
Abstracts o f  the papers by Daily and Lynning 

A Sel f -Modi fy ing  Ex t rapo la t ion  M e t h o d  for 
Solving O r d i n a r y  Differential  Equa t ions  

Dar  D. Dai ly  
Kansas State University, Manhattan, Kansas 
Author's address: 8133 Dearborn Drive, Prairie Village, KS 66208 

This  paper  outl ines a p rogram that  searches for the 
p r e d o m i n a n t  terms of  the a sympto t i c  er ror  expans ion  
of  initial value problems  in o rd ina ry  differential  
equa t ions  and  uses this i n fo rma t ion  in a se l f -modifying 
ex t rapo la t ion  process.  Dur ing  the in tegra t ion  process,  
using a ra t io  that  Carl  de Boor  (1971) used in an inte- 
gra t ion  program,  the me thod  seeks to recognize t rends  
of  change in the error  expans ion  of  the differential  equa-  
t ion and to adjus t  the me thod  of  ex t rapola t ion .  A basic  
a lgo r i thm used in the modi fy ing  process  is presented  
a long  with a br ief  exp lana t ion .  Also,  a compa r i son  made  
with the wel l -known ra t iona l  ex t rapo la t ion  m e t h o d  
shows ra t ional  ex t rapo la t ion  to  be general ly  less efficient 
in terms of  funct ion eva lua t ions  but  also demons t ra t e s  
tha t  the se l f -modifying me thod  is general ly  not  able  to  
reduce its e r ror  to the level of  ra t iona l  ex t rapo la t ion .  
A note,  though,  shows the se l f -modifying m e t h o d  to 
be super ior  to the regular  R o m b e r g  ex t rapo la t ion .  

Key  W o r d s  and Phrases :  se l f -modifying ex t rapo la -  
t ion,  ra t iona l  ex t rapo la t ion ,  modif ied  m i d p o i n t  me thod ,  
R o m b e r g  in tegrat ion,  a sympto t i c  e r ror  expans ion ,  pre- 
dominan t ,  s ingulari ty,  ini t ial  value p rob lems  in o rd ina ry  
differential  equa t ions ;  C R  Categor ies :  5.10, 5.17 

A C o m p u t e r  Solut ion of  Po lygona l  Jigsaw Puzzles 

Ejv ind  Lynning  
University of Arhus, Arhus, Denmark 
Author's address: Brandeis University, Waltham, M A. 02154 

A p rogram to solve any j igsaw puzzle involving 
pieces of  polygonal  shape is described.  An efficient solu- 
t ion has been found  to depend  on a number  of  ad hoc 
strategies,  which are descr ibed in detail  in the paper .  
The puzzles are solved by successively placing individual  
pieces in the region to be covered using a depth-f i rs t  tree 
search a lgor i thm.  A formal  representa t ion  of  regions,  
pieces, and  placings of  pieces is defined. The main  idea 
behind  the chosen represen ta t ion  is to  or ient  clockwise 
the po lygons  mak ing  up a region,  and  to  or ient  counter -  
c lockwise the pieces to be placed.  Placing a piece means  
compu t ing  a valid new region,  i.e. one or more  c lock-  
wise or ien ted  polygons ,  cons t ruc ted  f rom the previous  
one by removing  the par t  co r re spond ing  to  the piece 
which is placed.  The da ta  s t ructure  and  the p rocedures  
requi red  to examine  where pieces can be placed and  how 
to pe r fo rm the placing of  the pieces are also descr ibed.  
Al l  puzzles so far presented  to the p r o g r a m  have been 
successfully solved in a r easonab le  t ime.  

K e y  W o r d s  and  Phrases :  art if icial  intelligence, p rob-  
lem solving, pa t te rn  recogni t ion ,  puzzles,  po lygona l  
puzzles,  j igsaw puzzles,  back t r ack  p rog ramming ,  tree 
search a lgor i thms ;  C R  Categor ies :  3.6, 3.63, 3.64 
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Rosenbrock Function 
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method 

CR Categories : 5.19 
Language : Fortran 

Description 
Purpose. This subroutine finds the local minimum of a function 

of n variables for an unconstrained problem. It uses the method for 
direct search minimization as described by Rosenbrock [1 ]. 

Method. The local minimum of a function is sought by con- 
ducting cyclic searches parallel to each of the n orthogonal unit 
vectors, the coordinate directions, in turn. n such searches con- 
stitute one stage of the iteration process. For the next stage a new 
set of n orthogonal unit vectors is generated, such that the first 
vector of this set lies along the direction of greatest advance for the 
previous stage. The Gram-Schmidt orthogonalization procedure is 
used to calculate the new unit vectors. 

Program. The communication to the subroutine ROMIN is 
solely through the argument list. The user must supply two ad- 
ditional subroutines FUNCT and MONITOR. The entrance to the 
subroutine is achieved by 

CALL ROMIN (N, X, FUNCT, STEP, MONITOR) 

The meaning of the parameters is as follows. N is the number 
of independent variables of the function to be minimized. X(N) is 
an estimate of the solution. On entry it is an initial estimate to be 
provided by the user; on exit it is the best estimate of the solution 
found. FUNCT (N, X, F) is a subroutine calculating the value F of 
the minimized function at any point X. STEP is an initial step 
length for all searches of the first stage. The subroutine MONITOR 
(N, X, F, R, B, CON, NR) supplies printouts of any parameter from 
the argument list and contains convergence criteria chosen by the 
user. (Different kinds of convergence criteria and their use are 
discussed in [11 and [4].) R is the actual number of function evalua- 
tions. B is the value of the Euclidean norm of the vector repre- 
senting the total progress made since the axes were last rotated, i.e. 
the total progress in one stage. CON is a logical variable. At the 

Communications August 1973 
of Volume 16 
the ACM Number 8 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355609.362324&domain=pdf&date_stamp=1973-08-01


start of the subroutine R OM IN C ON is set .FALSE.. If the con- 
vergence criteria are satisfied C O N  must be set .TRUE. in the sub- 
routine MONITOR,  which transfers control back to the main pro- 
gram. NR is the M O N I T O R  index used as described in 13]. The 
CALL statement of the subroutine M O N I T O R  with NR equal to 1 
occurs once per function evaluation and with NR equal to 2 once 
per stage of the iteration process. 

Test results. As a test example, the parabolic valley function 

J(x l ,  x2) = 100 (x.,. - -  .x',~) 2 + (1 - -  Xl) 2 

was chosen. This function attains its minimum equal to 0 at the 
point (1, 1). Starting from the point ( -  1.2, 1.0) the best estimate of 
the solution after 200 function evaluations as found by the sub- 
routine R O M I N  was 0.29774.10 -4 at the point (0.99513, 0.99053). 
The initial step length S T E P  was set equal to 0.1 [2]. 
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(Ed.), Pergamon Press, New York, 1961. 
4. Powell, M.J.D. An efficient method for finding the minimum of 
a function of several variables without calculating derivatives. 
Computer J. 6 (1964), 155-162. 

Algorithm 
SUBROUTINE ROMINfN• X• FUNCT• STEP~ MONITR) 
INTEGER N• IP 
REAL STEP 
DIMENSION X(N) 
LOGICAL CON 
INTEGER I ,  J, K, L, P, R 
REAL FO• FI  • B, BETY 
DIMENSION A ( 3 O ) •  D ( 3 O ) ,  V ( 3 0 • 3 0 ) ,  A L P H A ( 3 0 , 3 0 ) ,  BETA(30 )~  

* E ( 3 0 ) ,  A V ( 3 0 )  
C THIS SUBROUTINE MINIMIZES A FUNCTION OF N VARIABLES 
C USING THE METHOD OF ROSENBROCK. THE PARAMETERS ARE 
C DESCRIBED AS FOLLOWS: 
C N IS THE NUMBER OF INDEPENDENT VARIABLES 
C X(N) IS AN ESTIMATE OF THE SOLUTION ( ON ENTRY - 
C AN IN IT IAL  ESTIMATE• ON EXIT - THE BEST ESTIMATE 
C OF THE SOLUTION FOUND ) 
C FUNCT(N*X,F) IS A ROUTINE PROVIDED OY THE USER TO 
C CALCULATE THE VALUE F OF THE MINIMIZED FUNCTION 
C AT ANY POINT X 
C STEP I S  AN IN IT IAL  STEP LENGTH FOR ALL COORDINATE 
C DIRECTIONS AT THE START OF THE PROCESS 
C MONITR (N,X,F,R,B,CON•NR) IS A ROUTINE PROVIDED BY 
C THE USER FOR DIAGNOSTIC AND CONVERGENCE PURPOSES 
C R IS THE ACTUAL NUMBER OF FUNCTION EVALUATIONS ( FOR 
C THE IN IT IAL  ESTIMATE R=0 ) 
C B IS THE VALUE OF THE EUCLIDEAN NORM OF THE VECTOR 
C REPRESENTING THE TOTAL PHOGRESS MADE SINCE THE 
C AXES WERE LAST ROTATED 
C CON IS A LOGICAL VARIABLE. AT THE START OF THE 
C SUBROUTINE ROMIN CON=,FALSE.  I F  THE CONVERGENCE 
C CRITERIA OF THE ROUTINE MONITOR ARE SATISFIED 
C CON MUST BE SET *TRUE. TO STOP THE PROCESS 
C NR IS THE MONITOR INDEX 
C IN IT IAL IZE CON, E(1) AND R 
C E I I )  IS A SET OF STEPS TB BE TAKEN IN THE CORRESPONDING 
C COORDINATE DIRECTIONS 

