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Description 
The incomplete Gamma function is defined by 

~[(a, x) = y"-L e'w dy, x > O. ( I )  

l f x  is allowed to assume negative values and if the absolute value of 
y is substituted for y in the term ya-t., then a modified incomplete 
Gamma function may be defined by 

£ ~' (a ,x)  = l y l ° - ~ . e ~ d y ,  - ~  < x _ <  ~ .  (21 

Note that i fx  is less than zero, the above is equivalent to 

fl 
xl 

3/(a, x) = -- y,-L e+~ dy, x <_ O. (3) 
, J0  

The function subprogram G A M I N C  given below computes the 
more general function 

G A M I N C  (a, Xl , x~) ~_ e ~t f ~  [ y [a--1. e--U dy 
.=~ (4) 

= e=qv'(a, x2) --  v'(a, Xl)]. 

For x~ equal to zero, G A M I N C  is just a modified incomplete 
Gamma function. And if x~ is also greater than or equal to zero, 
then G A M I N C  is simply an incomplete Gamma function. 

The need for the function G A M I N C  arises in the calculation of 

1 =-- 1 e a+bz exp --  e'+Oz' --sin(O) J --s in(O)'  (5) 

where 0 is an angle between - r  and +~r not equal to zero. The two 
constants b and # are of the same sign. The integral in the exponent 
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can be done explicitly to yield 

ea-T ° + x - ~  . f  ~ 2 f _ ea+ # z ] 
1 - 5  l e a + b Z e x p l ~ l  dZ '  (6) 

where 

e a + b Z l  
X ~ =  

- -b  sin (O) 

and 

fo z l d Z  I TO = e a + 1 3 g ' -  
--sin (0) 

A change of variables finally reduces the above integral to 

[ f " l y l ~ l ~ t ' e - U d y ]  (7) I = e a-r°  [b sin (0) [OIb--l'e--aOlb e zl  
wX 1 

The quantity in brackets is G A M I N C ( B / b ,  X~, X2). 
The approximations of ~,'(a, x) used in G A M I N C  are valid only 

for 1. ~ a ~ 2. (See Table I.) The user may compute G A M I N C  
for other values of a with the aid of the recurrence relation (in is a 
positive integer such that  1. ~ a ~ 2). 

G A M I N C ( m  + a, x l  , x~) 
= (m + a -- 1) G A M I N C ( m  + a -- 1 ,Xl ,X2)  + [Ix1[ m+a-x (8) 

- I x~ Im+~-le " t - '~]  

In general for Xl > 0 and x~ > 0, 

G A M I N C ( m  + a, x l  , x2) 
= (m + a -- l ) . (m -[- a -- 2) . - .  (a) .GAMINC(a, x l ,  x2) 

r t ~ l  

+ IXl Io [Ix1 [ ~-~- + ~-~ (m + a -- 1) 

• " (m + a -- i) l xx I " -1- '  ] (9) 
t t~- I  

- [x2 l~[ Ix2 l~ ' -" - t -~ (m+a  - 1) 
i - - t  

• " (m + a -- i) Ix2 I~'-~-']e~-'~. 

The recurrence relation should be applied in the other direction 
if m + a is less than 1. 

For large values of a (a ~ 15.) in the incomplete Gamma 
function, the user is referred to the algorithm by Takenaga [5]. 

In all cases we use approximations which are functions of both 
a and x, so that it is not necessary to compute and store an econo- 
mized polynomial for each value of a. The overhead in execution 
time for doing this is not significant since many-term expressions 
would result anyway. Also exponentiation and real numbers 
raised to a real power require 30 percent of the total computing 
time. Multiplying - /(a,  x2) -- "y'(a, xO by e~  saves two exponentia- 
tions and greatly extends the range over which the difference can be 
represented without over- or underflows occurring. Four separate 
approximations are used to compute -/(a,  x). 

Region 1. For x > 5.0, the complimentary incomplete Gamma 
function is computed by using a continued fraction approximation 
[11 

e--~xa 
r(a)  - vt(a, x) x + Tx' (10) 

where 

i + a  
T i =  

1 + i/(x + Ti+l) ' 

and where r (a )  is the complete Gamma function of a. Only terms 
through /'3 are used explicitly. /'4 is taken into account in an ap- 
proximate way by setting/ '4 = 1.7, which is its approximate value 
when x ,~ 5.0. If  both argument values are greater than 5.0, then 
significance is maintained by subtracting the complementary func- 
tions, not the functions themselves. 
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Region 2-4. For --12. < x < --1. and 1. < x < 5., the con- 
tinued fraction approximation gieen by Luke [3] is valid. We 
rewrite the approximation in the form 

vt(a, x) x. I x la-Le -x  - , ( l l )  
a.Tx 

where 

T , =  1.-- 
(a + n -- 1).x 

(a + 2n -- 2)-[a + 2n -- 1 + (n.x)/((a + 2n).Tn+t)] " 

Only terms through /'7 are used explicitly, and Ts is computed by 
using the approximate expression 

/'8 ~ 1.00150 -- 8.95.10-5.a + x (12) 
• (--0.0337062 + .0004182 .a + x 
• (.000999294 -- .000104103 -a)). 

