Check for
Updates

7. Summary

We have introduced a formalism which allows us to
explicate certain rather gross properties of language proc-
essing systems. As it is, the notation should be useful for
designing the outlines of complex programming systems
and their implementation, and it should be especially good
for documentation. The formalism should also provide a
mathematical basis which can be extended to handle more
detailed properties of such systems. Some specific in-
adequacies where it could be extended follow.

1. It does not describe the amount of compilation or
interpretation, unless it is coupled with precise definitions
of the languages involved. For instance, in (7) we have no
idea whether IL is close to machine language or to the
source language. IL could be little more than assembly
language, or just a trivial modification of the source lan-
guage, or anything in between. Of course precise definitions
of SL, IL, and ML would clear this up.

2. It does not permit the description of such processes
as incremental compilation.

3. It does not permit the formal description of systems
involving programs which consist of two or more pieces
written in different languages, such as FSL.
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CR CATEGORIES: 5.12,5.5

real procedure student (, n, normal, error); value ¢, n; real ¢, n;
real procedure normal, error;

comment student evaluates the two-tail probability P(t | =)
that ¢ is exceeded in magnitude for Student’s [1] ¢-distribution
with n degrees of freedom. The procedure provides results accu-
rate to 11 decimal places and 8 significant digits for integer val-
ues of n, with approximate continuation of the function through
noninteger values of n (over 6 decimal places for n > 4.3).

The procedure normal (x) returns the area under the standard
normal frequency curve to the left of x, so that a negative argu-
ment yields the lower-tail area. The user-supplied procedure,
error(n), should produce a diagnostic warning and may go to a
label, terminate, or return a distinctive value (zero or —1.0) as
a signal of error to the calling program.

Student’s series expansion of the probability integral is sup-
plemented by a faster asymptotic approximation for large values
of n and by a more precise ‘‘tail’’ series expansion for large
values of ¢.

The value of x, defined as the normal deviate at the same
probability level as ¢, may be approximated by an asymptotic
normalizing expansion of Cornish-Fisher type [2].

x = 2z + (2°4+32)/b — (427+3325+24022+8552) /10b2
+ (64211-+-788294-9801 27+ 8977525 54337523+ 17888852) /210b3— - - -

where z = (aXIn(1+t2/n)};a = n — 4 and b = 48q2 [3].
This is well approximated by the first three terms with the third
term’s divisor replaced by

10b (b+0.8244100).

The student probability is double the normal single-tail area,
corresponding to the deviate x.

The maximum error in the probability result for all values of ¢
i displayed as a function of » in Figure 1, for this approxima-
tion, for the first few terms of the asymptotic expansion and for
Fisher’s {4] fifth-order approximation used in Algorithm 321 [5]
for n > 30.

For small » and moderate ¢ the result is calculated as P(¢ | n) =
1 — A(t | n) using Student’s cosine series for A (¢ | n), rearrang-
ing formulas 26.7.3 and 26.7.4 of the NBS Handbook [6] in
nested form

(n—3)
{1 et
=l
Yy 1 (n—5) (n—3)
A(i|n even) = Vo) {1 + 2b{ Db {1 + 2 R
where y = 4/(t%/n) and b = 1 + ¢2/n. In the nested form, terms
are treated in reverse order to the summation in Algorithm 321

and Algorithm 344 [7], reducing the number of operations re-
quired and reducing build up of roundoff error. Explicit decre-
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menting of the “loop” parameter ensures that its final value
remains defined on exit from the loop for use in an odd/even test.

Exacution times for Fortran versions run on a CDC 3200 with
programmed floating point are displayed in Figure 2, which
indicates that nesting decreases the time for the cosine series
method by about 30 pereent and that it is appropriate to change
over to the asymptotic method (using Algorithm 209 (8] for
normal) when n > 20. Although this approximation would be
aceurate to more than 11 decimal places, the use of Algorithm
209 limits accuraecy to about 9 decimals. This accuracy may be
sufficient for many applicationsg, in which ease student may be
abbreviated by deleting lines 15 and 27 through 35, removing
the declaration and assignment of z from line 3, replacing line
3 by

if n > entter(n) \V n > 20 then

and replacing line 25 by
student := if g > 1.0 then 0.0 else 1.0 — a

The latter avoids spurious negative results due to roundoff
error when ¢ is near 1 for large values of ¢{. The storage required
for this abbreviated version was a little less than for Algorithm
344 and less than half that for Algorithm 321.

10-8

MAXIMUM ERRQR IN PROBABILITY VALUE
g
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Applications such as production of tables or function inversion
to obtain extreme quantiles may require greater precision at
extreme probability levels than these methods provide. For the
cosine series and the asymptotic approximation using a high
precision procedure for nermail, such as Algorithm 304 (9], the
relative error in the result increases in magnitude as the result
decreases to extremely small values, as illustrated in Figure 3.

