
C SET UP F I R S T  I h T c ~ V A L  FUR SIMPSON RULE 
I 0 D  F % { ? ) = F ( ( . 5 * T ) o C ~ S C . 5 e W T )  

F S I ~ I  s F C I T I  • C O S I w T I  
R=T 
GO TO InS 

( ADJUST UPPER LIMIT 
1 0 |  NO* I F I X i A L O ~ f w T I P I T ~ 6 I I A L N ~ ) ÷  l 

TAm 2 I I N P  • P I 2 $ 6 / M  
R=TA 

C ~ET UP F I R S T  INTERVAL FOR F I L O N  RULE 
F % I T I =  F C | e ~ I T A )  
F ~ ( ~ l *  F C I T A I  

( TAKE LAST INTERVAL FROM LIST 
| 0 5  A=A~(N)  

M I : O - A  
W H I - M I H I  
N?.2eN 
F | s  F ~ f N 2 - 1 !  
F?w F , I N 2 I  
Ftm F , l ~ ? + | l  
XO~ 8 - . 7 5 * H I  
XO3 = B-*25eHI 

( ~EST TO DETERMINE w ~ I C H  QuADRATuRb RuLE I $  A P P L I C A B L ~  
I F I  WHI - P 1 2 ~ 6  -ROC ) l i D . l i D . I l l  

I l O  I F I  WHI - P 1 2 5 6  *ROC I 2 0 0 . 2 0 0 * 2 0 1  
111 IF I  WHI - P I ?  -ROC I 2 2 0 , 2 2 0 * 2 3 0  

C ESTIMATE BY SIMPSON RULE 
7 0 0  F O -  FCIXOI*COSIwtXO) 

F O ~ * F C ( X Q 3 I e C O S I w * x O 3 )  
V N [ W | s  H I e I F | + 4 * e F Q + F 2 I / I Z *  
VNEW2- Hle lF2*A,eFO3÷F3) / I2*  
VN~W- VNEWI+VNEW2 
ERR- (PVAL(NI-VNEWI/15. 
GO TO 3 0 0  

SWITCH FRO~ FILON TO SIMPSON RULE 
?OI FI  # F i e  COSIWeA) 

F2  = F 2 e  COSIWeIB-eS*HI|) 
F3  • F 3 *  COSIR~BI 
P V A L I N ) =  H I S ( F l + ~ * e F 2 ÷ F 3 ) / 6 *  
GO TO 2 0 0  

C ESTIMATE BY FILON2 
~ O  H = e ~ S I H I  

F~= F C | X ~ I  
FO~= F C ( X O ~ )  
NHm I F I X I A L O G I P I 2 / W H I I / A L N 2 + R O C } + |  
WI=  W | C I N H I  
W?=-W2CINH) 
W)s W)CINH) 
WAtWOA 
W A I : W O f B - . ~ i H I |  
WB=WeB 
CO1: COKIWAI) 
S I l -  ~IN(wAII  
VNFW| " HelIwIeCOSi~AI*wZeSIN(wAI)eFI ÷ wD*CUS(WeXO)* 

• FO* iwI*COI-w?*SI I I *F21 
VNFW2 : H e I I w I 4 C O !  +*2*Sl ! )wF2 * w3*COSiW*XQJ)eFQ3 

S +(RI*COSIWB) -W2*SINIwO))*F3) 
VNEW=VNEWI*VNEW2 
E ~ T :  F R I N H )  
FRO = ERTeiPVALIN)-VNFW)/(I,-ERT) 

C SKIP CONVERGENCE ILSI IF  INTERVAL = ONE PERIOD 
" IF IWHI-  PI?÷ ROC I 300.300.400 

C ESTIMATE BY FILON! 
2 3 0  F O - F C I X O I  

F O ~ = F C I X O ~ I  
W2=WeW 
C O N S T = 0 * / I W ~ e H l l  
VNEWI 8 CONSTiIFI-2**FO+F2I 
VNEW2" CONSTe(F~-2.eFQ)+F3) 
VNEW- VNEWI+VNEW2 
W 2 = 6 . / W 2  
W 3 e H I I H I  
E R T = I W 3 1 3 2 . - W 2 I l I W } / 8 . - W 2 I  
ERR= E R T I I P V A L I N I - V N E W ) / I | .  - E R T I  

C CONVERGENCE TEST 
• SKIP CONVERGENCE TEST IF HI.GT.HL 

)00 I F I M I -  ML) ~01~301,~00 
301 IFIABSIERRI-EPS~HI/B) S00,SO0,~O0 

C CONVERGENCE NOT OBTAINED -SPLIT INTERVAL AND ADO TO LIST 
C TEST FOR POSSIBLE LIST OVERFLOW 

tOO IF IN- )0 )  ~01,600.600 
&01 F ~ I N ? * 3 ) -  F?  

