

Algorithms

G. E. FORSYTHE, J. G. HERRIOT, Editors

```
ALGORITHM 245
TREESORT 3 [M1]
```

ROBERT W. FLOYD (Recd. 22 June 1964 and 17 Aug. 1964) Computer Associates, Inc., Wakefield, Mass.

procedure TREESORT 3 (M, n); value n; array M; integer n; comment TREESORT 3 is a major revision of TREESORT [R. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434] suggested by HEAPSORT [J. W. J. Williams, Alg. 232, Comm. ACM 7 (June 1964), 347] from which it differs in being an in-place sort. It is shorter and probably faster, requiring fewer comparisons and only one division. It sorts the array M[1:n], requiring no more than $2 \times (2 \uparrow p-2) \times (p-1)$, or approximately $2 \times n \times (\log_2(n)-1)$ comparisons and half as many exchanges in the worst case to sort $n=2 \uparrow p-1$ items. The algorithm is most easily followed if M is thought of as a tree, with $M[j\div 2]$ the father of M[j] for $1 < j \le n$;

begin

```
procedure exchange (x,y); real x,y;
   begin real t; t := x; x := y; y := t
   end exchange;
 procedure siftup(i,n); value i, n; integer i, n;
  comment M[i] is moved upward in the subtree of M[1:n] of
   which it is the root;
  begin real copy; integer j;
   copy := M[i];
  loop: j := 2 \times i;
   if j \leq n then
   begin if j < n then
       begin if M[j+1] > M[j] then j := j+1 end;
     if M[j] > copy then
       begin M[i] := M[j]; i := j; go to loop end
   end;
   M[i] := copy
 end siftup;
 integer i;
  for i := n \div 2 step -1 until 2 do siftup (i,n);
  for i := n step -1 until 2 do
  begin siftup (1,i);
   comment M[j \div 2] \ge M[j] for 1 < j \le i;
   exchange (M[1], M[i]);
   comment M[i:n] is fully sorted;
end TREESORT 3
```

ALGORITHM 246 GRAYCODE [Z]

J. Воотнюур* (Recd. 18 Nov. 1963)

English Electric-Leo Computers, Kidsgrove, Stoke-on-Trent, England

* Now at University of Tasmania, Hobart, Tasmania, Aust.

```
procedure graycode (a) dimension: (n) parity: (s); value n,s;
Boolean array a; integer n; Boolean s;
comment elements of the Boolean array a[1:n] may together be
```

considered as representing a logical vector value in the Gray cyclic binary-code. [See e.g. Phister, M., Jr., Logical Design of Digital Computers, Wiley, New York, 1958. pp. 232, 399.] This procedure changes one element of the array to form the next code value in ascending sequence if the parity parameter $s = \mathbf{true}$ or in descending sequence if $s = \mathbf{false}$. The procedure may also be applied to the classic "rings-o-seven" puzzle [see K. E. Iverson, A Programming Language, p. 63, Ex. 1.5];

```
begin integer i,j;\ j:=n+1; for i:=n step -1 until 1 do if a[i] then begin s:=\neg s; j:=i end; if s then a[1]:=\neg a[1] else if j< n then a[j+1]:=\neg a[j+1] else a[n]:=\neg a[n] end graycode
```

ALGORITHM 247

RADICAL-INVERSE QUASI-RANDOM POINT SEQUENCE [G5]

J. H. Halton and G. B. Smith (Recd. 24 Jan. 1964 and 21 July 1964)

Brookhaven National Laboratory, Upton, N. Y., and University of Colorado, Boulder, Colo.

procedure QRPSH(K, N, P, Q, R, E);

integer K, N; real array P, Q; integer array R; real E; comment This procedure computes a sequence of N quasirandom points lying in the K-dimensional unit hypercube given by $0 < x_i < 1$, $i = 1, 2, \dots, K$. The ith component of the mth point is stored in Q[m,i]. The sequence is initiated by a "zero-th point" stored in P, and each component sequence is iteratively generated with parameter R[i]. E is a positive errorparameter. K, N, E, and the P[i] and R[i] for $i = 1, 2, \dots, K$, are to be given.

