
transfer to the appropriate state in the ari thmetic ex-
pression processor. If Resume error returns, these states
also given an error return.

In addition to syntax checking, the program has been
designed to do some simple error correction. State A R E X 6
looks for a specific error, the use of a conditional expres-
sion following a t h e n . When i f is found at this point, a
left parenthesis !is inserted ahead of the i f and the ari thme-
tic expression processor is called recursively to process
a complete conditional ari thmetic expression. On a nor-
mal return from this call, a right parenthesis is inserted

and processing continues. Any such corrections are ac-
companied by a message to the user indicating what action
has been taken.

The method of syntax checking described in this paper
has been implemented and tested on the IBh/[7090 com-
puter and is now being used as the syntax checking phase
of the SHARE ALGOL 60 Translator . In general, the results
have been very satisfactory: most errors are detected in
one machine run; syntactically correct programs are
checked very rapidly, and no t ime is wasted in a t tempt ing
to translate syntactically incorrect programs.

PRACNIQUE

A NOTE ON THE FORMATION OF
FREE LIST

The concept of ;m avai lable-space list was in t roduced by Newell
and Shaw [1] in 1957, and has since been incorpora ted into a num-
ber of different systems [2-5]. The available-space list (or "f ree
l i s t ") is a list of all avai lable memory locations. I t should ini-
t ia l ly be as large :~s possible, and ideally i t would conta in every
cell not used by the program. The subject of th is note is the ini t ia l
fo rmat ion of a free l ist on the I B M 7090-7094, using the FORTRAN
I I moni tor , version 2. The method presented or iginated while
the authors were working on an implementa t ion of the WISP [5]
sys tem for the 7090 in cooperat ion wi th Prof. M. V. Wilkes and his
colleagues.

One method of obta in ing a free list, proposed by Weizenbaum
[2], is to use D I M E N S I O N and COMMON s ta t ement s to define
i t as an array. This method will generally produce a free list which
does not utilize all of the avai lable space, or which causes an over-
lap between program and COMMON storage areas. The specifica-
t ion of the length of the free list can be avoided by the use of in-
fo rmat ion provided by the loader at object t ime. Under FORTRAN
II , the program break (first locat ion not used by any program)
and the COMMON break (first locat ion below the COMMON
storage area) are s tored in the decrement and address fields, re-
spect ively, of word 143 (octal). Thus the programmer has access
to the l imits of avai lable core at object t ime. The rout ine in Fig.
1 will organize th is space into a one-way list s t ruc ture whose
poin te r is in the COMMON locat ion F R E E .

In this list, the address field of each element except the last
contains the address of the next element. If the rout ine is used
immedia te ly af ter loading, all fields other t han the address will
conta in zeros, as will the address field of the last element. If the
rout ine is executed, la ter in the course of the program, i t may be
necessary to add the ins t ruc t ion

STZ* T E S T - - 1

immedia te ly following LOOP to insure t h a t the cells are cleared.
Other l ist form~ts may be genera ted by simple modifications

of the rout ine. For example, to produce a SLIP [2] free list, inser t
the ins t ruc t ion

ADD = 2B17

between the secm~d and th i rd ins t ruct ions above, and change
LOOP + 1 to

T X I * + 1 , 4 , - 2

LOOP

CLA L I M I T S GET P R O G R A M B R E A K ,
COMMON B R E A K

STA F R E E COMMON B R E A K =
F I R S T E L E M E N T OF
LIST

STD T E S T P R O G R A M B R E A K =
LAST E L E M E N T OF
LIST

P A X ,4
SXA * ~ 2 , 4 ADDRESS OF P R E S E N T

E L E M E N T
T X I * + 1 , 4 , - 1 GET ADDRESS OF N E X T

E L E M E N T
SXA **,4 PLACE IN ADDRESS

F I E L D OF P R E S E N T
E L E M E N T

T E S T T X H LOOP, 4, **
L I M I T S BOOL 143
F R E E COM- 1

MON

Fin. 1

REFERENCES :

1. NEWELL, A., AND SHAW, J . C . Programming the logic theory
machine. Proc. Western Jo in t Comput . Conf. 1957, 230-240.

2. WEIZENBAUM, J. Symmetr ic list processor. Comm. ACM 6
(Sept. 1963), 524-544.

3. McCARThY, J. Recursive funct ions of symbolic expressions
and the i r computa t ion by machine, par t I. Comm. ACM 3
(Apr. 1960), 184--195.

4. GELERNTER, H., ET AL. A FORTRAN-compi le r l is t-processing
language. J. ACM 7 (Apr. 1960).

5. WILKES, M . V . An exper iment wi th a self-compiling compiler
for a simple l ist-processing language. In Annual Review of
Programming, V. 4, Goodman (Ed.), (1963).

WILLIAM M. WAITE
H. SCHORR
Columbia University
New York, N. Y.

RECEIVED FEBRUARY, 1964

478 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m b e r 8 / A u g u s t , 1964

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355586.364800&domain=pdf&date_stamp=1964-08-01