COSINEf SERIES

ASYMPTOTIC
APPROXIMATION m=20

b
S

10-10 10-15 w020
PROBABILITY LEVEL P

1wl w5

Fic. 3. Relative error, | P — P*|/P, of approximation P*;
shaded region for restricted ¢ values

For small P more precise resulis are obtained using a scries
expansion of P{t | x) in terms of w = 1/sqri{1+4i%/n),

1 13X u? 1 X3Xuw
P(Un) = Cla) X v {-+ Ixixu, }

n 2nt+2)

where C(n) = T{((n+1)/2)/(/#XT'(n/2)). The series is summed
till a negligible term occurs and then the factor C(n)Xwn is
applied using the same repeated loop as the vosine series. Except
for w near 1 when ¢ is small, the truncation error is small, and
accumulation of error in the repeated loop is moderate unless n
is very large.

The cosine series method loses precision mainly in the sub-
traction 1 — A (¢ | ») as well as from the sgrt procedure and arctan
when n is odd. In the worst case, n = 19, the error is kept below
3 decimals by changing to the tail series if ¢ > 2, which ensures 8
significant digits in the result for the 36-bit (about 11 decimal)
precision real variables for the processor used. As shown in
Figure 3, change over from the asymptotic msthed to the tail
series when 2 > n maintains about 8 signifieant digits in the
result. For a machine of greater precision the use of more terms
in the asymptotic series may be warranted, and the change over
criteria would need adjustment to balance speeds and precision
between the three methods.

Execution times for the tail series are shown as broken lines
in Figure 2 for selected values of £: with bounds ¢ > 2 forn < 20,
t* < m for m > 20 and with the limit n < 200 preventing excessive
time for large ¢ beyond a probability level near 1079, For the
asymptotic method, using for normal a higher precision pro-
cedure based on Algorithm 304, the execution times for different
values of the argument approach those shown at the right of
Figure 2. Averaged over a range of arguments arising in practice,
the provision for higher precision more than doubles the time
required. In the case of Smirnov’s [10] 6D tables of S(¢ | n)} =
1 — 0.5 X P(t | n), retabulation to 10D, using the more precise
procedure for normal, increased the time from about 7 minutes
to 12 minutes, while introducing the tail series method to tabu-
late P( | n) over the same range to 8 significant digits increased
the time further to about 16 minutes. Use of the asymptotic
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approximation enabled Smirnov’s 6D tables of (¢ |1000/8),
which is an approximate continuation of S{¢{|a) over non-
integer values of n = 1000/¢, to be extended to 10D for £ = 0(2)30
in 5 minutes, and permits eontinuation to ¢ = 200 with over 6D
accuracy as indicated in Figure 1.

The preparation of diagrams by Murray C. Childs is gratefully
acknowledged.
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if n < 1 then student := error(n) clse
begin
reala, b,y,2;, 2:=10;
t:=t 12 y:=¢t/n; b:=10-+y;
ifn > entterin) Vaunz220At<naVn> 200 then
begin
comment Asymptotic series for large or noninteger n;
ify > u—6 then y := In{b);
a:=7—05; $:=480%Xa 1 2; v :=aXy;
y = (((((—0.4Xy—3.3)Xy—24.0)Xy—85.5)/
(0.8Xy T 2+100.0+b)+y+3.0) /b4-1.0) X sqre {y);
student := 2.0 X normal(—y);
end
else
iftn <20 A ¢ < 4.0 then
begin
comment Nested summation of “‘cosine’ series;
a:=y := sqri(y); ifn = 1 thena := 0.0;
loop:
n:=n—2; ifn >1then
begina := (n—1)/(bXn) X e + y;
a := if n = 0 then a/sqri(h)
else (arcian(y)+a/b) X 0.63661977236;
comment 2/r = 0.6366197723675813430755351 - - - ;
student 1=z — @
end
clse
begin
comment ‘‘tail’’ series expansion for large {-values;
integer j; a 1= sgri(d); y:=a Xn; j:=0;
forj:=7 4+ 2 whileag # zdo

go to loop end;

begin
zi=a; yi=y X J-D/UXD; e :=aty/nt))
end;
ni=n-+2 z:=y:=00; a¢:= —a; go toloop
end
end
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STUDENT’S i-QUANTILES [514]

G. W. Hiu (Recd. 6 Jan. 1970 and 18 May 1970)

C.5.1.R.0,, Division of Mathematical Statistics, Glen
Osmond, South Australia

KIIY WORDS AND PHRASES: Student’si{-statistic, quantile,
asymptotic approximation
CR CATEGORIES: 5.12, 5.0

real procedure ¢ quantile (P, n, normdey, error);
value P, n; real P, n; real procedure normdeuv, error;
comment This algorithm evaluates the positive quantile at the
(two-tail) probability level P, for Student’s {-distribution with
n degrees of freedom. The quantile function is an inverse of the
two-tail

Tatd [~ du
Vrmd)TGn) Jo (L-Huz/n)dntd

which is approximated in Algorithm 395 [1] by series whose in-
verses are used in this algorithm for £ quantiles. Test calculations
Lo 36-bit precision indicate that the result is correct to at least
6 significant digits, even for the analytic continuation through
noninteger values of n > 5.