The sequence is discussed by J. H. Halton in Num. Math. 2 (1960), 84-90. If any integer n is written in radix-R notation as

```
n = n_m \cdots n_2 n_1 n_0. 0 = n_0 + n_1 R + n_2 R^2 + \cdots + n_m R^m,
```

and reflected in the radical point, we obtain the R-inverse function of n, lying between 0 and 1,

$$\phi_R(n) = 0$$
 . $n_0 n_1 n_2 \cdots n_m = n_0 R^{-1} + n_1 R^{-2}$
 $+ n_2 R^{-3} + \cdots + n_m R^{-m-1}$.

The problem solved by this algorithm is that of giving a compact procedure for the addition of R^{-1} , in any radix R, to a fraction, with downward "carry".

If $P[i] = \phi_{R[i]}(s)$, as will almost always be the case in practice, with s a known integer, then $Q[m,i] = \phi_{R[i]}(s+m)$. For quasirandomness (uniform limiting density), the integers R[i] must be mutually prime.

For exact numbers, E would be infinitesimal positive. In practice, round-off errors would then cause the "carry" to be incorrectly placed, in two circumstances. Suppose that the stored number representing $\phi_R(n)$ is actually $\phi_R(n) + \Delta$. (a) If $|\Delta| \ge R^{-m-1}$, we see that the results of the algorithm become un-

predictable. It is necessary to stop before this event occurs. It may be delayed by working in multiple-length arithmetic. (b) If $n = R^{m+1} - 1$, so that $\phi_R(n) = 1 - R^{-m-1}$, and $\Delta < 0$, the computed successor of the stored value can be seen to be about R^{-m} , instead of $R^{-m-2} = \phi_R(n+1)$. This error can be avoided, without disturbing the rest of the computation, by adopting a value of E greater than any $|\Delta|$ which may occur, but smaller than the least $(nR)^{-1}$ (which is smaller than the least R^{-m-1}) to be encountered.

Small errors in the P[i] will not affect the sequence. Any set of P[i] in the computer may be considered as a set of $\phi_{R[i]}(s_i)$, for generally large and unequal integers s_i , with small round-off errors. The arguments used in J. H. Halton's paper to establish the uniformity of the sequence of points

```
[\phi_{R_1}(n),\,\phi_{R_2}(n),\,\cdots,\,\phi_{R_K}(n)],\quad n=1,\,2,\,\cdots,\,N can be applied identically to the more general sequence
```

```
[\phi_{R_1}(s_1+n), \phi_{R_2}(s_2+n), \dots, \phi_{R_K}(s_K+n)], \quad n=1, 2, \dots, N. Thus, theoretically, any "zero-th point" P will do. However, the difficulty described in (a) above limits us to the use of P[i] corresponding to relatively small integers s_i.;
```

```
begin integer i, m; real r, f, g, h;

for i := 1 step 1 until K do

begin r := 1.0/K[i];

for m := 1 step 1 until N do

begin if m > 1 then f := 1.0 - Q[m-1,i] else

f := 1.0 - P[i];

g := 1.0; h := r;

repeat: if f - h < E then

begin g := h; h := h \times r; go to repeat end;

Q[m,i] := g + h - f

end

end QRPSH
```

CERTIFICATION OF ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—LARGE
X [Henry C. Thacher, Jr., Comm. ACM 6 (June 1963),
315]

I. Clausen and L. Hansson (Recd. 20 Aug. 1964) DAEC, Risø, Denmark.

The procedure erfcL was tested in Gier-Algol with 29 significant bits and the number-range $abs(x) < 2 \uparrow 512$ (approx. 1.3 ι 0154). The statement m := R := 0; was corrected to m := 0; R := 0; [Because m and R are of different type; cf. Sec. 4.2.4 of the Algol Report, Comm. ACM 6 (Jan. 1963), 1-17.—Ed.] After this the tests were successful. The procedure was checked a.o. for x = 1.19 (-0.01) 0.72. The differences from table values increased from $\iota 0-8$ at x = 1.1 to $7\iota 0-8$ at x = 0.75. Overflow occurred at x = 0.71.

CERTIFICATION OF ALGORITHM 224 [F3] EVALUATION OF DETERMINANT

[Leo J. Rotenberg, Comm. ACM 7 (Apr. 1964), 243] VIC HASSELBLAD AND JEFF RULIFSON (Recd. 17 July 1964) Computer Center, U. of Washington, Seattle, Wash.

The "Evaluation of Determinant" program was tested on an Algol 60 compiler for an IBM 709 (Share distribution #3032). When the 10th line on page 244 was changed to read:

begin if imax = r then go to resume else correct results were obtained. It was tested up through 4×4 matrices.

