A Self-Modifying Extrapolation Method for
Solving Ordinary Differential Equations
Dar D. Daily
Kansas State University, Manhattan, Kansas
Author's address: 8133 Dearborn Drive, Prairie Village, KS 66208
This paper outlines a program that searches for the predominant terms of the asymptotic error expansion of initial value problems in ordinary differential equations and uses this information in a self-modifying extrapolation process. During the integration process, using a ratio that Carl de Boor (1971) used in an integration program, the method seeks to recognize trends of change in the error expansion of the differential equation and to adjust the method of extrapolation. A basic algorithm used in the modifying process is presented along with a brief explanation. Also, a comparison made with the well-known rational extrapolation method shows rational extrapolation to be generally less efficient in terms of function evaluations but also demonstrates that the self-modifying method is generally not able to reduce its error to the level of rational extrapolation. A note, though, shows the self-modifying method to be superior to the regular Romberg extrapolation.

Key Words and Phrases: self-modifying extrapolation, rational extrapolation, modified midpoint method, Romberg integration, asymptotic error expansion, predominant, singularity, initial value problems in ordinary differential equations; CR Categories: 5.10, 5.17
A Computer Solution of Polygonal Jigsaw Puzzles

Ejvind Lynning

University of Arhus, Arhus, Denmark
Author's address: Brandeis University, Waltham, MA. 02154
A program to solve any jigsaw puzzle involving pieces of polygonal shape is described. An efficient solution has been found to depend on a number of ad hoc strategies, which are described in detail in the paper. The puzzles are solved by successively placing individual pieces in the region to be covered using a depth-first tree search algorithm. A formal representation of regions, pieces, and placings of pieces is defined. The main idea behind the chosen representation is to orient clockwise the polygons making up a region, and to orient counterclockwise the pieces to be placed. Placing a piece means computing a valid new region, i.e. one or more clockwise oriented polygons, constructed from the previous one by removing the part corresponding to the piece which is placed. The data structure and the procedures required to examine where pieces can be placed and how to perform the placing of the pieces are also described. All puzzles so far presented to the program have been successfully solved in a reasonable time.

Key Words and Phrases: artificial intelligence, problem solving, pattern recognition, puzzles, polygonal puzzles, jigsaw puzzles, backtrack programming, tree search algorithms; CR Categories: 3.6, 3.63, 3.64

	L.D. Fosdick and
Algorithms	A.K. Cline, Editors

Submittal of an algorithm for consideration for publication in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible.

Copyright (C) 1973, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Algorithm 450

Rosenbrock Function Minimization [E4]

Marek Machura* and Andrzej Mulawa \dagger
[Recd. 22 March 1971]
* Institute of Automation and Measurements, Warsaw, Poland.
\dagger Institute of Computing Machinery, Warsaw, Poland.

Key words and phrases: function minimization, Rosenbrock's method

CR Categories : 5.19
Language : Fortran

Description

Purpose. This subroutine finds the local minimum of a function of n variables for an unconstrained problem. It uses the method for direct search minimization as described by Rosenbrock [1].

Method. The local minimum of a function is sought by conducting cyclic searches parallel to each of the n orthogonal unit vectors, the coordinate directions, in turn. 11 such searches constitute one stage of the iteration process. For the next stage a new set of n orthogonal unit vectors is generated, such that the first vector of this set lies along the direction of greatest advance for the previous stage. The Gram-Schmidt orthogonalization procedure is used to calculate the new unit vectors.

Program. The communication to the subroutine ROMIN is solely through the argument list. The user must supply two additional subroutines FUNCT and MONITOR. The entrance to the subroutine is achieved by

CALL ROMIN (N, X, FUNCT, STEP, MONITOR)

The meaning of the parameters is as follows. N is the number of independent variables of the function to be minimized. $X(N)$ is an estimate of the solution. On entry it is an initial estimate to be provided by the user; on exit it is the best estimate of the solution found. FUNCT (N, X, F) is a subroutine calculating the value F of the minimized function at any point X. STEP is an initial step length for all searches of the first stage. The subroutine MONITOR ($N, X, F, R, B, C O N, N R$) supplies printouts of any parameter from the argument list and contains convergence criteria chosen by the user. (Different kinds of convergence criteria and their use are discussed in [1] and [4].) R is the actual number of function evaluations. B is the value of the Euclidean norm of the vector representing the total progress made since the axes were last rotated, i.e. the total progress in one stage. CON is a logical variable. At the
start of the subroutine $R O M I N C O N$ is set.$F A L S E$.. If the convergence criteria are satisfied CON must be set.$T R U E$. in the subroutine MONITOR, which transfers control back to the main program. $N R$ is the MONITOR index used as described in [3]. The $C A L L$ statement of the subroutine $\operatorname{MONITOR}$ with $N R$ equal to 1 occurs once per function evaluation and with $N R$ equal to 2 once per stage of the iteration process.

