Algorithm 434

Exact Probabilities for $\mathrm{R} \times \mathrm{C}$ Contingency Tables [G2]

David L. March [Recd. 24 Nov. 1970 and 7 Mar. 1971]
School of Education, Lehigh University, Bethlehem, PA. 18015

[^0]
Description

Freeman and Halton [1] derive a general method for computing exact probabilities for contingency tables that result if a sample is subjected to k different and independent classifications. The following algorithm is limited to the case where $k=2$.

If a sample of size N is subjected to two different and independent classifications, A and B, with R and C classes respectively, the probability \boldsymbol{P}_{x} of obtaining the observed array of cell frequencies $X\left(x_{i j}\right)$, under the conditions imposed by the arrays of marginal totals $\boldsymbol{A}\left(\boldsymbol{r}_{i}\right)$ and $\boldsymbol{B}\left(\boldsymbol{c}_{j}\right)$ is given by
$P_{x}=\frac{\prod_{i=1}^{R}\left(r_{i}!\right) \prod_{j=1}^{c}\left(c_{j}!\right)}{N!\prod_{i=1}^{R} \prod_{j=1}^{c}\left(x_{i j}!\right)}$
Expression (1) is exact and holds if (a) the parent population is infinite or the sampling is done with replacement of the sampled items, (b) the sampling is random, (c) the population is homogeneous, and (d) the marginal totals are considered fixed in repeated sampling.

To test the null hypothesis that A and B are independent against the indefinite two-sided alternative, the probability P_{s} of obtaining an array as probable as, or less probable than, the observed array is needed. P_{g} is found as follows: (a) the probability P_{t} of the observed array is computed; (b) the probabilities for all other possible arrays of cell frequencies, subject to the conditions imposed by the fixed marginal totals, are computed; and (c) P_{s} is then obtained by

Copyright (C) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an algorithm is granted, provided that reference is made to this publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Submittal of an algorithm for consideration for publication in Communications of the ACM implies that unrestricted use of the algorithm within a computer is permissible
summing all of the probability values found in (b) that are less than, or equal to, the probability P_{t}.

Method. The method of the subroutine uses the fact that expression (1) can be rewritten as
$P_{x}=Q_{x} / R_{x}$
where
$Q_{x}=\frac{\prod_{i=1}^{R}\left(r_{i}!\right) \prod_{j=1}^{c}\left(c_{j}!\right)}{N!}$
which is constant for the given set of marginal totals (r_{i}) and (c_{j}) and
$\boldsymbol{R}_{x}=\prod_{i=1}^{R} \prod_{j=1}^{c}\left(x_{i j}!\right)$
which varies depending on the array of cell frequencies ($x_{i j}$). In order to avoid machine overflow and roundoff error, these computations are performed using logarithms.

The observed $R \times C$ contingency table is specified by the $N R \times N C$ matrix which is partitioned as follows:

x_{11}	\cdots	\cdots	$x_{1 C}$
\vdots			
$x_{R 1}$	\cdots	\cdots	$x_{R C}$
c_{1}	\cdots	\cdots	c_{C}

After computing the constant term $Q X L O G$ and the probability of the given table $P T$, the subroutine assigns to each of the lower right $(R-1) \times(C-1)$ cells the minimum of its corresponding row and column totals which is the maximum possible number for the cell. These cells are then varied in all possible combinations with each cell varied between its maximum number and zero.

Starting with cell $(2,2)$, the variation is accomplished by subtraction of 1 . When the subtraction yields a zero or positive result the routine goes to compute the remainder of the cell frequencies. When a negative result is obtained, the cell in question, say cell (i, j), is reset to the minimum of the corresponding row and column totals, 1 is subtracted from cell $(i, j+1)$ or, if $j+1$ is greater than C, cell $(i+1,2)$, and the count down resumes at cell $(2,2)$. If none of the lower right $(R-1) \times(C-1)$ cells yield a zero or positive result, the computations are complete and the subroutine returns to the caller. For example, if the top line (below) is the cell maximum ordered left to right from the $(2,2)$ to the (R, C) cell, the combinations generated will be

$\mathbf{2}$	$\mathbf{1}$	1	\ldots
1	1	1	\cdots
0	1	1	\cdots
2	0	1	\cdots
1	0	1	\cdots
0	0	1	\cdots
2	1	0	\cdots
		\vdots	
0	0	0	\cdots