CON = .FALSE. 
DO 1O I = I , N  

E ( I )  = STEP 
IO CONTINUE 

R = 0 
C V ( I • J )  IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY 
C ORTHOGONAL COORDINATE DIRECTIONS. V ( I J J )  I S  THE UNIT 
C MATRIX AT THE START OF THE PROCESS 

DO 30 I = I , N  
DO 20 J = I , N  

V ( I , J )  = 0 .0  
IF  ( I . E O . J )  V ( I , J )  = 1.0 

20 CONTINUE 
30 CONTINUE 

CALL FUNCTINs X• F0)  
C START OF THE ITERATION LOOP 

40 DO SO I = I • N  
A { I )  = 0 .0  
D(1) = 0 , 0  

50 CONTINUE 
C EVALUATE F AT THE NEW POINT X 

60  DO 130 I = I , N  
DO 70 J=I~N 

X(J )  = X(J)  * F ( 1 ) * V ( I , J )  
70 CONTINUE 

R = R + I 
CALL PUNCT(N, X, F I )  
CALL MONITR(N~ XJ FI~ R, 0,  CON, l) 
IF (CON) GO TO 2 9 0  
I F  ( F I - F O )  8 0 ,  9 0 ,  9 0  

C THE NEW VALUE OF THE FUNCTION IS LESS THAN THE OLD ONE 
80 D(1) : DCI) * ECII 

E ( I )  = 3.0*F(1) 
FO = F l  
I F  ( A ( 1 ) . G T . I . 5 )  A ( I )  = l , O  
GO TO 1 1 0  

C THE NEW VALUE OF THE FUNCTION IS GREATER THAN OR EQUAL 
C TO THE OLD ONE 

90 DO lO0 J = I , N  
X(J)  = X(J )  - F ( 1 ) * V ( l n J )  

100 CONTINUE 
E(1) = -O,5*F(I) 
IF  ( A { I ) . L T * I * 5 )  A ( I )  = O.O 

l l O  DO 1 2 0  J = I , N  
I F  (A (J ) .GE .O .5 )  GO TO 130  

120 CONTINUE 
GO TO 140 

130 CONTINUE 
GO TO 60 

C GRAM-SCHMIDT ORTHOGONALIZATION PROCESS 
1 4 0  DO 160  K = I , N  

DO 1 5 0  L = | , N  
ALPHA(K,L) = O.O 

150 CONTINUE 
160 CONTINUE 

DO 1 9 0  I = I • N  
DO 1 8 0  J = I • N  

DO 170  L = I • N  
A L P H A ( I , ' )  = A L P H A ( I , ' )  + Of L ) * V ( L , J )  

1 7 0  CONTINUE 
180 CONTINUE 
190 CONTINUE 

B = O , O  
DO 200 J = I , N  

B = B + A L P H A ( I I J ) * * 2  
200 CONTINUE 

B = SQRT(B) 
C CALCULATE THE NEW SET OF ORTHONORMAL COORDINATE 
C DIRECTIONS ( THE NEW MATRIX V ( I , J )  ) 

DO 210 J = I • N  
V ( l * J )  = A L P H A ( I , J ) / B  

2 1 0  CONTINUE 
DO 280 P=OtN 

BETY = O . O  
I P  = P - l 
DO 2f iB  M=IsN 

BETA(M) = O*O 

220 CONTINUE 
DO 250 J = I , N  

DO 240 K = I , I P  
A V I K )  = 0 . 0  
DO 230 L = I , N  

AV(K) = AV(K) + ALPHA(P,L)*V(KJL) 
230 CONTINUE 

B E T A ( J )  = B E T A ( J )  - A V I K ) * V ( K , J )  
240 CONTINUE 
250 CONTINUE 

DO B60 J = I , N  
BETA(J) = BETA(J) + ALPHA(P,J) 
BETY = BETY ÷ RETA(JI**B 

260 CONTINUE 
BETY = SQRT(BETY) 
DO 270 J = I , N  

V (P ,J )  = BETA(J)/BETY 
BTO CONTINUE 
280 CONTINUE 

C END OF GRAM-SCHMIDT PROCESS 
CALL MONITR(N.  X, FO, R, B, CON, 2 )  
I F  (CON) GO TO 290 

C GO TO THE NEXT ITERATION 
GO TO 4 0  

290 RETURN 
END 

Algorithm 45 l 

Chi-Square Quantiles [G1 ] 
R i c h a r d  B. Golds t e in  [Recd. 30 June 1971 and  20 
M a r c h  19721 
D e p a r t m e n t  of  M a t h e m a t i c s ,  P r o v i d e n c e  College, 
Prov idence ,  R.I.  

Key Words and Phrases: Chi-square statistic, asymptotic 
approximation, normal deviate, chi-square deviate, degrees of 
freedom 

CR Categories: 5.12, 5.5 
Language: Fortran 

Description 
The algorithm evaluates the quantile at tile probability level 

P for the Chi-square distribution with N degrees of freedom. The 
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quant i le  funct ion is an  inverse of  the funct ion 

f; P ( X  IN) = (2N/2r(N/2)) -1 zIN-- le  -~z  d Z  (x > O, N >_ 1). 
(p) 

The  funct ion G A U S S D ( P )  is a s sumed  to return the  no rma l  
deviate for the level P, e.g. --1.95996 for P = .025. The  proce- 
dure found  in Has t ings  [5] may  be used, or for increased accuracy, 
the procedure  found  in C u n n i n g h a m  [3] may  be used. 

The  Wilson-Hilfer ty  cubic formula  [7] which is 

x ~ ~ N{1 --  2 / 9 N  + X (2/9N)½13 

where  X is the  no rma l  deviate can be extended to the 19-term 
asympto t ic  approx imat ion :  

x 2 ~.~ N{ 1 -- 2 / 9 N  + (4X4+16X2--28) /1215N 2 
+ (8XS+720X4+3216X2+2904) /229635N 3 + . . .  
+ (2/N)~[X/3 + ( - - X 3 + 3 X ) / 1 6 2 N  
--  (3XS+40X 3 + 45X) /5832N 2 
+ (301X ; -  1519X 5 -  32769X ~ -  79349X)/7873200N ~ + ' ' • ] }:~ 

where X is the normal  deviate by taking the cube root  of  the poly- 
nomial  expans ion in Campbel l  [21. For  N = 1 

x "~ = { GA USSD (½ P) 15 

and  for N = 2 

x 2 = - - 2 1 n  (P).  

For  2 < N < 2 + 41 XI ,  x 2 was fit with polynomials  of  the same  
fo rm as the  asymptot ic  approximat ion :  

x 2 ~ N{ (1.0000886-- .2237368/N--  .01513904/N 2) 
+ N-½X(.4713941 + .02607083/N--  .008986007/N 2) 
+ N-xX2(.OOO1348028+.Ol128186/N+.O2277679/N 2) 
+ N-at2X3(--.OO8553069--.Ol153761/N--.O1323293/N 2) 
+ N-2X%OO312558+.OO5169654/N--.OO6950356/N 2) 
+ N-~t2X~(--.OOO8426812+.OO253001/N+.OOlO60438/N 2) 
+ N-3X~(.00009780499 - .O01450117/N+.OO1565326/N 2) }3 

f rom Abramowi tz  and  Stegun [1] for P = .0001, . 0 0 0 5 , . . . ,  .995 
and  Hald  and  Sinkbaek [4] for P = .999, .9995. The  deviates 

4 8 4  

for N = 3, 4 , . . . ,  9 were made  accurate  within 10 -6 by us ing 
Algor i thm 299 of  Hill and  Pike [6]. 

For  N = 1 and  N = 2 the  x 2 deviate is as accurate  as the  
G A U S S D  and A L O G  procedure  o f  the  system. For  .0001 _< P < 
.9995 and  N >_ 3 the  absolute  error in x 2 is less than  .005 and  the  
relative error  is less than  .0003. This  is some  100 to 1000 t imes as 
accurate  as the  Wilson-Hilferty fo rmula  even for large N. Error  
curves for three approx imat ions  are shown in Figures 1 and  2. 