F S I N ~ + 2 I  = FO3 
F S I N ~ | I "  F2 
F S I N 2 )  • FO 
A $ I N + | I = A * * ~ e M I  
P V A L I N I = V N E W l  
P V A L I N ~ | I = V N E W 2  
N=Nel 
GO TO 105  

C CONVERGENCE OBTAINED -ADD FXTRAPOLATED P A R T I A L  SUN TO 
C T O T A L - - A D J U S T  ERROR AND INTERVAL 

~O0 VAL = VAL ÷VNEW-ERR 
EPS - EPS-ABS(ERR) 
N = N - I  
fl=A 
I F I N )  T O 0 * T 0 0 * | O 5  

C CONVERGENCE FAILURE - R O U T I N E  RETURNS E R C = ! . E * 3 0  
C O P T I O N A L  ERROR ~ESSAGE ~AY BE INSERTED HERE 

6 0 0  FRCOS-ERC 
RETURN 

C COMPUTATIONS CC~PLETED SUCCESSFULLY 
TO0 FRCOS= VAL 

RETURN 
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Hu-Tucker Minimum 
Redundancy Alphabetic 
Coding Method [Z] 
J.M. Yohe* [Recd. 2 January 1970, 12 February 1971, 
and 21 June 1971] 
Mathematics Research Center, University of 
Wisconsin, Madison, WI 53706 

Key Words and Phrases: information theory, coding theory, 
Hu-Tucker method, minimum redundancy coding 

CR Categories: 5.6 

Description 
This algorithm implements the Hu-Tucker method of variable 

length, minimum redundancy alphabetic binary encoding [1]. The 
symbols of the alphabet are considered to be an ordered forest of n 
terminal nodes. Two nodes in an ordered forest are said to be 
tentative-connecting if the sequence of nodes between the two given 
nodes is either empty or consists entirely of nonterminal nodes. 

An interval of nodes each pair of which is a tentative-connecting 
pair is called a tentative connecting string. 

Given an ordered forest, we create a new ordered forest with one 
less tree by combining a pair of tentative-connecting nodes iz, i2 
such that Q[il] -t- Q[i2] is minimal. Such a pair is said to have mini- 
mal weight sum. The old nodes iz and i2 are eliminated, and the new 
node replaces the first of the former nodes in the ordering. Its weight 
is the sum of the weights of the former nodes. 

The original forest will, after a finite number of steps, be con- 
nected into a single tree. This tree will not, in general, satisfy the 
order-preserving requirement. However, it is shown in [1] that the 
path lengths are feasible for the construction of a tree which does 
satisfy this requirement and is, moreover, minimal in cost. 

The present procedure finds a minimal cost tree whose longest 
path length and total path length are minimal. This was done for the 
nonalphabetic case by Schwartz [3], and his work carries over 
directly to the alphabetic case by virtue of the fact that any optimal 
alphabetic encoding can be constructed by the Hu-Tucker method, 
simply by modifying the choice of which tentative-connecting nodes 
are combined. This procedure therefore represents a modification of 
the Hu-Tuckcr algorithm to incorporate these ideas of Schwartz. 

During the procedure, the array L is used to determine which 
roots are tentative-connecting. If L is initially filled with l ' s  instead 
of O's, any pair of nodes will be considered tentative-connecting, and 
the procedure will implement Huffman's method [2], giving the 
same results as the "bot tom merging" method of Schwartz and 
Kallick [4]. This is because this procedure picks, among those pairs 
with minimal weight sum, the first pair having minimal length sum. 

Modifying the procedure to pick the first pair having maximal 
length sum would be equivalent to the "top merging" method of 
Schwartz and Kallick, and would maximize the total number of 
digits and the maximal length of the code in alphabetic case (and in 
the nonalphabetic case, if the L-array is initially filled with l 's). 

The decision tree may be obtained from the branch lengths by 
combining the first node of maximal path length with the second 

* Sponsored by the United States Army under Contract No.: 
DA-31-124-ARO-D-462. 
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node of maximal path length to form a new node with path length 
one less than that of the original nodes, iterating the procedure until 
only one node (the root) remains. The code can then be constructed 
by assigning the value 0 to the first node on the next level from the 
root and 1 to the second node, appending 0 or respectively 1 to the 
ith level encoding of a node to obtain the encoding for the first or 
second son on the (i q- 1)-th level. 
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variable-length alphabetical codes. S l A M  J. Appl. Math.  (to appear). 
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Algorithm 
procedure Hutree (n, Q, L) ; 

value n; integer n; integer array Q, L; 
comment n is the number of symbols in the alphabet, and Q is a 

vector of length n. Q[i] is the weight to be attached to the ith 
symbol in the alphabet. 