The column 1 and row 1 cells are filled by subtraction of the generated cell numbers from the marginal totals. Since the method described above yields illegal as well as legal partitions, it is possible to obtain a negative result for one of these cells. When this occurs, the routine goes back to get a new set of cell frequencies. Otherwise

Communications

of
the ACM

November 1972
Volume 15
Number 11

RXLOG is computed．Then，the probability $P X$ is computed and added to the cumulative sum $P C$ ．If $P X$ is less than，equal to，or， to avoid missing one due to computational inaccuracy，slightly larger than $P T, P X$ is also added to the significance probability $P S$ ．

Since $P C$ is the probability of obtaining some of the tables possible within the constraints of the marginal totals，PC should equal 1．0．．The accuracy of the result can be estimated from the amount of deviation of $P C$ from 1．0．．

The floating point logarithms（base 10）of the integer factorials are obtained from function FACLOG．For arguments less than or equal to 100 ，the result is obtained from a table that is computa－ tionally filled on the first reference to FACLOG．Stirling＇s approxi－ mation is used for arguments greater than 100.

Results．The algorithm was tested on a CDC 6400 （ 60 bit word） using $2 \times 3(N=30), 2 \times 4(N=7)$ ，and $3 \times 3(N=7)$ con－ tingency tables．Results for the 2×3 tables were verified against values separately computed using programs developed by March ［2］．In several cases $P C$ deviated from 1．0．by 1.0×10^{-12} ．Results for the 2×4 and 3×3 tests were verified by hand computation．

The author is indebted to the referees for their valuable com－ ments and suggestions．

References

1．Freeman，G．H．，and Halton，J．H．Note on an exact treatment of contingency，goodness of fit，and other problems of significance． Biometrika 38 （1951），141－149．
2．March，D．L．Accuracy of the chi－square approximation for 2×3 contingency tables with small expectations．An unpublished D．Ed．Diss．，School of Education，Lehigh U．，Bethlehem，Pa．， 1970.
Algorithm
SUBRDUTINE CONP（MATRIX，NR，NC，PT，PS，PC）
C INPUT ARGUMENTS．
MATRIX＝SPECIFICATIGN OF THE CONTINGENCY TABLE． THIS MATRIX IS PARTITIGNED AS FOLLOWS

X（11）	$x(1 C)$	R（1）
－	－	
$\times\left(\dot{R}^{\prime}\right)$	X（RC）	R（R）
$X(R 1)$ $C(1)$	－X（RC） －C（C）	$\underset{N}{R(R)}$

WHERE X（IJ）ARE THE OBSERVED CELL FREQUENCIES，
R（I）ARE THE ROW TOTALS，C（J）ARE THE COLUMN
TOTALS，AND N IS THE TOTAL SAMPLE SIZE．
NQTE THAT THE GRIGINAL CELL FREQUENCIES ARE
DESTRGYED BY THIS SUBRGUTINE．
＝THE NUMBER OF ROWS IN MATRIX（R＝NR－1）．

gUTPUT ARGUMENTS．
PT $=$ THE PRGBABILIty OF gBTAINING THE GIVEN TABLE．
$P S=$ THE PROBABILIITY OF gBTAINING A TABLE AS PROBABLE AS，GR LESS PRDBABLE THAN，THE GIVEN TABLE．
$P C=T H E$ PRGBABILITY OF DBTAINING SOME OF THE TABLES P日SSIBLE WITHIN THE CONSTRAINTS QF THE MARGINAL TBTALS．CTHIS SHUULD BE 1．O．DEVIATIONS FROM 1.0 REFLECT THE ACCURACY OF THE COMPUTATION．）
EXTERNALS．
FACLOG（N）＝FUNCTIgN TO RETURN THE FLGATING PGINT VALUE OF LøG BASE 10 ©F N FACTERIAL．
DIMENSI ON MATRIX（NR，NC）
INTEGER R，C，TEMP
$\mathrm{R}=\mathrm{NR}-1$
$\mathrm{C}=\mathrm{NC}-1$
compute log of constant numerator
OXL $\emptyset G=-F A C L \emptyset G(M A T R I X(N R, N C))$ De $10 \mathrm{I}=1, \mathrm{R}$ ．
OXL $\sigma G=0 \times L \emptyset G+F A C L \emptyset G(M A T R I X(I, N C))$
QXL $\Theta G=Q X L \Theta G+F A C L \boxminus G(M A T R I X(N R, J))$
$\begin{array}{ll}\mathrm{c} \\ \mathrm{c} \\ \mathrm{c} \\ & \\ \\ \end{array}$
compute prgbability of given table

$$
\begin{aligned}
& \text { RXL } 0 \mathrm{G}=0.0 \\
& \text { DQ } 50 \quad \mathrm{I}=1, \mathrm{R} \\
& \text { De } 50 \text { J=1, C } \\
& \text { RXLQG=RXLDGGFACL日G(MATRIX(I,J)) }
\end{aligned}
$$

