
C SET UP F I R S T I h T c ~ V A L FUR SIMPSON RULE
I 0 D F % { ?) = F ((. 5 * T) o C ~ S C . 5 e W T)

F S I ~ I s F C I T I • C O S I w T I
R=T
GO TO InS

(ADJUST UPPER LIMIT
1 0 | NO* I F I X i A L O ~ f w T I P I T ~ 6 I I A L N ~) ÷ l

TAm 2 I I N P • P I 2 $ 6 / M
R=TA

C ~ET UP F I R S T INTERVAL FOR F I L O N RULE
F % I T I = F C | e ~ I T A)
F ~ (~ l * F C I T A I

(TAKE LAST INTERVAL FROM LIST
| 0 5 A=A~(N)

M I : O - A
W H I - M I H I
N?.2eN
F | s F ~ f N 2 - 1 !
F?w F , I N 2 I
Ftm F , l ~ ? + | l
XO~ 8 - . 7 5 * H I
XO3 = B-*25eHI

(~EST TO DETERMINE w ~ I C H QuADRATuRb RuLE I $ A P P L I C A B L ~
I F I WHI - P 1 2 ~ 6 -ROC) l i D . l i D . I l l

I l O I F I WHI - P 1 2 5 6 *ROC I 2 0 0 . 2 0 0 * 2 0 1
111 IF I WHI - P I ? -ROC I 2 2 0 , 2 2 0 * 2 3 0

C ESTIMATE BY SIMPSON RULE
7 0 0 F O - FCIXOI*COSIwtXO)

F O ~ * F C (X Q 3 I e C O S I w * x O 3)
V N [W | s H I e I F | + 4 * e F Q + F 2 I / I Z *
VNEW2- Hle lF2*A,eFO3÷F3) / I2*
VN~W- VNEWI+VNEW2
ERR- (PVAL(NI-VNEWI/15.
GO TO 3 0 0

SWITCH FRO~ FILON TO SIMPSON RULE
?OI FI # F i e COSIWeA)

F2 = F 2 e COSIWeIB-eS*HI|)
F3 • F 3 * COSIR~BI
P V A L I N) = H I S (F l + ~ * e F 2 ÷ F 3) / 6 *
GO TO 2 0 0

C ESTIMATE BY FILON2
~ O H = e ~ S I H I

F~= F C | X ~ I
FO~= F C (X O ~)
NHm I F I X I A L O G I P I 2 / W H I I / A L N 2 + R O C } + |
WI= W | C I N H I
W?=-W2CINH)
W)s W)CINH)
WAtWOA
W A I : W O f B - . ~ i H I |
WB=WeB
CO1: COKIWAI)
S I l - ~IN(wAII
VNFW| " HelIwIeCOSi~AI*wZeSIN(wAI)eFI ÷ wD*CUS(WeXO)*

• FO* iwI*COI-w?*SI I I *F21
VNFW2 : H e I I w I 4 C O ! +*2*Sl !)wF2 * w3*COSiW*XQJ)eFQ3

S +(RI*COSIWB) -W2*SINIwO))*F3)
VNEW=VNEWI*VNEW2
E ~ T : F R I N H)
FRO = ERTeiPVALIN)-VNFW)/(I,-ERT)

C SKIP CONVERGENCE ILSI IF INTERVAL = ONE PERIOD
" IF IWHI- PI?÷ ROC I 300.300.400

C ESTIMATE BY FILON!
2 3 0 F O - F C I X O I

F O ~ = F C I X O ~ I
W2=WeW
C O N S T = 0 * / I W ~ e H l l
VNEWI 8 CONSTiIFI-2**FO+F2I
VNEW2" CONSTe(F~-2.eFQ)+F3)
VNEW- VNEWI+VNEW2
W 2 = 6 . / W 2
W 3 e H I I H I
E R T = I W 3 1 3 2 . - W 2 I l I W } / 8 . - W 2 I
ERR= E R T I I P V A L I N I - V N E W) / I | . - E R T I

C CONVERGENCE TEST
• SKIP CONVERGENCE TEST IF HI.GT.HL

)00 I F I M I - ML) ~01~301,~00
301 IFIABSIERRI-EPS~HI/B) S00,SO0,~O0

C CONVERGENCE NOT OBTAINED -SPLIT INTERVAL AND ADO TO LIST
C TEST FOR POSSIBLE LIST OVERFLOW

tOO IF IN-)0) ~01,600.600
&01 F ~ I N ? * 3) - F?

