
I t is therefore impossible from the d is t inc t n o n t e r m i n a l
symbol (program} to ob t a in a word which conta ins the
symbol (number} and from here the s t r ing which cor-
responds to a signed number .

We would like to point ou t t h a t we do no t see the possi-
bi l i ty , of in t roduc ing (number} in the a r i thmet ic expres-
sions of ALGOL unless we accept an ambiguous g rammar .

The existence of the symbol (number} shows, on the
other hand , the legi t imate desire of the au thors of ALGOL
to have avai lable signed constants , in order to avoid,
whenever possible, the execution of the u n a r y opera t ion
"change of sign."

As a m a t t e r of fact, we would like to po in t out t h a t
(fixed point cons tan t) is defined also in [3], b u t it is no t
used in the product ions which relate to a r i thmet ic ex-
pressions.

RECEIVED MAY, 1964

REFERENCES

1. FLOYD, R.W. On the nonexistence of a phrase structure gram-
mar for ALGOL 60. Comm. ACM 5 (Sept. 1962), 483.

2. NAme, P. (ED.) Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6 (Jan. 1963), 1-17.

3. I~,ABINOWITZ, I. N. Report on the algorithmic language
FORTRAN II. Comm. ACM 5 (June 1962), 327-336.

4. SCHUTZENBERGER, M. P., AND CHOMSKY, N. The algebraic
theory of context-free languages. In Computer Programming
and Formal Systems. North-Holland, 1963.

ALGOL Note

NOTE ON THE USE OF PROCEDURES
The very generality of a language like ALGOL renders it ineffi-

cient when a number of programs have to be written all dealing
with a fairly narrow range of problems. This can be largely over-
come by the construction of a package of suitable procedures, each
of which embodies a fairly substantial piece of computation that
will be required in several different contexts (see, for example [1]).
A program for a specific purpose will consist of a set of these pro-
cedures linked by a more or less skeletal main program.

With this approach, some unproductive time nmst be spent in
setting up the procedures each time they are used, establishing
the required correspondences between actual and formal param-
eters. This militates against the use of small procedures or the
placing of procedures inside inner loops, practices which may on
other grounds be desirable. This drawback could be overcome very
simply by introducing two new verbs such as set (procedure
heading), which would set up the actual/formal parameter cor-
respondences, and u s e (procedure identifier), which would acti-
vate the procedure without changing the correspondences set up
by a preceding set. The existing procedure statement, effectively
set followed immediately by use, would still be available.

REFERENCE :

1. HEALY, M. J. R., aND BOGERT, B.P. FORTRAN subroutines
for time series analysis. Comm. ACM 6, 1 (Jan. 1963), 32-34.

M. J. R. HEALY
Rothamsted Experimental Station
Harpenden, England.

B a c k u s N o r m a l F o r m vs. B a c k u s N a u r F o r m

Dear Editor:
In recent years it has become customary to refer to syntax

presented in the manner of the ALGOL 60 reported as "Backus
Normal Form." I am not sure where this terminology originated;
personally I first recall reading it in a survey article by S. Gorn
[1]. Several of us working in the field have never cared for the
name]3ackus Normal Form because it isn't a "Normal Form"
in the conventional sense. A normal form usually refers to some
sort of special representation which is not necessarily a canonical
form; for example, it is not hard to transform any Backus Nor-
real Form syntax so that all definitions except the definition of
(empty> have one of the three forms

(i) (A) : : = (B)](C>, (ii) (A) :: =(13)(C), (iii) (A) : : = a.

(A syntax in which all definitions have such a form may be said
to be in "Floyd Normal Form" since this point was first raised
in a note by R. W. Floyd [2]. But I hasten to withdraw such a
term from further use since doubtless many people have inde-
pendently used this simple fact in their own work, and the point
is only incidental to the main considerations of Floyd's note.)

Many people have objected to the term Backus Normal Form
because it is just a new name for an old concept in linguistics: an
equivalent type of syntax has been used under various other
names (Chomsky type 2 grammar, simple phase structure
grammar, context free grammar, etc.). There is still a reason
for distinguishing between these, however, since linguists pre-
sent the syntax in the form of productions while the Bac-
kns version has a quite different form. (It is a Form for a syn-
tax. not a Normal Form.) The five principal things which
distinguish Backus form from production form are:

(i) Nonterminal symbols are distinguished from terminal
letters by enclosing them in special brackets.

(ii) All alternatives for a definition are grouped together
(i.e., in a production system "A ~ BC, A ~ d, A ---~ C" would
all be written instead of "(A} :: = (B) (C) [d [(C)").

(iii) The symbol ":: =" is used to separate left from right.
(iv) The symbol "1" is used to separate alternatives.
(v) Full names indicating the meaning of the strings' being

defined are used for nonterminal symbols.
Of these five items, (iii) is clearly irrelevant and the peculiar

symbol " : : =" can be replaced by anything desired; "----~" is per-
haps better, to correspond more closely with productions. But
(i), (ii), (iv), (v) are each important for the explanatory power
of a syntax. I t is quite difficult to fathom the significance of a
language defined by productions, compared to the documenta-
tion afforded by a syntax incorporating (i), (ii), (iv), (v). (On the
other hand, it is much easier to do theoretical manipulations
using production systems and systematically avoiding (i), (ii),
(iv), (v).) For this reason, Baekus's form deserves a special dis-
tinguishing name.