CERTIFICATION OF ALGORITHM 237 [A1] GREATEST COMMON DIVISOR [J. E. L. Peck, Comm. ACM 7 (Aug. 1964), 481]

T. A. Bray (Recd. 8 Sept. 1964)

Boeing Scientific Research Laboratories, Seattle, Washington

This procedure was translated into the FORTRAN IV language and tested on the Univac 1107. No corrections were required and the procedure gave correct results for all cases tested.

Revised Algorithms Policy • May, 1964

A contribution to the Algorithms department must be in the form of an algorithm, a certification, or a remark. Contributions should be sent in duplicate to the editor, typewritten double-spaced in capital and lower-onse letters. Authors should carefully follow the style of this department, with especial attention to indentation and completeness of references. Material to appear in **boldface** type should be underlined in black. Blue underlining may be used to indicate *italic* type, but this is usually best left to the Editor.

An algorithm must be written in the Algol 60 Reference Language [Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commented procedure declaration. Each algorithm must be accompanied by a complete driver program in Algol 60 which generates test data, calls the procedure, and outputs test answers. Moreover, selected previously obtained test answers should be given in comments in either the driver program or the algorithm The driver program may be published with the algorithm if it would be of major assistance to a user.

Input and output should be achieved by procedure statements, using one of the following five procedures (whose body is not specified in ALGOL): [see "Report on Input-Output Procedures for ALGOL 60," Comm, ACM 7 (Oct. 1964), 628-629].

procedure inreal (channel, destination) value channel; integer channel; real destination; comment the number read from channel channel is assigned to the variable destination,...;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; . . .;

procedure ininteger (channel, destination);

value channel; integer channel, destination; . . . ;

procedure outinteger (channel, source);

value channel, source; integer channel, source; . . ;

procedure outstring (channel, string); value channel; integer channel; string string; . .;

If only one channel is used by the program, it should be designated by 1 Examples:

```
outstring (1, 'x ='); outreal (1, x);
for i := 1 step 1 until n do outreal (1, A[i]);
ininteger (1, digit [17]);
```

It is intended that each published algorithm be a well-organized, clearly commented, syntactically correct, and a substantial contribution to the Algor literature. All contributions will be refereed both by human beings and by an Algor compiler. Authors should give great attention to the correctness of their programs, since referees cannot be expected to debug them. Because Algor compilers are often incomplete, authors are encouraged to indicate in comments whether their algorithms are written in a recognized subset of Algor 60 [see "Report on SUBSET ALGOR 60 (IFIP)," Comm. ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already published. Readers are especially encouraged to test and certify previously uncertified algorithms. Rewritten versions of previously published algorithms will be refereed as new contributions, and should not be imbedded in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and careful proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is assumed by the contributor, the editor, or the Association for Computing Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly permitted without any charge. When reproduction is for publication purposes, reference must be made to the algorithm author and to the Communications issue bearing the algorithm.—G.E.F.