The procedure normdev(p) 15 assumed to refurn a negative
normal deviate at the lower tail probability level p, e.g. —2.32
for p = 0.01. The user-supplied procedure for error(n) should
give a diagnostic warning that the value of P or n is invalid and
may go to a label, terminate, or return a distinctive value as an
error signal to the calling program.

For n = 1 and n = 2 the exact result of integration is readily
inverted to yield ¢ = cot{(PXr/2) and (! = 2/(P(2—P))-2,
respectively. For larger n an asymptotic inverse expansion
about normal deviates iz applicable, while for smaller values of
P a second series expansion is used to achieve suflicient preci-
sion. Both approximations have been adjusted to enhance pre-
cision for n as low as 3.

Both methods involve an expansion of the factor

d/n = ¥4 ~/xT (bn) /T M4n + 14)
in terms of a = 1/(n—%) and b=48/n?
din = /{ax/2) (1—3/b+94.5/b1— 9058 5/b5+ - - -} [2].

A three term approximation uses b(b<4-c) instead of b2 as a
divisor, where the coeflicients in

e = 96.36 — 16c — 98a? 4 20700c%/b,

Pltin) = 2

have been fitted to ensure 8 significant digits in d for n as low
as 3.
The inverse asympiotic expansion of Cornish-Fisher type re-

lates a function y() = /[(n—}ln{dl+e/n)] to the normal
deviate x at the corresponding probability level, P/2:

y=x — (x*3x)/b + {dxT+63x5+360x°+945x) /1062
— (64x" - 162819881 %7 +145719x°+694575x3

+1902285x) /21053 + - .- [2],

whence { = v/ X (ezp(eXy?) —1)]. For a three term approxi-
mation the third term’s divisor is replaced by

100 X (b4e—2x—Tx*—3x4-0.05XdX x4},

whose coefficients have been fitted to reduce the error for small
n and for larger » and x. For n < 5, ¢ is increased by 0.3(n—4.5)
(x+0.6) to further reduce error in an interval of I’ not well
covered by the following approximation.

For small P, where {*/n is large, the integrand may be ex-
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panded in terms of w? = 1/(1+t%/n) and integrated term by term
to yield

nwt [ 1 w? 1 X 3wt
P= T{ﬁ+2(n+2)+2><4(n+4)+ }

which may be inverted to express ¢2/n in terms of y = (PXd)¥»

g 1 nt1f y n X y?
o I 2{ 1t 2o T 32 nt6)
+ n(n+3)(2n2+9n—2)y? .
8(n+2)*(n+4)*(n--8)

Since the ratio of successive terms is nearly n X y/(n+6) for
small n, replacement of the term in y? by y/[B(n+2){ (n+6)/
(nXy)—1.0}] provides an approximate allowance for subsequent
terms in the series, which is empirically improved by replacing
the —1.0 by —0.822 — 0.089 X d.

As n and P increase, the errors for the asymptotic approxima-
tion decrease, whereas errors for the second series inecrease, so
that for each value of n the error curves intersect at a value of
P above which the asymptotic approximation is better and be-
low which the second series should be used. By adjusting the
two approximations the error level at these intersections has
been balanced at about the seventh significant digit for n > 3
and P > 1024, The value of y at these points is about a 4 0.05
and this fact provides a convenient criterion for selecting which
approximation to use: the asymptotic series if y exceeds a +
0.05, otherwise the second series.

Although better approximations could be obtained by use of
more terms in each series, greater precision can be achieved by
using the result of this algorithm as a starting value for iterative
inversion of P(f | n), whose value and derivative can be com-
puted with considerable precision using recurrence relations as
in Algorithm 395.

A comparison of results from this algorithm against values
obtained by inverting the function provided by Algorithm 395
indicates a precision of over 6 significant digits for 1072¢ <
P <09,n > 1. At the conventional tabulation points in 0.001 <
P < 09results forn = 1,n = 2, and n > 10 checked to 8 signifi-
cant digits.

Previously published tables [3, 4, 5] provide 3 or 4 decimal
place check values, some of which are found to be slightly in
error. Thus for n = 2, P = 0.001, ¢ is given as 31.598 by Fisher
and Yates and by Federighi, 31.5991 by Smirnov, and 31.5990546
by this procedure, while for n = 1, P = 0.001 the value 636.6096
given by Smirnov conflicts with Fisher and Yates, Federighi
(636.619) and this procedure (636.61925). Other errors in the last
few digits in Smirnov’s table for low values of » and P include
10.2129 for n = 3, P = 0.002, which should be 10.2145, and 4.7812
forn = 9, P = 0.001, which should be 4.7809.

t guantile may be used to obtain percentiles at values of P and
n not provided in existing tables or for extending their accuracy.
Such tables are customarily used for assessing the significance of
a sample value for ¢, but for automatic computation the proba-
bility level is more effectively determined as P(¢ | n) using a
direct procedure such as Algorithm 395.

