
The Sincerest Form of Flattery: Large-Scale Analysis of Code
Re-Use in Atari 2600 Games

John Aycock
Shankar Ganesh
aycock@ucalgary.ca

sankarasubramanian.g@ucalgary.ca
University of Calgary

Calgary, Alberta, Canada

Katie Biittner
MacEwan University

Edmonton, Alberta, Canada
biittnerk@macewan.ca

Paul Allen Newell
Independent researcher

United States

Carl Therrien
Université de Montréal

Montréal, Québec, Canada
carl.therrien@umontreal.ca

ABSTRACT
The Atari 2600 was a prominent early video game console that had
broad cultural impact, and possessed an extensive catalog of games
that undoubtedly helped shape the fledgling game industry. How
were these games created? We examine one development practice,
code re-use, across a large-scale corpus of 1,984 ROM images using
an analysis system we have developed. Our system allows us to
study code re-use at whole-corpus granularity in addition to finer-
grained views of individual developers and companies. We combine
this corpus analysis with a case study: one of the co-authors was
a third-party developer for Atari 2600 games in the early 1980s,
providing insight into why code re-use could occur through both
oral history and artifacts preserved for over forty years. Finally,
we frame our results about this development practice with an in-
terdisciplinary, bigger-picture archaeological view of humans and
technology.

CCS CONCEPTS
•Applied computing→Computer games;Archaeology; • So-
cial and professional topics → History of software; • Soft-
ware and its engineering→ Software reverse engineering.

KEYWORDS
Atari 2600, game development, binary reverse engineering, ar-
chaeogaming, empirical study

ACM Reference Format:
John Aycock, Shankar Ganesh, Katie Biittner, Paul Allen Newell, and Carl
Therrien. 2022. The Sincerest Form of Flattery: Large-Scale Analysis of Code
Re-Use in Atari 2600 Games. In FDG ’22: Proceedings of the 17th International
Conference on the Foundations of Digital Games (FDG ’22), September 5–8,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’22, September 5–8, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9795-7/22/09. . . $15.00
https://doi.org/10.1145/3555858.3555948

2022, Athens, Greece. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3555858.3555948

1 INTRODUCTION
A book by the Reverend C. C. Colton published in 1837 was replete
with aphorisms, one of which was ‘imitation is the sincerest of
flattery’ [14, p. 113]. From the point of view of video games, Colton
was prophetic, presaging the early video game industry where
highly derivative games – and outright knockoff games – were
common.1 Judgments about the similarity between two games is
typically based on the games’ look and feel, which is arguably a
superficial view. What about similarity underneath the hood, in the
game code itself?

Specifically, we focus here on code re-use, where code in one
game can be found in another game. Code re-use is commonplace
now, with web sites like Github and Stack Overflow, but back in
the 1970s and 1980s, information flowed much differently than it
does today. Game programmers of that era might have technical
books or manuals, possibly fellow programmers or a user group to
exchange tips with, maybe even have a peek at other programmers’
code by reverse engineering it. And both then and now, program-
mers frequently re-use their own code from project to project. By
examining game code, there should be evidence of this development
practice.

Our work centers on game code for the the Atari 2600, originally
called the Atari VCS. The Atari 2600 was an early game console
released in 1977 that had a surprisingly long lifespan: the 2600
did not cease production in its various incarnations until 1992,
long after it had been surpassed by other devices. As for why we
are studying this console and this corpus of games, however, it
is necessary to delve into the context of the the console and the
company that produced it.

Of all the big players in early videogame history, Atari has at-
tracted the most historical consideration. Game historians and fans
are unable to keep this enamored corporation buried in the ground
– quite literally, as made evident by the 2014 exhuming in Alam-
ogordo, New Mexico. A fraction of the hundreds of thousands of
unsold cartridges, downgraded to the status of trash by their very

1Thank goodness derivative and knockoff games are a thing of the past in 2022.

https://orcid.org/0000-0003-0352-489X
https://orcid.org/0000-0003-4328-5600
https://orcid.org/0000-0003-2353-8252
https://orcid.org/0000-0003-3038-7296
https://orcid.org/0000-0002-0634-7633
https://doi.org/10.1145/3555858.3555948
https://doi.org/10.1145/3555858.3555948
https://doi.org/10.1145/3555858.3555948
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555858.3555948&domain=pdf&date_stamp=2022-11-04

FDG ’22, September 5–8, 2022, Athens, Greece J. Aycock et al.

own makers and buried in 1983, were recovered in a documentary-
driven event involving on-site archaeologists [39].

Atari, the company, became the symbol of the extraordinary
growth of a new cultural industry based on technological wonders.
Visuals from the era, such as Atari box art, hold enough nostalgic
fascination to warrant the release of coffee table books [27]. Its
history is well documented at this point, with many key figures
providing interviews. The Strong National Museum of Play holds
an impressive repository on the company, ranging from arcade
cabinets to arcade flyers and corporate records. From the standpoint
of production studies, Atari is the most expansive playground one
could hope for.

Many recent historical accounts make good use of these docu-
mentation efforts to revisit some of the most well-known episodes
in videogame history. Michael Z. Newman named his history of
early videogames the ‘Atari Age’ [36]. Anne Ladyem McDivitt ex-
plores the fascinating history of early pornographic software on
consoles and computers in a chapter entitled ‘Atari Generation’ [32].
Atari is personified through this sort of vocabulary. In return, this
Atari “persona” appears to define the various people who were
part of the craze, and even pit them against future “generations.”
For instance, Jamie Lendino sets out to present the 2600 as the
great progenitor of the new cultural industry, his stated objective
to help protect some sort of clan pride [28]. If, as Newman argues,
‘what makes early video games distinct from games in later peri-
ods in the history of the medium is precisely this lack of stable
identity’ [36, p. 2], then one might wonder why we are so quick to
elevate Atari as the poster child for videogame’s infancy and first
major crisis (the infamous 1983 crash), and why Atari acts as both
as the child prodigy and toxic fratboy, subsuming all the good and
bad happening at the time.

Further, there is a distinct lack of diversity in that we mostly
exhume the same titles over and over. Asteroids, Combat, Adventure,
Pitfall!, E.T. the Extra-Terrestrial, Pac-Man, Custer’s Revenge, Space
Invaders and a few others get the lion’s share of the historical
imagination, and understandably so: they had significant cultural
impact on gaming culture at the time. Newman and McDivitt do
provide engaging overviews, but the scope of these works restricts
the amount of close readings one can integrate. Within 252 pages,
Lendino manages to provide one-pagers (on average) of context and
appreciation for over 90 games, an impressive figure, highlighting
clever programming and innovations. Still, one might wonder if
this figure, less than 15% of known games released on the platform,
truly represents ‘every significant game’ [28, p. 12].