INDEX BY SUBJECT TO ALGORITHMS, 1964

```
RANDOM NUMBER GENERATORS
247 QUASI-RANDOM POINT SEQUENCE 1
                    REAL ARITHMETIC . NUMBER THEORY
                                                           4-64(243)
                                                                                                                                                             12-64(701)
A1
A1
      223 PRIME
                    TWINS
                                                           8-64(481),12-64(702)
      237 GREATEST COMMON DIVISOR
                                                                                                                      PERMUTATIONS AND COMBINATIONS
                                                                                                 G6
                                                                                                       235 RANDOM PERMUTATION
242 PERMUTATIONS WITH REPETITIONS
      TRIG AND INVERSE TRIG FUNCTIONS
229 ELEMENTARY FORS.BY CONT.FRACT. 5-64(296)
                                                                                                                                                             7-64(420)
                                                                                                                                                            10-64(585)
Б1
      241 ARCTAN(Z)
                                                           9-64(546)
                                                                                                         OPERATIONS RESEARCH: GRAPH STRUCTURES
40 CRITICAL PATH SCHEDULING 3-61(152):9
                EXPONENTIAL AND LOGARITHMIC FUNCTIONS
                                                                                                                                                            3-61(152),9-61(392),
В3
      48 LOG(Z)•Z COMPLEX
48 7-62(391)•8-64(485)
243 LOGARITHM OF COMPLEX NUMBER
B3
B3
                                                           4-61(179) •6-62(347) •
                                                                                                              10-62(513),6-64(349)
83
                                                           11-64(660)
                                                                                                       INPUT - COMPOSITE
239 FREE-FIELD READ
                                                                                                                                                            8-64(481)
      SUMMATION OF SERIES, CONVERGENCE ACCELERATION
128 FOURIER SERIES SUMMATION 10-62(513),7-64(421)
C6
      215 EPSILON ALGORITHM
EPSILON ALGORITHM
                                                           11-63(662),5-64(297)
                                                                                                                                      PLOTTING
C6
                                                           NUM MATH V6 (22)
                                                                                                  J6
                                                                                                       162 XY PLOTTER
                                                                                                                                                            4-63(161),8-63(450),
                                                                                                              8-64(482)
                                                                                                 J6
                                                                                                       162
D1
                                   QUADRATURE
        60 ROMBERG METHOD
                                                           6-61(255),3-62(168),
D1
             5-62(281),7-64(420)
D1
        60
                                                                                                                                      SORT ING
                                                                                                       175 SHUTTLE SORT
175 12-63(739)
      143 MULTIPLE INTEGRAL
182 ADAPTIVE SIMPSON
                                                           12-62(604),5-64(296)
                                                                                                 M1
M1
                                                                                                                                                            6-63(312) -10-63(619) -
 D1
                                                                                                              12-63(739),5-64(296)
                                                           6-63(315),4-64(244)
D1
                                                           6-64(348)
                                                                                                       201 SHELL SORT
207 STRING SORT
      233 MULTIPLE INTEG .- SIMPSONS RULE
                                                                                                 Μl
                                                                                                                                                            8-63(445),6-64(349)
                                                           NUM.MATH.V6(15)
                                                                                                                                                            10-63(615) +10-64(585)
D3
             ROMBERG METHOD
                                                                                                 M1
                                                                                                       232 HEAPSORT
                                                                                                                                                            6-64(347)
                                                                                                 М1
                                                                                                       245 TREESORT 3
                                                                                                                                                            12-64(701)
      ORDINARY DIFFERENTIAL EQUATIONS
218 KUTTA MERSON 12-63
                                                                                                             SEARCH IN A LIST
INSERTION IN A LIST
DELETION FROM A LIST
                                                                                                                                                            J.ACM-1962(23)
                                                                                                 M1
0.2
                                                           12-63(737),10-64(585)
                                                                                                 Μĺ
                                                                                                                                                            J.ACM-1962(23)
                                                                                                                                                            J.ACM-1962(24)
                                                                                                 MΙ
                                                                                                             SORTING WITH MINIMUM STORAGE
        CURVE AND SURFACE FITTING
91 CHEBYSHEV FIT 5-62(281),4-63(167),
E 2
              5-64(296)
 E2
                                                                                                                APPROXIMATION OF SPECIAL FUNCTIONS...
FUNCTIONS ARE CLASSIFIED SOI TO 523, FOLLOWING
FLETCHER-MILLER-ROSENHEAD, INDEX OF MATH. TABLES
                                                                                                 5
            RATIONAL CHEBYSHEV APPROX.
                                                           1-ACM-1964(66)
                                                                                                 FLEICHER-MILLER-ROSENHEAD, I.

S14 221 GAMMA FUNCTION

S14 222 INCOMPLETE BETA FCN.RATIOS

S14 225 GAMMA FCN WITH COTROLLED ACCY.

S15 123 ERROR FUNCTION

S15 123 10-63(618),3-64(145)
      MINIMIZING OR MAXIMIZING A
203 MINIMIZE FUNCT.OF N VARIABLES
MINIMIZING FCN.-CONJ.GRAD.
                                                                                                                                                            3-64(143),10-64(586)