Pseudorandom ¢-values may be generated for sampling appli-
cations by using uniformly distributed pseudorandom numbers
for P, and in this case normdev may be a real procedure return-
ing pseudorandom normal deviates which are independent of P.
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ifn <1V P>10V P <0.0 then { guantile := error(n)

else if n = 2 then ¢ quantile := sqgrt(2.0/(PX (2.0— P))—2.0)

else

begin

real half pi; half pi := 1.5707963268;
if n = 1 then
begin P := P X half pi; ¢ quaniile := cos(P)/sin(P) end
else
begin
reala, b, ¢, d, z, y;
a :=1.0/(n—05); b:=480/a T 2;
¢ := ((20700Xa/b—98)Xa—16) X a + 96.36;
d := ((94.5/(b+¢c)—3.0)/b+1.0) X sgrt(aXhalf pi) X n;
z:=dX P; y:=z T (2.0/n);
ify > 0.05 + ¢ then
begin
comment Asymptotic inverse expansion about normal;
z := normdev(PX0.5); y:=z T 2;
if n < 5thenc := ¢ + 0.3 X (n—4.5) X (z+0.6);
¢ := (((0.06XdXz—5.0)Xz—7.0)Xz—2.0) X z + b + ¢;
y = (((((0.4Xy+6.3)Xy+36.0)Xy+94.5)/c—y—3.0)/b+
1.0) X z;
yr=aXyTl2
y 1= if ¥>0.002 then ezp(y) — 1.0else 0.5 Xy 1 24 ¥
end
else y := ((1.0/(((n+6.0)/(nXy)—0.089Xd—0.822) X
(n+2.0)X3.0)4-0.5/(n+4.0)) Xy—1.0) X
(n+1.0)/(n+2.0) + 1.0/y;
t quantile := sqrt(nXy)
end

I

end Student’s ¢-quantile
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KEY WORDS AND PHRASES: integer programming, change-

making problem

CR CATEGORIES: 5.41

procedure MINDIST(C, M, SENSE, W, RESULT);

value C, M; integer C, M; Boolean SENSE;
integer array W, RESULT;

comment This algorithm solves an integer programming prob-

lem described in [1]. Given is a fixed weight vector w = (w:,
wsz, *++ , Wn), Where the w; are nonnegative integers, where m
is a positive integer, and where

l=w <ws < or < Wy
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For any nonnegative integer ¢ (representing cost), an m-dis-
tribution of ¢ relative to w is an m-tuple (@1 ,az2, -+ , @m) such
that the a; are nonnegative integers, and such that Y i1 aqw;
= ¢. The m-distribution (a1 , @2, -+ , @n) is minimal if, for any
m-distribution (by, bz, <--, bm) of ¢ relative to w, we have

> i1ai < 2 t=1 bi . The m-distribution (a1, az, -+, am) is
standard if it is obtainable as follows:

tm=¢

Ci = Ciy1 — Giz1 X Wit @F=m—-1,m~—2, ---, 1)

ai = ¢ifw; (ft=m, m—1, --- , 1)

(where all divisions are integer divisions).

If MINDIST(C, M, SENSE, W, RESULT) is called with a
nonnegative integer C, a positive integer M, and an array
W= (W[1],W[2], --- , WIM]), then the resulting array

RESULT = (RESULTI1], RESULT{2], --- , RESULT[M})
is a minimal M-distribution of C relative to W. If, before calling
MINDIST, SENSE is set to true, then MINDIST retains
SENSE as true if and only if RESULT is also a standard M-
distribution of C relative to W.

REFERENCE:

1. Crang, S. K., anp Girn, A. Algorithmic solution of the
change-making problem. J. ACM 17 (Jan. 1970) 113-122;

begin
integer I, J, R, Q, SUM, SUN;
integer array A[1:M], B[1:M];
if M = 1 then
begin
RESULT[1] := C;
EXITI
go to EXIT
end
Q := C/W[M];
if (@XW[M]) > Cthen@Q :=Q — 1;
R:=C— WM X@;
if M = 2 then
begin
RESULT)] := R; RESULTI2] := Q;
EXIT? :
go to EXIT
end;
J =0
LOOP:
MINDIST (R+-JXW[M], M—1,SENSE, W, B);
if J # 0 then go to NOT ZERO;

BETA:
for] :=1stepluntil M—1do A[l] := B[I];
AM] := 0;
GAMMA:
if / = Q then
begin

for I := 1 step 1 until M do RESULTII] := AllIl;
EXITs:

go to EXIT
end;
SUM := 0;

for I := 1step 1 until M do SUM := SUM 4+ A[I];

if (WIMIXSUM—R—JXW[M))/(W[M]—W[M—1]) < 0 then

begin
for I := 1step 1 until M — 1do RESULT|I] := All];
RESULTM] := AIM1+Q - J;