Test results. As a test example, the parabolic valley function

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

was chosen. This function attains its minimum equal to 0 at the point $(1,1)$. Starting from the point $(-1.2,1.0)$ the best estimate of the solution after 200 function evaluations as found by the subroutine $R O M I N$ was $0.29774 \cdot 10^{-4}$ at the point $(0.99513,0.99053)$. The initial step length $S T E P$ was set equal to 0.1 [2].

References

1. Rosenbrock, H.H. An automatic method for finding the greatest or least value of a function. Computer J. 3 (1960), 175-184.
2. Rosenbrock, H.H., Storey, C. Computational Techniques for Chemical Engineers. Pergamon Press, New York, 1966.
3. Rutishauser, H. Interference with an ALGOL Procedure, in Anhual Review in Aulomatic Programming, Vol. 2. R. Goodman (Ed.), Pergamon Press, New York, 1961.
4. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives.
Computer J. 6 (1964), 155-162.
```
Algorithm
            subrgutine rgmin(N, X, funct, step, monitr)
            INTEGER N, IP
            INTEGER N,
            REAL STEP (NS)
            DOGICAL CON
            INTEGER I, J, K, L, P,
            REAL FO, F1, B, BETY
            DIMENSION A(30), D(30), V(30,30), ALPHA(30,30), BETA(30),
            * E(30), AV(30)
    this subrgutine minimizes a functign of n variables
    using the method of rgsenbrgck. the parameters are
    DESCRIBED AS FOLLBWS:
    N IS THE NUMBER 日f INDEPENDENT VARIABLES
        x(N) IS AN ESTIMATE QF THE SQLUTION ( ON ENTRY -
            an inItIAL ESTIMATE, on Exit - the best estimate
            OF THE SOLUTION FOUND)
    FUN(TSN,X,F) IS A ROUTINE PROVIDED GY THE USER TQ
                CALCULATE THE VALUE F OF THE MINIMIZED FUNCTION
            AT ANY POINT X
    STEP IS AN INITIAL STEP LENGTH FGR ALL COQRDINATE
        DIRECTIONS AT THE START OF THE PROCESS
    MONITR (N,X,F,R,B,CON,NR) IS A ROUTINE PROUIDED BY
        THE USER FOR DIAGNOSTIC AND CONVEKGENCE PURPOSES
    R IS THE ACTUAL NUMBER OF FUNCTION EVALUATIONS C FDR
        THE INITIAL ESTIMATE R=0,
    a is the value bf the euclidean ngrm of the vector
                representing the tatal prggress made singe the
                REPRESENTING THE TOTAL
    CON IS A LQGICAL VARIABLE. AT the start @F the
                SUBROUTINE ROMIN CØN=.FALSE. IF THE CONVERGENCE
                SUBROUTINE ROMIN CON=.FALSE. IF THE CONVERGENCE
                CRITERIA GF THE RQUTINE MONITQR ARE SATISFI
    NR IS THE MONITBR INDEX
    INITIALIZE CON. E(I) AND R
    E(I) IS A SET OF STEPS to be taken in the cerresponding
    cOordINATE DIRECTIONS
        CON = FRALSE.
        D0 10 I=1,N
            E(I) = STEP
    10 centinue
        R=0
    V(I,J) IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY
C GRTHOGGNAL COQRDINATE DIRECTIONS. V(I,J) IS THE UNIT
C MATRIX AT THE START OF THE PROCESS
            DE 30 I=1,N
                O0 20 J=1,N
                V(I,J)=0.0
                IF(I.EQ.J) V(I,J) = 1.0
    20 CONTINUE
    30 CONTINUE
        CALL FUNCTIN, X, FO)
C START OF THE ITERATION LODP
    40 D0 50 I=1,N
            A(I)}=2.
            D(1)=
    SO CONTINUE
    evaluate f at the new pgint x
    80 DO 130 T=1,N
                DO 70 J=1,N
                x(J)=x(J)+F(I)*V(I,J)
    70 CONTINUE 
        R=R+1
        CALL FUNCT(N, X, FI)
        CALL MONITR(N, X, F1, R, O, CON, 1)
        IF (CON) 60 TO 290
        IF (FI-FO) 80, 90,90
```

