```
C SET UP FIRST IHItHVAL FUR SIMNSON NULE
    100 FSi2)=F(1.5*T)*(OST.50WT)
        ST3)= F(1):* cosiwT)
        R=T
        Go ro ins
C AOJUST UPPER LIMIT
    101 NP* IFIXIALOR,IWT/PI>561/ALNZIFI
        TA= 2**NP* P1256/W
C SET UP FIRST INTERVAL FOR FILON RULE
        FSC7I= FCI.5*TA)
        FS(3)= FC(TA)
    TAKE LAST INTERVAL FROM LIST
    105 A=AS(N
        MI=B-A
        WHI=W=HI
        N2=2*N
        FI=FS(N2-1)
        2* FSIN2
        F3= FS(M2+1)
        rO= 8-.75*HI
        KO3 = B-. 25*H1
C IEST TO DEIERMINE WHICH QUADRATURE RULE IS APPLICABLE
        IFI WHI - PI256 -ROC , 110.110.111
    110 1FI WHI - PI256 +ROC ) 200.200.20
    111 IFIWMI - P!2 -ROC 1 220.220.230
C ESTIMATE BY SIMPSON RULE
    TON FO: FC(XO)*COS(w*xO)
        FO3*F(IXO3)*COS(w*xO3)
        VNFWl= Hl*(FI+4**FQ+F2I/12*
        VNEW2= HI*(F2+4.*FQ3+F3)/12
        VNEW= VNEWI&VNEW2
        ERR= (PVALIN)-VNEWI/IS.
        GO IO 300
C SWITCH FROM FILON TO SIMPSON RULE
    201 F1 = F1. COSIW*A)
        F2 =F2* Cosiw*IB-.S*HII)
        F3-F3* Cos(w*8)
        PVAL(N)= MI=(F)+6.*F2+F3)/6
        GO TO 200
C ESTIMATE BY FILON
    220 M=.250mI
        FO= FC(xO)
        FOR= F(IXOA)
        NH= IFIXIALOGIPI2/WHII/ALN2*ROC:*I
        WI= WIC(NH)
        W7=-W2(INH)
        w3:W3C(NH)
        WAEW*A
        *A1=W*1B-.5*HI
        W=W*B
        COI= CO&{wAl)
        SII= SINIWA!
        VNFWI : H*I(WI*COKImA)*W2*SIN(WA)|*F! + W3*COS(W*xO)*
        * FO+IWI*COL-W2*SIII*F2)
        VNEW2 = M*I(WI*COL +A2*SII)*F2 + W3*COS(W*xOS)*FOB
```



```
        VNEW=VNEW1 - VNEW
        ERT = FR(NH)
        FRR=ERT*(PVAL(N)-VNF'N!/(1.-ERT)
    C SKIP CONVERGENCE IESI IF IVIEKVAL= ONE PKRIOD
        - JFIWHI-PI2+ ROC, 300.300.400
    ESTIMATE BY FILONI
    230 FOFFC(XO)
        FO3=F(1)03)
        W2=w-W
        COMST=8./(W2*HI)
        VNEWIE CONST*(F1-2.-FO+F2)
        VNEW2= CONST*(F2-2.*FO3+F3)
        VNEW= VNEW1+VNEW2
        W2=6./W2
        WOHIOHI
        ERT=(W3/32.-W2)/(w3/8.-w2)
        ERR* ERT*(PVAL(N)-VNEW)/II.-ERT)
    C CONVERGENCE TEST
    SKIP CONVERGENCE TEST IF HI.GT.HL
    300 JFIMI- HLI 301.301,400
    301 IF(ABS(ERR)-EPS*HI/B) 500,500,400
    CONVERGENCE NOT OBTAINED -SPLIT IMTERVAL AND ADO TO LIS
C CONVERGENCE NOTLOBTAINE OVERFLOW
    400 (F(N-30) 401.600.600
    400 FF(N-30)= (F)
        FS(N2+2)=FO3
        FS(N2+1)=F2
        FSIN2:*FO
        ASIN+1IEA+.5#HT
        PVAL(N)=VNEW1
        PVAL(N+1)=VNEW2
            N=N+1
            GO TO 105
C CONVERGENCE OBTAINED -ADD EXTRAPOLATED PARTIAL SUM TO
C TOTAL--ADJUST ERROR AND INTERVAL
    300 VAL = VAL +VNEW-ERR
        EPS = EPS-ABS(ERR)
        N=N-1
            N=A
                JF(N) 700.700.105
C CONVERGENCE FAILURE - ROUTINE RETURNS ERCEI-E+30
C OPIIONAL ERROR MESSAGE MAY BE INSERTED HERE
    600 FRCOS=ERC
        RETURN
    C COMPUTATIONS COMPLETED SUCCESSFULLY
    7OO FRCOS: VAL
        RETURN
            END
```

