Check for
Updates

transfer to the appropriate state in the arithmetic ex-
pression processzor. If Resume error returns, these states
also given an error return,

In addition to syntax checking, the program has been
designed to do some simple error correction. State AREX6
looks for a specific error, the use of a conditional expres-
sion following a then. When if is found at this point, a
left parenthesis is inserted ahead of the if and the arithme-
tic expression processor is called recursively to process
a complete conditional arithmetic expression. On a nor-
mal return from this call, a right parenthesis is inserted

PRACNIQUE

A NOTE ON THE FORMATION OF
FREE LIST

The concept of an available-space list was introduced by Newell
and Shaw [1] in 1957, and has since been incorporated into a num-
ber of different systems [2-5]. The available-space list (or ‘‘free
list”’) is a list of all available memory locations. It should ini-
tially be as large as possible, and ideally it would contain every
cell not used by the program. The subject of this note is the initial
formation of a free list on the IBM 7090-7094, using the FoRTRAN
IT monitor, version 2. The method presented originated while
the authors were working on an implementation of the WISP [5]
system for the 7090 in cooperation with Prof. M. V. Wilkes and his
colleagues.

One method of obtaining a free list, proposed by Weizenbaum
[2], is to use DIMENSION and COMMON statements to define
it as an array. This method will generally produce a free list which
does not utilize all of the available space, or which causes an over-
lap between program and COMMON storage areas. The specifica-
tion of the length of the free list can be avoided by the use of in-
formation provided by the loader at object time. Under FoRTRAN
II, the program break (first location not used by any program)
and the COMMON break (first location below the COMMON
storage area) are stored in the decrement and address fields, re-
spectively, of word 143 (octal). Thus the programmer has access
to the limits of available core at object time. The routine in Fig.
1 will organize this space into a one-way list structure whose
pointer is in the COMMON location FREE.

In this list, the address field of each element except the last
contains the address of the next element. If the routine is used
immediately after loading, all fields other than the address will
contain zeros, as will the address field of the last element. If the
routine is executed later in the course of the program, it may be
necessary to add the instruction

STZ* TEST —1

immediately following LOOP to insure that the cells are cleared.

Other list formats may be generated by simple modifications
of the routine. For example, to produce a SLIP [2] free list, insert
the instruction

ADD = 2B17

between the second and third instructions above, and change
LOOP +1to
TXI *+1,4,—-2

478 Communications of the ACM

and processing continues. Any such corrections are ac-
companied by a message to the user indicating what action
has been taken.

The method of syntax checking described in this paper
has been implemented and tested on the IBM 7090 com-
puter and is now being used as the syntax checking phase
of the SuARE Arcor 60 Translator. In general, the results
have been very satisfactory: most errors are detected in
one machine run; syntactically correct programs are
checked very rapidly, and no time is wasted in attempting
to translate syntactically incorrect programs.

CLA LIMITS GET PROGRAM BREAK,
COMMON BREAK
STA FREE COMMON BREAK =
FIRST ELEMENT OF
LIST
STD TEST PROGRAM BREAK =
LAST ELEMENT OF
LIST
PAX 4
LOOP SXA *+2,4 ADDRESS OF PRESENT
ELEMENT
TXI *+1,4,—1 GET ADDRESS OF NEXT
ELEMENT
SXA **.4 PLACE IN ADDRESS
FIELD OF PRESENT
ELEMENT
TEST TXH LOOP ,4,**
LIMITS BOOL 143
FREE COM- 1
MON
Fia. 1
REFERENCES:

1. NEweLL, A., AND Suaw, J. C. Programming the logic theory
machine. Proc. Western Joint Comput. Conf. 1957, 230-240.

2. WerzensauM, J. Symmetric list processor. Comm. ACM 6
(Sept. 1963), 524-544.

3. McCartHY, J. Recursive functions of symbolic expressions
and their computation by machine, part I. Comm. ACM 3
(Apr. 1960), 184-195.

4. GeLerNTER, H., ET s, A FORTRAN-compiler list-processing
language. J. ACM 7 (Apr. 1960).

5. WiLkes, M. V. An experiment with a self-compiling compiler
for a simple list-processing language. In Annual Review of
Programming, V. 4, Goodman (Ed.), (1963).

Winniam M. WAITE
H. ScHORR
Columbia University
New York, N. Y.

Receivep FEBRUARY, 1964

Volume 7 / Number 8 / August, 1964

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355586.364800&domain=pdf&date_stamp=1964-08-01