In this paper, we use novel tools for digital inspection to examine
not just a small, hand-selected set of games for the Atari 2600, but
a corpus containing nearly all games for the 2600. A distinguishing
feature of this work is its interdisciplinarity, with co-authors repre-
senting three different areas of research and scholarship. Computer
science facilitates the technical analysis of the 2600’s game code;
anthropology and archaeology situates the technical work in terms
of the relationship between humans and their technology; game
history contextualizes this particular game console and its corpus
of games into the bigger picture of games as cultural artifacts. This
work also involves a co-author who developed Atari 2600 games in
the early 1980s, and the development artifacts he preserved along
with his oral history contributions give us insight into development

practices that could involve code re-use. Note that any oral his-
tory is clearly labeled with his initials to separate subjective from
objective.

After the related work in the next section, Section 3 presents the
technical aspects of the work and its findings. This is followed by
the case study in Section 4 and an anthropological-archaeological
discussion in Section 5, prior to our conclusions.

2 RELATEDWORK
There are many examples where a single game’s implementation
is studied in depth, either starting with source code (e.g., [45]) or
reverse-engineering binary code (e.g., [4, 56]), and in fact there may
be more activity in the study of single games from enthusiasts than
academics. Examining small numbers of games for a specific plat-
form brings in work in the area of platform studies [2, 33, 54]. None
of these address the problem of scale, however: there are enormous
numbers of games, and limited work that is able to provide insight
into all of their implementations. The only work we are aware of
that attempts this feat examines a corpus of 132 games produced by
an authoring tool for text adventure games [5]. Unlike that work,
we do not limit ourselves to games of a single genre, our corpus
is predominantly comprised of games that were professionally de-
veloped and published, and we are able to study a larger set of
games.

There is related work in the realm of software engineering in the
guise of code clone detection. In particular, there are code analysis
systems that can operate on extremely large code bases [43], al-
though the critical difference is that they operate at the source code
level, a luxury we do not enjoy for Atari 2600 games, where having
the original assembly language source code is a rarity – we have to
work with binary code. And, while there is work on detecting code
similarity in binary code [20, 24, 30], that work shares an implicit
advantage: it is all relatively recent and is being run on modern
binary code. For reference, work proclaiming itself to be ‘the first
practical clone detection algorithm for binary executables’ [42, p.
117] was published in 2009 and analyzed binary code published in
the 21st century. Modern binary code is almost exclusively compiler-
generated code, and that plus the tendency to separate code and
data into different areas in the program are substantial assets; a
study of disassembly on modern platforms using non-obfuscated
binaries showed that assembly instructions could be identified with
exceedingly high if not perfect accuracy [3].

By contrast, the assembly code implementing Atari 2600 games
was not compiler-produced, but was hand-written by humans. Due
to the constraints of the platform, the code would not be obfus-
cated, but would be highly optimized for both speed and space, and
the dividing line between optimized and obfuscated code at that
level can be very difficult to discern. Programmers could – and
did – mix code and data in the games, and the separation of code
and data for analytical purposes has long been known to be an
undecidable problem to solve [23]. Therefore any method we use
must necessarily be heuristic. Certain optimizations performed by
Atari 2600 programmers make the situation worse, in fact: code
and data cannot be perfectly separated for analysis where code
was being used as data, as in Yar’s Revenge using bytes of code as

The Sincerest Form of Flattery FDG ’22, September 5–8, 2022, Athens, Greece

Table 1: Corpus composition by ROM size

Size Number of ROMs Percentage

2 KiB 209 10.5%
4KiB 1141 57.5%
8KiB 398 20.0%

8448 bytes 76 3.8%
10,495 bytes 3 0.2%

12KiB 7 0.4%
16KiB 135 6.8%

16,896 bytes 1 0.0%
25,344 bytes 5 0.3%

32KiB 6 0.3%
33,792 bytes 2 0.1%

64KiB 1 0.0%

a surrogate for random data to be displayed onscreen [33] or, less
visibly, in Carol Shaw’s River Raid [48].

More generally, our work can be seen to fit within the scope of
archaeogaming, a relatively new area of study within the field of
archaeology. Reinhard defined archaeogaming as ‘the archaeology
both in and of digital games’ [40, p. 2], and it includes work as di-
verse as the exploration of narrative space through videogames [53],
performing archaeology in virtual game worlds [41], ethics in video
game archaeology [17], and the aforementioned dig in New Mex-
ico [39].

3 FINDING CODE RE-USE AT SCALE
The discussion of howwe found instances of code re-use inAtari 2600
games is divided into three parts: the corpus composition and code
representation, the matching process, and the results.

3.1 Corpus and BAD Code
We gathered three large pre-existing collections of Atari 2600 ROM
images from the Internet, which we are using under fair dealing
and fair use copyright exemptions for research and commentary.
We identified and removed exact duplicates using the images’ MD5
checksums2 which left us with 1,984 distinct ROM images. Table 1
shows the breakdown of the images by ROM size; the corpus is
dominated by 2, 4, and 8 KiB images. Most of the oddly-sized images
belong to games for the Atari 2600 add-on Starpath Supercharger
device that loaded games from cassette and, while they are not
ROMs per se, they contain code and data that can be analyzed
uniformly with the rest.

An important platform constraint for the Atari 2600 was that it
could only directly address ROMs 4KiB or less in size, and games
larger than that employed a bank-switching scheme, where hard-
ware in the game cartridge would swap between different ROM
chips as directed by software. This impacted disassembly of the
code, because “smarter” disassemblers that would attempt to follow
control flow of the program fared poorly when they were unable
to see the control flow changes caused by bank switching that
occurred outside the purview of the CPU.
2MD5 is no longer a strong algorithm for security purposes, but it is still sufficient for
this de-duplication task.

Instead, the images were all disassembled using a linear-sweep
disassembler [13] we built for the 6507 CPU inside the Atari 2600.
Only documented 6507 instructions were disassembled, since we
reasoned that use of undocumented instructions would have been
rare, and this avoided having a number of data values being erro-
neously interpreted as instructions. Our disassembler looked for
sequences of instructions concluding with control transfer instruc-
tions like, for example, unconditional branches,3 and output these
instruction sequences in the form of Binary Abstracted Disassem-
bly: “BAD code.”

When assembly code is re-used from one game to another, there
are some aspects of the code that are likely to stay the same, and
some that are likely to change. The exact memory addresses of
re-used subroutines or variables would be almost certain to change
across games, for instance. BAD code retains the following infor-
mation:

• 6507 instruction opcodes (and, implicitly, the instructions’
addressing mode);

• immediate operands for instructions, which are essentially
constant values;

• relative branch offsets;
• fixed memory addresses referring to the memory-mapped
custom “TIA” chip in the Atari 2600 responsible for graphics
and audio.

