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1. Introduction 

In this paper  we describe an algorithm which pro- 
duces simultaneous approximations to all zeros of  a 
polynomial  with only real zeros. The algorithm, which 
is based on Newton 's  method, determines its own start- 
ing values. The starting values are determined so that  
convergence to the zeros of  the polynomial  is guaranteed. 
Fur thermore the choice of  starting values is such that  at 
no stage in the algorithm is polynomial  deflation re- 
quired, a process which, in general, increases errors due 
to roundoff. Also the multiplicities of the approximated 
zeros are readily determined. As will be seen in the 
following, situations exist in which the algorithm will be 
useful. 

Recently, some investigators (see e.g. Miranker  [5]; 
Shedler [8]; Feldstein and Firestone [3] ) have considered 
the development of  parallel methods for approximating 
a zero of a function of a single variable. The work of 
these authors and others is nicely surveyed by Miranker  
[6]. In general, these methods consist of  multiplexing 
extrapolation techniques or simple standard methods in 
order to speed up the process of  determining an approxi-  
mation to a zero of a nonlinear function. In the develop- 
ment of  most  of  these methods it is assumed that  initial 
conditions of  the computat ion are such that  convergence 
to a zero is guaranteed. 

The parallel content of  our method and its usefulness 
as a parallel method are clear f rom its description. We 
point out, in contrast  to the above mentioned methods, 
that  if r processors are available these may be obtaining 
approximations to r different zeros of  the polynomial.  
However,  as suggested by Dorn  [2], more than one proc- 
essor could be used executing Horner ' s  algorithm for 
evaluating the polynomial  and its derivative, in which 
case more than one processor would be used in obtain- 
ing approximations to a single zero. 
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We emphasize ,  a l though  our  me thod  is highly para l -  
lel by nature,  tha t  it is equally suitable as a sequen- 
tial me thod .  This  fact  will also be clear f rom the descrip- 
ion o f  the method .  

2. Description of the Method 

The  me thod  described here de termines  approx ima-  
t ions to  zeros of  po lynomia l s  with only real zeros. I t  
does, in some cases, p roduce  app rox ima t ions  to com-  
plex zeros, but  not  in general.  Examples  will be given 
in Section 4. 

Our  me thod  has  the fol lowing proper t ies :  (1) its 
basic i terat ion funct ion is N e w t o n ' s  i terat ion funct ion;  
(2) it determines  its own star t ing values so tha t  con- 
vergence to a zero is guaranteed;  (3) the multiplicities 
o f  zeros are readily determined;  and  (4) it avoids  the 
process  of  deflation, which general ly results in increased 
error  due to roundoff .  

The  me thod  is based on the fact  tha t  the zeros of  the 
second derivative of  a po lynomia l  with only real zeros 
can serve as s tar t ing values for  N e w t o n ' s  me thod  with 
assured convergence to a zero of  the polynomial .  Fo r  
such polynomia ls  this fact follows f rom results o f  Barna  
[1], as shown by Pat r ick  [7]. G o r n  [4] r emarks  tha t  the 
same is also t rue for  the much  larger class o f  funct ions 
with real zeros discussed in his paper .  

Genera l ly  the me thod  can be described as follows. 
Let  P,,(x) be the given polynomial .  The  me thod  de- 
termines approx ima t ions  to the zeros of  P~"-k)(X), 

. . . ,  P " "  . p~,-k--2) (X), ,~ tX) and,  finally, P, ( x ) ,  where 
k = 1 or  2 depending on whether  n is odd  or even. The  
zeros o f  P~"-~)(x)  are found  directly since it is either 
l inear or quadrat ic .  These are then used as s tar t ing values 
for  Newton ' s  me thod  which produces  app rox ima t ions  
for  k zeros of  P ( " - e - ~ ( x ) .  Approx ima t ions  of  the re- 
main ing  two zeros of  P("-~'-~)(x) are de te rmined  by  
solving a quadra t ic  equat ion.  The  quadra t ic  equa t ion  
arises f rom the fact tha t  the sum of  the zeros of  
p(,-b-2~ (x)  is equal  to one of  its coefficients, while the 
p roduc t  of  the zeros is equal  to another  coefficient; bo th  
coefficients are known.  The  zeros o f  p(~-~-2)(x) are 
then used to determine those of  pO,-k-4) (X), etc. 