EXIT4:

go to EXIT

end;

J:=J +1;

go to LOOP;
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NOT ZERO:
SUM :=0; SUN :=0;
for I := 1 step 1 until M do SUM := SUM 4 A[ll;
for] := lstepluntil M — 1do SUN := SUN + BI[I];
if SUM < SUN then
begin A[M] := A[M]+ 1; go to GAMMA end;
SENSE := false;
go to BETA;

EXIT:

end PROCEDURE MINDIST

ALGORITHM 398
TABLELESS DATE CONVERSION* [Z]
RicuarRD A. SToNE (Reed. 2 Jan. 1970 and 6 April 1970)
Western Electric Company, P.O. Box 900,
Princeton, NJ 08540
* Patent applied for.

KEY WORDS AND PHRASES: date, calendar
CR CATEGORIES: 5.9

procedure calendar(y, n, m, d);
value y, n; integer y, n,m, d, t;

comment calendar is called with the year in y and the day of the
year in n. The month number is returned in m, and the day of the
month is returned in d. The first section of the procedure changes
the dates so that February has 30 days. The second section uses
the fact that 30.565 (m+4-2) — 91 passes through the number of
days preceeding each month.

Error detection: m will be in the range 1-12 if and only if »

is in the correct range;

begin
t :=if (y + 4)+4 = y then 1 else 0;
comment The following statement is unnecessary

if it is known that 1900 < y < 2100;

¢t := if (y+400)+400 = y \/ (y+100)%100 = y then ¢ else 0;
d:=n-+ (ifn> (59+f) then 2 — { else 0);
m := ((d4+91)+100) + 3055;
d := (d+91) — (m=*3055) + 100;
m:=m— 2

end calendar

ALGORITHM 399

SPANNING TREE [H]

Jouxko J. SepPANEN (Recd. 6 Jan. 1970 and 8 May 1970)

Computing Center, Helsinki University of Technology,
Otaniemi, Finland

KEY WORDS AND PHRASES: graph, tree, spanning tree
CR CATEGORIES: 5.32

procedure spanning tree(v, e, I,J,p, T);
valuev,e; integerwv,e¢,p; integerarrayl,J,T;
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comment This procedure grows a spanning tree 7 for a given
undirected loop-free graph G = (N, E) of v vertices and e edges.
If G is disconnected a spanning forest will be grown.

The edges (I[k], Jik]) € Efork = 1,2, --- , ¢ are assumed to
be stored in the arrays I{l:e] and J[L:e]. At each stage of the
algorithm one edge is considered whereby one of four possible
conditions will arise. If neither of the vertices is included in a
tree, this edge is taken as a new tree and its vertices numbered
by an incremented component number c. If one vertex is in a
tree, the edge will be grown to this tree. If the two vertices are in
different trees, these will be grafted into a single tree by renum-
bering the vertices of the other component. Finally, if both
vertices are in the same tree, the edge completes a fundamental
cycle of the graph with respect to the spanning tree and conse-
quently will not be considered further. At the end, the indices
of the edges in the spanning tree are stored in the array T[1:9—p]
where p is the number of trees in the forest. The procedure can
also be used to find a minimal spanning tree by sorting the edges
into ascending order before calling the procedure.

The main loop in the procedure is executed e times. For cases
where the ratio e/v is high it could be worthwhile to introduce
an additional variable, say d, in the program, for keeping a
count of the number of edges included in 7. When d has attained
the value of v — 1 the algorithm could terminate.
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begin

integer , j, k,c, n, r;
integer array V[1:v];
c:=mn:=0;

(Sept.

for k := 1 step 1 until » do V{k} := 0;
for & := 1 step 1 until e do
begin

t = Ik}, j = JIk;
if V{z] = 0 then
begin
Tk—n] := k;
if V[j1 = 0 then V[z] := V[jl :=c:=c¢c+ 1
else
Vil = VI
end
else if V[j] = 0 then
begin
Tk—n} := k;
end
else if V[i] ## V[j] then
begin
Tlhk—n] :=k; <:= V[i]; j:= VIjl
for r := 1 step 1 until v do
if V[r] = j then V[r] := ¢
end graft
elsen :=n+1
end edge;
p:=v—e+n
end spanning lree

Vil := V]
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ALGORITHM 400

MODIFIED HAVIE INTEGRATION [D1i]

GeorgE C. WaLLick (Reed. 26 Jan. 1970 and 25 Apr.
1970)

Mobil Research and Development Corporation, Field
Research Laboratory, P.O. Box 900, Dallas, TX 75221

KEY WORDS AND PHRASES: numerical integration, Havie
integration, Romberg quadrature, modified Romberg-quadra-

ture, trapezoid values, rectangle values
CR CATEGORIES: 5.16

DEscCRIPTION:
The Havie integration method for the approximate evaluation of
the definite integral

B
I = f F(z) do (1)