Other information, such as non-TIAmemory addresses, is discarded.
The BAD design is meant to strike a balance between false nega-
tives, where instances of code re-use would be overlooked, and false
positives that would be meaningless results. The conservative de-
sign choices naturally mean that some code re-use may be missed –
for example, an instruction inserted into a loop of otherwise re-used
code will likely cause the loop’s relative branch offset to change due
to the insertion, and consequently its BAD code sequence will not
be seen as a match to the original. However, that is an acceptable,
and in fact a preferable, result. When two BAD code sequences
match, we want to have surety that the code is the same, and not
have to make subjective judgments about the intent of any code
differences especially when considering a large volume of code.

Figure 1 shows an excerpt of original 6507 code from the game
Pitfall! and its BAD code equivalent. Each BAD code instruction
is normalized into two bytes, regardless of whether the original
instruction was shorter (inx) or longer (jsr). The TIA memory
reference ($1c) and immediate operand’s value ($06) are preserved
along with instruction opcodes, and the target address of the jsr
is abstracted away to the placeholder value $ff. While most trans-
lation from 6507 disassembly into BAD code is straightforward,
there is one case subject to postprocessing. If there are two brk
instructions in a row, the second is interpreted as data rather than
an instruction. The reason for this is that two brk instructions in a
row in legitimate code were highly unlikely, whereas the value 0
(coinciding with the brk opcode) appeared regularly in data and
threw off the heuristic code/data separation during disassembly.

Finally, we filtered out ROMs that were too similar, using the
BAD-code representation of the ROM images to take advantage
3The complete set is jmp, rts, rti, and the eight relative branch instructions. The
jsr jump-to-subroutine instruction was not included as a control transfer instruction
because control flow typically returns from the subroutine the jsr calls, and brk was
also excluded for similar reasons.

FDG ’22, September 5–8, 2022, Athens, Greece J. Aycock et al.

Figure 1: Four instructions from Pitfall! and corresponding
BAD code (“$” denotes a base 16 number)

of its abstracted form. The original corpus could contain multiple
ROMs for a single game: series of ROMs captured during game devel-
opment; game versions for different television types (e.g., NTSC vs.
PAL); re-releases by different publishers. Looking for code re-use in
near-duplicate ROMs was unlikely to provide substantial new infor-
mation, and therefore we wanted to automatically and objectively
choose a single exemplar for each different game. Computing the
normalized compression distance [29] with zlib compression [18],
we rejected ROMs whose similarity threshold fell below 0.5 com-
pared to a ROM already in the corpus. The resulting filtered corpus
contained 704 ROM images that we used for the remainder of this
work.

3.2 Calibration and Matching
To match BAD code sequences against one another to look for
code re-use, we needed to choose a minimum BAD code length
N . A value of N that was too short would yield results that would
be plentiful, but also uninteresting and hard to argue definitively
were true cases of code re-use. As a simple example, the 6507’s
add instruction always included the processor’s carry bit in its
computation, and therefore seeing a code sequence that cleared
the carry bit followed by an addition was perfectly normal and not
code re-use at all. At the other end of the spectrum, selecting a
too-large value for N would overlook some code re-use.

A previously found instance of code re-use, identified in an
Atari 2600 game throughmanual analysis thanks to a distinctive bug
in the code [6], provided a hard upper bound for N : that instance
of code re-use was 21 instructions long. For a lower bound, we
reasoned that skilled Atari 2600 programmers would be unlikely to
deliberately re-use code within the same game unless there was an
extremely compelling technical reason to do so, because the amount
of ROM space was tightly constrained. We ran two well-known
games, Combat and Pitfall!, through the code matching process
against themselves with different sequence lengths to see at what
point the number of self-matches declined to 0. Figure 2 shows the
results. Combat’s BAD code sequence all became unique at N = 9,
with Pitfall! taking longer to drop off but exhibiting a similarly

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

Combat

N
u
m

b
e
r

o
f

n
o
n
-u

n
iq

u
e
 B

A
D

 s
e
q
u
e
n
ce

s

N value

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16 18 20

Pitfall!

N
u
m

b
e
r

o
f

n
o
n
-u

n
iq

u
e
 B

A
D

 s
e
q
u
e
n
ce

s

N value

Figure 2: Matching BAD code sequence of varying lengths
within the same game, for calibration

shaped curve. Based on this, we chose the value N = 15 for the
minimum BAD code length.

The matching itself is an O(n2/2) comparison process between
the n ROM images’ BAD code. We use suffix arrays [31] to effi-
ciently find BAD code sequences of length N or greater that appear
in pairs of ROM images. Where the matches between two ROM
images do not overlap, this is uncomplicated, and when overlaps
occur, we prefer the longest match. Even with removing overlaps,
there are still many matches to consider across the corpus: 26,359.
However, many of the sequences recur, and there is a relatively
smaller number of 3,221 unique BAD code sequence matches.

It is reasonable to wonder if all these sequences correspond to
code, given the limitations of the linear-sweep disassembly that
started off the process trying to solve an undecidable problem by
distinguishing code from data. We took a random sampling4 of
10% of the unique, found sequences, and an independent manual
analysis was performed on them by two different co-authors. Of
those 323 sequences, over 93% were code, a very high accuracy rate.
Despite this, we will not be reporting any aggregate code re-use
measures in our results below, instead erring on the safe side with
results that have been manually vetted.

4The randomness was drawn from the urandom source on Linux.

The Sincerest Form of Flattery FDG ’22, September 5–8, 2022, Athens, Greece

3.3 Results
We started by manually analyzing the 25 most frequent unique
BAD code sequences in the corpus which, together, made up over
58% of the 26,359 matches in the corpus. The surprising result is
that they turned out to be variants of the same two routines, and
those routines have very different properties from the code re-use
point of view.

The first of the two routines was code to display a sprite that
was 48 pixels wide, something which could be used beyond in-
game objects for a company logo or a six-digit score. Programming
graphics using the Atari 2600’s TIA chip was extremely challenging:
it required real-time programming, counting the number ofmachine
cycles each 6507 instruction used, in order to get the timing correct.
Programmers’ code was ‘racing the beam’ [33], the television’s
electron beam that was sweeping across the screen to generate the
display, and programmers would have to do this for every line on the
screen. For a 48-pixel-wide sprite, the timing of the 6507 instructions
left few options, because the three 6507 registers needed to be
completely filled with data to write to the TIA at the appropriate
time [25]. It is hard to make a strong argument for code re-use here
because, as with the addition on the 6507 mentioned earlier, there
were limited ways to accomplish this effect. Wide sprites were not
the only situation like this, and one method used to create a multi-
object display for the Atari 2600 was even awarded a patent [1].