On a computer with 32 bit words, eq. (11) must be evaluated in 
double precision in order to maintain approximately six significant 
figures of accuracy. On an IBM 360 double precision evaluation 
can be forced by including more than seven digitsin a constant as is 
done in eq. (12). Of coarse, double precision evaluation is unneces- 
sary if there are somewhat more than 32 bits per word. Because 
the calculation of the approximation of 3/(a, x) is a relatively time 
consuming operation, a separate approximation is used when 
Ixl_< 1. 

Region 2B. For -- 1.0 < x < 1.0, a change of variables is made 
so  that 

~/(a,x) = I x [ a - l " e  - ' ~  F (Y-Y-X'e-V+~ dy, (13) 
do \ x /  

o r  

.yt(a, x) = x. I x I~-l'e -~ (1 -- p)a-Le~P tip. (14) 

Because --1.0 < xp < 1.0, e ~p may be adequately approximated 
with a polynomial. A Chebyshev approximation of nine terms yields 
a maximum absolute error less than 10 -7, which is adequate to 
insure that the maximum relative error of the integral ordinarily be 
much less than about I0 -6. Since the relative error jn the single 
precision evaluation of [ x I=e -= is usually ,~1.10 -e for a machine 
with a 32 bit word length, the above error bound seems entirely 
reasonable. Write 

M 
e z ~ b ~ Z  ~, --1.0 < Z <  1.0. (15) 

i=o 

Then 

M i! b~ x / 
"r'(a'x)'~x'lxl~-t'e-~/-'~(i+a)(i+ai=oX-" . . . .  1) (a)" (16) 

Finally we may define b /  = b~.i!, and write 

M b i t x  i 

. / (a ,x)  ~ x . l x [ a - l . e - X  (~__o(i +a) . ( i  + _ 1) - . .  (a)" (17) 

Note that if the series was not economized, all the b /  would be 
unity. But because a finite Chebyshev economized series is em- 
ployed, the b / a r e  only approximately unity. 

Of course, it would be possible to extend the Chebyshev ap- 
proximation to include the entire range --12. < x < 5.0; however 
the many-term result would have to be evaluated in double pre- 
cision in order to insure a relative error <10 -e. It would also be 
possible to decrease the range of validity of the ascending continued 
fraetion approximation; however the other approximations would 
then have to be more complicated and would require an accordingly 
longer time to evaluate. Such a change was judged inadvisable since 
the function is used predominantly with arguments whose absolute 

Table I. Relative Errors of  GAMINC(A,O.,X) in Units  o f  
the Sixth Decimal Place 

,4 
X 

3.5 

--14. 
--12. 
- -  8 .  

- -  4 .  

- -  2 .  

- - 0 . 5  
+ 0 . 5  

2. 
6. 

10. 

0.5 

16.57 
1.03 
0 . ~  
0.38 
1.22 
0.65 
1.03 
0.53 
0 . ~  
0.63 

0,12_ 
3.37 0.27 
1.61 10.42 
1.04 10.34 
0.82 0.15 
0.78 10.50 
0.43 10.21 
0.42 0.66 
1.57 [0.77 
0.38 10.06 
0.73 10.03 

. . . .  1 . 4  1 . 7  2.0 2.3 

0.79 1.1l 0.81 1.87 
0.47 11.23 10.95 12.70 
0.69 [1.69 [1.07 12.01 
0.79 10.67 0.19 0.51 
0.11 10.07 I0.01 10.09 
0.32 10.23 10.15 10.18 
1.19 11.25 [0.77 10.29 
0.26 [0.04 [0.22 [0.05 
0.01 10.06 10.06 I 1.21 
0.02 10.08 10.03 ]0.60 

2.9 

1 . 3 5  
1 . 6 9  
2.11 
1 . 5 9  
0.11 
0.65 
0.06 
0.23 
0.36 
0.04 

1 . 0 3  
2.70 
!2.24 
0.75 
3.51 
D.78 
3.35 
3.40 
2.21 
3.26 

Table II. Execution Times of  G,4MINC(,4, X~ , X~) in Milli- 
seconds 

XI < --12. 

--12. < X 1  < 5 .  XI ~ 1. 

X t _  5. 

x~=o .  

x~ < -12. 

l . l  
1 .4 
2 .0  
0.6"  

0.8 

--12. < Xz < 5  

Ix~l ~ 1. IX21 > 1. 