A

as implemented in ACM Algorithm 257 [4] is based upon the paral-
lel generation of the Romberg table of trapezoidal T';* values (1]
and the table of rectangular B;* values also used by Krasun and
Prager [3]. At each step in the development of the tables the dif-
ference | T;* — R;* | is examined. If | T;* — R;* | < e the process
is said to have converged and the algorithm returns a value of

Ti = 3(Ti*+R;"). @)

For some F(X), e.g. F(X) = ¢ X* and F(X) = 2/(2+sin 10rX),
the R;*, T';* pairs converge more rapidly than the Romberg se-
quence of T';* values. (This is the same class of F(X) for which a
simple nonadaptive Simpsons Rule algorithm [5] is competitive
with the Havie algorithm.) For other F(X), the Havie algorithm
is slightly less efficient than the Romberg algorithm.

Like Romberg quadrature, Havie integration requires the evalu-
ation of the rectangular values

B—AZ B—4
Rt = = 2:F[A+(j-—%) > ] ®3)
=1

Rutishauser [6] recognized that this repeated addition of small
terms to a large partial sum can lead to serious roundoff error.
He suggested a procedure for the evaluation of the B,* which sig-
nificantly reduces this error. The method, used by Fairweather (2]
in a modified Romberg algorithm, leads to a significant improve-
ment in accuracy for large orders of extrapolation.

In the modified Havie integration algorithm HRVINT the R,*
are evaluated using a 3-level version of the Rutishauser procedure.
The arguments X of the generating function F(X) are evaluated
as in eq. (3) rather than by accumulative addition as in Algorithm
257.

In the argument list for HRVINT, F is the name of the generat-
ing function FUNCTION F(X) which returns a value of F(X)
corresponding to a specified value of X, A, and B represent the
lower and upper limits of integration, and MAX is the maximum
order of extrapolation to be permitted, MAX < 16. Values of
MAX > 16 are interpreted as MAX = 16; the value of MAX is not
changed by the subprogram. Computation is terminated when

| Ti* — Ri*| < ACC+ | T;* |

or when the order of extrapolation MFIN = MAX. Here ACC is a
measure of the desired relative accuracy, ACC > 0. Upon exit
HRVINT is the approximate value of the integral, FAC is a meas-
ure of the final relative accuracy achieved

FAC = | T;* — R;*|/| T;* |

and MFIN is the order of extrapolation.

Test case. HRVINT was tested in Fortran IV on a CDC 6400
computer using single-precision floating point arithmetic (14+
decimal digits). Corresponding integral values were also obtained
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using a Fortran version of the standard Havie Algorithm 257. The
results of these tests are summarized in Table I.

For modest accuracy requirements, the two algorithms are seen
to be equivalent. For both algorithms the maximum accuracy
achievable is limited by truncation and roundoff error. Since the
Rutishauser modification serves to reduce the magnitude of such
errors, the modified Havie algorithm can, in many cases, return
optimum integral values that are from 1 to 2 significant figures
more accurate than those returned by Algorithm 257.

In the routine use of the algorithms it is possible to specify an

TABLE I. A CoMmPARISON OF THE HAVIE AND MoDIFIED
HAVIE ALGORITHMS

B
I=L F(X)dX

(m = Exirapolalion Order, m < 16; N.S.F. = Number of
Significant Figures)