483

```
C the new value of the function is less than the old one
    8O D(I) = D(I) +E(I)
        D(I)=D(I) +E(
        E(I) = 
        IF (A(I).GT.1.5) A(I) = 1.0
        g0 TG 110
C the new value of the functign is greater than or egual
C TD THE ØLD ONE
    90 DE 100 J=1,N
        X(J)=X(J) - F(I)*V(I,J)
        CONTINUE
        E(I) = -0.5*F(I)
        IF (A(I).LT.1.5) A(I) = 0.0
    110 DD 120 J=1,N
        IF (A(J).GE.0.5) G0 T0 130
        CONTINUE
        G0 TO 140
    130 CONTINUE
    G0 T0 60
C GRAM-SCHMIDT ORTHOGGNALIZATION PROCESS
    140 D0 160 K=1,N
            D\varnothing 150 L=1,N
            ALPHA(K,L) = 0.0
    150 CONTINUE
    60 CONTINUE
        D 190 1=1,N
            D6 180 J=1,N
                ALPHA(I,J)= ALPHA(I,J) + D(L)*V(L,J)
    70 CONTINUE
    80 Cantinue
    190 CENTINUE
    B = 0.0
        B = 0.0 
        B=B+ALPHA(1,J)**2
    200 CONTINUE
        B = SORT(B)
C DIRECTIONS ( THE NEW MATRIX V(I,J))
            OD 210 J=1,N
        V(1,J)=ALPHA(1,J)/B
    210 CONTINUE
        D0 280 P=2,N
            BETY = 0.0
            IP = P - 1
            D0 220 M=1,N
                BETA(M) = 0.0
    220 CONTINUE
            D0 250 J=1,N
                D0 240 K=1,IP
                    A\cup(K) = 0.0
                    D0 230 L=1,N
                                    AV(K)=AV(K)+ALPHA(P,L)*V(K,L)
                            CONTINUE
                BETA(J)= BETA(J) - AV(K)*V(K,J)
            CONTINUE
        continue
        De 260 J=1.N
                BETA(J) = BETA(J) + ALPHA(P,J)
                BETY = BETY + RETA(J)**2
            CONTINUE
            BETY = SQRT(BETY)
            DQ 270 J=1,N
                V(P,J)= = BETA(J)/BETY
            CONTINUE
    2%O CONTINUE
C END OF GRAM-SCHMIDT PROCESS
        CALL MONITR(N, X, FO, R, B, CON, 2)
        IF (CON) G0 TO 290
C GO TO THE NEXT ITERATION
        GO TO 40
    290 RETURN
```


Algorithm 451

Chi-Square Quantiles [G1]

Richard B. Goldstein [Recd. 30 June 1971 and 20
March 1972]
Department of Mathematics, Providence College, Providence, R.I.

Key Words and Phrases: Chi-square statistic, asymptotic
approximation, normal deviate, chi-square deviate, degrees of freedom

CR Categories: 5.12, 5.5
Language: Fortran

Description

The algorithm evaluates the quantile at the probability level P for the Chi-square distribution with N degrees of freedom. The

Fig. 1

quantile function is an inverse of the function

$$
P(X \mid N)=\left(2^{N / 2} \Gamma(N / 2)\right)^{-1} \int_{X(P)}^{\infty} Z^{\frac{1}{2} N-1} e^{-\frac{1}{2} Z} d Z \quad(x \geq 0, N \geq 1)
$$

The function $\operatorname{GAUSSD}(P)$ is assumed to return the normal deviate for the level P, e.g. -1.95996 for $P=.025$. The procedure found in Hastings [5] may be used, or for increased accuracy, the procedure found in Cunningham [3] may be used.

The Wilson-Hilferty cubic formula [7] which is
$\chi^{2} \sim N\left\{1-2 / 9 N+X(2 / 9 N)^{\frac{1}{2}}\right\}^{3}$
where X is the normal deviate can be extended to the 19 -term asymptotic approximation:

$$
\begin{aligned}
x^{2} & \sim N\left\{1-2 / 9 N+\left(4 X^{4}+16 X^{2}-28\right) / 1215 N^{2}\right. \\
& +\left(8 X^{6}+720 X^{4}+3216 X^{2}+2904\right) / 229635 N^{3}+\cdots \\
& +(2 / N)^{\frac{1}{2}}\left[X / 3+\left(-X^{3}+3 X\right) / 162 N\right. \\
& -\left(3 X^{5}+40 X^{3}+45 X\right) / 5832 N^{2} \\
& \left.+\left(301 X^{7}-1519 X^{5}-32769 X^{3}-79349 X\right) / 7873200 N^{3}+\cdots J\right\}^{3}
\end{aligned}
$$