$P C=0.0$
C
C FILL LOWER RIGHT（R－1）$\times(\mathrm{C}-1)$ CELLS WITH
C MINIMUM OF ROW AND COLUMN TOTALS
c
DG $100 \mathrm{I}=2, R$
DE $100 \quad J=2, C$
60 T0 300 （J）＝MINO（MATRIX（I，NC），MATRIX（NR，J））
C
C gbtain a new set gf frequencies in
c LOUER RIGHT（R－1）$\times(\mathrm{C}-1)$ CELLS
200 D0 $220 \mathrm{I}=2, \mathrm{R}$
D0 $220 \mathrm{~J}=2, \mathrm{C}$
MATRIX（I，J）$=$ MATRIX（I，J）－1
IF（MATRIX（I，J）．GE．0）GO T0 300
220 MATRIX（I，J）$=$ MINOCMATRIX（I，NG），MATEIX（NR，J）） RETURN

C
C
C
c

c ．．．REMAINDER OF gBSERVED CELLS
C ．．．．．．．COMPLETE COLUMN 1
300 D0 320 I＝2，R
TEMP＝MATRIX（I，NC） D $310 \mathrm{~J}=2, \mathrm{C}$
F（TEMP IF（TEMP．LT．0）G® T0 200
320 MATRIX（I，1）＝TEMP
$\begin{array}{ll}\mathrm{c} \\ \mathrm{C} & \\ \mathrm{C} & \\ \end{array}$
C ．．．．．．CBMPLETE R＠W 1
Dø $340 \mathrm{~J}=1 . \mathrm{C}$
TEMP $=$ MATRIX（NR，J） D $030 \quad I=2, R$
TEMP $=$ TEMP $-M A T R I X(I, J)$ IF（TEMP．LT．O）G® T® 200 MATRIX（1，J）＝TEMP
c^{340}
C compute løg gF the dengminator
RXLOG＝0．0
$\begin{array}{lll}\text { D0 } & 350 \quad \mathrm{I}=1, R \\ \mathrm{D}=1, \mathrm{C}\end{array}$
350 RXL $0 G=R \times L \varrho G+F A C L \emptyset G(M A T R I X(I, J) 2$
C CDMPUTE PX．ADO TO PS IF PX ．LE．PT
C（ALLøW FดR RøUND－DFF ERRのR）
$P X=10.0 * *(Q X L \emptyset G-R X L Q G)$
$P C=P C+P X$
IF（（PT／PX）．GT．0．99999）PS＝PS＋PX
GT
FUNCTION FACLGG（N）
C infut argument．
$\mathrm{N}=\mathrm{AN}$ INTEGER GREATER THAN ØR EQUAL TØ ZERO．
FUNCTION RESULT．
FACLOG $=$ THE L日G TO THE BASE 10 of N FACTERIAL．
DIMENSION TABLE（101）
DATA TPILQG／0．39908 99342／
DATA ELOG 10.43429448197
DATA IFLAG／O／
C USE STIRLINGS APPRGXIMATION IF N GT 100
IF（N．GT．100）G0 T0 50
c lagk up answer if table was generated
IF（IFLAG．E日．0）G0 T0 100
10 FACL $\emptyset G=T A B L E(N+1)$
RETURN
C HERE FOR STIRLINGS APPREXIMATION
O $X=F L$ ØAT (N)
FACLøG $=(X+0.5) * A L \emptyset G 10(x)-X * E L Q G+T P I L G G$
RETURN ${ }^{*}$ EL $0 G /(12.0 * X)-E L 0 G /(360.0 * X * X * X)$
C
C
C
ere to generate lgg factorial table
00 TABLE（1）$=0.0$
Do 120 I＝2，101 $X=F L$ QAT（1－1）
120 TABLE（1）＝TABLE（I－1）＋ALOG10（X） 1 FLAG＝1
GQ TO 10
END

Communications

November 1972
Volume 15
Number 11

[^0]: Key Words and Phrases: probability, contingency table, test of significance

 CR Categories: 3.5, 5.5
 Language: Fortran

