations play, the sheep are as heavily favored.
As we played more against each other, as well as against the AI, we
also performed substantially better as sheep than as foxes.

One crucial tactic that made the AI considerably better than
most humans, which we never managed to master, was to reliably
capture one or both foxes. The AI does this by thinking manymoves
ahead, and by sacrificing some sheep in order to force the foxes
into a position such that one of them has no available move, and is
thereby captured.

One interesting outcome of this is that the foxes often try to
counter this strategy by staying further back. This however might
not be optimal when playing against human opponents that are not
as skilled in the strategy of capturing the foxes. It could therefore
be the case that the optimal agent for beating an AI opponent is
not the same as the optimal agent for beating a human opponent
that does not master the strategy of capturing foxes reliably.

Observations of the AI:s play suggest that it does not have an
optimal strategy, but it has impeccable tactics. That is, it seems to
play optimally in every given situation, but lacks a plan that lasts
more than a couple of turns. It can for example not sense the long
term consequences of letting a fox through its back line. This is in
contrast to our strategy, that can beat the AI, in which we have a
plan that lasts throughout the game.

This is most likely due to the positional part of the heuristic
function being very simple and not valuing complex formations
and how spread out or clumped together the sheep are. While we
try to focus on the entire board, the AI seems to focus more locally
around the area where the foxes, and thereby the action, is. This
is something that a more complex heuristic function that uses a
neural network could do better. The authors of [4] used the neural
network approach with great success in the strongest Go-playing
AI to date.

Although we have not mathematically solved Fox Game, our
qualitative observations, as well as a limited number of games,
suggest that it is solvable, and that the sheep can win every game.
The work done in [2], where Fox-and-Geese is strongly solved, also
suggests that the Scandinavian Fox Game could be solved since
they are very similar games.

6.2 Optimal Agent for an Imbalanced Game
The heuristic function and cutoff experiments that compared dif-
ferent agents gave vague results that indicated that most of the
alterations between agents did not affect the strength of the agents
very much. This can partly be derived from the imbalance of the
game. Throughout these experiments the sheep won 85% of the
games. This meant that a strong agent playing as foxes would still
have a very low win rate against a slightly weaker agent playing
as sheep. It also meant that a strong agent playing as sheep does
not have the same possibility to further increase its win rate, as the
win rate of the sheep is naturally very close to 100%.

It would therefore be easier to find differences between agents
playing a more balanced version of the game, for example the one
proposed in section 5.5. It is however not certain that the same

FDG ’22, September 5–8, 2022, Athens, Greece

constant-values of the agents are optimal for the balanced and
imbalanced game. So one can not find an optimal agent for the
balanced game, and claim that that agent is optimal for the original
game as well.

An interesting aspect about Fox Game being asymmetrical is that
it is not certain that the constant-values of the agent that is optimal
for playing as sheep, are the same as the constant-values that are
optimal for playing as foxes. It could for example be more beneficial
for the foxes to search wider in the tree (which would require a
larger constant C) compared to the sheep. It would therefore be
interesting to examine if different constant-values of the agents are
optimal for playing as sheep, compared to playing as foxes.

6.3 Optimal Cutoff
It is interesting to note the significant performance increase of the
AI when a cutoff was introduced into the MCTS algorithm. Prior
to that, the agents played terribly, and made huge mistakes which
resulted in the foxes winning almost every game. Our reasoning
for this difference in performance is that Fox Game is unusually
unforgiving relative to similar games. The sheep dictates the pace
of the game completely and the foxes cannot force the sheep to do
anything. If the sheep keeps control of the game they are heavily
favored, but it is often enough with one or two minor mistakes
from the sheep for the foxes to take control of the game, and there
are a lot of bad moves for the sheep to make. So it might be that the
punishing nature of Fox Game also punishes the randomness in the
MCTS playout where the sheep are bound to make big mistakes.

Another reason for the performance increase when introducing
cutoff might be that the playouts lasts quite long (200-250 moves),
and approximately the same game state arises several times during
the same playout. This is because the sheep can move to the sides
and then back again, and because if a few sheep in the back move
to the side, the game state is functionally the same as before in
many cases. This makes it hard to distinguish between a better and
a worse starting position of the playout.