where X is the normal deviate by taking the cube root of the polynomial expansion in Campbell [2]. For $N=1$
$x^{2}=\left\{\operatorname{GAUSSD}\left(\frac{1}{2} P\right)\right\}^{2}$
and for $N=2$
$\chi^{2}=-2 \ln (P)$.
For $2<N<2+4|X|, \chi^{2}$ was fit with polynomials of the same form as the asymptotic approximation:

$$
\begin{aligned}
x^{2} & \cong N\left\{\left(1.0000886-.2237368 / N-.01513904 / N^{2}\right)\right. \\
& +N^{-\frac{1}{2}} X\left(.4713941+.02607083 / N-.008986007 / N^{2}\right) \\
& +N^{-1} X^{2}\left(.0001348028+.01128186 / N+.02277679 / N^{2}\right) \\
& +N^{-3 / 2} X^{3}\left(-.008553069-.01153761 / N-.01323293 / N^{2}\right) \\
& +N^{-2} X^{4}\left(.00312558+.005169654 / N-.006950356 / N^{2}\right) \\
& +N^{-5 / 2} X^{5}\left(-.0008426812+.00253001 / N+.001060438 / N^{2}\right) \\
& \left.+N^{-3} X^{6}\left(.00009780499-.001450117 / N+.001565326 / N^{2}\right)\right\}^{3}
\end{aligned}
$$

from Abramowitz and Stegun [1] for $P=.0001, .0005, \ldots, .995$ and Hald and Sinkbaek [4] for $P=.999, .9995$. The deviates

Fig. 2

for $N=3,4, \ldots, 9$ were made accurate within 10^{-6} by using Algorithm 299 of Hill and Pike [6].

For $N=1$ and $N=2$ the χ^{2} deviate is as accurate as the GAUSSD and ALOG procedure of the system. For $.0001 \leq P \leq$.9995 and $N \geq 3$ the absolute error in χ^{2} is less than .005 and the relative error is less than .0003 . This is some 100 to 1000 times as accurate as the Wilson-Hilferty formula even for large N. Error curves for three approximations are shown in Figures 1 and 2.

The program was tested on an IBM/360 at Rhode Island College and resulted in the output of Table I.

Table I.
Table of Computed Values
Deg.

Fr.	0.9995	0.9950	0.5000	0.0010	0.0001
1	0.000000	0.000039	0.454933	10.827576	15.135827
2	0.001000	0.010025	1.386293	13.815512	18.420670
3	0.015312	0.071641	2.365390	16.268982	21.106873
4	0.063955	0.206904	3.356400	18.467987	23.510040
5	0.158168	0.41690	4.351295	20.515503	25.744583
10	1.264941	2.155869	9.341794	29.589081	35.565170
15	3.107881	4.601008	14.338853	37.697662	44.267853
20	5.3982288	7.433992	19.337418	45.314986	52.397360
50	23.460876	27.990784	49.334930	86.660767	95.969482
100	59.895508	67.327621	99.334122	149.449051	161.319733

References

1. Abramowitz, M., and Stegun, I. (Eds.) Handbook of Mathematical Functions, Appl. Math. Ser. Vol. 55. Nat. Bur. Stand., U.S. Govt. Printing Office, Washington, D.C., 1965, pp. 984-985.
2. Campbell, G.A., Probability curves showing Poisson's exponential summation. Bell Syst. J. 2 (1923), 95-113.
3. Cunningham, S.W. From normal integral to deviate. In Applied Statistics. Vol. 18, Royal Statis. Soc., 1969, pp. 290-293.
4. Hald, O.O., and Sinkbaek, O.O. Skandinavisk Akturarietidskrift (1950), 168-175.
5. Hastings, C. Jr. Approximations for Digital Computers. Princeton U. Press, Princeton, N.J., 1958, p. 192.

Communications	August 1973
of	Volume 16
the ACM	Number 8

6. Hill, I.D., and Pike, M.C. Algorithm 299, Chi-squared integral. Comm. ACM, 10, 4 (Apr., 1967), 243-244.
7. Hilferty, M.M., and Wilson, E.B. Proc. Nat. Acad. Sci., 17 (1931), 684.
8. Riordan, J. Inversion formulas in normal variable mapping.

