ALGORITHM 245

TREESORT 3 [M1]

RoserT W. I'LoYD (Recd. 22 June 1964 and 17 Aug. 1964)
Computer Associates, Inc., Wakefield, Mass.

procedure TREESORT 3 (M, n);
value n; array M; integer n;
comment TREESORT 3 is a major revision of TREESORT
[R. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434] sug-
gested by HEAPSORT [J. W. J. Williams, Alg. 232, Comm.
ACM 7 (June 1964), 347] from which it differs in being an in-place
sort. It is shorter and probably faster, requiring fewer compari-
sons and only one division. It sorts the array M[1:n], requiring
no more than 2 X (27p—2) X (p—1), or approximately 2 X
n X (loga(n)—1) comparisons and half as many exchanges in
the worst case to sort n = 27p — 1 items. The algorithm is
most easily followed if M is thought of as a tree, with M{j+ 2]
the father of M[j] for 1 < j = n;
begin
procedure exchange (z,y); real z,y;
beginreal {; {:=z; 2 :=y; y:=1t
end exchange;
procedure siftup (i,n); value ¢, n; integer i, n;
comment M[:] is moved upward in the subtree of M[1:n] of
which it is the root;
begin real copy; integer j;
copy = MI[:];
loop: j := 2 X 4
if j £ n then
begin if j < n then
begin if M[j+1] > M{j] then j := 7 + 1 end;
if Mij] > copy then
begin M[{] := M[j]; 7 :=j; go to loop end
end;
M{i] := copy
end siftup;
integer 7;
for ¢ := n-+2 step —1 until 2 do siftup (i,n);
for 7 := n step —1 until 2 do
begin siftup (1,2);
comment M[j+2] = M(jlforl < j £ 1;
exchange (M[1], M[z]);
comment M[i:n] is fully sorted;
end
end TREESORT 3

ALGORITHM 246

GRAYCODE [Z]

J. Bootaroyp* (Reed. 18 Nov. 1963)

English FElectric-Leo Computers, Kidsgrove, Stoke-on-
Trent, England
* Now at University of Tasmania, Hobart, Tasmania, Aust.

procedure graycode (a) dimension: (n) parity: (s);
Boolean array a; integer n; Boolean s;

comment elements of the Boolean array a[l:n] may together be

value n,s;

Volume 7 / Number 12 / December, 1964

e e D
SR
At

%

kst
A

e .
: 'N» ¥ ,’?.?..«. 1L g

G. E. FORSYTHE, J. G. HER

ﬁIOT, Editors

considered as representing a logical vector value in the Gray
cyclic binary-code. [See e.g. Phister, M., Jr., Logical Design of
Digital Computers, Wiley, New York, 1958. pp. 232, 399.] This
procedure changes one element of the array to form the next
code value in ascending sequence if the parity parameter s
= true or in descending sequence if s = false. The procedure
may also be applied to the classic “rings-o-seven’’ puzzle [see
K. E. Iverson, A Programming Language, p. 63, Ex. 1.5];
begin integer ¢,j; j:=n + 1;

for i := n step —1 until 1 do if a[¢] then begin s := — s;
j =1 end;

if s then a[l] := — a[l] elseif j < n then a[j+1] := - alj+1]
else a[n] := — a[n]

end graycode

ALGORITHM 247

RADICAL-INVERSE QUASI-RANDOM POINT

SEQUENCE [G5]

J. H. Havron anxp G. B. Smita (Reed. 24 Jan. 1964 and
21 July 1964)

Brookhaven National Laboratory, Upton, N. Y., and
University of Colorado, Boulder, Colo.

procedure QRPSH (K, N, P,Q, R, E);
integer K, N; real array P, Q; integer array R; real E;
comment This procedure computes a sequence of N quasi-
random points lying in the K-dimensional unit hypercube
given by 0 <z; <1, 2 =1,2, -+, K. The ith component of
the mth point is stored in Q[m,7]. The sequence is initiated by a
‘“zero-th point’’ stored in P, and each component sequence is
iteratively generated with parameter R[¢]. E is a positive error-
parameter. K, N, E, and the P[{] and R[z] for{ =1,2, --- | K,
are to be given.
The sequence is discussed by J. H. Halton in Num. Math. 2
(1960), 84-90. If any integer = is written in radix-R notation as

nening . 0 = ny + mlRR + anz =+ .. + nmRm;

N = Ny ***

and reflected in the radical point, we obtain the R-inverse func-
tion of n, lying between 0 and 1,

Nm = MR 4 nR™2
+- neR 4 -+ + naRmL

The problem solved by this algorithm is that of giving a com-
pact procedure for the addition of B, in any radix R, to a frac-
tion, with downward ‘‘carry’”.

If Pi] = ¢ruj(s), as will almost always be the case in practice,
with s a known integer, then @[m,f] = ¢zi(s+m). For quasi-
randomness (uniform limiting density), the integers R[] must
be mutually prime.