The  p rog ram was tested on an  IBM/360  at Rhod e  Is land Col-  
lege and  resulted in the ou tpu t  of  Table I. 

Table  I. 

T a b l e  o f  C o m p u t e d  Va lues  

Deg .  
F t .  0.9995 0 .9950 0.5000 0.0010 0.0001 

1 0.000000 0.000039 0.454933 10.827576 15.135827 
2 0.001000 0.010025 1.386293 13.815512 18.420670 
3 0.015312 0.071641 2.365390 16.268982 21.106873 
4 0.063955 0.206904 3.356400 18.467987 23.510040 
5 0.158168 0.411690 4.351295 20.515503 25.744583 

10 1.264941 2.155869 9.341794 29.589081 35.565170 
15 3.107881 4.601008 14.338853 37.697662 44.267853 
20 5.398208 7.433892 19.337418 45.314896 52.387360 
50 23.460876 27.990784 49.334930 86.660767 95.969482 

100 59.895508 67.327621 99.334122 149.449051 161.319733 
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AI gorithm 
FUNCTION CHISQD(P, N) 
DIMENSION C ( O I ) ,  A(19) 
DATA C ( 1 ) / I . 5 6 5 3 2 6 E - 3 / ,  C ( 2 ) / 1 * 0 6 0 4 3 B E - 3 / ,  

* C ( 3 ) / - 6 . 9 5 0 3 5 6 E - 3 / ,  C ( 4 ) / - I . 3 2 3 2 9 3 E - B / ,  
* C(5)/2.277679E-2/, C(6)/-8.986007E-3/, 

C ( 7 ) / - 1 . 5 1 3 9 0 4 E - 2 / ,  C ( 8 ) / 2 o 5 3 0 0 1 0 E - 3 / s  
* C ( 9 ) / - I . 4 5 0 1 1 7 E - 3 / ,  C ( 1 0 ) / 5 . 1 6 9 6 5 4 E - 3 / I  
* C ( 1 1 ) / - 1 . 1 5 3 7 6 1 E - 2 / ,  C ( 1 2 ) / I . 1 2 B I B 6 E - 2 / ,  
* C ( 1 3 ) / 2 . 6 0 7 0 8 3 E - 2 / ,  C ( 1 4 ) / - 0 . 2 2 3 7 3 6 8 / ,  
* C ( 1 5 ) / 9 . 7 8 0 4 9 9 E - 5 / ,  C ( 1 6 ) / - 8 . 4 2 6 8 1 2 E - 4 / ,  
* C ( 1 7 ) / 3 * 1 2 5 5 B O E - 3 / ,  C ( I B ) / - B , 5 5 3 0 6 9 E - 3 / ~  
* C ( 1 9 ) / I . 3 4 8 0 2 8 E - 4 / ,  0 ( 2 0 ) / 0 . 4 7 1 3 9 4 1 / ,  6 ( ~ 1 ) / I , 0 0 0 0 8 8 6 /  

DATA A(1)/I.264616E-2/, A ( 2 ) / - I . 4 2 5 2 9 6 E ~ 2 / ,  
A { 3 ) / I . 4 0 0 4 8 3 E - 2 / ~  A(4)/-5°886090E-3/, 
A(5)/-I .091214E-2/, A(6)/-2.304527E-2/, 

* A ( 7 ) / 3 . 1 3 5 4 1 1 E - 3 / ,  A ( B ) / - 2 . 7 2 8 4 8 4 E - 4 / ,  
* A ( 9 ) / - 9 . 6 9 9 6 G I E - 3 / ,  A ( I O ) / I . 3 1 6 8 7 2 E - 2 / ,  
* A ( I I ) / O . 6 1 8 9 1 4 E - O / ,  A ( 1 2 ) / - 0 . 2 2 2 2 2 2 2 / ,  
* A(13)/5.406674E-5/, A(14)/3.483789E-5/, 
* A ( 1 5 ) / - 7 . O 7 4 7 6 1 E - 4 / ,  A ( 1 6 ) / 3 . 2 9 2 1 8 1 E - 3 / ,  
* A(17)/-B.729713E-3/j A ( 1 8 ) / 0 * 4 7 1 4 0 4 5 / ,  A ( 1 9 ) / I . /  

I F  ( N - 2 )  lO~  2 0 ,  3 0  
10 C B I S Q D  = G A U S S D ( ° 5 * P )  

C H I S Q D  = C H I S O D * C H I S Q D  
RETURN 

2 0  CHISQD = -2°*ALOG(P) 
RETURN 

3 0  g = N 
F I  = I * / F  
T = G A U S S D ( I . - p )  
F2  = S Q R T ( F I ) t T  
I F  ( N . G E . ( 2 + I N T ( 4 . * A B S ( T ) ) ) )  GO TO 40 
C H I S Q D = ( ( ( ( ( ( ( C ( I ) * F 2 + C ( 2 ) ) * F 2 + C ( 3 ) ) * F 2 + C ( 4 ) ) * F 2  

* + C ( 5 ) ) * F O + C ( 6 ) ) * F O + C ( 7 } ) * F I + ( ( ( ( ( ( C ( O ) + C ( 9 ) * F O ) * F 2  
* + C ( I O ) ) * F 2 + C ( I 1 ) ) * F O + C ( I O ) ) * F O + C ( 1 3 ) ) * F O + C ( 1 4 ) ) ) * F I  + 
* ( ( ( ( ( C ( 1 5 ) * F O ÷ C ( 1 6 ) ) * F O + C ( 1 7 ) ) * F O + C ( 1 8 ) ) * F O  
* + C ( 1 9 ) ) * F 2 ÷ C ( 2 0 ) ) * F 2 + C ( 2 1 )  

GO TO 50 
40  C H I S O D = ( ( ( A ( I ) + A ( 2 ) * F O ) * F I + ( ( ( A ( 3 ) + A ( 4 ) * F 2 ) * F 2  

* +A(5))*FO+A(6)))*FI+(((((A(7)+A(O)*F2)*F2+A(9))*F2 
* ÷ A ( I O ) ) * F 2 ÷ A ( I I ) ) * F O + A ( 1 2 ) ) ) * F I  + ( ( ( ( ( A ( 1 3 ) * F 2  
* ÷A(14) ) *FO+A(15) ) *F2+A(16) ) *FO÷A(17) ) *FO*F2 
* + A ( I B ) ) * F E + A ( 1 9 )  

SO C R I S Q D  = C H I S O D * C H I S Q D * C H I S Q D * F  
RETURN 
END 

Algorithm 452 

Enumerating Combinations 
of m Out of n Objects [G 6] 
C.N. Liu and D.T. Tang [Recd. 7 July 1971 a n d  
1 May 1972] 
IBM Thomas J. W a t s o n  R e s e a r c h  Center ,  Y o r k t o w n  
H e i g h t s ,  NY 10598 

Key Words and Phrases: permutations, combinations 
CR categories: 5.30 
Language: Fortran 

Description 
NXCBN can be used to generate all combinations of m out of 

n objects. Let the binary n-vector of  ml's and (n -- m) O's repre- 
senting a combination of  m out of  n objects be stored in an in- 
teger array, say 1C(n). If NXCBN (n, m, IC) is called, a binary 
vector representing a new combination is made available in the 
array IC(n). If NXCBN (n, m, IC) is called (~) times successively, 
then all combinations will be generated. 
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The algorithm has the following features; (a) each output 
binary n-vector differs from the input at exactly two posit ions--  
consequently each generated combination differs from the pre- 
vious one by a single object: (b) the n-vectors generated by this 
subroutine form a closed loop of  (',*) elements--therefore the ini- 
tial combination may be specified arbitrarily, and the enumeration 
of  any subset of  (~) combinations can be readily achieved. The 
second feature is not found in Chase's algorithm [I]. 

The algorithm underlying this procedure is based upon our 
study of  properties of  Gray codes. It can be shown that constant 
weight code vectors from a Gray code sequence are separated by a 
Hamming distance of  2. The mathematical analysis is contained 
in [2J and [3]. 

References 
1. Chase, P.J. Algorithm 382, Combinations o fm out o fn  
objects. Comm. ACM 13 (June 1970), 368. 
2. Tang, D.T., and Liu, C.N. On enumerating m out of  n 
combinations with minimal replacements. Proc. of  Fifth 
Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971. 
3. Tang, D.T., and Liu, C.N. Distance-Two Cyclic Chaining 
of  Constant-Weight Codes. IEEETC. C-22, 2 (Feb. 1973), 176-180. 