Numerical Evaluation
P C:)?;’l'::‘ Havie Modified Havie
X 4 B (digits Specified
10-16) relative I I .
aceuracy | (gioiss| m | 53 | (digits| m | o
10-14) E 10-14) 2
o2 0.0 1 5.0 | 45139 55 | 1071-10—2 46726 | 3 10 | 46726 | 3 10
10310710 | 45039 | 4 11 45039 | 4 1
101t 45110 | 5 12 | 45111 5 12
10712 45128 | 6 12 45131 6 12
101 45134 | 6 12 {45137 | 6 13
10714 39757 | 16 9 | 45137 | 7 13
10-18 39757 | 16 9 | 45136 | 10 13
In z 1.0 (10.0 | 29940 46 10—¢ 29845 | 8 1 20846 | 8| 11
10-10 29937 8 13 | 29939 8| 13
10-12-10-12 | 29937 9 13 29940 9 14
1018 20937 | 9 13 | 20940 | 10 | 14
101 29556 | 16 11 29940 | 10 14
(l-+ )71 0.0 | 1.0 | 55994 53 10-9 56353 | 6 11 56354 | 6 11
10-10 55996 | 6 13 [ 55997 6 13
101 55990 | 6 13 | 55991 [ 13
10-12 55988 | 7 12 | 55991 7 13
10-1s 55987 | 8 12 | 55991 7 13
10-14-10715 | 53242 | 16 10 | 55991 9 13
(1424971 [ 0.0 1.0 33991 10 | 1076-10"7 | 35633 | & 10 | 35634 | 5 10
10-8-10"10 | 33993 | 6 13 | 33995 6 13
10-1-10-12 | 33984 7 12 33980 | 7 13
10718 30854 | 16 10 | 33987 | 7 13
10~14-10"15 | 30854 | 16 10 | 33988 | 9 13
P 0.01] 1.1 | 68595 04 1008 | 71022 |13 10 | 71529 | 13| 10
100 | 68136 | 13| 11 | 68647 | 13| 11
1019 | 68076 | 13 | 10 | 68580 | 13| 12
101 | 64508 | 16 { 10 | 68590 | 14 | 12
101210 | 64508 | 16 | 10 | 68580 | 14 | 12
10-14-10-%5 | 64508 | 16 | 10 | 68584 | 16 | 12
z4 0.01 1.1 | 89506 64 103 89368 | 13 11 89694 | 13 11
10—¢ 89199 | 13 1 89526 | 13 12
1010 88857 | 14 10 | 89503 | 14 13
10-u-10-2 | 86878 | 16 | 10 | 89502 | 14 | 13
10712 86878 | 16 10 | 89502 | 15 13
10141018 | 86878 | 16 10 89499 | 16 12
zb 0.01) 1.1 | 20246 64 108 | 20556 | 13 | 11 |20767 | 13| 10
10-9-10—1¢ | 28828 | 14 11 29247 | 13 14
101 27557 | 16 10 | 20245 | 14 13
10-12-10~13 | 27557 | 16 10 | 29244 | 15 13
10714 27557 | 16 10 29244 | 16 13
1015 27557 | 16 10 | 29242 | 16 13
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accuracy requirement that cannot be satisfied. When this condition
obtains, the algorithms are forced to proceed to the maximum per-
mitted extrapolation order. With Algorithm 257 error accumula-
tion accompanying such an overspecification can lead to a serious
decline in evaluation accuracy. With the modified Havie algorithm
HRVINT this loss is minimized and in most cases virtually elimi-
nated.

Acknowledgment. The author wishes to thank Mobil Research
and Development Corporation for permission to publish this in-
formation.
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ALGORITHM:

FUNCTION HRVINT(FyAsByMAXACC,FAC,MFIN}
C HAVIE INTEGRATION WITH AN EXPANDED RUTISHAUSER-
C TYPE SUMMATION PROCEDURE
DIMENSION T{17)sU(17),TPREV{LT)UPREV(1T7)
C TEST FOR MAX GREATER THAN 16
MUX=MAX
IF{MAX~16)10510+5
5 MUX=16
C INITIALIZATION
10 ENPT=0.5%{F{A)+F(B})
SUMT=0.0
MFIN=1
N=1
H=8-A
SH=H
€ BEGIN REPETITIVE LOOP FROM ORDER 1 TO ORDER MAX
15 TEL)=H*{ENPT+SUMT)
SUM=0.
NN=N+N
EN=NN
EM=SH/EN
C BEGIN RUTISHAUSER EVALUATION NF RECTANGULAR SUMS
C INITIALIZAYION
IF(NN=16)20+20,25
20 NZ=NN
GO TO 30
25 NZ=16
IF{NN-2561304+30535
30 NA=NN
GO TO 40
35 NA=256
IF(NN-4096)40,40445
40 NB=NN
G0 7O 50
45 NB=4096
C DEVELOPMENT OF RECTANGULAR SUMS
50 DO 70 KC=1,NN,4096
SUMB=0.
KK=KC+NB~1
DO 65 KB=KC4+KKs256
SUMA=0.
KKK=KB+NA-1
DD 60 KA=KBsKKKy16
SUMZ=0.
KFR=KA+NZ~1
DO 55 KZI=KA,KFR,s2

IKZ=KZ
55 SUMZ=SUMZ+F (A+ZKZ*EM)
60 SUMA=SUMZ+SUMA
65 SUMB=SUMA+SUMB
70 SUM=SUMB+SUM
C END OF RUTISHAUSER PROCEDURE
U{1)=HESUM
K=1
C BEGIN EXTRAPOLATION LOOP
75 FAC=ABS{T(K}-U{K})

TF(TiK})B0,85,80
C TEST FOR RELATIVE ACCURACY

80 IF(FAC-ABS(ACC*TI(K)))90,90,100
C TEST FOR ABSOLUTE ACCURACY WHEN TiK)=0
85 IF{FAC~ABS(ACC}195+954100
90 FAC=FAC/ABS{T{(K)})
C INTEGRAL EVALUATION BEFORE EXIT
95 HRVINT=0.5%{T(K)+U{K))
RETURN
100 IF(K=MFIN}105,115+115
105 AK=K+K
D=2, %%AK
DMA=D-1.0
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o

BEGIN EXTRAPOLATION
TIK+1}=(D*T{K)-TPREVIK))/DMA
TPREVIKI=T(K)
UI{K+1)=1D¥U{K)-UPREV(K})/DMA
UPREV{K)I=UI(K)