For exact numbers, E would be infinitesimal positive. In prac-
tice, round-off errors would then cause the “‘carry” to be in-
correctly placed, in two circumstances. Suppose that the stored
number representing ¢z(n) is actually ¢r(n) + A. (a) If |A |
= R 1 we see that the results of the algorithm become un-

dr(n) =0 . ngnnse -+

Communications of the ACM 701

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355588.365103&domain=pdf&date_stamp=1964-12-01

predictable. It is necessary to stop before this event occurs. It
may be delayed by working in multiple-length arithmetic. (b)
If n = RmH — 1,80 that ¢z(n) = 1 — B!, andA < 0, the com-
puted successor of the stored value can be seen to be about B,
instead of B2 == ¢r(n+1). This error can be avoided, without
disturbing the rest of the computation, by adopting a value of
E greater than any | A | which may occur, but smaller than the
least (nR)™' (which is smaller than the least B—™"1) to be en-
countered.

Small errors in the P[¢] will not affect the sequence. Any set
of P[] in the computer may be considered as a set of ¢pp(s:),
for generally Jarge and unequal integers s; , with small round-off
errors. The argurnents used in J. H. Halton’s paper to establish
the uniformity of the sequence of points

[qSRl(n)y ¢R2(n):)¢RK(n)]7 n = 1: 2: tee)N
can be applied identically to the more general sequence

[¢R1<81+n), ¢Ri(s2+n): MR ¢RK(SK+n)]7 n = 17 2: Tt N.

Thus, theoretically, any ‘zero-th point”’ P will do. However,
the difficulty desecribed in (a) above limits us to the use of P[7]
corresponding to relatively small integers s; .;
begin integer i, m; real r, f, g, h;
for 7 := 1 step 1 until K do
begin r := 1.0/k[z];
for m := 1 step 1 until N do
begin if m > 1 then [:= 1.0 — Q[m—1,7] else
f = 1.0-P[];
g:= 10; h := r;
repeat: if f — h < E then
begin g := h; h :=h X r; go to repeat end;
Qlmy] =g+ h—f
end
end

end QRPSH

CERTIFICATION OF ALGORITHM 181 [S15]

COMPLEMENTARY ERROR FUNCTION—LARGE

X [Henry C. Thacher, Jr., Comm. ACM 6 (June 1963),
315]

I. Crausen anp L. Hansson (Reed. 20 Aug. 1964)

DAEC, Risg, Denmark.

The procedure erfcL was tested in Grer-ALgoL with 29 signifi-
cant bits and the number-range abs(z) < 2 1 512 (approx. 1.310154).
The statement m := R := 0; was corrected to m := 0; R :=
0; [Because m and R are of different type; cf. Sec. 4.2.4 of the
AvrcoL Report, Comm. ACM 6 (Jan. 1963), 1-17.—Ed.] After this
the tests were successful. The procedure was checked a.o. for
z = 119 (—0.01) 0.72. The differences from table values increased
from 10—8 at £ = 1.1 to 710—8 at x = 0.75. Overflow occurred at
z = 0.71.

CERTIFICATION OF ALGORITHM 224 [F3]
EVALUATION OF DETERMINANT

[Leo J. Rotenberg, Comm. ACM 7 (Apr. 1964), 243)
Vic HasserBrap anp JErF RuLirson (Recd. 17 July 1964)
Computer Center, U. of Washington, Seattle, Wash.

The ‘“Evaluation. of Determinant’ program was tested on an
ArcoL 60 compiler for an IBM 709 (SuarEe distribution % 3032).
When. the 10th line on page 244 was changed to read:

begin if 1maz = r then go to resume else

correct results were obtained. It was tested up through 4 X 4
matrices. !

702 Communications of the ACM

CERTIFICATION OF ALGORITHM 237 [Al]

GREATEST COMMON DIVISOR [J. E. L. Peck,
Comm. ACM 7 (Aug. 1964), 481]

T. A. Bray (Recd. 8 Sept. 1964)

Boeing Scientific Research Laboratories, Seattle,
Washington
This procedure was translated into the ForTranN IV language

and tested on the Univac 1107. No corrections were required and
the procedure gave correct results for all cases tested.

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
letters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Materiul
to appear in boldface type should be underlined in black. Blue underlin-
ing may be used to indicate italic type, but this is usually best left to the
Editor.

An algorithm must be written in the ALcoL 60 Refsrence Language
[Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commented
procedure declaration. Each algorithm must be accompanied by a complete
driver program in ArcgoL 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm
The driver program may be published with the algorithm if it would be of
major assistance to a user.

Input and output should be achieved by procedure statements, usiug
one of the following five procedures (whose body is not specified in ALcow):
[see “Report on Input-Output Procedures for ALGOL €0, Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (channel, destination) value channel; integer channel;

real destination; comment the number read from channel channel is

assigned to the variable destination, . . .;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is vutput to chunael
channel; . . . ;

procedure ininteger (channel, destination);

value channel; integer channel, destination; . . . ;
procedure outinteger (channel, source);

value channel, source; integer channel, source; .. ;
procedure outsiring (channel, string); value channel; integer channel;

string string; . .;

If only one channel is used by the progran, it should be designated by 1
Examples:

outstring (1, ‘z ='); outreal (1, z);
for i := 1 step 1 until n do outreal (1, Afz));
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
AvragoL literature. All contributions will be refereed both by humun beings
and by an ALGoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Beeause ALGoL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognize.d
subset of ALcoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Coman.
ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith,

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communa-
catirns issue bearing the algorithm.—G.E.F.

Volume 7 / Number 12 / December, 1964