M o r e  specifically, let 

P . ( x )  = x ~ + a n _ i X  n -1  "~ " ' "  "~ a~x + ao (2.1) 

be  a monic  po lynomia l  with real zeros not  all necessarily 
simple. Let  
p(k) 

. ( x )  
= x ._k  + a~.2~_~ x._~_~ + . . .  + a ~ x  + a~oe~ (2.2) 

denote  the kth  derivat ive of  P , ( x )  normal ized  so tha t  
its leading coefficient is 1. Also let N = [n/2], if  n is 
even, or [(n + 1)/2],  if n is odd, and  let mj = n -- 
( 2 N - -  2j) f o r j  = 1 , 2 , . . . , N .  
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Recall  tha t  N e w t o n ' s  i terat ion funct ion w.r.t, f ( x )  is 

N(f ;  x)  = x -- f ( x ) / f '  (x) (2.3) 

and  

N' ( f ;  x )  = f ( x ) f "  ( x ) /  ( f '  (x) )2. (2.4) 

We  now define an a lgor i thm for  de termining  a se- 
quence of  vectors  

r Cj) (r~ j), r~ j), (J) . . . .  , rg~. ) (2.5) 
(J) f o r j  = 1, 2, . . . ,  N, where r~ s) < r~ i) _~ - - .  < r,~j. We 

show in Section 3 tha t  the c o m p o n e n t s  o f  r °) are ap-  
p rox ima t ions  of  the zeros of  the polynomial/3~2~¢-2i) (x)  
o f  degree m i .  In  part icular ,  the c o m p o n e n t s  o f  r <N) 
are app rox ima t ions  o f  the zeros o f  P, ( x ) .  

The  vectors  r (i), j = 1, 2, . . . ,  N are de te rmined  
sequential ly as follows. F o r  j = l, mx = 1 or  2 which 
means  p(~N--~)(X) is l inear or quadrat ic .  Let  the com-  
ponents  o f  r °) be the zeros of  p~2~¢-2)(x). Fo r  each j ,  

_(S) r(J) j = 2, 3, . . . ,  N, we obta in  the c o m p o n e n t s  r~ o f  
in the following way. With  x0 <° r (s-l) = i , i = 1 , 2 ,  
• . . ,  ms - i ,  f o rm the sequences x0 ~'>, x~ ~), x~ °,  . . . ,  using 
the i terat ion fo rmula  

X(i) / ~ r ( ~ ( 2 N - - 2 j ) .  x~i~). (2.6) k + l  ~- ~, \ ~ n  

(j) (1) Let  r~+x = limk~o0xk , i = 1, 2, . . . ,  ms-1.  We show 
(s) in Section 3 tha t  r~+l does actual ly exist and is a zero 

of  p~N-2~) (x).  In this way, for  each j we obta in  r~ ' ,  
r~ s), (;) which are approx ima t ions  of  ms 2 o f  ,.. , rmj-1, 

_ ~  ~r~(2N--2j) the zeros o~ r .  (x) .  The  remain ing  two app rox ima-  
(D 

t ions r~ s) and r~j are obta ined  f rom the equat ions  

(S) (2N--2S) r~ ;) + r~ ;> + " ' "  -F r,~ i = a,~i-1 and 
r(S).O ") (s) ---- a0(2N--2J), (2.7) 1 r2 " ' "  rdj 

" n  n (2N--2j) (J) are the only unK OW S. a,~j-1 and  in which r~ s) and r,g~ 
a~o 2N-2s) are defined by (2.2). Since this process can be 
repeated  for  each j ,  we have, when j = N, the desired 
app rox ima t ions  of  the zeros o f  P ,  (x) .  

Suppose  in the above  process for  some j and  some  
-~;> P?~-~;~(x) i ~ 1 or m s t h e z e r o  r~ of  is: (1) also a 

_.  p(2N-~-l) o f  p(2N--~j+l) (X), or  (2) zero o l  , but  not  a zero 
p(2N--2. /+2) f .  x also a zero of  P(2N--2j+I)(x) but not  of  - ,  ~x). 