Algorithm 
SUBROUTINE N X C B N ( N ,  M, IC) 

C E X P L A N A T I O N  OF THE P A R A M E T E R S  I N  THE C A L L I N G  SEQUENCE 
C N THE TOTAL NUMBER OF OBJECTS 
C M THE NUMBER OF OBJECTS TO BE TAKEN FROM N 
C IF M=O, OR M>=N, EXIT WITH ARGUMENTS UNCHANGED 
C IC AN INTEGER ARRAY. IC CONTAINS AN N-DIMEN- 
C SIONAL BINARY VECTOR WITH M ELEMENTS SET TO I 
C REPRESENTING THE M OBJECTS IN A COMBINATION 
C THIS ALGORITHM IS PROGRAMMED IN ANSI STANDARD FORTRAN 

INTEGER IC(N) 
C CHECK ENDING PATTERN OF VECTOR 

I F  ( M . G E . N  . O H .  M . E O . O )  GO TO 1 4 0  
NI = N - I 
DO I0 J = I , N I  

NJ = N - J 
I F  ( I C ( N ) . E Q . I C ( N J ) )  GO TO 10 
d l  = J 
GO TO 2 0  

IO  C O N T I N U E  
20 IF  (MOD(M,2) .ED. I )  GO TO 90 

C FOR M EVEN 
IF  ( I C ( N ) . E O . I )  GO TO 3 0  
K! = N - J! 
K2  = K I  + 1 
GO TO 1 3 0  

3 0  I F  ( M O D ( J 1 , 2 ) . E O . I )  GO TO g40 
GO TO 120 

C SCAN FROM RIGHT TO LEFT 
4 0  J P  = ( N - J I )  - 1 

DO 5 0  I = I , J P  
I I  = JP + 2 -  I 
I F  ( I C ( I I ) . E O . O )  GO TO 50 
I F  ( I C ( I I - I ) . E Q . I )  GO TO 7 0  
GO TO 80 

50 CONTINUE 
6 0  K I  = 1 

K2 = CN+I) - M 
GO TO 1 3 0  

7 0  K I  = I I  - 1 
1'(2 = N - d l  
GO TO 1 3 0  

8 0  KI = I I  - l 

K2 = ( N + l )  - J l  
GO TO 1 3 0  

C FOR M 000 
90 IF  ( I C ( N ) . E Q * I )  GO TO l l O  

K2  = ( N - J I )  - I 
IF (K2.EOoO) GO TO 60 
I F  ( I C ( K 2 + I ) . E O . I  .AND° I C ( K O ) . E Q . I )  GO TO 1 0 0  
K I  = K2  + 1 
GO TO 1 3 0  

IO0 KI = N 
GO TO 1 3 0  

| 1 0  I F  ( M O D ( J I , 2 ) . E Q . I )  GO TO lfiO 
GO TO 4 0  

1 2 0  Kl  = N - J l  
K2  : MINO( (K I+B) ,N)  

C COMPLEMENTING TNO BITS TO OBTAIN THE NEXT COMBINATION 
1 3 0  I C ( K I )  = I - I C ( K I )  

IC(KB) = 1 - IC(K2)  
I 4 0  R E T U R N  

END 
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Algorithm 453 

Gaussian Quadrature 
Formulas for Bromwich's 
Integral [D 1 ] 
Robert Piessens [Recd. 2 Aug. 1970 and 8 Feb. 1972[ 
Applied Mathematics Division, University of Leuven, 
Heverlee, Belgium 

Key Words and Phrases: Gaussian quadrature, Bromwieh's 
integral, complex integration, numerical inversion of the Laplace 
transform 

CR Categories: 5.16, 5.13 
Language: Fortran 

Description 
W" " W s) B R O M I N  calculates the  abscissas x~- ") and  e gnts  k of  the  

Gauss i an  quadra tu re  formula  

fc+j~ N ( s ) ~ / V ( ~ ) \  ( l / 2 ~ r j )  eZx-sF(x) dx ~- ~,  wk r k .  k ) ( l )  

c 2 :Q k : l  

where c is an  arbi trary real positive number ,  s is a real nonnegat ive  
parameter ,  and  F(x)  must  be analytic in the  r ight-half  plane o f  the  
complex  plane. 

• ( s )  
Absc l s sasxe  and  weights w(k ") are to be determined so that  (1) 

is exact whenever  F(x)  is a polynomial  in x -l ,  o f  degree _<2N -- I. 
The  abscissas x(k ~) are the  zeros o f  PN,~(X -1) where 

PN,s(u) = (--l);VBF0(--N, N + s -- l;  -- ;  u). (2) 

Propert ies  o f  P,v,,(u) are s tudied in Ill. 
The  quadra tu re  formulas  o f  even order have no real abscissas;  

those  o f  odd order have exactly one real abscissa. All the abscissas 
have positive real parts  and  occur in complex conjugate  pairs. 

The  zeros o f  (2) are calculated us ing  N e w t o n - R a p h s o n ' s  
method .  F ind ing  an  approx imate  zero as s tar t ing value for the  
i teration process is based on a certain regularity in the  dis t r ibut ion 
o f  the  zeros (see [1 ] and  [2]). The  s tar t ing values, used by B R O M I N  
were tested for s = 0.1(0.1)4.0 and  N = 4(1)12. Each abscissa 
was found  to at least eight significant figures in at most  six i teration 
steps, 

The  weights are given by 

(N - 1)! F 2N + s - -  272 
( _ 1 )  u - ,  A~ 

]?(N + s 1)Nxk 2 / - - - -  - ~ i -  / (3) - L p~_i,~(~ ) J 
The polynomial  (2) is evaluated by a three-term recurrence rela- 
t ion (see [I ]) .  Due to roundoff  errors, the accuracy of  abscissas 
and  weights decreases significantly for increasing N. In Table I 
we give for some  values o f  s and  N the modul i  o f  the relative errors 
in the  abscissas and  weights,  calculated by B R O M I N  (with TOL - 
0.1E -- 10) on  an  IBM 370 compute r  in double  precision (approxi- 
mately  16 significant figures). For  compar i son  we used the  16 --  S 
values given in [3]. 

T a b l e  I. M a x i m u m  R e l a t i v e  E r r o r s  in A b s c i s s a s  a n d  W e i g h t s  

M a x i m u m  e r ro r  in M a x i m u m  e r ro r  in 
a b s c i s s a s  we igh t s  

s N = 6 N = 12 N = 6 N = 12 

0.1 1.8 X 10 -13 1.7  X 10 -9 1 .2  X 10 -I3 2 .3  X 10 -8 
1.0  1 .9  × 10 -14 5.3 X 10 - n  1 .5  X 10 -14 6 .4  X 10 -I°  
4 . 0  1.3 .,< l0  -15 2 .3  X I0 -l~ 1 .0  X 10 -14 4 .3  X 10 -II 
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Note  that  the relative errors in the weights are larger than  in 
the abscissas• 

The  use of  complex ari thmetic  is avoided in B R O M I N  in 
order to facilitate the conversion to a double  precision subrout ine .  

References 
1. Piessens, R. Gauss ian  quadra tu re  formulas  for the numerical  
integration of  Bromwich ' s  integral and  the inversion o f  the  Laplace 
t ransform.  J. Eng. Math.  5 (Jan. 1971), 1-9. 
2. Piessens, R, Some aspects o f  Gauss ian  quadra tu re  formulas  
for the  numerical  invecsion o f  the Laplace t ransform.  Comput. 
J. 14 (Nov. 1971), 433 435. 
3. Piessens, R. Gauss i an  quadra ture  formulas  for the numerical  
integration of  Bromwich ' s  integral and  the  inversion o f  the 
Laplace t ransform.  Rep. T W I ,  Appl. Math.  Div. U. of  Leuven,  
1969. 

Algorithm 
SUBROUTINE BROMIN(NJ S* TOL, XR, X I ,  WR* Wls EPS, IER) 
D O U B L E  P R E C I S I B N  A K ,  A N ,  A R C ,  C I ,  CR,  D ,  D I ,  D 2 ,  E ,  E P S ,  

* FAC, FACTI, FACTR, PIJ PR, QI* QR, RI* RR* S* TI*  TB*  
* TOLJ U, V, WI, WR* XI*  XR* YIJ YR, Z 

INTEGER IERs J~ K, Ln Ns NI ,  NUM* NUPs IGNAL 
DIMENSION XR(N)* X I ( N ) *  WR(N), WI(N) 