Annals of Math. Statist. 20 (1949), 417-425.

```
Algorithm
    FUNCTION CHISQD(P,N)
    DIMENSION C(21), A(19)
    DATA C(1)/1.565326E-3/. C(2)/1.060438E-3/,
    * C(3)/-6.950356E-3/, C(4)/-1.323293E-2/,
    * C(5)/2.277679E-2/, C(6)/-8.986007E-3/,
    *C(7)/-1.513904E-2/,C(8)/2.530010E-3/,
    * C(9)/-1.450117E-3/, C(10)/5.169654E-3/,
    * C(11)/-1.153761E-2/, C(12)/1.128186E-2%,
    * C(13)/2.607083E-2/, C(14)/-0.2237368/,
    * C(13)/2.607083E-2/, C(14)/-0.2237368/,
    * C(15)/9.780499E-5/, C(16)/-8.426812E-4/,
    * C(19)/1.348028E-4/, C(20)/0.4713941/, C(21)/1.0000886/
    DATA A(1)/1.264616E-2/, A(2)/-1.425296E-2%,
    * A(3)/1.400483E-2/, A(4)/-5.886090E-3/%
    * A(5)/-1.091214E-2/, A(6)/-2.304527E-2/,
    * A(7)/3.135411E-3/, A(8)/-2.728484E-4/,
    * A(9)/-9.699681E-3/, A(10)/1.316872E-2/,
    * A(11)/2.618914E-2/, A(12)/-0.2222222/,
    * A(13)/5.406674E-5/, A(14)/3.483789E-5/,
    * A(15)/-7.274761E-4/, A(16)/3.292181E-3/,
    * A(17)/-8.729713E-3/, A(18)/0.4714045/, A(19)/1./
        IF (N-2) 10, 20, 30
    10 CHISQD = GAUSSD(.5*P)
        CHISQD = CHISQD*CHISQD
        RETURN
    20 CHISQD = -2.*ALOG(P)
        RETURN
    30 F=N
        Fl = 1./F
    T= GAUSSD(1.-P)
    F2 = SQRT(F1)*T
    IF (N.GE.(2+INT(4.*ABS(T)))) G\emptyset T0 40
    CHISQD=((<(C(C(CC(1)*F2+C(2))*F2+C(3))*F2+C(4))*F2
    * +C(5))*F2+C(6))*F2+C(7) )*F1+((C(C(C(8)+C(9)*F2)*F2
    * +C(10))*F2+C(11))*F2+C(12))*F2+C(13))*F2+C(14)))*F1 +
    * (c(((CC(15)*F2+C(16))*F2+C(17))*F2+C(18))*F2
    * +C(19))*F2*C(20))*F2+C(21)
    GE T0 50
40 CHISQD=(((A(1)+A(2)*F2)*FI+(((A(3)+A(4)*F2)*F2
    *+A(5))*F2+A(6)))*F1+(((()}A(7)+A(8)*F2)*F2+A(9))*F
    * +A(10))*F2+A(11))*F2+A(12)))*F1+((()((A(13)*F2
    * +A(14))*F2+A(15))*F2+A(16))*F2+A(17))*F2*F2
    **A(18))*F2*A(19)
50 CHISQD = CHISQD*CHISQD*CHISQD*F
    RETURN
    END
```


Algorithm 452

Enumerating Combinations of m Out of n Objects [G6]

C.N. Liu and D.T. Tang [Recd. 7 July 1971 and 1 May 1972]
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

Key Words and Phrases: permutations, combinations CR categories: 5.30
Language: Fortran

Description

$N X C B N$ can be used to generate all combinations of m out of n objects. Let the binary n-vector of $m 1$'s and $(n-m) 0$'s representing a combination of m out of n objects be stored in an integer array, say $I C(n)$. If $N X C B N(n, m, I C)$ is called, a binary vector representing a new combination is made available in the array IC (n). If $N X C B N(n, m, I C)$ is called $\binom{n}{m}$ times successively, then all combinations will be generated.

The algorithm has the following features; (a) each output binary n-vector differs from the input at exactly two positionsconsequently each generated combination differs from the previous one by a single object: (b) the n-vectors generated by this subroutine form a closed loop of $\binom{n}{m}$ elements-therefore the initial combination may be specified arbitrarily, and the enumeration of any subset of $\binom{n}{m}$ combinations can be readily achieved. The second feature is not found in Chase's algorithm [1].

The algorithm underlying this procedure is based upon our study of properties of Gray codes. It can be shown that constant weight code vectors from a Gray code sequence are separated by a Hamming distance of 2 . The mathematical analysis is contained in [2] and [3].

References

1. Chase, P.J. Algorithm 382, Combinations of m out of n objects. Comm. ACM 13 (June 1970), 368.
2. Tang, D.T., and Liu, C.N. On enumerating m out of n combinations with minimal replacements. Proc. of Fifth
Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971.
3. Tang, D.T., and Liu, C.N. Distance-Two Cyclic Chaining of Constant-Weight Codes. IEEETC. C-22, 2 (Feb. 1973), 176-180.