F S I N ~ + 2 I = FO3
F S I N ~ | I " F2
F S I N 2) • FO
A $ I N + | I = A * * ~ e M I
P V A L I N I = V N E W l
P V A L I N ~ | I = V N E W 2
N=Nel
GO TO 105

C CONVERGENCE OBTAINED -ADD FXTRAPOLATED P A R T I A L SUN TO
C T O T A L - - A D J U S T ERROR AND INTERVAL

~O0 VAL = VAL ÷VNEW-ERR
EPS - EPS-ABS(ERR)
N = N - I
fl=A
I F I N) T O 0 * T 0 0 * | O 5

C CONVERGENCE FAILURE - R O U T I N E RETURNS E R C = ! . E * 3 0
C O P T I O N A L ERROR ~ESSAGE ~AY BE INSERTED HERE

6 0 0 FRCOS-ERC
RETURN

C COMPUTATIONS CC~PLETED SUCCESSFULLY
TO0 FRCOS= VAL

RETURN

360

Algorithm 428

Hu-Tucker Minimum
Redundancy Alphabetic
Coding Method [Z]
J.M. Yohe* [Recd. 2 January 1970, 12 February 1971,
and 21 June 1971]
Mathematics Research Center, University of
Wisconsin, Madison, WI 53706

Key Words and Phrases: information theory, coding theory,
Hu-Tucker method, minimum redundancy coding

CR Categories: 5.6

Description
This algorithm implements the Hu-Tucker method of variable

length, minimum redundancy alphabetic binary encoding [1]. The
symbols of the alphabet are considered to be an ordered forest of n
terminal nodes. Two nodes in an ordered forest are said to be
tentative-connecting if the sequence of nodes between the two given
nodes is either empty or consists entirely of nonterminal nodes.

An interval of nodes each pair of which is a tentative-connecting
pair is called a tentative connecting string.

Given an ordered forest, we create a new ordered forest with one
less tree by combining a pair of tentative-connecting nodes iz, i2
such that Q[il] -t- Q[i2] is minimal. Such a pair is said to have mini-
mal weight sum. The old nodes iz and i2 are eliminated, and the new
node replaces the first of the former nodes in the ordering. Its weight
is the sum of the weights of the former nodes.

The original forest will, after a finite number of steps, be con-
nected into a single tree. This tree will not, in general, satisfy the
order-preserving requirement. However, it is shown in [1] that the
path lengths are feasible for the construction of a tree which does
satisfy this requirement and is, moreover, minimal in cost.

The present procedure finds a minimal cost tree whose longest
path length and total path length are minimal. This was done for the
nonalphabetic case by Schwartz [3], and his work carries over
directly to the alphabetic case by virtue of the fact that any optimal
alphabetic encoding can be constructed by the Hu-Tucker method,
simply by modifying the choice of which tentative-connecting nodes
are combined. This procedure therefore represents a modification of
the Hu-Tuckcr algorithm to incorporate these ideas of Schwartz.

During the procedure, the array L is used to determine which
roots are tentative-connecting. If L is initially filled with l ' s instead
of O's, any pair of nodes will be considered tentative-connecting, and
the procedure will implement Huffman's method [2], giving the
same results as the "bot tom merging" method of Schwartz and
Kallick [4]. This is because this procedure picks, among those pairs
with minimal weight sum, the first pair having minimal length sum.

Modifying the procedure to pick the first pair having maximal
length sum would be equivalent to the "top merging" method of
Schwartz and Kallick, and would maximize the total number of
digits and the maximal length of the code in alphabetic case (and in
the nonalphabetic case, if the L-array is initially filled with l 's).

The decision tree may be obtained from the branch lengths by
combining the first node of maximal path length with the second

* Sponsored by the United States Army under Contract No.:
DA-31-124-ARO-D-462.

Communications May 1972
of Volume 15
the ACM Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355602.361319&domain=pdf&date_stamp=1972-05-01

node of maximal path length to form a new node with path length
one less than that of the original nodes, iterating the procedure until
only one node (the root) remains. The code can then be constructed
by assigning the value 0 to the first node on the next level from the
root and 1 to the second node, appending 0 or respectively 1 to the
ith level encoding of a node to obtain the encoding for the first or
second son on the (i q- 1)-th level.