Algorithm 428
Hu-Tucker Minimum Redundancy Alphabetic Coding Method [Z]

J.M. Yohe* [Recd. 2 January 1970, 12 February 1971, and 21 June 1971]
Mathematics Research Center, University of Wisconsin, Madison, WI 53706

[^0]
Description

This algorithm implements the Hu-Tucker method of variable length, minimum redundancy alphabetic binary encoding [1]. The symbols of the alphabet are considered to be an ordered forest of n terminal nodes. Two nodes in an ordered forest are said to be tentative-connecting if the sequence of nodes between the two given nodes is either empty or consists entirely of nonterminal nodes.

An interval of nodes each pair of which is a tentative-connecting pair is called a tentative connecting string.

Given an ordered forest, we create a new ordered forest with one less tree by combining a pair of tentative-connecting nodes i_{1}, i_{2} such that $Q\left[i_{1}\right]+Q\left[i_{2}\right]$ is minimal. Such a pair is said to have minimal weight sum. The old nodes i_{1} and i_{2} are eliminated, and the new node replaces the first of the former nodes in the ordering. Its weight is the sum of the weights of the former nodes.

The original forest will, after a finite number of steps, be connected into a single tree. This tree will not, in general, satisfy the order-preserving requirement. However, it is shown in [1] that the path lengths are feasible for the construction of a tree which does satisfy this requirement and is, moreover, minimal in cost.

The present procedure finds a minimal cost tree whose longest path length and total path length are minimal. This was done for the nonalphabetic case by Schwartz [3], and his work carries over directly to the alphabetic case by virtue of the fact that any optimal alphabetic encoding can be constructed by the Hu-Tucker method, simply by modifying the choice of which tentative-connecting nodes are combined. This procedure therefore represents a modification of the Hu-Tucker algorithm to incorporate these ideas of Schwartz.

During the procedure, the array L is used to determine which roots are tentative-connecting. If L is initially filled with 1 's instead of 0 's, any pair of nodes will be considered tentative-connecting, and the procedure will implement Huffman's method [2], giving the same results as the "bottom merging" method of Schwartz and Kallick [4]. This is because this procedure picks, among those pairs with minimal weight sum, the first pair having minimal length sum.

Modifying the procedure to pick the first pair having maximal length sum would be equivalent to the "top merging' method of Schwartz and Kallick, and would maximize the total number of digits and the maximal length of the code in alphabetic case (and in the nonalphabetic case, if the L-array is initially filled with 1 's).

The decision tree may be obtained from the branch lengths by combining the first node of maximal path length with the second

* Sponsored by the United States Army under Contract No.: DA-31-124-ARO-D-462.

Communications	May 1972
of	Volume 15
the ACM	Number 5

node of maximal path length to form a new node with path length one less than that of the original nodes, iterating the procedure until only one node (the root) remains. The code can then be constructed by assigning the value 0 to the first node on the next level from the root and 1 to the second node, appending 0 or respectively 1 to the i th level encoding of a node to obtain the encoding for the first or second son on the $(i+1)$-th level.

References

1. Hu, T.C., and Tucker, A.C. Optimal computer search trees and variable-length alphabetical codes. SIAM J. Appl. Math. (to appear).
2. Huffman, David A. A method for the construction of minimum-redundancy codes. Proc. I.R.E. 40 (1952), 1098-1101.
3. Schwartz, Eugene S. An optimum encoding with minimum
longest code and total number of digits. Inform. Contr. 7 (1964), 37-44.
4. Schwartz, Eugene S., and Kallick, Bruce. Generating a
canonical prefix encoding. Comm. ACM 7 (1964), 166-169.