Algorithm

SUBRQUTINE NXCBN(N, M, IC)
C EXPLANATIGN OF THE PARAMETERS IN THE CALLING SEQUENCE
N THE TOTAL NUMBER OF 日BJECTS
M THE NUMBER OF OBJECTS TO BE TAKEN FROM N
IF $M=0$, $\emptyset R \quad M>=N$, EXIT WITH ARGUMENTS UNCHANGED
IC AN INTEGER ARRAY. IC CONTAINS AN N-DIMENSI SNAL^{\prime} BINARY VECTOR WITH M ELEMENTS SET TO 1 REPRESENTING THE M OBJECTS IN A COMBINATIDN
THIS ALGORITHM IS PRGGRAMMED IN ANSI STANDARD FØRTRAN INTEGER IC(N)
C CHECK ENDING PATTERN OF VECTOR
IF (M.GE.N •OR. M.EQ.O) GO TO 140
$N I=N-1$
D0 $10 \quad J=1, N 1$
$N J=N-J$
$\begin{array}{ll}I F(I C(N) \cdot E Q \cdot I C(N J)) G O T 0 \\ J 1 & 0\end{array}$
J1 = J
10 CONTINUE
20 IF (MOD (M.2).EQ.1) GO TD 90
C FOR M EVEN
IF (IC(N).EQ.1) GO T0 30
$K 1=N-J 1$
$K 2=K 1+1$
$\begin{array}{ll}K 2 & =K 1+ \\ G 0 & T 0 \\ 130\end{array}$
30 IF (MOD (J1,2) EEQ.1) GO TO 40 GO TO 120
C SCAN FRDM RIGHT TB LEFT
$40 \mathrm{JP}=(N-J 1)-1$
DO $50 \quad I=1, \mathrm{JP}$
$11=J P+2-1$
IF (IC(IL).EQ.O) GO TO SO
IF (1C(11-1).EQ.1) GO TO 70
GO T0 80
GO TO 80
50 CONTINUE
$60 \mathrm{KI}=1$
$K 2=(N+1)-M$
GO T0 130
$70 \mathrm{K1}=\mathrm{IL}-1$
$K 2=N-J 1$
$80 \begin{aligned} & \mathrm{KO} \mathrm{T} 日 130 \\ & K 1\end{aligned}$
$K 2=(N+1)-J 1$ GO TD 130
C FOR M ODD
90 1F (IC(N).EQ.1) GOTO 110 $K 2=(N-J 1)-1$ IF (K2.EQ.0) GO TO 60 IF (IC(K2+1).EQ.1 •AND. IC(K2).EQ.1) GO TO 100 $K 1=K 2+1$
$00 \mathrm{KI}=\mathrm{N}$
G0 TE 130
$1101 F \operatorname{MOD}(J 1,2) \cdot E Q \cdot 1)$ GO TO 120 G0 T0 40
$120 \mathrm{KI}=\mathrm{N}-\mathrm{J} 1$
C COMPLEMENTING TWO BITS TD OBTAIN THE NEXT CQMBINATION
COMPLEMENTING TWØ BITS
130 IC $(K 1)=-1 C(K 1)$
$30 \begin{aligned} & 1 \mathrm{IC}\left(\mathrm{K}_{1}\right)=1-\mathrm{IC}\left(\mathrm{K}_{1}\right) \\ & \mathrm{IC}\left(\mathrm{K}_{2}\right)=1-\mathrm{IC}\left(\mathrm{K}_{2}\right)\end{aligned}$ IC(K2) $=1-\operatorname{IC}\left(K_{2}\right)$
140 RETURN END

Algorithm 453

Gaussian Quadrature Formulas for Bromwich's Integral [D1]

Robert Piessens [Recd. 2 Aug. 1970 and 8 Feb. 1972]
Applied Mathematics Division, University of Leuven, Heverlee, Belgium

Key Words and Phrases: Gaussian quadrature, Bromwich's integral, complex integration, numerical inversion of the Laplace transform

CR Categories: 5.16, 5.13
Language: Fortran

Description

BROMIN calculates the abscissas $x_{k}^{(8)}$ and weights $w_{k}^{(s)}$ of the Gaussian quadrature formula
$(1 / 2 \pi j) \int_{c-j \infty}^{c+j \infty} e^{x} x^{-s} F(x) d x \simeq \sum_{k=1}^{N} w_{k}^{(s)} F\left(x_{k}^{(s)}\right)$
where c is an arbitrary real positive number, s is a real nonnegative parameter, and $F(x)$ must be analytic in the right-half plane of the complex plane.