C T H I S  S U B R B U T I N E  C A L C U L A T E S  A B S C I S S A S  AND W E I G H T S  OF THE 
C GAUSSIAN QUADRATURE FBRMULA BE eRDER N FOR THE BROMWICH 
C INTEGRAL. ONLY THE ABSCISSAS BE THE FIRST QUADRANT OF 
C THE COMPLEX PLANEJ THE REAL ABSCISSA ( I F  N IS ODD) AND 
C THE CBRRESPGNDING WEIGHTS ARE CALCULATED, THE OTHER 
C ABSCISSAS AND WEIGHTS ARE COMPLEX CONJUGATES. 
C INPUT PARAMETERS 
C N BRDER eF THE QUADRATURE FORMULA, 
C N MUST BE GREATER THAN 2. 
C TOL REQUESTED RELATIVE ACCURACY GF THE ABSCISSAS- 
C S PARAMETER BF THE WEIGHT FUNCTION. 
C QUTPUT PARAMETERS 
C XR AND XI CBNTAIN THE REAL AND IMAGINARY PARTS OF 
C THE ABSCISSAS. IF N IS QDD, THE REAL ABSCISSA 
C I S  XR(1) .  
C WR AND WI CGNTAIN THE REAL AND IMAGINARY PARTS OF 
C THE CBRRESPONDING WEIGHTS. 
C EPS IS A CRUDE ESTIMATION OF THE OBTAINED RELATIVE 
C ACCURACY eF THE ABSCISSAS, 
C IER IS AN ERRBR CODE, 
C IF IER=O THE COMPUTATIeN IS CARRIED OUT TO 
C THE REQUESTED ACCORACY. 
C IF  IER.GT.O THE IER-TH ABSCISSA IS NGT FOUND. 
C IF IER=-I  THE COMPUTATIONS ARE CARRIED OUT* 
C BUT THE REQUESTED ACCURACY IS NOT 
C ACHIEVED. 
C I F  I E R = - 2  N IS LESS T H A N  3. 
C FUNCTION PROGRAMS REQUIRED 
C F U N C T I O N  GAMMA(X) WHICH EVALUATES THE GAMMA 
C FUNCTION FOR POSITIVE X. 

IER = -2 
IF  ( N . L T . 3 )  RETURN 
N! = I N + I ) / 2  
L = N - I  
AN : N 
IER : 0 
EPS : TQL 
ARC = O.034DO*(3O.DO÷AN+AN)/(AN-[.DO) 
FACTR = DCBS(ARG) 
FACTI = DSIN(ARG) 
FAC : I,DO 
AK = O.DO 
DB IO K : I . L  

AK = AR + I.DO 
FAC = - F A C * A K  

10 C O N T I N U E  
FAC : FAC*(AN+AN+S-2.DO)**2/(AN*DGAMMA(AN+S-I.DO)) 

C CALGULATIGN OF AN APPRBXIMATIBN BF THE FIRST ABSCISSA 
YR = I.B38DO*AN + S - 1.5DO 
YI = O.ODO 
I F  ( N - N I - N I )  3 0 *  20~  2 0  

20 YI = YI + 1,6DO + O,07DD*S 
C START MAIN LBBP 

3 0  DB 140 R : I * N I  
E : TOL 
IGNAL = O 
NUM = 0 
NUP = O 

C NEWTON-RAPHSON METHBD 
D = YR*YR + Y I *Y I  
YR = YR/D 
YI = - Y I / D  
GO T B  50 

40  I G N A L  : 1 
50  QR = S*YR - I ° D O  

QI = $*YI 
PR = (S÷I .DO)* ( (S÷B.DO)* (YR*YR-YI*YI ) -2 .DO*YR)  ÷ 1.DO 
PI = 2 .DO* (S÷ I .DO)*Y I * ( (S÷2 .DO)*YR- I .DO)  
Z = 2 , D 0  
DO 6 0  J = 3 s N  

RR = QR 
R I  = Q I  

QR = PR 
Q I  = P I  
Z = E ÷ I . D O  
U = Z + S - 2 . D 0  
V = U + Z  
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D = (V *YR+ IO .DO-S ) / (V -2 ,DO) ) /U  
DI : ( ~ - I ,DO) *V / (U* (V -O .DO) I  
DO = V *Y I /U  
P R  = ( V - I . D O ) * ( O R * D - Q I * D O )  ÷ D I * R R  
P I  = ( V - I . D 0 ) * f Q I * D + Q R * D 2 )  + D I * R I  

60 CONTINUE 
I F  ( IGNAL .EQ. I )  GO TO 1 0 0  
D = (YR*YR+Y I *Y I ) *V  
DI = ( (PR+O~) *YR+(P I+Q I ) *Y I ) /D  + PR 
D2 = C (P I+Q I I *YR- (PR÷QRI *Y I ) /O  + P I  
O = (D I *D I+D2*D2 ) *AN  
T I  = PR*YR - PI *Y I  
T2 = P I *YR  ÷ PR*YI  
CR = (T I *D I+TO*DOI ID  
CI = (TO*O I -T I *DO) /D  
YR = YR - CR 
YI  = YI  - CI 
NUM = NUM + I 

C TEST OF CONVERGENCE OF ITERATION PROCESS 
I F  (CR*CR+CI *C I -E *E* (YR*YR÷Y I *Y I ) )  4 0 ,  4 0 ,  7 0  

C TEST OF NUMBER OF ITERATION STEPS 
7 0  I 7  (NUN- IO)  50* 50. BO 
80 E = E* IO,DO 

IER = - I  
NUP = NUP ÷ I 
I F  (NUP-5)  50. 50s 90 

9 0  I ER = K 
RETURN 

C CALCULATION OF WEIGHTS 
I 0 0  I F  ( E P S , G E . E )  GO TO 1 1 0  

E P S  = E 
1 1 0  D = ( 0 R * Q R ÷ O I * 0 I ) * * O  

D l  = Y R * Q R  + Y I * 0 1  
DB = Y I * O R  - Y R * O I  
WR(K) = F A C * ( D I * D I - D O * D O ) / D  
WI(R)  = 2 , D 0 * F A C * D 2 * D I / D  
D = Y R * Y R  + Y I * Y I  
XRCK) = YRID 
X I (K )  = -Y I /D  
IF  (K+ I -N I )  130~ 120J 150 

I 00  FACTR = DGOS(I,5DO*ARG) 
FACTI = DSIN( I ,BDO*ARG)  

C CALCULATION OF AN APPROXIMATION OF THE (K+ I I -TH  ABSCISSA 
1 3 0  YR = (XR(K)÷O.67DO*AN)*FACTR - X I tR ) *FACT I  - 0.67DO*AN 

YI  = (XR(R I÷O .67DO*AN) *FACT I  ÷ X I (R ) *FACTR 
1 4 0  C ~ N T I N U E  
150 RETURN 

END 

Algorithm 454 

M.J. Box [21. This method is a sequential search technique, which 
has proven effective in solving problems with nonlinear objective 
functions subject to nonlinear inequality constraints.  No deriva- 
tives are required. The procedure should tend to find the global 
maximum because the initial set o f  points is randomly scattered 
throughout  the feasible region. If linear constraints are present or 
equality constraints are involved, other methods should prove to 
be more efficient [1]. The algori thm proceeds as follows: 
(1) An original "complex"  of  K > N + 1 points is generated 
consisting of  a feasible starting point and K -- 1 additional points 
generated from random numbers and constraints for each of  the 
independent variables: X,- 5 = Gi q- r is(Hi -- G,), i = 1, 2 , . . . ,  
N, and j = 1, 2 , . . . ,  K --  1, where rc~ are random numbers be- 
tween 0 and 1. 
(2) The selected points must satisfy both the explicit and implicit 
constraints. If  at any time the eaplicit constraints are violated, 
the point is moved a small distance a inside the violated limit. If 
an implicit constraint  is violated, the point is moved one half of  the 
distance to the centroid of  the remaining points: Xcj(new) = 
(X~5(old) + X c , ) / 2 ,  i = 1, 2 , . . . ,  N, where the coordinates 
of  the centroid of  the remaining points, X,.~,  are defined by 

- f i , ~ - K -  1 X i , j - - X i d ( o l d )  , i = 1 , 2 , . . . , N .  

This process is repeated as necessary until all the implicit con- 
straints are satisfied. 
(3) The objective function is evaluated at each point. The point 
having the lowest function value is replaced by a point  which is 
located at a distance a times as far from the centroid of  the re- 
maining points as the distance of  the rejected point on the line 
joining the rejected point and the centroid: 

X,.5(new) = c~(Xi,~ - Xis(old)) + X~, , ,  i = 2, . . . , N. 

The Complex Method for 
Constrained Optimization [E4] 
J o e l  A .  R i c h a r d s o n  a n d  J . L .  K u e s t e r *  [ R e c ' d .  D e c .  '22, 

1970 a n d  M a y  5, 1971] 

A r i z o n a  S t a t e  U n i v e r s i t y ,  T e m p e ,  A Z  85281 

Key Words and Phrases:  optimization, constrained 
optimization, Box's  algorithm 

CR Categories : 5.41 
Language:  Fortran 

Description 
Purpose. This program finds the maximum of a multivariable, 

nonlinear function subject to constraints: 

Maximize F(X~ , Xo, . . . ,  XN) 
Subject to G~ < Ark < Hk, k = 1 , 2 , . . . , M .  

The implicit variables XN+], • • . ,  XM are dependent functions of  
the explicit independent variables )(1, X . , , . . . ,  XN.  The upper 
and lower constraints Ha. and G~ are either constants or functions 
of  the independent variables. 