                                                           9-63(517),10-64(585)
F4
                                                                                                                                                            3-64(143),4-64(244)
                                                           COMP. J. V7(151)
                                                                                                                                                            5-64(295),10-64(586)
                                                                                                                                                            9-62(483),6-63(316);
      MATRIX OPERATIONS: INCLUDING INVERSION
150 INVERSE OF SYMMETRIC MATRIX 2-63(67),7-60
                                                                                                 515 181 ERROR FUNCTION
515 209 ERROR FUNCTION
                                                                                                                                                            6-63(315) 12-64(702)
                                                           2-63(67),7-63(390),
                                                                                                                                                            10-63(616)+3-64(148)+
                                                                                                 S15 209 8-64(482)
S15 226 NCRMAL DISTRIBUTION FCN.
S17 236 BESSEL FCNS OF FIRST KIND
 F 1
       150
             3-64(148)
       197 MATRIX DIVISION
                                                           8-63(443),3-64(148)
                                                                                                                                                            5-64(295)
      230 MATRIX PERMUTATION
231 INVERSION-GAUSS-ELIM--COMP.PIV. 6-64(347)
INVERSE-CONFL. VANDERMONDE MIX
EQUIVALENCE OF MATRICES
ICC BULL.-1964(6
                                                                                                                                                            8-64(479)
 F1
                                                                                                 $18 214 BESSEL FUNCTION
                                                                                                                                                            11-63(662),6-64(349)
                                                                                                 S18 228 G-BESSEL FUNCTION
S18 228 G-BESSEL FUNCTION
S20 213 FRESNEL INTEGRALS
S20 244 FFESNEL INTEGRALS
S21 CCMPLETE ELL.INT.-FIRST KIND(K)
S21 CCMPLETE ELL.INT.-SECOND KND(E)
S21 CCMPLETE ELL.INT.-B)
                                                                                                                                                            5-64(295)
                                                           TCC BULL . = 1964(62)
                                                                                                                                                            10-63(617),11-64(661)
                                                                                                                                                            11-64(660)
                                                                                                                                                            NUM.MATH.V5(296)
                  EIGENVALUES AND EIGENVECTORS OF MATRICES
 F2
                                                                                                                                                            NUM.MATH.V5(297)
       122 GIVENS TRIDIAGONAL REDUCTION EIGENVALUES-LAGUERRES METHOD
                                                           9-62(482),3-64(144)
                                                                                                                                                            NUM.MATH. V5(297)
                                                                                                             INCOMPL.ELL.INT.-FIRST KIND(K)
INCOMPL.ELL.INT.-SECOND KIND(E)
                                                           MOC 1964(474)
                                                                                                                                                            NUM.MATH.V5(297)
                                                                                                 S21
                                                                                                                                                            NUM . MATH . V5 (298)
                                                                                                             INCOMPL.ELL.INT.(B)
                                                                                                                                                            NUM . MATH . V5 (299)
                                                                                                 521
        DETERMINANTS
41 DETERMINANT EVALUATION
                                                                                                             JACOBIAN ELLIPTIC SIN FCN.(SN)
JACOBIAN ELLIPTIC COS FCN.(CN)
                                                                                                                                                            NUM.MATH. V5 (299)
                                                            4-61(176),9-63(520),
 F3
                                                                                                                                                            NUM . MATH . V5 (300)
                                                                                                 $21
 F 3
         41
                                                                                                 S21 JACOBIAN ELLIPTIC FCN.(DN)
S22 191 HYPERGEOMETRIC FCN.(COMPLEX)
                                                                                                                                                            NUM.MATH.V5(301)
7-63(388),4-64(244)
       170 DETERMINANT-POLYNOMIAL ELEMENTS 4-63(165),8-63(450),
 F3
       170 7-64(421)
224 EVALUATION OF DETERMINANT
                                                                                                 S22 192 CONFLUENT HYPERG.FCN. (COMPLEX)
S22 227 CHEBYSHEV POLYNOMIAL COEFF.
                                                                                                                                                             7-63(388),4-64(244)
                                                           4-64(243) 12-64(702)
                                                                                                                                                             5-64 (295)
                                                                                                       234 POISSON-CHARLIER POLYNOMIALS
       SIMULTANEOUS LINEAR EQUATIONS
135 CROUT WITH EQUILIBRATION 11-62(553),11-62(557),
 F4
F4
                                                                                                        ALL OTHERS
199 CALENDAR CONVERSION
240 COORDINATES ON AN ELLIPSOID
       135 7-64(421)
220 GAUSS-SEIDEL
                                                                                                                                                             8-63(444),11-64(661)
                                                            12-63(739),6-64(349)
                                                                                                                                                             9-64(546)
             CONJUGATE GRADIENT METHOD
                                                            8-64(481)
             CONJUGATE GRADIENT METHOD
                                                           NUM.MATH. V5(195)
                                                                                                        246 GRAYCODE
                                                                                                                                                             12-64(701)
```

Key—1st column: A1, B1, B3, etc. is the key to the underlined Modified Share Classification heading each group of algorithms; 2d column: number of the algorithm in CACM; 3d column: title of algorithm; 4th column: month, year and page (in parens) in CACM, or reference elsewhere.

~