References
1. Hu, T.C., and Tucker, A.C. Optimal computer search trees and
variable-length alphabetical codes. S l A M J. Appl. Math. (to appear).
2. Huffman, David A. A method for the construction of
minimum-redundancy codes. Proc. I .R.E. 40 (1952), 1098-1101.
3. Schwartz, Eugene S. An optimum encoding with minimum
longest code and total number of digits. InJbrm. Contr. 7 (1964),
37-44.
4. Schwartz, Eugene S., and Kallick, Bruce. Generating a
canonical prefix encoding. Comm. A C M 7 (1964), 166-169.

Algorithm
procedure Hutree (n, Q, L) ;

value n; integer n; integer array Q, L;
comment n is the number of symbols in the alphabet, and Q is a

vector of length n. Q[i] is the weight to be attached to the ith
symbol in the alphabet.

The output of the procedure is the vector L of length n. L[i] is
the length of the path to the ith symbol of the alphabet in a tree of
minimal cost (i.e. the sum of the Q[i] X L[i] is minimal) which has
the further property that, subject to minimality of cost, the sum of
the L[i] and max L[i] are minimal;

begin
integer maxn, m, i;
integer arrayP[1 : n], s [l : n - 1], d[1 : n - 1];
comment P is used to hold the weights of the trees in the ordered

forest, beginning with the alphabet at the start of the procedure
and ending with the tree at the conclusion of the procedure. L is
used during the procedure to hold information relating to the
length sums. At the conclusion of the procedure, L is used to
return the path lengths.

If il < i2 and nodes il and i2 are connected on the mth pass
through the body of the algorithm, then P[il] will be set equal
to P[il] -I- P[i2], which is the weight of the new node, and P[i2]
will be set to zero to indicate that node i2 is no longer a partici-
pating node. L[il] is set equal to L[il] q- L[i2] q- 1, which is one
less than the number of terminal nodes which are descended
from the new node. This number is also one less than the incre-
ment to the total path length which would result from connect-
ing the new node il in a subsequent pass through the body of
the algorithm. The value of L[i2] is irrelevant during the re-
mainder of the procedure. The s and d vectors are used to
record connections of tentative-connecting nodes, s[m] is set to
i l , which is both the ordered position of the leftmost node and
the ordered position of the new node, and dim] is set to i2 ,
which is the ordered position of the rightmost node.

The variable maxn is set to a number which is larger than the
sum of the elements of Q.

The following simple example should be of some assistance
in understanding the procedure. Assume the procedure is called
with n = 5 and Q = (3, 1, 1, 1, 3). The evolution of the vectors

BI:

B2:

P, L, s, and d is shown in the following table. Values which are
not relevant are indicated by dashes.

m 0 1 2 3 4

P[1] 3 3 3 6 9
P[2] 1 2 3 3 0
P[3] 1 0 0 0 0
P[4] 1 1 0 0 0
P[5] 3 3 3 0 0

L[1] 0 0 0 1 4
L[2] 0 1 2 2 -
L[3] 0
L[4] o o
L[5] 0 0 0

s[m] 2 2 1 1
d[m] 3 4 5 2;

maxn : = 1 ;
for i : = 1 step 1 until n do
begin

L[i] := 0;e[i] := Q[i];
maxn := maxn + Q[i];

end
comment Since there are n terminal nodes in the original forest, we

must make exactly n -- 1 connections. On each pass through
the body of this procedure we will determine the next optimal
connection. We initialize by setting the minimum weight to a
large value to insure that any valid connection chosen will
replace the bogus connection initially indicated;

for m := 1 step 1 untiln -- 1 do
begin

integer j , j l , rain 1, re&L1, j2, m&2, minL2, pt, pmin, sumLt,
sumL, il, i2;

i : = 0 ;
pmin := maxn;

i : = i + 1 ;
comment At B2 we begin our scan of the next tentative-connect-

ing string to find the most desirable pair in the string. If
necessary, we skip over any previously absorbed nodes. We
initialize the most desirable node to the first in the tentative-
connecting string, and the record of the second most desirable
node is initialized to reflect a very large minimum. This
insures that any participating node will be more desirable and
that valid information will replace the bogus information as
soon as the next participating node is encountered. If the
first participating node is the last node in the forest, or if no
further nodes are participating nodes, then we have com-
pleted our scan for the next tentative-connecting pair and we
go to E1 to make the optimal connection;

if il _> n then go to E1 else
ifP[i] = 0 then go to B1 ;
rain2 := maxn;
j l := i;
minL1 := L[i]; m & l := P[i];
comment We now begin our scan of all remaining nodes in the

current tentative-connecting string. The string will end as
soon as we have examined a participating node which has not
previously been combined. The purpose of this scan is to
locate the optimal tentative-connecting pair in the tentative-
connecting string. The optimal pair is defined to be that pair
with minimal weight and minimal length sum which occurs
first in the tentative-connecting string;

for j : = i -k- 1 step 1 until n do
begin
comment We check for P[j] > 0 to see whether thej th node is a

participating node. IfP[j] = 0, the node has previously been
absorbed and we pass over the empty space;