Method. The program is based on the "complex"  method of  

* The authors acknowledge financial support  f rom a National  
Science Foundat ion summer fellowship and Arizona State Uni- 
versity Grants  Commit tee  fellowship. Computer  facilities were 
provided by the Arizona State University Computer  Center and 
AiResearch Manufacturing Company.  

Box [21 recommends a value o f ,  = 1.3. 
(4) If a point repeats in giving the lowest function value on con- 
secutive trials, it is moved one half  the distance to the centroid of  
the remaining points. 
(5) The new point is checked against the constraints and is ad- 
justed as before if the constraints are violated. 
(6) Convergence is assumed when the objective function values 
at each point are within ~ units for -y consecutive iterations. 

Program. The program consists o f  three general subroutines 
(JCONSX,  JCEKI ,  JCENT)  and two user supplied subroutines 
(JFUNC, JCNST1).  The use of  the program and the meaning of  
the parameters are described in the comments  at the beginning of  
subroutine J C O N S X .  All communicat ion between the main 
program and subroutines is achieved in the subroutine argument  
lists. An iteration is defined as the calculations required to select a 
new point which satisfies the constraints and does not  repeat in 
yielding the lowest function value. 

Test results. Several functions were chosen to test the program. 
The calculations were performed on a CDC 6400 computer.  Some 
examples: 

1. Box Problem [2] 
Function:  F = (9 -- (XI -- 3)2)x=a/27n/3 
Constraints:  0 < )(1 < 100 

0 ~ X~ ~ Xl /~/3  
0 _< (X:I = XI + w/3X..,) _< 6 

Starting point: )(1 = 1.0, Xz = 0.5 
Parameters:  K = 4, a = 1.3, ~ = .001, -~ = 5, ~ = .0001 

Correct  results: 
F = 1.0000 
X l  = 3.0000 
X._, = 1.7321 

Computed  results 
F = 1.0(300 
)(1 = 3.0000 
)(2 = 1.7320 
Number  of  iterations: 68 
Central processor time: 6 sec. 
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2. 

Computed  results: 
F = 3456 
XI = 24.01 
X.., = 12.00 
)(3 = 12.00 
N u m b e r  o f  iterations: 72 
Central processor time: 6 sec. 

Post  Office Problem [3] 
Funct ion:  F = XIX2Xu 
Constraints:  0_< Xi_<  42, i = 1 , 2 , 3  

0 _< (X4 = )(1 -t- 2)(., q- 2X~) _< 72 
Starting point: )(i = 1.0, X.., = 1.0, X3 =- 1.0 
Parameters: K = 6, a = 1 .3 ,  ~ = .01 ,  "r = 5, ~ = .0001  

Correct results: 
F = 3456 
XI = 24 .00  
X2 = 12.00 
X~ = 12.00 

3. Beveridge and Schechter Problem [l J 
Function: F = - - (XI --  0.5)~ -- (X~ -- 1.0) 2 
Constraints: - 2  _< Xx _< 2 

- , , / 2  < Xe _< ~/2  
--4_< (X3 = XI ~q-  2X~ ~ -  4) _< 0 

Starting point: X~ = 0., X~ = 0.  

Parameters: K = 4,  ~ = 1 .3 ,  fl = . 0 0 0 0 1 ,  3' = 5, ~ = .0001  

Computed  results: Correct results: 
F = . 0 0 0 0  F = . 0 0 0 0  

)(1 = .5035 )(i = .5000 
X~ = . 9990 Xe = 1.0000 
Number  o f  iterations: 40 
Central processor t ime = 5 sec. 
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Algorithm 
SUBROUTINE JCONSX(N* M* K* ITMAX. ALPHA* BETA, GAMMA* 

* D E L T A *  X ,  R*  F* I T *  I E V 2 *  RO* G* N*  X C .  L )  
C PURPOSE 
C TO FIND THE CONSTRAINED MAXIMUM OF A FUNCTION OF 
C S E V E R A L  VARIABLES BY T H E  COMPLEX METHGD 8 F  M. J, B O X ,  
C THIS IS THE PRIMARY SUBROUTINE AND C00RDINATES THE 
C SPECIAL PURPOSE SUBROUTINES (JCEKI* *CENT. JFUNCp 
C J C N S T I ) ,  I N I T I A L  GUESSES OF THE I N D E P E N D E N T  V A R I A B L E S .  
C RANDOM NUMBERS* SOLUTION PARAMETERS* DIMENSION LIMITS 
C AND P R I N T E R  CODE DESIGNATION ARE OBTAINED FROM THE MAIN 
C PROGRAM. F I N A L  F U N C T I O N  AND INDEPENDENT V A R I A B L E  
C VALUES ARE TRANSFERRED TO THE MAIN PROGRAM FOR 
C PRINTOUT, INTERMEDIATE PRINTOUTS ARE PROVIDED IN THIS 
C SUBROUTINE. THE USER MUST PROVIDE THE MAIN PROGRAM AND 
C THE SUBROUTINES THAT SPECIFY THE FUNCTION (JFUNC) AND 
C CGNSTRAINTG ( J C N S T 1 ) ,  FORMAT CHANGES MAY BE R E Q U I R E D  
C WITHIN THIS SUBROUTINE DEPENDING ON THE PARTICULAR 
C PROBLEM UNDER CONSIDERATIBN. 
C UGAGE 
C CALL JCONSX(N*M*K, ITMAX*ALPHA*BETA*GAMMA~DELTA*X*R,F* 
C IT*IEV2*KB*G*H*XC*L) 
C SUBROUTINES R E Q U I R E D  
C JCEKI(N*M*K*X,G*H*I*RODE*XC*DELTA*L*RI) 
C CHECKS ALL POINTS AGAINST EXPLICIT AND IMPLICIT 
C CONSTRAINTS AND APPLYS CORRECTION IF VIOLATIONS ARE 
C FOUND 
C JCENT(N,M*K*IEVI*I*XC.X*L*KI) 
C C A L C U L A T E S  THE C E N T R O I D  OF P O I N T S  
C J F U N C ( N * M * R * X * F . I * L )  
C SPECIFIES OBJECTIVE FUNCTION (USER SUPPLIED) 
C JCNSTI(N*MsK*X*GsH*I*L) 
C SPECIFIES EXPLICIT AND IMPLICIT CONSTRAINT LIMITS 
C (USER SUPPLIED), ORDER EXPLICIT CONSTRAINTS F I R S T  
C DESCRIPTION OF PARAMETERS 
C N NUMBER OF EXPLICIT INDEPENDENT VARIABLES - DEFINE 
C IN MAIN PROGRAM 
C M NUMBER 0F GETS 0F CONSTRAINTS - DEFINE IN MAIM 
C PROGRAM 
C H NUMBER OF POINTS IN THE COMPLEX - DEFINE IN MAIN 
C PROGRAM 
C ITMAX MAXIMUM NUMBER OF ITERATIONS - DEFINE IN MAIN 
C PROGRAM 
C ALPHA REFLECTION FACTOR - D E F I N E  IN MAIN PROGRAM 
C B E T A  CONVERGENCE PARAMETER - D E F I N E  I N  M A I N  PROGRAM 
C GAMMA CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM 
C DELTA E X P L I C I T  CONSTRAINT VIOLATION CORRECTION - DEFINE 
C IN MAIN PROGRAM 
C X INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN 
C MAIN PROGRAM 
C R RANDBM NUMBERS BETWEEN 0 AND I - DEFINE IN MAIN 
C PROGRAM 
C F OBJECTIVE FUNCTIDN - DEFINE IN SUBROUTINE JFUNC 
C IT ITERATION INDEX - DEFINED IN SUBROUTINE JCONSR 
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C I E V 2  I N D E X  OF P O I N T  W I T H  N A X I N U M  F U N C T I O N  V A L U E  - 
C D E F I N E D  I N  S U B R O U T I N E  JCONGX 
C I E V I  I N D E X  GF P O I N T  W I T H  MINIMUM F U N C T I B N  V A L U E  - 
C D E F I N E D  I N  S U B R O U T I N E  JCONGX AND J C E K I  
C K0 PRINTER UNIT NUMBER - DEFINE IN MAIN PROGRAM 
C G LOWER CONGTRAINT " DEFINE IN SUBROUTINE JCNSTI 
C H U P P E R  C O N S T R A I N T  ~ D E F I N E  I N  S U B R O U T I N E  J C N S T I  
C XC C E N T R O I D  - D E F I N E D  I N  S U B R O U T I N E  J C E N T  
C L TOTAL NUMBER OF INDEPENDENT VARIABLES (EXPLICIT + 
C I M P L I C I T )  - D E F I N E  IN MAIN PROGRAM 
C I POINT INDEX - DEFINED IN SUBROUTINE JCONSX 
C NODE KEY USED TO DETERMINE I F  IMPLICIT CONSTRAINTS ARE 
C P R O V I D E D  - D E F I N E D  I N  S U B R O U T I N E  J C B N S X  AND J C E K I  
C KI DO LOOP LIMIT - DEFINED IN SUBROUTINE JCONSX 