Abscissas $x_{k}^{(s)}$ and weights $w_{k}^{(0)}$ are to be determined so that (1) is exact whenever $F(x)$ is a polynomial in x^{-1}, of degree $\leq 2 N-1$.

The abscissas $x_{k}^{(s)}$ are the zeros of $P_{N, \times}\left(.^{-1}\right)$ where

$$
\begin{equation*}
P_{N, s}(u)=(-1)^{N_{2}} F_{0}(-N, N+s-1 ; \quad-; \quad u) . \tag{2}
\end{equation*}
$$

Properties of $P_{N, s}(u)$ are studied in [1].
The quadrature formulas of even order have no real abscissas; those of odd order have exactly one real abscissa. All the abscissas have positive real parts and occur in complex conjugate pairs.

The zeros of (2) are calculated using Newton-Raphson's method. Finding an approximate zero as starting value for the iteration process is based on a certain regularity in the distribution of the zeros (see [1] and [2]). The starting values, used by BROMIN were tested for $s=0.1(0.1) 4.0$ and $N=4(1) 12$. Each abscissa was found to at least eight significant figures in at most six iteration steps.

The weights are given by
$A_{k}=(-1)^{N-1} \frac{(N-1)!}{\Gamma(N+s-1) N x_{k}^{2}}\left[\frac{2 N+s-2}{P_{N-1, s}\left(x_{k}^{-1}\right)}\right]^{2}$
The polynomial (2) is evaluated by a three-term recurrence relation (see [1]). Due to roundoff errors, the accuracy of abscissas and weights decreases significantly for increasing N. In Table I we give for some values of s and N the moduli of the relative errors in the abscissas and weights, calculated by BROMIN (with TOL $=$ $0.1 E-10$) on an IBM 370 computer in double precision (approximately 16 significant figures). For comparison we used the $16-S$ values given in [3].

Table I. Maximum Relative Errors in Abscissas and Weights

	Maximum error abscissas		Maximum error in weights	
s	$N=6$	$N=12$	$N=6$	$N=12$
0.1	1.8×10^{-13}	1.7×10^{-9}	1.2×10^{-13}	2.3×10^{-8}
1.0	1.9×10^{-14}	5.3×10^{-11}	1.5×10^{-14}	6.4×10^{-10}
4.0	1.3×10^{-15}	2.3×10^{-12}	1.0×10^{-14}	4.3×10^{-11}

Note that the relative errors in the weights are larger than in the abscissas.

The use of complex arithmetic is avoided in BROMIN in order to facilitate the conversion to a double precision subroutine.

