A FAMILY OF TEST MATRICES

A family of test matrices with the following properties is de-
scribed here: (a) an explicit inverse is given; (b) the characteristic
polynomial is easily obtained; (c) a large measure of control over
the eigenvalues is possible; (d) in special cases the eigenvalues
and eigenvectors can be given explicitly, and the P-condition
number can be arbitrarily assigned.

Consider a matrix of the form

S R
Q=|:C D:|’

where S is a scalar, R is a row-matrix
C is a column-matrix {€2, ¢z, -+, ¢2}T and D is a diagonal matrix
with elements ds, d3, --- , dn . By use of the bordering method
{1] the inverse is found to be

S R
-1
Q [C’ M’:|’

where each submatrix of @1 has the same form as the correspond-
ing submatrix of Q, except that M’ is generally not diagonal. Let-
ting the subscripts of R’, C’, M’ run from 2 to n, we find that

{72:7'3: ,’I‘n},

S=1 / [S — 22; T C;/d,‘] , Ci’ = —S/Ci/di, 7'1'/ = _‘S,Tt‘/di 3

M:; = [8; — ciril/di,

where §;; is the Kronecker delta. The inversion can be performed
in 2(n — 1)(n 4 2} 4+ 1 long operations; it might be possible to
improve this figure with some ingenuity.

The eigenvalue problem. Let A be an eigenvalue of @, and let
% = {1, 22, ---, z:}7 be the associated eigenvector. This leads
to the following set of n equations:

S + B =\, ¢ + dixe = x; . (i=2)

On eliminating the z; we obtain

1 8+ Zriei/ A — di) — N =20.

If we write IIQA) = I7 (A — di), L (A\) = IQA)/( — di), then
on clearing the fractions in (1) we obtain

@ & = SITO) — 3ol O) = 0,

This is the characteristic equation. The following statements can
be made concerning the eigenvalues.

(a) If all ric; > 0 and all d; are distinct, then all the eigenvalues
are real and are separated by the d; .

(b) If all d; are equal to d, then there are n — 2 eigenvalues
equal to d; the remaining two are zeros of the quadratic function
A — (8 + d)A + 8d — =7 rici . These zeros are real if, and only
if, (8 — d)? 4+ 43ric; 2 0.

(e) If all d; are equal to d, then the eigenvectors associated
with the multiple eigenvalue d have zero as their first component,
and they are orthogonal to the vector {0, rs, -+« , 7.}. Eigenvectors
corresponding to the other two eigenvalues are (A, — d, ca, -+
¢a}, where M, is a zero of the quadratic given in (b).

Proor of (a). Let H(\) denote the left side of (1), and let
{di'} denote a reordering of the {d:} so that di’ < d$+1 . We note
that H () is continuous in any interval which does not enclose any
of the d;’, and that for sufficiently small ¢, H({d: 4+ ¢) > 0 and
H(di;x — €) < 0. Hence there is a zero of H(\) between each con-
secutive pair of the {di’}; moreover since H{—x) > 0

)
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and H(x) < 0, there are two more real zeros of H(\) outside the
interval (d»’, d.’).

Proor of (b). If all the d; are equal to d, then I(A) =
(» — d)* and I;(A\) = (A — d)»% The characteristic equation
(2) then reduces to (A\ — d)"2 (A — S)(A — d) — Zf rics] = 0.
The disecriminant of the quadratic factor is (S — d)? 4+ 4Zr: .
Statement (¢c) may be directly verified.

The P-condition number, i.e. the largest absolute ratio of two
eigenvalues [2], can most conveniently be assigned by letting
d; = d; then, using statement (b), we can choose S and Zryc; in
such a way as to assign any desired zeros to the quadratic; hence
any desired maximum ratio of eigenvalue magnitudes may be
procured.

Remarks. If the inverse matrices are included along with the
original family, then we have freedom within the family to specify
sparse, nonsparse, symmetric, nonsymmetric, well- or ill-condi-
tioned matrices; furthermore we can require that the eigenvalues
shall be all real or mixed real and complex. This should provide
sufficient versatility for most test purposes.
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A CLASS OF MATRICES TO TEST
INVERSION PROCEDURES

The test matrices given by M. L. Pei [Comm. ACM 5, 10 (Oct.
1962), 508] and R. D. Rodman [Comm. ACM 6,9 (Sept. 1963, 515]
are special cases of a general class of matrices with complex ele-
ments for which an explicit form of the inverse can be exhibited.
This class of matrices is such that eigenvalues and a set of asso-
ciated eigenvectors can also be obtained. Then not only inverses,
but also eigenvalues of the Pel matrix given by W. S. Lasor
[Comm. ACM 6, 3 (Mar. 1963), 102] and eigenvectors given by A.
R. C. Newberry [Comm. ACM 6, 9 (Sept. 1963), 515], and eigen-
values of the Rodman matrix follow as special cases.

For the general case we let B be any matrix with complex ele-
ments, and let £ be any real number, k¥ % —1. Then the inverse
of the matrix I + kB+B, where B+ is the Moore-Penrose general-
ized inverse of B, can be written as

(I+kB*B)y1=1-—

B*B.
E+1

Now if B is restricted to matrices with orthonormal rows, B+ = B*,
and we have

k
k41

which provides a class of matrices to use in testing inversion pro-
cedures. Moreover, since

(I + kB*B)B* = (1 + k)B*

(I +kB*B)y1=1 — B*B

and

( 4+ kB*B)(I — B*B) = I — B*B,

Volume 7 / Number 12 / December, 1964


http://crossmark.crossref.org/dialog/?doi=10.1145%2F355588.365131&domain=pdf&date_stamp=1964-12-01