D I M E N S I O N  X ( K s L ) *  R ( K . N ) *  F ( K ) J  G ( M ) *  H I M ) .  X C I N )  
I N T E G E R  GAMMA 
I T  = I 
WRITE (K0,99995I I T  
KGDE = 0 
I F  ( M - N )  20, 2 0 *  I O  

I O  RODE = I 
BO CONTINUE 

DO 40 I I = B , K  
DO 3 0  J = I * N  

XIII*J) = O .  
30 CONTINUE 
40 CONTINUE 

C C A L C U L A T E  COMPLEX P O I N T S  AND CHECK A G A I N S T  C O N S T R A I N T S  
DO 6 0  I I = 2 * K  

DO 50  J = I * N  
I = I I  
CALL JCNSTI(N, M, R* X* G, H, I *  L) 
X ( I I * J )  = G(J) + R ( I I . J ) * ( H ( J ) - G ( J ) )  

50 CONTINUE 
Kl : IT 
C A L L  J C E K I I N ,  M,  K ,  X .  G* H .  I *  KODE*  X C .  D E L T A ,  L *  K I )  
WRITE (K0.99999) I I .  ( X ( I I , J ) m J = I , N )  

60 CONTINUE 
H l  = R 
DO 7 0  l = l * K  

CALL JFUNCIN* M* R* X* F, I* L) 
70 CONTINUE 

FOUNT = t 
IA = O 

C FIND POINT WITH LOWEST FUNCTION VALUE 
WRITE (K0,99998) ( F ( 1 ) . I = I * K )  

8 0  l E V I  = I 
DO 100 I C M = B * K  

IF I F ( I E V I ) - F ( I C M ) )  10B. IOO, 90 
90 IEVI  = ICM 

I00 CONTINUE 
C FIND POINT WITH HIGHEST FUNCTION VALUE 

I E V 2  = I 
DO IBO ICM=2,R 

IF (F( IEVB)-F( ICM))  110, 110, IBO 
II0 IEV2 : ICM 
120 C O N T I N U E  

C CHECK CONVERGENCE CRITERIA 
IF (FIIEVO)-(F(IEVI)+BETA)') 1 4 0 ,  1 3 0 ,  130 

130 KOUNT = I 
GO TO 150 

140 KOUNT = KOUNT + I 
IF (KOUNT-GAMMA) 150. 240* 240 

C R E P L A C E  P O I N T  W I T H  LOWEST F U N C T I O N  V A L U E  
150 CALL *CENT(N, M* K. IEVI ,  I*  XC* X* L* KIT 

DO 160 J=I*N 
X ( IEV I *J )  = ( I .+ALPHA)*(XCIJ) )  - ALPHA*(X( IEVI*J) )  

1GO CONTINUE 
I = I E V I  
CALL JCEKI(N, M* R* X* G* H* I, RODE, XC* DFJ. TA. L, KI) 
CALL JFUNCIN* M. R* X, F* I. L) 

C REPLACE NEW POINT IF I T  REPEAT5 AS LOWEST FUNCTION VALUE 
1 7 0  IEV2  = 1 

D0 190 ICM=2*R 
IF (F(IEV2)-FIICM)) 190. 190. IBO 

180 IEV2 = ICM 
190 CONTINUE 

I F ' ( I E V B - I E V I )  220. 200. 220 
200 DO 010 JJ=I .N 

X( IEVI *JJ )  = ( X ( I E V I * J J ) + X C [ J J ) ) / 2 .  
2 1 0  CONTINUE 

I = I E V I  
C A L L  J C E K I ( N ,  M, K*  X* G* H. I *  RODE* XC ,  D E L T A ,  L ,  H I )  
C A L L  JFUNC(N* M, R* X* F, I ,  L )  
GO TO 1 7 0  

2 2 0  C O N T I N U E  
WRITE (K0,999971 IX(IEVI.JB)*JB=I*N) 
WRITE IR0,99998) ( F ( 1 ) , I = I * K I  
WRITE (H0*99996) ( X C ( J ) * j : I * N )  
IT = I T  + 1 
I F  ( I T - I T M A X )  2 3 0 ,  2 3 0 ,  2 4 0  

2 3 0  CONTINUE 
WRITE (H0,99995) I T  
GO T0 80 

240 RETURN 
99999 FORMAT(IH , 15X, 2 I H  COORDINATES AT POINT, 14/B(FB.4* 2X)) 
99998 FORMAT(IH , BOX* 16H FUNCTION VALUES, /B(FIO,4*  2X)) 
99997 FORMAT(IH * 20X* 16H CORRECTED POINT. /G(FB,4* 2X)) 
9 9 9 9 6  FORMAT(IH . 2IH CENTR01D COORDINATES, 2X, B(FS,4* 2X)) 
99995 FORMAT(IH , / / IOH ITERATION. 4X, 15) 

END 

SUBROUTINE JCEKI(N, M. K, X* G. H, I ,  RODE, XC, DELTA. L, 
• H I )  

C PURPOSE 
C TO CHECK ALL POINTS AGAINST THE EXPLICIT AND IMPLICIT 
C CONSTRAINTS AND TO APPLY CORRECTIONS IF VIOLATIONS ARE 
C FOUND 
C USAGE 
C C A L L  JCERI(N,M*K*X*G,H.I*KODE, XC~DELTA*L.KI) 
C SUBROUTINES R E Q U I R E D  
C JCENT(N,M*R*IEVI*I*XC,X*L*HI) 
C JCNSTI(N*M*R*X,G.H*I*L) 
C DESCRIPTION OF PARAMETERS 
C PREVIOUSLY DEFINED IN SUBROUTINE JCONSX 
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DIMENSION X (K*L ) ,  G(H), HIM),  XC(N) 
1 0  KT = O 

CALL JCNSTI(N, M, Kn X. Gn Hn I .  L)  
C CHECK AGAINST EXPLICIT CONSTRAINTS 

DO 50 J = I , N  
I F  ( X ( I t J ) - G ( J ) )  2On 2 0 3  3 0  

20 X ( I s J )  = G(J) + DELTA 
GO TO 5 0  

3 0  I F  ( H ( J ) - X ( I , J ) )  4On 4OJ 50  
40 X ( I , J )  = H(J)  - DELTA 
50 C O N T I N U E  

I F  ( R O D E )  1 1 0 ,  l i o n  60  
C CHECK A G A I N S T  THE I M P L I C I T  C O N S T R A I N T S  

60 C O N T I N U E  
N N = N + I  
DO t O 0  J = N N . M  

CALL JCNSTI(Nn M. R~ X, G, H, In L) 
IF  ( X ( I n J ) - G ( J ) )  80n 70, 70 

7 0  I F  C H ( J ) - X ( I n J ) )  8 0 n  I O 0 ,  l O 0  
OO lEVI  = I 

KT = I 

CALL JDENT(N, M, K. IEV I ,  I ,  XC, X, L,  K I )  
DO 9 0  J J = I n N  

X ( I , J J )  = ( X ( I , J J ) + X C ( J J ) ) / 2 ,  
90 CONTINUE 

IO0 CONTINUE 
IF  (KT) I I 0 ,  l lOn 10 

IIO RETURN 
END 

SUBROUTINE JCENTINn M. K, IEV I ,  I .  XC, Xn Ls K l )  
C PURPOSE 
C TO C A L C U L A T E  T H E  C E N T R O I D  OF  P O I N T S  
C USAGE 
C C A L L  J C E N T ( N n M , K , I E V I * I n X C n X s L , K I )  
C SUBROUTINES REQUIRED 
C NONE 
C DESCRIPTION 0F PARAMETERS 
C PREVIOUSLY DEFINED IN SUBROUTINE JCONSX 

DIMENSION X ( K t L ) ,  XC(N) 
DO 20 J= I *N 

XC(J) = O. 
DO IO I L = I , K I  

XC(J) = XC(J) + X ( I L~J )  
I O  C O N T I N U E  

RK = K I  
XC(J) = ( X C ( J ) - X ( I E V I , J ) ) / ( R R - I , )  

20 CONTINUE 
RETURN 
END 

Certification and Remark on Algorithm 404 [S14] 
C o m p l e x  G a m m a  F u n c t i o n  [C.W.  L u c a s  Jr .  a n d  C . W .  