The second of the two routines, by contrast, is easier to make the
code re-use case for, because there were many ways to achieve its
goal in 6507 code. The purpose is to calculate two values necessary
for horizontal positioning of game objects on the Atari 2600. Game
objects’ position could not be set directly bywriting a numeric value
– that would be too easy. Instead, the game code would have to
access a TIA location precisely when the television’s electron beam
was at the spot where the game object should be placed. The tightest
loop in 6507 code takes 5 machine cycles per iteration, during which
time the electron beam would move 15 pixels on screen; the ability
to take the desired horizontal position of a game object and compute
its division and remainder by 15 was thus needed for games. The
6507 processor, like many small CPUs of that time, did not have
a division instruction, meaning the calculation had to be done in
software. Two ways to accomplish this are repeated subtraction and
table lookup [25], and a third way is seen in the second frequently
used routine. The code sequence is a clever way to compute the
division and remainder by 15 without any loops, which we will call
HRCALC.

The HRCALC code appears in David Crane’s 1982 game Pitfall!,
with what appears to be an earlier evolutionary step in Crane’s
Canyon Bomber from 1979. Carol Shaw’s game River Raid (1982)
has a perfect match for the full routine, and the source code for her
games is held by the Strong museum [48], meaning that the original
source code for HRCALC can be seen; this is, in fact, where we take
the name HRCALC from. While the source code is well documented,
unfortunately there is no credit given for the routine, nor would
there necessarily have been if it was simply common code used
within the company: both Pitfall! and River Raid were Activision
games. To underscore this point, the two games also share some
attract-mode code; it and the calculation code are perhaps best
thought of as game infrastructure code rather than game code per

Figure 3: Heat map showing code re-use between David
Crane’s Atari 2600 games

se, and there would be no sense reinventing thewheel for this within
the same company. What is intriguing is something we return to in
the next section: how did this code get into non-Activision games?

We can use our system to get a more a targeted view into code
re-use practices of both single developers and companies. Figure 3
shows a heat map depicting code re-use between David Crane’s
games, for instance. We ordered Crane’s games, preferring the
games’ publication date where available; this is admittedly not
always precise, and the development date would be better but is
both generally unknown and would introduce the additional com-
plicating factor that multiple games could be under development
simultaneously. A darker heat map shading (log scale) represents a
greater amount of re-used code detected between a game on the
X-axis and earlier game releases, with the “×” indicating where a
game would be compared with itself. While we are interested in
the high-level view, we have marked Pitfall!’s location in the plot
for reference.

First, it is evident from the heat map that there was code re-use
happening within Crane’s games. What is perhaps more striking,
however, is the fact that the code re-use is not detected between
his early games, and starts suddenly four games in, which is telling.
Crane started his Atari 2600 development career at Atari, then
became one of the co-founders of Activision, where his later game
releases occurred. The detected code re-use starts precisely at that
corporate boundary: no code re-use between his Atari games, code
re-use between his Activision games. There are several possible
explanations for this that are not mutually exclusive. Any new
platform requires time for a programmer to come up to speed and
learn how to best take advantage of it, and the Atari/Activision

FDG ’22, September 5–8, 2022, Athens, Greece J. Aycock et al.

Figure 4: Lineage of three ofCrane’smost frequently re-used
code sequences, with games published earlier on the left

divide may simply be coincidental and followed Crane’s learning
curve developing games for the 2600 platform. There may also
have been a cultural shift in development when moving from Atari,
with its established practices and management, to the then-startup
environment of Activision. The culture within companies aside,
there were likely external influences at play between companies:
Crane and the other Atari co-founders of Activision (correctly)
anticipated legal trouble from their former employer and ensured
that they had a clear separation of intellectual property [52]. One
might additionally look for technical reasons, such as the ROM size,
but in fact Crane’s earliest games at Activision used the same 2KiB
ROMs as his Atari games, and in any case, Atari 2600 game code
would have needed to perform most of the same platform-specific
incantations regardless of ROM size.

We can use our results to look in more detail at the code se-
quences and their lineage; Figure 4 shows three of Crane’s most
frequently re-used sequences5 and their relationship. The re-used
sequences were fairly short overall, and a single game could be the
source of multiple distinct re-used sequences.

By contrast, Carol Shaw’s games exhibited no code re-use that
was detected by our system – we omit the very uninteresting heat
map. Five of the six games in our corpus that Shaw worked on were
done at Atari, with only her final River Raid published by Activision.
This could reflect similar factors affecting Crane’s Atari work, with
a learning curve or corporate development culture playing a part;
it could also mean that her code re-use practice saw her making
subtle, game-specific changes to re-used code that would evade
detection by our system. A detailed analysis by a human analyst
would need to be undertaken to answer this question more fully.

The heat map for Activision’s Atari 2600 games (Figure 5) on the
whole is noisier and does not enjoy the same clear results as the
heat maps for Crane and Shaw. There does appear to be a clustering
towards the diagonal, a preference for re-using recent code rather
than older code. On the one hand, one could argue that the later

5The top two frequencies were distinct, and multiple sequences were tied for third
place.

Figure 5: Heat map showing code re-use between Activi-
sion’s Atari 2600 games

code might have been improved, but it may simply have been a
case of greater programmer familiarity with more recent code.

As a final application, our code re-use system can be used to help
check certain claims about authorship. Recently, former Activision
developer Garry Kitchen asserted on Twitter that ‘A little known
fact is that the Air Raid game is an illegal reskin of my code from
#Atari 2600 Space Jockey’ [26]. A search for matching BAD code
sequences between the games reveals nine distinct matches ranging
in length from 16–89 instructions. While we will not comment on
the veracity of Kitchen’s statement, the fact remains that our system
is useful for exploring situations like this. As another example, Joe
Decuir, when writing about the Atari 2600 that he helped design, re-
called [16, p. 63]: ‘I wrote a utility called Compute Horizontal ReSeT
(CHRST) that accepted a binary value for the horizontal position
and issued the hardware commands to place the object there. [...]
CHRST was widely used by game designers.’ For clarity, we note
that the approach used by HRCALC is completely different than that
seen in Decuir’s credited games, Combat and Video Olympics. Using
our system, however, we did not find any code re-use between
Video Olympics and different games, and none of the matches found
for Combat were related to horizontal positioning. Carol Shaw’s
source code for the Atari games Polo (1978) and Super Breakout
(1981) contain two markedly distinct versions, CHRST and CHRST1
respectively [49, 50], implying that Decuir’s CHRST may be better
thought of as a family of routines.

The Sincerest Form of Flattery FDG ’22, September 5–8, 2022, Athens, Greece

4 CASE STUDY: THE BREAKER PROJECT
We turn to the story of a third-party company developing Atari 2600
games in the early 1980s, in order to provide a case study of how
code could be re-used both within a single company as well as draw
upon code from other sources.