The output of the procedure is the vector L of length n. L[i] is 
the length of the path to the ith symbol of the alphabet in a tree of 
minimal cost (i.e. the sum of the Q[i] X L[i] is minimal) which has 
the further property that, subject to minimality of cost, the sum of 
the L[i] and max L[i] are minimal; 

begin 
integer maxn, m, i; 
integer arrayP[1 : n], s [ l : n -  1], d[1 : n -  1]; 
comment P is used to hold the weights of the trees in the ordered 

forest, beginning with the alphabet at the start of the procedure 
and ending with the tree at the conclusion of the procedure. L is 
used during the procedure to hold information relating to the 
length sums. At the conclusion of the procedure, L is used to 
return the path lengths. 

If il < i2 and nodes il and i2 are connected on the mth pass 
through the body of the algorithm, then P[il] will be set equal 
to P[il] -I- P[i2], which is the weight of the new node, and P[i2] 
will be set to zero to indicate that node i2 is no longer a partici- 
pating node. L[il] is set equal to L[il] q- L[i2] q- 1, which is one 
less than the number of terminal nodes which are descended 
from the new node. This number is also one less than the incre- 
ment to the total path length which would result from connect- 
ing the new node il in a subsequent pass through the body of 
the algorithm. The value of L[i2] is irrelevant during the re- 
mainder of the procedure. The s and d vectors are used to 
record connections of tentative-connecting nodes, s[m] is set to 
i l ,  which is both the ordered position of the leftmost node and 
the ordered position of the new node, and dim] is set to i2 ,  
which is the ordered position of the rightmost node. 

The variable maxn is set to a number which is larger than the 
sum of the elements of Q. 

The following simple example should be of some assistance 
in understanding the procedure. Assume the procedure is called 
with n = 5 and Q = (3, 1, 1, 1, 3). The evolution of the vectors 

BI: 

B2: 

P, L, s, and d is shown in the following table. Values which are 
not relevant are indicated by dashes. 

m 0 1 2 3 4 

P[1] 3 3 3 6 9 
P[2] 1 2 3 3 0 
P[3] 1 0 0 0 0 
P[4] 1 1 0 0 0 
P[5] 3 3 3 0 0 

L[1] 0 0 0 1 4 
L[2] 0 1 2 2 - 
L[3] 0 
L[4] o o 
L[5] 0 0 0 

s[m] 2 2 1 1 
d[m] 3 4 5 2; 

maxn : = 1 ; 
for i : = 1 step 1 until n do 
begin 

L[i] := 0;e[i] := Q[i]; 
maxn := maxn + Q[i]; 

end 
comment Since there are n terminal nodes in the original forest, we 

must make exactly n -- 1 connections. On each pass through 
the body of this procedure we will determine the next optimal 
connection. We initialize by setting the minimum weight to a 
large value to insure that any valid connection chosen will 
replace the bogus connection initially indicated; 

for m :=  1 step 1 untiln -- 1 do 
begin 

integer j ,  j l ,  rain 1, re&L1, j2, m&2, minL2, pt, pmin, sumLt, 
sumL, il,  i2; 

i : = 0 ;  
pmin := maxn; 

i : = i + 1 ;  
comment At B2 we begin our scan of the next tentative-connect- 

ing string to find the most desirable pair in the string. If 
necessary, we skip over any previously absorbed nodes. We 
initialize the most desirable node to the first in the tentative- 
connecting string, and the record of the second most desirable 
node is initialized to reflect a very large minimum. This 
insures that any participating node will be more desirable and 
that valid information will replace the bogus information as 
soon as the next participating node is encountered. If the 
first participating node is the last node in the forest, or if no 
further nodes are participating nodes, then we have com- 
pleted our scan for the next tentative-connecting pair and we 
go to E1 to make the optimal connection; 

if il _> n then go to E1 else 
ifP[i] = 0 then go to B1 ; 
rain2 := maxn; 
j l  := i; 
minL1 := L[i]; m & l  := P[i]; 
comment We now begin our scan of all remaining nodes in the 

current tentative-connecting string. The string will end as 
soon as we have examined a participating node which has not 
previously been combined. The purpose of this scan is to 
locate the optimal tentative-connecting pair in the tentative- 
connecting string. The optimal pair is defined to be that pair 
with minimal weight and minimal length sum which occurs 
first in the tentative-connecting string; 

for j  : = i -k- 1 step 1 until n do 
begin 
comment We check for P[j] > 0 to see whether thej th node is a 

participating node. IfP[j] = 0, the node has previously been 
absorbed and we pass over the empty space; 
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E2: 