1.4  2 .0  
1.3 2 .0  
2 .0  2 .4  
1 .4  2 .0  

x~>5 .  

0.6* 
1.4 
2.0 

.1 

* Only the modified incomplete G a m m a  function for X = Xt was calculated, 
because I X2 -- X1 I was greater than E X P L I M .  

values are large. Also, the present choice of ranges and approxima- 
tions provides for the accurate representation of 3/(a, x) further 
beyond a = 2. than would many other choices. 

Region 3. For x _< -- 12., the asymptotic expansion 

-/(a,  x) ~ r(a) 

- - [ x [ a - l " e - X I l + a - - l +  x 2 + ' " ]  (18) 

is used. Shank's e~ process [4] is applied once to the six-term series 
in order to accelerate convergence. 

The function subprogram is invoked by a reference of the form 

G,4MINC(,4, XI, X2, G,4M), 

where G,4M is the user-supplied value of the complete Gamma 
function of .4. r (a) is now commonly a part of the standard Fortran 
library of functions. If it is not, one of the several algorithms de- 
scribed in this department may be used, or GAMMA given in 
IBM's Scientific Subroutine Package (cf. Hastings [2]) may be 
used. 

Table I presents the absolute value of the relative errors (multi- 
plied by l0 s) of ~,'(a, x) for selected values of a and x. Because 
[ x [~e -~ was not calculated in double precision, these errors are the 
total errors and not the errors in the approximations. The "exact" 
values were found by directly summing the series 

,a ~ ( - x ) i  -/(a,x)_~ Ixl z ~ , - _ ~ . f  
i=o ~a -t- or. 

9 9 4  Communications November 1972 
of Volume 15 
the ACM Number 11 



in double precision. N was chosen so that the contribution of  the 
Nth term was less than 2 .10 -9 times the sum ofthe  previous Nterms. 
Single precision approximations were used to represent a and x in 
order to insure that the series and the subprogram gave 7'(a, x) 
for the same parameter values. The subroutine has been used 
extensively to compute a three-fold integral which includes numer- 
ous cases of  eq. (5) as a part of  the integral. Independent numerical 
integration results are in agreement with subroutine results to 
within three significant figures--the accuracy of  the numerical 
integration. Table II gives the average execution times in milli- 
seconds of  the subroutine for various argument combinations. The 
times are for an IBM 360/67, which, for comparison, exponentiates 
in approximately 0.1 milliseconds. 
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Algorithm 
FUNCTION GAMINC (AsXIsXO,GAH) 

C 
C COMPUTE THE DIFFERENCE BETWEEN TWD MODIFIED INCOMPLETE 
C GAMMA FUNCTIONS FOR (A, XI)  AND (A, X2) THEN MULTIPLY BY 
C EXPIXI).  THAT IS, COMPUTE THE INTEGRAL OF A B S ( X ) * * ( A - I . )  
C *EXP(XI-X) FROM XI TO X2, IF Xl .GT- XO, THEN XI-X2 MUST 
C BE , L E .  EXPLIM. 
C EXPLIN CAN BE A MACHINE DEPENDENT CONSTANT WHICH PREVENTS 
C EXPONENTIATION OVER- AND UNDERFLOWS, IT I S  USED HENE TO 
C SUPPRESS THE CALCULATION OF HIGAM(A.X2) WREN THE VALUE OF 
G MIGAM(AJX2) IS INSIGNIFICANT, THIS USAGE REQUIRES X2 ÷ 
C EXPLIH ,GE° X I .  (MIGAM IS AN ABBREVIATION FOR MODIFIED IN- 
C COMPLETE GAMMA FUNCTION,) 
C CAM IS THE COMPLETE GAMMA FUNCTION OF A SUPPLIED BY THE 
C CALLING PROGRAM, 
C 
C FOR X ,GT, 5. ,  GAM-MIGAMIA*X) IS COMPUTED WITH A CONTINUED 
C FRACTION APPROXIMATION. FOR ABS(X) ,LE- l ,O ,  THE INTEGRAL 
C IS TRANSFORMED AND EXP(Q) IS APPROXIMATED WITH A CHEBYSHEV 
C SERIES $0 THAT THE NEW INTEGRAL MAY BE DONE ANALYTICALLY, 
C FOR X ,GT. -12.  AND X ,LT. 5. IABS(X) ,GT, l . O ) ,  A CBNTIN- 
C UED FRACTION APPROXIMATION I S  USED. FINALLY FOR X ,LE. 
C -12 . ,  THE ASYMPTOTIC EXPANSION IS USED. 
C 
C SGN IS A SWITCH WHICH. IF NONZERO, INDICATES WHETHER GAM 
C SHOULD BE ADDED On SUBTRACTED FROM AN INTERMEDIATE RESULT, 
C 