Algorithm

procedure Hutree (n, Q, L);
value n; integer n; integer array Q, L;
comment n is the number of symbols in the alphabet, and Q is a vector of length $n . Q[i]$ is the weight to be attached to the i th symbol in the alphabet.

The output of the procedure is the vector L of length $n . L[i]$ is the length of the path to the i th symbol of the alphabet in a tree of minimal cost (i.e. the sum of the $Q[i] \times L[i]$ is minimal) which has the further property that, subject to minimality of cost, the sum of the $L[i]$ and $\max L[i]$ are minimal;

begin

integer maxn, m, i;
integer array $P[1: n], s[1: n-1], d[1: n-1]$;
comment P is used to hold the weights of the trees in the ordered forest, beginning with the alphabet at the start of the procedure and ending with the tree at the conclusion of the procedure. L is used during the procedure to hold information relating to the length sums. At the conclusion of the procedure, L is used to return the path lengths.

If $i 1<i 2$ and nodes $i 1$ and $i 2$ are connected on the m th pass through the body of the algorithm, then $P[i 1]$ will be set equal to $P[i 1]+P[i 2]$, which is the weight of the new node, and $P[i 2]$ will be set to zero to indicate that node $i 2$ is no longer a participating node. $L[i 1]$ is set equal to $L[i 1]+L[i 2]+1$, which is one less than the number of terminal nodes which are descended from the new node. This number is also one less than the increment to the total path length which would result from connecting the new node $i 1$ in a subsequent pass through the body of the algorithm. The value of $L[i 2]$ is irrelevant during the remainder of the procedure. The s and d vectors are used to record connections of tentative-connecting nodes. $s[m]$ is set to $i 1$, which is both the ordered position of the leftmost node and the ordered position of the new node, and $d[m]$ is set to $i 2$, which is the ordered position of the rightmost node.
The variable maxn is set to a number which is larger than the sum of the elements of Q.
The following simple example should be of some assistance in understanding the procedure. Assume the procedure is called with $n=5$ and $Q=(3,1,1,1,3)$. The evolution of the vectors
P, L, s, and d is shown in the following table. Values which are not relevant are indicated by dashes.

m	0	1	2	3	4
$P[1]$	3	3	3	6	9
$P[2]$	1	2	3	3	0
$P[3]$	1	0	0	0	0
$P[4]$	1	1	0	0	0
$P[5]$	3	3	3	0	0
$L[1]$	0	0	0	1	4
$L[2]$	0	1	2	2	-
$L[3]$	0	-	-	-	-
$L[4]$	0	0	-	-	-
$L[5]$	0	0	0	-	-
$s[m]$	2	2	1	1	
$d[m]$	3	4	5	$2 ;$	

maxn := 1;

for $i:=1 \operatorname{step} 1$ until \boldsymbol{n} do
begin
$L[i]:=0 ; P[i]:=Q[i] ;$
maxn $:=$ maxn $+Q[i] ;$
end
comment Since there are n terminal nodes in the original forest, we must make exactly $n-1$ connections. On each pass through the body of this procedure we will determine the next optimal connection. We initialize by setting the minimum weight to a large value to insure that any valid connection chosen will replace the bogus connection initially indicated;
for $m:=1$ step 1 until $n-1$ do
begin
integer $j, j 1, \min 1, \min L 1, j 2, \min 2, \min L 2, p t, p m i n, s u m L t$, sumL, $i 1, i 2$;
$i:=0$;
pmin $:=$ maxn;
B1:
$i:=i+1 ;$
comment At $B 2$ we begin our scan of the next tentative-connecting string to find the most desirable pair in the string. If necessary, we skip over any previously absorbed nodes. We initialize the most desirable node to the first in the tentativeconnecting string, and the record of the second most desirable node is initialized to reflect a very large minimum. This insures that any participating node will be more desirable and that valid information will replace the bogus information as soon as the next participating node is encountered. If the first participating node is the last node in the forest, or if no further nodes are participating nodes, then we have completed our scan for the next tentative-connecting pair and we go to $E 1$ to make the optimal connection;
B2:
if $i 1 \geq n$ then go to $E 1$ else
if $P[i]=0$ then go to $B 1$;
$\min 2:=\operatorname{maxn}$;
$j 1:=i$;
$\min L 1:=L[i] ; \min 1:=P[i] ;$
comment We now begin our scan of all remaining nodes in the current tentative-connecting string. The string will end as soon as we have examined a participating node which has not previously been combined. The purpose of this scan is to locate the optimal tentative-connecting pair in the tentativeconnecting string. The optimal pair is defined to be that pair with minimal weight and minimal length sum which occurs first in the tentative-connecting string;