Using  e lementary  calculus, Pat r ick  [7] showed tha t  r~ s) 
in case (1) is a zero of  mult ipl ici ty 2 N  - 2j + I o f  
P, ( x ) ,  and in case (2) is a zero o f  P , ( x )  of  mult ipl ic-  
ity 2 N  -- 2j + 2. In  case (1), r~ s) is a s imple zero of  

~ ( 2N--2 S+2) ~(2N--2S) and it was ob ta ined  f rom a zero or  ~ (x)  
by  N e w t o n ' s  me thod  with a quadra t ic  ra te  of  conver-  
gence. In  case (2), ri"°'~ is a double  zero of  p~2N--2~)(x), 
and  it was obta ined  f rom a zero of  p(2s-2j+~)(x) by 
N e w t o n ' s  me thod  with a l inear rate  of  convergence.  
However ,  in either case after  step j ,  the fact  remains  tha t  
r(S) is a mult iple  roo t  o f  P , ( x )  and its mult ipl ici ty 
is determined s imply by evaluat ing P(~N-2S-1)(x) or 

_.(J) /~(~N--2S+~) (X) at x = r~ . N o  fur ther  c o m p u t a t i o n  is 
necessary to p roduce  the mult iple  root .  Only  the com-  
pu ta t ion  needed to compu te  app rox ima t ions  to the 
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remaining n -- ( 2 N - -  2 j +  2) o r n  -- ( 2 N - -  2 j +  1) 
root  is required. It follows, in going from step j to step 

_(J) j + 1, that r~ will be a zero of  P<,~-~-S)(x) of mul- 
tiplicity two greater than its multiplicity as a zero of  

_(i) p~2u-~j). Therefore, in addition to r~ there are two other 
zeros of  _p~2N-2j')(x) which would produce -<~) rl as a zero 
of  U ~-2i-2~ (x) if used as starting values for Newton's 
method. The fact that these zeros of p~2N-2;)(x) are 
rO') (J) ~-1 and r~+~ will be clear from our discussion of con- 
vergence in Section 3. So, in going from step j to step 

(J) _o) - (J) j + 1, r~-x, r~ , a n a  r~+t are not  used as starting values 
for Newton's method, since they will simply produce 
r<j) as a multiple root  of p~2N-2~-2)(x). 

It is clear from the above discussion that if P,~(x) 
has zeros of high multiplicity, then the method is quite 
practical. For  example, in the extreme case, if P~(x) 
has a zero of multiplicity n or n - 1, no iteration with 
Newton's method is required. Only the solution of  a 
linear or quadratic equation and appropriate derivative 
evaluations are needed. 

3. Convergence of the Method 

Using results of Barna [1], Patrick [7] showed that 
Newton's method, when using a zero of the second 
derivative of P ,  (x) as a starting value, would converge 
to a zero of P ,  (x).  In this section we show, in addition, 
that such a sequence of Newton iterates converge mono- 
tonically to a zero of P ,  (x). 

Let a and b satisfy P, ' (a )  = P , ' (b )  = O, with 
P, (a )  ~ O, P,,(b) ~ O, and let a E (a, b) be a simple 
zero of  P , ( x )  where P , ( x )  is of the form (2.1). By 
Rolle's theorem there exists 8 E (a, b) such that 

P,,"(b) = 0 

and suppose a < 8. We further suppose that P, (a )  < 
0 < P~(b), for if P, (a )  > 0 > P , (b )  it would only be 
necessary to consider - -P~(x )  instead of P~(x),  in 
which case our proof  doesn't  change. 

To obtain our results we need only consider the 
Newton iteration function (2.3) for P , ( x )  on the in- 
terval [a, 8]. We have 

P, , (x )P , / ' ( x )  > 0 for x E (a, 8), (3.1) 

P,(ot )P, / ' (a)  = P,,(8)P,/'  (8) = 0, (3.2) 

and 

P , ( x ) P , ' ( x )  > 0 for x E (a, 8). (3.3) 

Using (3.1), (3.2), and (2.4), it follows that N(P,, ; x)  
is a strictly increasing function in the interval [o~, 8]. 
This means, since from (2.3) a = N ( P ,  ; a) ,  that for 
x E (or, 8] o~ < N ( P , ;  x) .  Also by (3.3) and (2.3) 
N ( P ,  ; x)  < x for x E (or, 8] so by combining we have 

a < N ( P , ~ ; x )  < x f o r x E  (a, 8]. (3.4) 

Therefore, from (3.4), if we let x0 = 8, the sequence of 
iterates x0, Xx, x2, ... produced by the iteration formula 

x~+x = N ( P ,  ; xk) will be a monotonically decreasing 
sequence which is bounded below by or. Hence the 
sequence has a limit &. From the continuity of  N(Pn ; x)  
on the interval [a,/3] it follows that & is a zero of Pn (x). 
But by assumption a is the only zero of P, (x )  in [a, b]; 
hence & = a. 