Ter r i l ,  C o m m .  A C M  14 ( J a n .  1971),  48] 

G .  A n d r e j k o v ~ i  a n d  J. Vina~,  C o m p u t i n g  C e n t e r ,  

S a f a r i k  U n i v e r s i t y ,  Kog ice ,  C z e c h o s l o v a k i a  

The following changes were made in the algorithm: 
a. The function subroutine heading was changed to read 

C O M P L E X  FUNCTION CGAMMA(Z)  

in accordance with the standard. 
b. The convergence tests following statement number 70 involve 
the computation of the quantity REAL(TERM)/REAL(SUM).  
This can lead to overflow if Z is real and near to a pole. For these 
reasons the two statements were replaced by 

IF (ABS(REAL(TERM)) .GE. TOL*ABS(REAL(SUM))) GO TO 
80 

and 

IF (ABS(AIMAG(TERM)) .GE. TOL*ABS(AIMAG(SUM))) GO 
TO 100 

c. For similar reasons the statement 

S U M  = CLOG(PI /CSIN(P1.Z) ) - -SUM 

was replaced by 

S U M  = CLOG(PI)--CLOG(CSIN(PI*Z))--SUM 

With these modifications the algorithm was translated on MINSK 
22M using the FEL Fortran compiler (with seven significant digits 
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in single precision and 15 in double precision) and ran satisfactorily. 
The following tests were performed: 

a. The logarithms of CGAMMA(Z)  for z = x+iy  with x = 1.0 
(0.1) 10.0 and y = 0.0(0.1 ) 3.0 were checked against the values given 
in [1]. An overall accuracy of five to six digits was observed. The 
imaginary part frequently had one more accurate digit than the real 
part. 
b. The behavior in the vicinity of poles was tested by computing 
the values of CGAMMA(Z)  in eight evenly spaced points on circles 
of decreasing diameter. The value of I .E--7 for the minimum diam- 
eter was found adequate. 
c. The values of CGAMMA(Z)  were computed for z = x+iy  with 

1. x = 0.0(1.0)23.0, y = 0.0 
2. x = 0.0, y = 0.0(1.0)26.0 
3. x = y = 0.0(1.0)25.0 
4. x = --y = 0.0(1.0)25.0 
5. - -x  = y = 0.0(1.0)12.0 
6. - -x  = --y = 0.0(1.0)12.0 

in all cases the final value is the last for which the program did not 
run into overflow or, in the last two cases, try to take a logarithm 
of too small a number. 

References 
1. Table of gamma function for complex arguments. National 
Bureau of Standards, Applied Math. Series 34, August 1954. 

Remark on Algorithm 357  [A1] 

A n  Ef f i c i en t  P r i m e  N u m b e r  G e n e r a t o r  [ R i c h a r d  C. 

S i n g l e t o n ,  C o m m .  A C M  10 ( O c t o b e r ,  1969),  563] 

R i c h a r d  M .  D e  M o r g a n  [ R e c d  8 A u g u s t  1972],  D i g i t a l  

E q u i p m e n t  Co .  L td . ,  R e a d i n g ,  E n g l a n d  

On some Algol 60 implementations, the value of ni is destroyed 
between subsequent ca l l s to  the procedure. The second and third 
lines of the algorithm should be changed to make ni an own integer: 

own integer ij, ik, hie, j, hi, nj; 

integer i, jqi, k; 

Remark on Algorithm 412 [J6] 

G r a p h  P l o t t e r  [ J o s e p h  C e r m a k ,  C o m m .  A C M  14 ( Ju ly  

1971) ,  4 9 2 - 4 9 3 ]  

R i c h a r d  P. W a t k i n s  [Recd .  31 J a n .  1972[, M a t h e m a t i c s  

D e p a r t m e n t ,  R o y a l  M e l b o u r n e  I n s t i t u t e  o f  T e c h n o l o g y ,  

M e l b o u r n e ,  A u s t r a l i a  3000  

This algorithm is not functionally identical to Algorithm 278 
as claimed. If the x[i] values are not uniformly spaced or if m > L, 
it is possible for two or more of them to correspond to the same 
printer line. In this case, the array ittd will contain only the largest 
of the values of i and only one set of y[i, j] values, corresponding to 
that value of i, will be plotted. 

The array ind is redundant. The following changes enable 
plotL to take over the functions of ind (where all line numbers refer 
to lines relative to the label escape) : 

a. Line 4. Replace 

for i : = 1 step 1 until L do plotL[i] : = 1 
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by 

for i : = 1 step 1 until L do plotL[i] : = 0 

b. Line 9. Replace 

plotL[r] := 0; ind[r] :=  i 

by 

plotL[r] :=  i 

c. Line 21. Replace 

if plotL[i] = 0 then 

by 

if plotL[i] > 0 then 

d. Line 24. Replace 

plots  [1 q- emier(0.5 + q X (y[ind[ii] --yrnin))] := 3 

by 

plotS [1 q- entier(0.5 + q )< (y[plotL[i]] -yrnin))] := 3 

e. Line 27. Replace 

plotS [1 q- entier(0.5 q- q X (y[ind[il,j] -- yrnin))] :=  j q- 2 

by 

plotS[1 q- entier(0.5 q- q X (y[plotL[il,j] -- yrnin))] := j q- 2 

(The referee has noted that there is a typographical error on the 
fifth line before the line labeled escape. Replace 

for j  :=  step 1 until it do 

by 

f or j  : =  1 step 1 until n do 

He has also noted that the array declaration for iml should be 
deleted if the above changes are made.--L.D.F.) 

R e m a r k  on  A l g o r i t h m  4 2 4  [D 1] 

C l e n s h a w - C u r t i s  Q u a d r a t u r e  [ W . M . G e n t l e m a n ,  C o m m .  

A C M  15 ( M a y  1972), 353-355. ]  

A l b e r t  J. G o o d  ]Recd .  19 D e c e m b e r  1972] Sys tems,  

Sc ience  a n d  S o f t w a r e ,  La Jo l l a ,  C A  92037 

As published, this algorithm will not execute correctly under 
some compilers (e.g. Fortran V in the Univac 1108). One minor 
change is sufficient for proper operation: replace the variable J REV  
by the index J8 inside the DO 120 loop. 

The appearance of J R E V  and J8 in an E Q U I V ALENCE state- 
ment is not meaningful since the memory location associated with 
a DO loop index does not always contain the current value of the 
index (this depends on the compiler). 

Remark on Algorithm 428 [Z] 
Hu-Tucker Minimum Redundancy Alphabetic Coding 
M e t h o d  [J .M.  Y o h e ,  C o m m .  A C M  15 ( M a y  1972), 

360-362]  

J.G. Byrne ]Recd. 26 June 1972] Department of Com- 
puter Science, Trinity College, Dublin 2, Ireland 

was changed to 

if i > n then go to E l  else 

lhe algorithm gave correct results for tile example given and for the 
example in Gilbert and Moore [1]. In the latter case the cost 
defined as 

~ = ~  Q(I)*L(I) 

~,G Q(I) 

and code lengths were correct. 
When the L array was set to 1 :s on entry, the optimum (Huff- 

man) codes were obtained, and they were the same as those given 
by the Schwartz and Kallick [2] method as claimed in the author's 
description. 

Table 1. 

Size of alphabet 10 27 60 

Time to find optimum alphabetic codes 0.02 0.14 0.62 
(sees) 

Time to find optimum codes (sees) 0.02 0.08 0-34 

Table I, which gives the cpu time required, shows that the 
algorithm is very fast for small alphabets and that the time is 
approximately proportional to n ~, as expected. 

References 
1. Gilbert, E.N., and Moore, E.F. Variable length binary 
encodings. Bell Systems Tech. J. 38 (1959), 933-968. 
2. Schwartz, E.S., and KaUick, B. Generating a canonical prefix 
encoding. Comm. A C M  7 (Mar. 1964), 166-169. 

R e m a r k  o n  A l g o r i t h m  4 2 9  [C2] 

L o c a l i z a t i o n  o f  t he  R o o t s  o f  a P o l y n o m i a l  [W. Squi re ,  

C o m m .  A C M  15 (Aug .  1972), 776] 

E d w a r d  J. W i l l i a m s  ]Recd.  15 Sept .  1972] C o m p u t e r  

Sc ience  D e p a r t m e n t ,  F o r d  M o t o r  C o m p a n y ,  P .O.  

Box  2053, D e a r b o r n ,  M I  48121 

Corrections are needed in the third paragraph. The theorem 
that the positive real roots of (I) are less than 

1 + [maxl<~< ~ [ Ci I1 v'~. . . should read 

1 + [maxl_</_<,~ el<0 [ C i l N  '~ 

Further, the four words "RADIUS"'  in this paragraph should be 
replaced by "BO UND". 

References 
1. Zaguskin, O.O. Solution o f  Algebraic and Transcendental 
Equations, Pergamon Press, New York, 1961, p. 21. 

Algorithm 428 was translated into Basic Fortran IV and run 
on IBM System 360/44 running under RAX. When the line just 
after the label B2: 

if i l  > n then go to E l  else 
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