for $j:=i+1$ step 1 until n do

begin
comment We check for $P[j]>0$ to see whether the j th node is a participating node. If $P[j]=0$, the node has previously been absorbed and we pass over the empty space;

May 1972
Volume 15
Number 5

```
    if P[j]>0 then
        begin
            if P[j]<\operatorname{min}1\vee(P[j]=\operatorname{min}1\wedgeL[j]<\operatorname{minL1) then}
            begin
            comment If the jth node is "more desirable" than either of
                the previously most desirable tentative-connecting nodes,
                we record the previous most desirable node as the second
                most desirable node and record the jth node as being
                most desirable;
                min2 := min 1; j2:= 11; minL2 := minL1;
                min1 := P[j];j1:= j;minL1:=L[j];
        end
        else if P[j]<min2\vee(P[j]=\operatorname{min}2\wedgeL[j]<\operatorname{minL2})\mathrm{ then}
        begin
        comment If the jth node was not more desirable than the
                previous most desirable node, but is more desirable
                than the previous second most desirable node, we record
                the jth node as being second most desirable;
                min2 := P[j];j2:=j; minL2:=L[j];
        end;
        if }L[j]=0\mathrm{ then go to }E2
        comment If L[j] = 0 then we have reached the end of the
                current tentative-connecting string, and we have found
                the most desirable pair in that string. We now go to
                compare it with the previous most desirable pair in the
                forest;
    end
    end;
E2:
    pt:= P[j1] + P[j2];
    sumLt:=L[j1] +L[j2];
    comment We have now found the next tentative-connecting
        pair, namely the j1 and j2 nodes. Here, we test this new pair
        against the previous minimal pair to see whether the new pair
        is more desirable. The new pair is more desirableif itsweight is
        less than that of the previous pair, or if its weight is equal to
        that of the previous pair and its length sum is smaller;
    if pt<pmin \ (pt=pmin ^sumLt<sumL) then
    begin
        pmin:= pt;
        i1 := j1; i2 := j2;
        sumL := sumLt;
    end;
    comment The next tentative-connecting string begins with the
        last participating node in the current tentative-connecting
        string. Hence we replace i by j}\mathrm{ and return to B2 to begin
        processing the next tentative-connecting string;
    i:= j;
    go to B2;
    comment Upon reaching E1 the procedure has scanned all
        tentative-connecting pairs and the decision has been made to
        connect nodes in order positions il and i2. We switch il and
        i2 if necessary to insure that il < i2. We record the connec-
        tion by setting s[m]:=i1 and d[m]:=i2. The weight of the
        new node is placed in the weight table in position il (the
        order position of the new node). The weight in the order
        position of the second combined node is set to zero to indi-
        cate that the node has now been absorbed and no longer
        participates in the scan. L[il] is set to one less than the incre-
        ment to the path length sum which would result from con-
        necting the new node;
E1:
    if i1>i2 then
    begin
    j1:= i1; i1:= i2; i2:= j1;
    end;
    s[m]:= i1;d[m]:= i2;
    P[i1]:= pmin;P[i2]:= 0;
    L[i1]:= sumL + 1;
end;
```


[^0]: Key Words and Phrases: information theory, coding theory, Hu-Tucker method, minimum redundancy coding

 CR Categories: 5.6