Let us begin with an explanation of our methodology. Co-author
Paul Allen Newell was initially an employee of – later a consultant
to – the now-defunct company Western Technologies (WT). He
provides oral history here, recollections which we label with his
initials (PAN) to identify, but we need not rely exclusively on oral
history. Newell kept printouts of source code and other documents
from his time at WT, along with a collection of 8-inch floppy disks.
We had the floppy disks read by a professional data-recovery service,
and then wrote our own custom program to extract not only the
files from the disk images, but also the deleted files and data in
unallocated file fragments. This left us with an assemblage of 487
artifacts to sift through, both physical and digital, and we are able to
report the details of this case study based on documentary evidence
of the time.

WhenWT became involvedwith the Atari 2600, a number of non-
Atari companies were interested in producing games for the popular
game console, and WT ‘had a contract with [toy company] Kenner
to figure out the Atari 2600 so they could make cartridges’ (PAN).
Unlike a console developer would today, Atari did not provide
technical documentation or development kits for its 2600 to third-
party developers, and was actively opposed to third-party game
development [19, 52]. That means that prior to writing games for
the Atari 2600, a challenging task by itself, third-party developers
would need to begin by reverse-engineering the console.

The 2600’s internals were sparse, and centered around three
chips. The 6507 CPU was a cut-down version of the 6502 processor,
with the same instruction set, and there was also a combination
RAM, I/O, and timer chip from MOS Technology. Two of the three
chips (and their documentation) were therefore already available
outside Atari. As for software, there was no operating system on the
2600, and in fact there was no code at all except what was present
in the game ROMs that were plugged into the unit. The reverse
engineering efforts thus needed to be directed primarily to the third
chip, Atari’s custom TIA chip, and the mysteries of the 2600 were
what WT’s “Breaker” project set out to crack.

The project was already running in mid-1981, per PAN: ‘My
earliest record ofWestern Technologies is a first paycheck deposited
on either July 2nd or 3rd of 1981. I know that on Day One I was
assigned to the Breaker project that had Allen Cobb as head of
project and Mark Indictor as the other programmer along with
intern Steve Morris. John Hall was added to the team a couple
months later.’ It was fairly short-lived, and ‘the Breaker project was
canceled in October of 1981’ (PAN) but it accomplished its goal,
since WT programmers did end up producing Atari 2600 games.

Successful reverse engineering would need to yield two out-
comes: infrastructure to create Atari 2600 games, and documenta-
tion for how to program the 2600. We see artifactual remnants of

Figure 6: Title of Western Technologies’ internal Atari 2600
documentation

the former, with executables for a 6502 cross-assembler, an EPROM-
burning program,6 and ‘THE BEGINNINGS OF A SOFTWARE DE-
VELOPMENT PROGRAM FOR THE ATARI S-100 EMULATOR SYS-
TEM.’What is more interesting from the code re-use point of view is
the latter reverse engineering documentation. The internal manual
that resulted from the Breaker project was a 20-page long docu-
ment, stamped by a notary public; its title is shown in Figure 6. This
manual would have been a common reference forWT programmers
making Atari 2600 games.

That appears to have been the case, because assembly code from
the WT manual, complete with some distinctive label names like
‘FIVFTY’, was found in Newell’s assembly source code. However, the
WT manual was not where the code originated, which the manual
makes clear: ‘For the record, the sample program is borrowed from
the MAGICARD book, with some additions [. . .] Don’t want to be
accused of not giving credit. . . ’

A “MAGICARD” referred to a product by Computer Magic, Inc.
(later CommaVid), and was a development system that plugged in
to an Atari 2600. MAGICARD’s manual contained an entire chapter
devoted to explaining much of the internals of the 2600, although
it stopped short of explaining the ‘“high resolution” graphics capa-
bility’, declaring it ‘beyond the scope of this manual’ [15, p. 6-1], a
somewhat curious decision for a manual where low-level assembly
language programming was within scope. PAN recalls this external
information probably being a late arrival, saying ‘I realized we must
have had this during the Breaker project. I think we did the bulk of
our work without it, but at some point we supplemented our doc
with their info.’

How might Breaker have proceeded with reverse engineering
the Atari 2600 prior to MAGICARD? One obvious answer is by
studying the binary code for existing published games; the 2600’s
game cartridges had no copy protection, and it would have been
straightforward to dump the ROM contents. We see evidence that
this type of code re-use happened, in fact. In the floppy disk images’
deleted files and unallocated file fragments, we found pieces of a
tellingly named cross-assembler listing for ‘ADVENTUR.ASM,’ and
this matches well to a disassembly of Atari’s game Adventure. We
emphasize that what we found is an assembler listing, meaning that
Adventure’s ROM had been dumped, disassembled, and the disas-
sembled code prepped for re-assembly. This was perhaps done to

6Idiosyncratically called the “WACKADOO EPROM PROGRAMMER, V 1.0.’

FDG ’22, September 5–8, 2022, Athens, Greece J. Aycock et al.

allow easy experimentation on the code when reverse engineering,
and the ADVENTUR.ASM code exhibits numerous instances where
addresses have been replaced by meaningful names, suggesting the
code was being subjected to analysis. Indeed, PAN recalls ‘dumping
a lot of published games and changing the contents of registers to
see what happened,’ which is borne out by theWTmanual referring
to performing tests as part of the Breaker project.

We knew of some other re-used code inWT games from our code
re-use analysis system, specifically the HRCALC code mentioned ear-
lier. The near-final source code for Entombed has the HRCALC
routine by the name ACTPOS – presumably “ACT” for Activision –
and a comment beside it says ‘ROUTINE FROM THE BOOK’ that
implies another in-house programming resource, since this is not
present in the Breaker manual. Whether this was a literal published
book or a more figurative reference is unknown; PAN does not
remember a book during his time there.7 The original source for
HRCALC/ACTPOSmay have been Activision’s Tennis, because the doc-
umented source code for an unreleased game of Newell’s mentions
‘This is the logo section. It is the only section in any program that
is a direct rip-off of someone else’s game (ACTIVISION TENNIS).’8
Here, as with HRCALC, this code re-use again involves infrastruc-
ture code, and should not be seen to detract from the originality
elsewhere in the game’s design and implementation.