DATA E X P L I M / 2 0 , /  
Z=XI  
SGN=O, 
T IM=- I .  
E X P D I F = I . O  

5 I F  (Z ,NE .  0 . )  GO TO 10 
GAMI=O, 
SGN=SGN+TIM 
GO TO 40 

10 I F  (Z , L E ,  5 , )  GO TO 20 
C USE EQUATION l O ,  

G A M I : - E X P D I F * Z * * A / C Z + I I . - A ) / f I , + I , / ( Z + ( O . - A ) / ( I . + 2 ,  
1 / ( Z + I 3 * - A ) / ( I , + 3 . / ( Z + I . 7 ) ) ) ) ) ) )  
GO TO 40 

20 AZ=ABS(Z) 
I F  (Z  . L E .  - 1 2 . )  GO TO 30 
SGN:SGN+TIM 

C USE EQUATION 1 7 .  
I F  (AZ .LE. 1 . )  GAMI=EXPDIF*Z/A * A Z * * ( A - I . )  

I * ( I .  +Z / (A+ I ° )  * I ,9999999+Z/ (A+2. )  
2 *(*9999999 +Z/ IA+3. )  *(I.OOOOO8+Z/{A+4.) 
3 *(1.000005 + Z / ( A + S . )  * ( o 9 9 9 4 3 1 6 + Z / ( A + 6 , )  
4 *(.9995587 + Z / ( A + 7 . )  * ( I * 0 3 1 6 8 4 + Z / ( A + B , )  
S *I,028125)))))l)) 

C USE EQUATIONS 11 AND 12- EVALUATION MUST BE DONE 
C IN DOUBLE PRECISION IF  COMPUTER HAS 02 OR FEWER BITS 

C PER WORD* ON AN IBM 3601 D, P* EVALUATION IS FORCED 
C BY THE D. P, CONSTANTS IN CONTINUATION CARD 9. 

IF (AZ *GT. I . )  GAMI=EXPDIF*Z/A * A Z * * ( A - I . I  
l / ( 1 o -  A' * Z / I  A *CA+ l , +  E l i ( A +  2 . )  
2 * ( I . - ( A * I , ) * Z / ( ( A +  2 . ) * ( A *  3 . * 2 , * E l i ( A +  4, )  
3 * ( I . - ( A + 2 . I * Z / ( ( A +  4 . ) * (A+  5 , ÷ 3 . * Z / I I A *  6, )  
4 * ( I , - ( A + 3 , ) * Z / ( t A ÷  6 , ) * ( A +  7 , ÷ 4 . * E l i ( A +  B. )  
5 * ( I . - I A + 4 . ) * Z / ( ( A +  8 , ) * ( A +  9 . + 5 . * Z / I ( A * I O , )  
6 * ( I . - ( A t 5 . ) * Z / ( ( A ÷ I O . ) * ( A + I I - + G . * Z / t ( A ÷ I 2 . )  
7 * ( I , - ( A + 6 , ) * Z / I ( A + I O , ) * ( A + I 3 , + 7 , * Z / ( ( A + I 4 . )  
B * ( I . 0 0 1 5 0 - A * 8 . 9 5 E - 5  + Z * ( - . O 3 3 7 0 6 2 ÷ A * , O O O 4 1 8 2  
9 + Z * ( * O O O 9 9 9 2 9 A - A * . O 0 0 1 0 4 1 0 3 ) ) )  ) ) ) )  ) ) ) )  ) ) ) )  
A I ) ) )  ) ) ) )  I ) ) )  ) ) ) )  

G~ Tg 40 
C USE EQUATION 18 AND SHANK-5 El PROCESS ONCE* 

30 G A M I = - E X P D I F * A Z * * I A - I . ) * ( I , + ( A - I . ) * ( I . + ( A - 2 . ) *  
1 ( I . + ( A - 3 . ) * ( I . + I A - A . ) * ( I . + ( A - 5 . ) / ( Z - A + 6 , ) )  
2 l Z I l Z I / Z ) / Z )  

40 IF (TIM ,GT. 0 . )  GO TO 55 
GAMINC=GAMI 
IF (ABS(XI-XO) .GT. EXPLIM) GO T@ 50 

C IF TRUE, CONTRIBUTION AT X2 IS . L T o  I * E - 7  *(CQNTR AT X I ) ,  
C PROVIDED X2 *GT* X I .  

Z=X2 
EXPDIF=EXP(XI-XO) 
T I M = l .  
G9 T0 5 

50 GAMI=O, 
55 GAMINC=GAMI-GAMINC 

IF (SGN .NE- 0 . )  GAMINC=GAMINC-SIGN(GAM*EXP(XI)JSGN) 
RETURN 
END 
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