The experiments to find the optimal cutoff-value in section 5.3
yielded some noteworthy results. They show that while doing ran-
dom playouts it is beneficial to use five as cutoff-value when both
agents use the same number of simulations. Part two of the experi-
ment however shows that the extra time spent doing the playout is
not worth it, as a cutoff-value of zero outperforms a cutoff-value
of five when given the same amount of time rather than the same
number of simulations. This is a very interesting result as the cre-
ators of the world’s foremost AI:s for playing Go, AlphaGo Zero,
have come to the same conclusion for their AI [4].

6.4 Future Work
One interesting aspect to look further into is how to make a more
sophisticated heuristic function. This can either be done manually
by players who have more experience playing the game. This is
however a cumbersome approach, and a better approach might be
to train a neural network to evaluate the game state. As there are
no online implementations of Fox Game, and therefore no recorded
games, this would most likely have to be done via self play. It
would be interesting to see how the effectiveness of self play is
affected by the asymmetrical aspects of Fox Game. The resulting

AI could for example end up in a situation where it plays good
enough to always win as sheep, but still does not play optimally.
And it would therefore be interesting to see if a neural network
could be taught more quickly by playing the more even version of
Fox Game suggested in section 5.5, and still perform well in the
original version. An AI using a neural network could perhaps also
find novel strategies that our AI, with its custom heuristic function,
could not.

Another interesting future work would be to see if there are
variations in the rules, other than those discussed in section 5.5,
that would make the game more even. Such as altering the board,
or the rules regarding how the pieces move. One could use the
same AI proposed in this paper, or an improved version, to test the
balance of these variations.

7 SUMMARY
As seen in the experiments above, a strong MCTS-agent for Fox
Game requires a very low (or zero) cutoff-value, and therefore
also a heuristic function. They also show that Fox Game is a very
unbalanced game, where the sheep win a majority of games if both
players play intelligently. This makes the development of a strong
AI difficult because the difference in strength between two agents
is hard to distinguish without huge amounts of data. It can also
be seen that our best performing AI outplays humans with limited
experience, and does well against more experienced players.

REFERENCES
[1] DeepMind. 2022. AlphaGo. https://deepmind.com/research/case-studies/alphago-

the-story-so-far
[2] Stefan Edelkamp and Hartmut Messerschmidt. 2010. Strongly Solving Fox-and-

Geese on Multi-core CPU. In KI 2010: Advances in Artificial Intelligence, Rüdiger
Dillmann, Jürgen Beyerer, Uwe D. Hanebeck, and Tanja Schultz (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 291–298.

[3] Claude E. Shannon. 1950. XXII. Programming a computer for playing chess.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 41, 314 (1950), 256–275. https://doi.org/10.1080/14786445008521796
arXiv:https://doi.org/10.1080/14786445008521796

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature (London) 529, 7587 (2016), 484–489.

[5] SpelRegler. 2022. Rävspelet Regler. https://www.spelregler.org/ravspelet-regler/
[6] Mark H.M.Winands. 2017. Monte-Carlo Tree Search in Board Games. InHandbook

of Digital Games and Entertainment Technologies, Paolo Ciancarini Ryohei Nakatsu,
Matthias Rauterberg (Ed.). Springer Singapore, Singapore, 47–74.

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://doi.org/10.1080/14786445008521796
https://arxiv.org/abs/https://doi.org/10.1080/14786445008521796
https://www.spelregler.org/ravspelet-regler/

	Abstract
	1 Introduction
	2 Fox Game
	3 Monte-Carlo Tree Search
	3.1 Cutoff
	3.2 Heuristic Function

	4 Method
	4.1 Heuristic Function for Fox Game

	5 Experiments and Results
	5.1 Heuristic Function
	5.2 Simulations
	5.3 Cutoff
	5.4 Strength Versus Humans
	5.5 Imbalance of Fox Game

	6 Discussion
	6.1 Strategies for Fox Game
	6.2 Optimal Agent for an Imbalanced Game
	6.3 Optimal Cutoff
	6.4 Future Work

	7 Summary
	References