We also see code re-use practices involving code from within
WT or, as PAN characterized it, ‘the original Breaker programmers
shared code and tricks like fury.’ The buggy pseudo-random num-
ber generator (PRNG), code re-use found by manual analysis in
previous work [6] we can study from the source code point of view
using Newell’s artifacts. The PRNG code is accompanied in one
file by the comment ‘PHIL’S RANDOM NUMBER GENERATOR
(SEE "RANDOM.ASM" –OR APPROPIATE [sic] DOC FILE) FOR
A DESCRIPTION OF HIS GENIUS’ meaning that routines existed
in individual files complete with separate documentation.9 This
interpretation is bolstered by a later comment: ‘THIS IS AN EARLY
VERSION OF WHAT IS NOW MY "PADDLE" MODULE AND FUR-
THER NOTES ON SUCH CAN BE FOUND IN THE DOCUMENTED
VERSION OF THAT FILE,’ and PAN adds that “Paddle” was a col-
lision detection test. The overall impression is that the Breaker
programmers thought of these common routines as code to re-use
in a modular fashion. To understand whether the code re-use prac-
tices at WT and elsewhere were typical, we shift to a field that has
extensive experience with humans and technology: archaeology.

5 ON HUMANS AND TECHNOLOGY
In the same decades that saw the development of the Atari 2600 and
its games, there were significant shifts in archaeological thought
pertaining to technological processes including the examination of
use and re-use. Broadly, in the 1970s and 1980s, anthropological and
archaeological theoretical approaches to the study of technology

7For context, PAN clarifies that ‘a different group of programmers did the later WT
2600 games; after the Breaker project was canceled, Mark, John, and I worked on the
Vectrex project and all left the company after that (except for my consulting to finish
Towering Inferno).’
8This is not the only documented admission of Activision code use. A third-party
Atari 2600 programming manual completely different from the efforts described in
this section contained the HRCALC code with the tagline ‘Note: This program is from
an Activision Game Program.’ [44, p. 133].
9Unfortunately, PAN does not recall Phil’s last name.

and technological organization developed that can assist our un-
derstanding of the processes and mechanisms that underlie re-use.
Technological organization is the study of ‘the selection and inte-
gration of strategies for making, using, transporting, and discarding
tools and the materials needed for their manufacture and mainte-
nance’ [34, p. 57], where emphasis is placed on understanding the
dynamics of technological behavior – the dialectical interrelations
of economic, social, functional, environmental, and behavioral vari-
ables of social structure manifest as and in material culture. Our
archaeogaming approach is informed by this theoretical framework;
we seek to understand not just how code is generated, used, and
re-used but also the underlying behavioral and cultural dynamics
that shape both the decisions made and the artifacts that resulted
from those decisions.

All societies practice resource conservation to varying degrees,
and re-use is one of the simplest and most widespread of these
strategies [47]. Re-use processes occur when, after a period of use,
there is a shift in the user or the activity of use for an object [46];
these include recycling (old item transformed/remanufactured into
a new item), lateral cycling (unmodified old item is used in a dif-
ferent activity), and conservation/collecting (change in the use but
not form of an old item with the intention of preservation). Under-
standing how these processes operate within technological systems
considers both the mechanisms for acquiring the object and trans-
ferring it between individuals but also the strategies employed for
procurement as either embedded (or not) in other activities and
how these mechanisms and strategies are shaped by other cultural
processes. In other words, the re-use of code is not novel nor specific
to game technologies; it is an expected practice within any technology.

We can gain further insights into the possible explanations for
code re-use by examining why artifacts are re-used in other human
technologies. Here we draw upon the abundance of research on our
oldest technology – stone. With lithic (stone) technologies, it is rec-
ognized that artifact forms and assemblage composition are the con-
sequences of the different ways of organizing technology through
the implementation of different technological strategies [34]. Gen-
erally, there are two recognized technological strategies that are
relevant to discussions of re-use: curation and expediency.

Binford [8–11] introduced the concept of curation, which is ‘a
strategy of caring for tools and toolkits including advanced manu-
facture, transport, resharpening, rejuvenation, and storage/caching’
[34, p. 62]. The critical variable that distinguishes curation from
expediency is the advanced preparation of raw materials in ‘antici-
pation of inadequate conditions (materials, time, or facilities) for
preparation at the time and place of use’ [34, p. 63]. In general, the
more energy that is expended in the acquisition and manufactur-
ing of the tool, the more likely the object is to be transported or
curated [37].

Expediency, by contrast, refers to minimized technological la-
bor (time and energy expenditure) under conditions where time
and place of tool use are highly predictable [12, 34, 38]. Whereas
curation anticipates the need for materials and tools, expediency
anticipates the presence of sufficient materials, the absence of time
stress, and longer occupation or re-use of a location to take ad-
vantage of raw material stockpiling or local abundances [34, 55].
Expedient tools are made for immediate use [8], exhibit minimal
specificity in design, and are not readily maintained.

The Sincerest Form of Flattery FDG ’22, September 5–8, 2022, Athens, Greece

Although classifying an assemblage as curated or expedient
is an oversimplification, these concepts are useful in describing
important aspects of technological behavior [7]. Nor are curation
and expediency mutually exclusive strategies – they can occur
simultaneously depending on additional technological constraints
and conditions [34]. But what do curation and expediency have to
do with code re-use? Code is a tool. If we consider the context of
game design and production at the time in question, we can see how
code re-use is part of an curated strategy in response to conditions
where raw materials are sparse and inadequate time is available for
production.

Code is a tool, but the nature of code equally makes it a raw
material. Code was initially a sparse raw material simply because it
was part of an emerging technology; programmers had to use what
resources were available. Writing code by hand for the Atari 2600
was intensive and expensive in terms of time, labor, and cost. Re-
using code would allow for greater efficiency, and the reduction
of time and effort costs associated with re-use would be preferred
over generating “new” code to serve the same or similar function.
Later re-use would be driven not by scarcity but by other techno-
logical constraints as the conditions that led to scarcity had been
eliminated, i.e., a growing corpus of code and knowledge were
available.

It is also useful to examine the role of design considerations in ex-
plaining code re-use. Design considerations, the ‘variables of utility
that condition the form of tools’ include reliability, maintainability,
versatility, flexibility, and longevity [34, p. 66].

Reliability and maintainability are the two most important de-
sign considerations that influence the lithic production technique
used, as they are the determining features for whether or not a
curated or expedient strategy will be employed. These are familiar
concepts to programmers, and they are useful for establishing cu-
ration as underlying game production and code re-use. The criteria
for identifying reliable tools or systems includes good craftsman-
ship [12], and certainly code selected for re-use is reliable in that it
has already demonstrated that it consistently achieves the desired
outcomes prior to inclusion in a new game. Maintainable strategies
are also not foreign to programmers, and include simplicity of de-
sign, easy maintenance by people with poor (lithic) skills, and use
in a range of functions [22]; the latter we could call versatility.