C END EXTRAPOLATIDN

K=K+1
IF{K-MUX}754110,110
C END EXTRAPOLATION LOOP
110 FAC=ABS{T(K)-U(K})
IF{T{(K)}90+95,90
€ DRDER IS INCREASED BY ONE
115 H=045%H
SUMT=SUMT+SUM
TPREVI(K)=T(K)}
UPREV(K)=yU(K)
MFIN=MFIN+1
N=NN
GO TO 15
FOR NEXT ORDER EXTRAPOLATION
END

C RETURN

REMARK ON ALGORITHM 304[S15]

NORMAL CURVE INTEGRAL [I. D. Hill and 8. A.
Joyce, Comm. ACM 10(June 1967), 374]

Bo HorLmgreN (Recd. 30 Apr. 1970)

Dept. KDO, ASEA, 8-721 83 Visteras, Sweden

KEY WORDS AND PHRASES:
bility, special functions
CR CATEGORIES: 5.12,5.5

normal curve integral, proba-

Algorithm 304 with the remark of Adams was translated into
Fortran IV and run on a GE-625 computer. The GE-625 has a 28-
bit mantissa and allows exponents up to 10%. With upper = false
and x < —2.32, the routine ran into overflow at several values of
z. To avoid this the following lines

if ¢2 > 10% then

begin

pl := pl X 10—30; p2:= p2 X 1—30;
gl := ql X 10—30; ¢2 := ¢2 X 1b—30

end;
were inserted after the line
s§:i=m; m:=t;

REMARK ON ALGORITHM 347 [M1]

AN EFFICIENT ALGORITHM FOR SORTING WITH
MINIMAL STORAGE [Richard C. Singleton, Comm.
ACM 12 (Mar. 1969), 185]

Ricearp PETO (Recd. 18 Feb. 1970)

Medical Research Council, 115 Gower Street, London
w.C. 1

KEY WORDS AND PHRASES: sorting, ranking, minimal stor-
age sorting, digital computer sorting
CR CATEGORIES: 5.31

If the values of ij, instead of always being (1+j) + 2, are at
varying positions between ¢ and j, then there is less likelihood of
peculiar initial structure causing failure of the algorithm to per-
form rapidly. The position of ¢j can be made to vary by replacing
the statements

m:=0; 4t:=1;

by
real r; r:= 0.375; m :=0; 4 :=1; go toL4;
L1:r := if r > 0.58084375 then r — 0.21875 else r + 0.0390625;
ij =14 (=) X r;

goto L4; Ll: ij := (i+7) + 2;
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comment These four decimal constants, which are respectively
48/128, 75.5/128, 28/128, and 5/128, are rather arbitrary. On
most compilers their binary representations will be exact, and
the use of them in the statement L1 causes r to vary cyclically
over the 33 values 48/128 - - - 80/128. Therefore 7j takes a varia-
ble position somewhere within the middle quarter of the segment
to be sorted. Wider variation of ¢j would be undesirable in the
special case of a partially presorted array;

In sorting an array of N elements which are initially in random
order this will waste (on ICL Atlas) less than N /105 seconds, but
if the array is, for example, composed initially of two equal pre-
sorted halves, then the use of the original rather than the modi-
fied version would more than double the sorting time required if
N > 104,

As the author points out, the published version could fail if
used to sort arrays of 1024 or more elements because the upper
bounds of IU and IL might be inadequate. For a standard pro-
cedure the declaration IL, IU [0:8] should be replaced by the
declaration IL, IU [0:20]. This permits the sorting of arrays of up
to 4 million elements, which is, with present core store sizes, suffi-
cient.

The statement ¢t := a{L] which precedes L3: will be executed less
frequently if it is transferred into the next conditional statement,
which then reads

if k© < L then begin it := a[L]; a[L] := alk]; alk] := #;

go to L2 end

REMARK ON ALGORITHM 368 [D5]

NUMERICAL INVERSION OF LAPLACE
TRANSFORMS {Harald Stehfest, Comm. ACM 13
(Jan. 1970),47)

HararLp STEHFEST (Reed. 6 May 1970)

Institut . angew. Physik, J. W. Goethe-Universitit
6000 Frankfurt a.M., W. Germany

KEY WORDS AND PHRASES: Laplace transform inversion, in-
tegral transformations, integral equations
CR CATEGORIES: 5.15, 5.18

Some errors have crept into the comment of the procedure af-
ter proof-reading:
The formula following ‘‘and thus’’ should read

K ~
Z 2B Fyppi = F (ln 2) 4+ (—1)FHap W/2—X1

=1 T (N/2)!
(N/2—=K)!
e ( w2 )
The formula following ““with’’ should read
Min(i,N/2)
Vi = (—1)¥izki k”’2(2k).! _
Y (N/2— k) kW —1) (i — k) (2 — 1)

The policy concerning the contributions of algorithms
to Communzications of the ACM has been revised and was
published in the August 1970 issue, page 513. Copies of
“Algorithm Policy / Revised August 1970” will be mailed
upon request. Sept 1970 p. 573
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