361 Communications May 1972
of Volume 15
the ACM Number 5

E2:

E l :

i fP[j] > 0then
begin

i fP[j] < m&l V (P[J] = m&l A L[j] < minL1) then
begin
comment If t he j t h node is "more desirable" than either o f

the previously most desirable tentative-connecting nodes,
we record the previous most desirable node as the second
most desirable node and record the j th node as being
most desirable;
min2 := minl ; j2 := j l ; minL2 := minL1;
mini := P[j] ; j l :=j;minL1 := L[j];

end
else i fP[j] < rain2 V (P[J] = rain2 A L[j] < minL2) then
begin
comment If the j th node was not more desirable than the

previous most desirable node, but is more desirable
than the previous second most desirable node, we record
the j th node as being second most desirable;
rain2 := P[j] ; j2 := j ; minL2 := L[j];

end;
ifL[j] = 0 then go to E2;
comment If L[j] = 0 then we have reached the end of the

current tentative-connecting string, and we have found
the most desirable pair in that string. We now go to
compare it with the previous most desirable pair in the
forest;

end
end;

pt := P[/1] + P[j2];
sumLt := L[jl] + L[j2];
comment We have now found the next tentative-connecting

pair, namely the j l and j2 nodes. Here, we test this new pair
against the previous minimal pair to see whether the new pair
is more desirable. The new pair is more desirable if its weight is
less than that o f the previous pair, or if its weight is equal to
that o f the previous pair and its length sum is smaller;

if pt < pmin V (pt = pm& A sumLt < sumL) then
begin

pmin := pt;
il : = j l ; i 2 : = j 2 ;
sumL := sumLt;

end;
comment The next tentative-connecting string begins with the

last participating node in the current tentative-connecting
string. Hence we replace i by j and return to B2 to begin
processing the next tentative-connecting string;

i : = j ;
go to B2;
comment Upon reaching E1 the procedure has scanned all

tentative-connecting pairs and the decision has been made to
connect nodes in order positions il and i2. We switch il and
i2 if necessary to insure that il < i2. We record the connec-
tion by setting s[m] : = il and dim] : = i2. The weight o f the
new node is placed in the weight table in posit ion il (the
order position of the new node). The weight in the order
position of the second combined node is set to zero to indi-
cate that the node has now been absorbed and no longer
participates in the scan. L[il] is set to one less than the incre-
ment to the path length sum which would result f rom con-
necting the new node;

if il > i2 then
begin

j l := i l ; i l := i 2 ; i 2 : = j l ;
end;
s[m] := il;d[m] := i2;
P[il] := pmin;P[i2] := 0;
L[il] := sumL + 1;

end;

362

comment s[n - 1] gives the ordered location of the root o f the
tentative tree. We now generate the path lengths as follows:
the path length to the root is zero, and if the path length to any
node is i, then the path length to each of its sons is i + 1. The
two sons of the node whose order position is given in s[m] lie in
the order positions given in s[m] and d[m]. Moreover, if an
order position is given in s[m] for m < n - 1 then that order
position must be listed in s[j] or d[j] for s o m e j > m, so the path
lengths obtained by this algori thm are well defined.

Returning to our example, we now trace the construction of
the vector of path lengths. This is shown in the following table.
For the sake of clarity, the vectors s and d are now shown in
reverse order.

m 4 3 2 1

L[I] 0 1 2 2 2
L[2I - 1 1 2 3
L[31 3
L[4I 2 2
L[51 2 2 2

s[m] 1 1 2 2
d[m] 2 5 4 3

Thus the final value of the vector L is (2, 3, 3, 2, 2) ;
L[s[n -- 1]] := 0;
f o r m : = n - - l s t e p - - l u n t i l l d o
L[s[m]] := Lid[m]] := L[s[m]] + 1;

end;

Communicat ions May 1972
of Volume 15
the A C M Number 5