While versatility refers to the number of uses a tool is designed
for [34, 51], flexibility refers to changes in tool form for different
uses [22, 34, 51]. Code is a plastic raw material, much more so than
stone, and is both versatile enough to serve a number of different
functions but also flexible enough to adapt to the task at hand
through rejuvenation and retouch if necessary. The rejuvenation
and retouch of code is similar to that of stone tools – the code is
reworked and parts of it are replaced to reflect the new context of
use.

Longevity, or use life, is an important consideration, tied closely
to curation. Re-use of code is an effective measure of the longevity
of the code. There is a clear correlation between useful lifetime
and the manufacture time of an object, and longevity is an inter-
esting variable because the ‘longer the use-life expectancy of an
artifact, the more appropriate the artifact becomes for carrying
social information’ [21, p. 94].

Finally, lessons from the examination of the archaeological record
caution us against considering only the function of tools especially
when explaining re-use. Style also is a key consideration, and it is
especially telling of the technological choices made by the tool user,
although it can be challenging to distinguish function from style.
Further, code re-use at the functional level does not exclude the
possibility of code re-use at a stylistic or artistic level. For example,
we know from artifactual evidence that Newell re-used some maze
algorithm code producing distinctive mazes in an unpublished game
and two published games [35].

6 CONCLUSION
Our system has allowed us to perform a large-scale study of code
re-use in Atari 2600 games, discovering that there was indeed code
re-use at large, as well as within themore limited scope of individual
game authors and companies. In future, we could see expanding
this work to have closer examinations of different game types,
expanding our understanding of game culture and its development
in a large corpus.

By employing our approach based on game code and saved
artifacts, we have gone directly to the primary sources. Where oral
history plays a role is in filling in otherwise-uncaptured background
information, and we have used that in our look at code re-use within
a specific game company of the era. It is important to stress that
we have not singled out Western Technologies in our case study
because it exhibited unusual code re-use practices. Rather, given the
prevalence of HRCALC and other code across games, we conjecture
that the practices at Western Technologies were typical of the
time; we simply happen to have unique, detailed insight into this
particular company thanks to Newell’s oral history and artifacts.

This is where our interdisciplinary archaeogaming approach
demonstrates its utility – we are able to approach code, and by ex-
tension games, as cultural artifacts. We have considered the broader
culture of game development, analyzed the assemblage of code (our
corpus of games), and applied lessons from the archaeological study
of technological organization to understand not only why code re-
use occurs but also the conditions that both created and supported
this strategy.

ACKNOWLEDGMENTS
This work is supported in part by the Government of Canada’s New
Frontiers in Research Fund (NFRFE-2020-00880). Thanks to Andrew
Reinhard and Megan von Ackermann for asking the question that
led to this work, and to John Hall and Mark Indictor for their input
on Section 4. We are grateful to the Strong National Museum of
Play for access to the Carol Shaw and Jerry Lawson collections.

REFERENCES
[1] M. S. Ackerman and G. Parker. 18 November 1986. Process for Displaying a

Plurality of Objects on a Video Screen. United States Patent #4,623,147.
[2] N. Altice. 2015. I AM ERROR: The Nintendo Family Computer / Entertainment

System Platform. MIT Press.
[3] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos. 2016. An

In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries. In Proceedings
of the 25th USENIX Security Symposium. 583–600.

[4] J. Aycock and K. Biittner. 2019. Inspecting the Foundation of Mystery House.
Journal of Contemporary Archaeology 19, 2 (2019), 183–205.

[5] J. Aycock and K. Biittner. 2020. LeGACy Code: Studying How (Amateur) Game
Developers Used Graphic Adventure Creator. In 15th International Conference on

FDG ’22, September 5–8, 2022, Athens, Greece J. Aycock et al.

the Foundations of Digital Games. Article 23, 7 pages.
[6] J. Aycock and T. Copplestone. 2019. Entombed: An archaeological examination

of an Atari 2600 game. The Art, Science, and Engineering of Programming 3, 4
(2019), 33 pages. https://doi.org/10.22152/programming-journal.org/2019/3/4

[7] D. B. Bamforth. 1986. Technological Efficiency and Tool Curation. American
Antiquity 51, 1 (1986), 38–50.

[8] L. R. Binford. 1973. Interassemblage Variability– the Mousterian and the “Func-
tional” Argument. In The Explanation of Culture Change: Models in Prehistory,
C. Renfrew (Ed.). Duckworth, 227–254.

[9] L. R. Binford. 1977. Forty-seven Trips: A Case Study in the Character of Archaeo-
logical Formation Processes. In Stone Tools as Cultural Markers: Change, Evolution
and Complexity, R. V. S. Wright (Ed.). Humanities Press, 24–36.

[10] L. R. Binford. 1979. Organization and Formation Processes: Looking at Curated
Technologies. Journal of Anthropological Research 35 (1979), 255–273.

[11] L. R. Binford. 1983. Working at Archaeology. Academic Press.
[12] P. Bleed. 1986. The Optimal Design of Hunting Weapons: Maintainability or

Reliability. American Antiquity 51, 4 (1986), 737–747.
[13] Christian Collberg and Jasvir Nagra. 2010. Surreptitious Software: Obfuscation,

Watermarking, and Tamperproofing for Software Protection. Addison-Wesley.
[14] C. C. Colton. 1837. Lacon: or Many Things in Few Words. Longman, Orme, Brown,

Green, & Longmans.
[15] Computer Magic, Inc. 1981. MagiCard Instruction Manual. https://atariage.com/

software_page.php?SoftwareLabelID=281. Accessed 27 March 2022.
[16] J. Decuir. 2015. Atari Video Computer System: Bring Entertainment Stories Home.

IEEE Consumer Electronics Magazine 4, 3 (2015), 60–66.
[17] L. M. Dennis. 2016. Archaeogaming, ethics, and participatory standards. SAA

Archaeological Record 16, 5 (2016), 29–33.
[18] P. Deutsch and J-L. Gailly. 1996. ZLIB Compressed Data Format Specification

version 3.3. RFC 1950.
[19] T. Donovan. 2010. Replay: The History of Video Games. Yellow Ant.
[20] M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi. 2014. BinClone:

Detecting Code Clones in Malware. In 8th International Conference on Software
Security and Reliability. 78–87.

[21] J. M. Gero. 1989. Assessing Social Information in Material Objects: How Well Do
Lithics Measure Up? In Time, Energy and Stone Tools, R. Torrence (Ed.). Cambridge
University Press, 92–105.

[22] B. Hayden, E. Bakewell, and R. Gargett. 1996. World’s Longest-Lived Corporate
Group: Lithic Analysis Reveals Prehistoric Social Organization near Lillooet,
British Columbia. American Antiquity 61 (1996), 341–356.

[23] R. N. Horspool and N.Marovac. 1980. An approach to the problem of detranslation
of computer programs. Comput. J. 23, 3 (1980), 223–229.