If  # < ot instead of a < 8 then (3.3) becomes 

P , ( x ) P , / ( x )  < 0 for x 6 [B, ,~) (3.5) 

and (3.4) becomes 

x < N ( P ,  ; x)  < ot for x E [8, or). (3.6) 

Then from (3.5) and (3.6) the sequence of  iterates 
produced using x0 = 8 is monotonically increasing 
and converges to a. 

Next suppose that a is a multiple root  of  P~ (x)in- 
stead of  a simple root. This means that P / ( a )  = P~' (a)  
= P, / (b)  = O, and by Rolle's theorem there exist 
8 E  ( a , a )  and 3"E (or, b) for which 

P~"(8) = P~"(3") = O. 

If  a has multiplicity three or greater than three, also 
Pn" (a) = O. We consider the function N ( P ,  ; x )  on the 
interval [8, 3']. We have 

P , , ( x ) P , " ( x )  > 0 for x E (8, 3'), (3.7) 

P,(8)P, ,"  (8) = Pn(3")P,/' (3,) = 0, (3.8) 

P n ( x ) P , ' ( x )  < 0 for x E [8, o~), (3.9) 

and 

P , ( x )P , , ' ( x )  > 0 for x E (a, 3"]. (3.10) 

From these it follows, similarly as above that 

x < N ( P ,  ; x)  < ot for x E [8, a)  (3.11) 

and 

ot < N ( P ,  ; x)  < x for x E (a, 3"]. (3.12) 

As above it follows from (3.11) and (3.12) that both 8 
and a, when used as starting values for Newton's  
method, will produce sequences which converge mono- 
tonically to a. 

Since the function defined by (2.2) is a polynomial, 
it is clear from the above discussion that the vector r ~m, 
produced by the method described in Section 2, will 
have as components approximations of zeros of  the 
polynomial (2.1). 

4. Summary 

We have described a method which simultaneously 
approximates all zeros of  a polynomial with real zeros. 
The method is based on Newton's iteration function 
and determines its own starting values so that con- 
vergence to the zeros is guaranteed. Multiple zeros and 
their multiplicity are readily determined. At no point 
in the method is polynomial deflation used. 
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The  m e t h o d  is not ,  in general ,  app l i cab le  to  real  
p o l y n o m i a l s  wi th  complex  roo t s  as is easi ly seen by  
cons ider ing  the p o l y n o m i a l  f ( x )  = x 4 + 1. The  second  
der ivat ive  o f  this  p o l y n o m i a l  has  a doub le  zero  at  x = 0 
which will not ,  i f  used as a s ta r t ing  value for  N e w t o n ' s  
me thod ,  yield convergence  to  a zero o f f ( x ) .  

However ,  there  a re  rea l  p o l y n o m i a l s  with complex  
zeros  for  which the m e t h o d  is appl icable .  F o r  example ,  
cons ider  the  p o l y n o m i a l  

f ( x )  = ( x - - r l ) ( x - - r 2 ) ( x - - r a )  = x  a -  x 2 + x - -  1. 

N o w f " ( x )  = 6x --  2 is zero  at  x = 1/3. I t  is easy to 
see, geometr ica l ly ,  tha t  i f  x0 = 1/3 is used as a s ta r t ing  
value for  N e w t o n ' s  me thod ,  the  sequence p r o d u c e d  will 
converge  to  the  real  r o o t  r2 = 1. The  complex  roo t s  
resul t  f rom the so lu t ion  o f  the  quad ra t i c  equa t ion  tha t  
appea r s  in our  me thod .  Namely ,  we have  

rl + r2 -~- r3 = 1 and  rtr2ra = 1 

b u t t 2  = 1 so we have  

rt + r3 = 0 and  rzr3 = 1 

which leads  to  a quad ra t i c  equa t ion  and  the zeros  

rl = i a n d r 3  = - - i .  

W e  have not  yet  de t e rmined  cond i t ions  under  which 
the m e t h o d  p roduces  a p p r o x i m a t i o n s  to  complex  zeros  
o f  po lynomia l s .  

Received June 1971 
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