E l :  

i fP[ j ]  > 0then 
begin 

i fP[ j ]  < m&l V (P[J] = m&l A L[j] < minL1) then 
begin 
comment If  t he j t h  node is "more  desirable" than either o f  

the previously most desirable tentative-connecting nodes, 
we record the previous most  desirable node as the second 
most  desirable node and record the j th  node as being 
most  desirable; 
min2 := minl ; j2  := j l ;  minL2 := minL1; 
mini := P[ j ] ; j l  :=j;minL1 := L[j]; 

end 
else i fP[ j ]  < rain2 V (P[J] = rain2 A L[j] < minL2) then 
begin 
comment If  the j th  node was not  more desirable than the 

previous most  desirable node, but is more  desirable 
than the previous second most desirable node, we record 
the j th  node as being second most desirable; 
rain2 := P[ j ] ; j2  :=  j ;  minL2 := L[j]; 

end; 
ifL[j] = 0 then go to E2; 
comment If  L[j] = 0 then we have reached the end of  the 

current tentative-connecting string, and we have found 
the most desirable pair in that string. We now go to 
compare it with the previous most  desirable pair in the 
forest; 

end 
end; 

pt :=  P[/1] + P[j2]; 
sumLt :=  L[jl]  + L[j2]; 
comment We have now found the next tentative-connecting 

pair, namely the j l  and j2 nodes. Here, we test this new pair 
against the previous minimal pair to see whether the new pair 
is more desirable. The new pair is more  desirable if its weight is 
less than that o f  the previous pair, or if its weight is equal to 
that o f  the previous pair and its length sum is smaller; 

if pt < pmin V (pt = pm& A sumLt < sumL) then 
begin 

pmin :=  pt; 
il  : = j l ; i 2 : = j 2 ;  
sumL :=  sumLt; 

end; 
comment The next tentative-connecting string begins with the 

last participating node in the current tentative-connecting 
string. Hence we replace i by j and return to B2 to begin 
processing the next tentative-connecting string; 

i : = j ;  
go to B2; 
comment Upon  reaching E1 the procedure has scanned all 

tentative-connecting pairs and the decision has been made to 
connect nodes in order positions il and i2. We switch il and 
i2 if necessary to insure that il  < i2. We record the connec- 
tion by setting s[m] : = il and dim] : = i2. The weight o f  the 
new node is placed in the weight table in posit ion il (the 
order position of  the new node). The weight in the order 
position of  the second combined node is set to zero to indi- 
cate that the node has now been absorbed and no longer 
participates in the scan. L[il] is set to one less than the incre- 
ment to the path length sum which would result f rom con- 
necting the new node; 

if il  > i2 then 
begin 

j l  :=  i l ; i l  :=  i 2 ; i 2 : = j l ;  
end; 
s[m] :=  il;d[m] :=  i2; 
P[il]  :=  pmin;P[i2] :=  0; 
L[il] :=  sumL + 1; 

end; 
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comment s[n - 1] gives the ordered location of  the root  o f  the 
tentative tree. We now generate the path lengths as follows: 
the path length to the root  is zero, and if the path length to any 
node is i, then the path length to each of  its sons is i + 1. The 
two sons of  the node whose order position is given in s[m] lie in 
the order positions given in s[m] and d[m]. Moreover,  if an 
order position is given in s[m] for m < n - 1 then that order  
position must be listed in s[j] or d[j] for s o m e j  > m, so the path 
lengths obtained by this algori thm are well defined. 

Returning to our  example, we now trace the construction of  
the vector of  path lengths. This is shown in the following table. 
For  the sake of  clarity, the vectors s and d are now shown in 
reverse order. 

m 4 3 2 1 

L[I] 0 1 2 2 2 
L[2I - 1 1 2 3 
L[31 3 
L[4I 2 2 
L[51 2 2 2 

s[m] 1 1 2 2 
d[m] 2 5 4 3 

Thus the final value of  the vector L is (2, 3, 3, 2, 2) ; 
L[s[n -- 1]] :=  0; 
f o r m : = n - -  l s t e p - - l u n t i l l d o  
L[s[m]] :=  Lid[m]] :=  L[s[m]] + 1; 

end; 
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