Actually, however, only (i) and (ii) were really used by John

Volume 7 / Number 12 / December, 1964 Communica t ions of the ACM 735

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355588.365140&domain=pdf&date_stamp=1964-12-01

Backus when he proposed his notation; (iii), (iv), (v) are due to
Peter Naur who incorporated these changes when drafting the
ALGOL 60 report. Naur's additions (particularly (v)) are quite
important. Furthermore, if it had not been :for Naur's work in
recognizing the potential of Backus's ideas and popularizing
them with the ALGOL committee, Backus's work would have be-
come virtually lost; and nmch of the knowledge we have today
about languages and compilers would not have been acquired.

Therefore I propose that henceforth we always say "Backus
Naur Form" instea([of Baekus Normal Form, when referring to
such a syntax. This terminology has several advantages: (1) I t
gives the proper credit to both Baekus and Naur; (2) I t preserves
the oft-used abbreviation 'q3NF"; (3) I t does not call a Form a
Normal Forln.

I have been saying 13ackus Naur Form for about two months
now and I mn still quite pleased with it, so I think perhaps
everyone else will enjoy this term also.

]REFERENCES :

1. GORN, S. Specification languages for mechanical languages
and their processors--a baker's dozen. Comm. AC~I $ (Dec.
1961), 532-542.

2. FLOYD, 1~. ~r. Note on mathematical induction in phrase
structure grammars. Inform. Contr..~ (1961), 353-358.

DONALD E. KNUTH
California Institute of Technology
Pasadena, California

M o r e o n R e d u c i n g T r u n c a t i o n E r r o r s

Dear Editor:
In his article "Reducing Truncation Errors by Programming,"

Communications of the ACM, June 1964, Jack M. Wolfe pre-
sented a means for summing a large number of possibly small-
valued terms without losing the cumulative effect of the small
terms on the sum. Error would result because a floating-point
variable of only eight significant decimal digits would not pro-
vide a large enough range to include the sum as well as individual
addends.

An alternate way to overcome this problem, and perhaps an
easier method to employ, would be to convert the addends to
integers in the address portion of the coml?uter word. This would
be done by an appropriate scaling factor, plus steps similar to
those first few operations in converting a floating-point number
to fixed point. The addend in this form could then be added as a
fixed-point variable to the summing register. When the process
of summing was eompleie, the address integer would then be
converted to a floating-point number. The scaling factor would
be eliminated by division, and a more accurate stun would be
achieved. With a 36-bit word, summation could reach (235 - 1)
without overflowing, thus making this method available for
ranges of ten or eleven significant decimal digits.

If it was desired to use this method where the summation
might reach 3400, then addends as small as .0000001 would be
included. For this example, each term to be added would be
multiplied by a scaling factor of 10,000,000. For an addend
variable A and a summation register IS, the following SAP in-
structions would be employed:

CLA A
UFA Ci*
LRS 0
ANA C2"
LLS 0
ADD IS
STO IS

When all the terms have been summed by this process, the fol-
lowing instructions will convert IS to a floating-point variable
S, which must then be divided by the scaling factor.

CLA IS
LRS 8
STQ LS
OR,A C3"
FAD C3"
STO S
CLA LS
AItS 27
ORA Ci*
FAD Ci*
FAD S
STO S

*Note : C1 = OCT233000000000
C2 = OCT000777777777
C3 = OCT243000000000

i-~ICHARD]). WHITTAKER

U. S. Navy Underwater Sound Laboratory
Fort Trumbull, New London, Connecticut

F u r t h e r C o m m e n t o n t h e M I R F A C C o n t r o v e r s y

Dear Editor:
At the risk of belaboring the point, I would like to enter into

the discussion which has been generated by publication of the
article on MIRFAC [1]. Before proceeding, I admit to a pro-
grammer's bias.

First, I agree with Mr. Gawlik: something must be done to
permit more widespread communication with computers by
persons not trained as programmers. Second, I agree with Pro-
fessor Dijkstra: English is, because of its inherent ambiguity,
eminently unsuited as the means of communication [2].

I t seems that Mr. Gawlik has missed the point. He ignores the
discussion of the suitability of English, and he denies Professor
Dijkstra's point that errors will not be uncovered by someone
ignorant of programming techniques. In refuting the latter point,
Mr. Gawlik uses the example of an erroneous statement by the
programmer of the integrand of a Bessel function [3]. This, I am
sure, is not the sort of error to which the professor referred.
Errors of this type are discovered and corrected easily and quickly
in the early stages of program debugging, and cause minimal
time loss. I t is the rather more subtle errors in thinking and
logic--those which characterize everyday speech--which are so
difficult to find. Any programmer can relate tales of the havoc
wrought by a single erroneous bit in a program containing liter-
ally millions of correct ones.

While I do not presume to insist that one must be trained as
a programmer in order to communicate effectively with a com-
puter, it is nay strong belief that one must understand the nature
of the beast--and this includes a realization of the necessity for
precise thinking. There is more to programming than the ability
to code a mathematical expression.

I~EFERENCES :

1. GAWLIK, lcI. J. MIRFAC: a compiler based on standard
mathematical notation and plain English. Comm. ACM 6,
9 (Sept. 1963), 545-547.

2. DIJKSTRA, E.W. Some comments on the aims of MIRFAC.
Comm. ACM 3, 7 (Mar. 1964), 190.

3. GAWLIK, H. J. MIRFAC: A reply to :Professor Dijkstra.
Comm. ACM 10, 7 (Oct. 1964), 571.

Jo~tN M. SCOFIELD
IBM Corporation
White Sands Missile Range
New Mexico

7 3 6 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m b e r 12 / D e c e m b e r , 1964