[24] Y. Hu, Y. Zhang, J. Li, and D. Gu. 2017. Binary Code Clone Detection across Ar-
chitectures and Compiling Configurations. In IEEE 25th International Conference
on Program Comprehension. 88–98.

[25] S. Hugg. 2016. Making Games for the Atari 2600. CreateSpace.
[26] G. Kitchen (@kitchengarry). 15 December 2021. Tweet. https:

//twitter.com/kitchengarry/status/1471158746302713860?s=20&t=
vJgYcAH4GGoSimgcv2owBQ

[27] T. Lapetino. 2016. Art of Atari. Dynamite Entertainment.
[28] J. Lendino. 2018. Adventure: The Atari 2600 at the Dawn of Console Gaming. Ziff

Davis.
[29] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. 2004. The Similarity Metric.

IEEE Transactions on Information Theory 50, 12 (2004), 3250–3264.
[30] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. 2017. Semantics-Based Obfuscation-

Resilient Binary Code Similarity Comparison with Applications to Software and
Algorithm Plagiarism Detection. IEEE Transactions on Software Engineering 43,
12 (2017), 1157–1177.

[31] U. Manber and G. Myers. 1990. Suffix Arrays: A New Method for On-Line String
Searches. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms. 319–327.

[32] A. L. McDivitt. 2020. Hot Tubs and Pac-Man: Gender and the Early Video Game
Industry in the United States (1950s–1980s). De Gruyter Oldenbourg.

[33] N. Montfort and I. Bogost. 2009. Racing the Beam: The Atari video computer
system. MIT Press.

[34] M. C. Nelson. 1991. The Study of Technological Organization. In Archaeological
Method and Theory. Vol. 3, M. B. Schiffer (Ed.). Academic Press, 57–100.

[35] P. A. Newell, J. Aycock, and K. M. Biittner. 2022. Still Entombed After All These
Years: The continuing twists and turns of a maze game. Internet Archaeology 59
(2022). https://doi.org/10.11141/ia.59.3

[36] M. Z. Newman. 2017. Atari Age: The Emergence of Video Games in America. MIT
Press.

[37] G. H. Odell. 1989. Summary of Discussions. In Alternative Approaches to Lithic
Analysis, D. O. Henry and G. H. Odell (Eds.). American Anthropological Associa-
tion.

[38] W. J. Parry and R. L. Kelly. 1987. Expedient Core Technology and Sedentism.
In The Organization of Core Technology, J. K. Johnson and C. A. Morrow (Eds.).
Westview Press, 285–304.

[39] A. Reinhard. 2015. Excavating Atari: Where the Media was the Archaeology.
Journal of Contemporary Archaeology 2, 1 (2015), 86–93.

[40] A. Reinhard. 2018. Archaeogaming: An Introduction to the Archaeology in and of
Video Games. Berghahn.

[41] A. Reinhard. 2021. Archeology of Abandoned Human Settlements in No Man’s
Sky: A New Approach to Recording and Preserving User-Generated Content in
Digital Games. Games and Culture 16, 7 (2021), 855–884.

[42] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. 2009. Detecting Code
Clones in Binary Executables. In Proceedings of the 18th International Symposium
on Software Testing and Analysis. 117–127.

[43] H. Sajnani, V. Saini, C. K. Roy, and C. Lopes. 2021. SourcererCC: Scalable and
Accurate Clone Detection. In Code Clone Analysis: Research, Tools, and Practices,
K. Inoue and C. K. Roy (Eds.). Springer, 51–62.

[44] San Jose Micro Technology. 1982. Atari Video Computer System Programming
Manual (Revision C). Gerald Lawson papers, Strong National Museum of Play.

[45] F. Sanglard. 2018. Game Engine Black Book: Wolfenstein 3D (2nd ed.). Indepen-
dently published.

[46] M. B. Schiffer. 1976. Behavioural Archaeology. Academic Press.
[47] M. B. Schiffer, T. E. Downing, and M. McCarthy. 1981. Waste Not, Want Not:

An Ethnoarchaeological Study of Reuse in Tucson, Arizona. In Modern Material
Culture: The Archaeology of Us, R. A. Gould and M. B. Schiffer (Eds.). Academic
Press, 67–86.

[48] C. Shaw. 10-Feb-83. River Raid source code printout. Carol Shaw papers, Strong
National Museum of Play.

[49] C. Shaw. 13-Dec-78. Polo source code printout. Carol Shaw papers, Strong
National Museum of Play.

[50] C. Shaw. 15-Jul-80. Super Breakout source code printout. Carol Shaw papers,
Strong National Museum of Play.

[51] M. J. Shott. 1986. Technological Organization and Settlement Mobility: An
Ethnographic Examination. Journal of Anthropological Research 42 (1986), 15–51.

[52] A. Smith. 2020. They Create Worlds: The Story of the People and Companies That
Shaped the Video Game Industry, Volume I: 1971–1982. CRC Press.

[53] F. Smith Nicholls. 2021. Fork in the Road: Consuming and Producing Video Game
Cartographies. In Return to the Interactive Past: The Interplay of Video Games
and Histories, C. E. Ariese, K. H. J. Boom, B. van den Hout, A. A. A. Mol, and
A. Politopoulos (Eds.). Sidestone Press, 117–133.

[54] C. Therrien. 2019. The Media Snatcher: PC/CORE/TURBO/ENGINE/GRAFX/16/-
CDROM2/SUPER/DUO/ARCADE/RX. MIT Press.

[55] R. Torrence. 1983. Time Budgeting and Hunter-Gatherer Technology. In Hunter-
Gatherer Economy in Prehistory: A European Perspective, G. Bailey (Ed.). Cambridge
University Press, 11–22.

[56] L. Wiest. 2016. Reverse engineering Star Raiders. PoC||GTFO 0x13 (2016), 5–20.

https://doi.org/10.22152/programming-journal.org/2019/3/4
https://atariage.com/software_page.php?SoftwareLabelID=281
https://atariage.com/software_page.php?SoftwareLabelID=281
https://twitter.com/kitchengarry/status/1471158746302713860?s=20&t=vJgYcAH4GGoSimgcv2owBQ
https://twitter.com/kitchengarry/status/1471158746302713860?s=20&t=vJgYcAH4GGoSimgcv2owBQ
https://twitter.com/kitchengarry/status/1471158746302713860?s=20&t=vJgYcAH4GGoSimgcv2owBQ
https://doi.org/10.11141/ia.59.3

	Abstract
	1 Introduction
	2 Related Work
	3 Finding Code Re-Use at Scale
	3.1 Corpus and BAD Code
	3.2 Calibration and Matching
	3.3 Results

	4 Case Study: The Breaker Project
	5 On Humans and Technology
	6 Conclusion
	Acknowledgments
	References