References

1. Piessens, R. Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the Laplace transform. J. Eng. Math. 5 (Jan. 1971), 1-9.
2. Piessens, R. Some aspects of Gaussian quadrature formulas for the numerical inversion of the Laplace transform. Comput. J. 14 (Nov. 1971), 433-435.
3. Piessens, R. Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the Laplace transform. Rep. TW1, Appl. Math. Div. U. of Leuven, 1969.
```
Algorithm
            SUBRQUTINE BRGMIN(N, S, TQL, XR, XI, WR, WI, EPS, IER)
            DQUBLE PRECISIGN AK, AN, ARG, CI, CR, D, DI, D2, E, EPS,
        * FAC, FACTI, FACTR, PI, PR, QI, QR, RI, RR, S, T1, T2,
    * T\emptysetL, U, V, WI, WR, XI, XR, YI, YR, Z
            INTEGER IER, J, K, L, N, NI, NUM, NUP, IGNAL
            DIMENSIQN XR(N), XI(N), WR(N), WI(N)
C THIS SUBRDUTINE CALCULATES ABSGISSAS AND WEIGHTS OF THE
C GAUSSIAN QUADRATURE FGRMULA GF GRDER N FgR THE BRBMWICH
C INTEGRAL. QNLY THE ABSCISSAS OF THE FIRST QUADRANT DF
C THE COMPLEX PLANE, THE REAL ABSCISSA (IF N IS ODD) AND
C THE CORRESPGNDING WEIGKTS ARE CALCULATED. THE OTHER
ABSCISSAS AND WEIGHTS ARE CBMPLEX CONJUGATES.
    INPUT PARAMETERS
            N gRDER OF THE QUADRATURE FGRMLLA.
                N MUST BE GREATER THAN 2.
            TOL REQUESTED RELATIVE ACCURACY OF THE ABSCISSAS.
            S PARAMETER OF THE WEIGHT FUNCTION.
    QUTPUT PARAMETERS
            XR AND XI CONTAIN THE REAL AND IMAGINARY PARTS OF
                THE ABSCISSAS. IF N IS @DD, THE REAL ABSCISSA
                IS XR(1).
            WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS OF
            THE CgRRESPONDING WEIGHTS.
            EPS IS A CRUDE ESTIMATION DF THE gBTAINED RELATIVE
            ACCuracy of the abSCISSAS.
            IER IS AN ERROR CODE.
                IF IER=0 THE COMPUTATION IS CARRIED OUT TO
                THE REQUESTED ACCURACY.
                    IF IER.GT.0 THE IER-TH ABSCISSA IS NDT FQUND
                IF IER=-1 THE COMPUTATIONS ARE CARRIED OUT
                                    BUT THE R&GUESTED ACCURACY IS NO
                    ACHIEVED.
                    N IS LESS THAN 3.
    FUNCTION PROGRAMS REQUIRED
            FUNCTIEN GAMMA(X) WHICH EVALUATES THE GAMMA
            FUNCTION FOR POSITIVE X.
        IER=-2
        IF (N.LT.3) RETURN
        N1 = (N+1)/2
        L =N-1
        AN = N
        IER = O
        EPS = TQL
        ARG = 0.034DO*(30.DO+AN+AN)/(AN-1.DO)
        FACTR = DCDS<ARG)
        FACTI = DSIN(ARG)
        FAC = 1.DO
        AK = 10 K=1,
        AK =AK + 1.DO
            FAC = -FAC*AK
        CONTINUE
        FAC = FAC*(AN+AN+S-2.DO)**2/(AN*DGAMMA(AN+S-1.DD))
C CALCULATION OF AN APPROXIMATION OF THE FIRST ABSCISSA
            YR = 1.333D0*AN + S - 1.5DO
            YI = O.ODO
            IF (N-N1-N1) 30, 20, 20
    20 YI = YI + 1.600 + 0.07D0*S
C START MAIN LGOP
    30 DO 140 K=1,N1
        E = TOL
        IGNAL =0
        NUM =0
        NUP = 0
C NEWTON-RAPHSON METHDD
        D = YR*YR + YI*YI
        YR = YR/D
        YI =-YI/D
        G@ T0 50
    50 IGNAL = 1
    QR = S*YR - 1.DO
        QI = S*YI
        PR = (S+1.DO)*((S+2.DO)*(YR*YR-YI*Y1)-2.DO*YR) + 1.DO
        PI = 2.DO*(S+1.DO)*YI*((S+2.DO)*YR-1.DO)
        z=2.00
        DC 60 J=3,N
        RR=OR
        RR=QR
        RI=QI
        RI=PR
        z=z+1.DO
        u=z+S - 2.DO
        v=u+z
```

```
            = (V*YR+(2.DO-S)/(V-2.D0))/U
            D1 = (Z-1.DO)*V/(U*(V-2.DO)
            D2 = V*YI/U
            PR = (V-1.DO)*(QR*D-QI*D2) + D1*RR
            PR = (V-1*DO)*(QR*D-QI*DC)* (V-1*DO)*(QI*D+QR*DR) + DI*RI
            CONTINUE
            IF (IGNAL.EQ.1) GE T0 100
            = (YR*YR+YI*YI)*V
            DI = ((PR+QK)*YR+(PI+QI)*YI)/D + PR
            DZ = ((P1 1+QI)*YR-(PRR*QR)*YI)/D + PI
            =(DI*Dl+DZ*D2)*AN
            = PR*YR - PI*YI
            =PI*YK + PR*YI
            CR = (T1*D1+T2*D2)/D
            CI = (TR*D1-TI*D2)/D
            YR = YR - CR
            YI = YI - CI
TEST OF CONVERGENCE OF ITERATION PROCESS
    IF (CR*CR+CI*CI-E*F*(YR*YR+YI*YI)) 40, 40, 70
    TEST OF NUMBER OF ITERATION STEPS
    70 IF (NUM-10) S0, 50, 80
    E=E*10.DO
    IER = -I
    IF (NUP-5) 50, 50, 90
    IER = K
    IER = K
c CALCULATION OF WEIGHTS
100 IF (EPS.GE.E) G0 T0 110
EPS = E
    (0r*日R+日Y*()**2
    D1 = YR*QR + YI*QI
    D2 = YI*@R - YR*QI
    WR(K) = FAC*(D1*D1-D2*D2)/0
    WI(K) = 2.DO*FAC*D2*D1/D
    D = YR*YR + YI*YI
    XR(K) = YR/D
    XI(K) = -YI/D
        IF (K+1-N1) 130, 120, 150
        FACTR = DCOS(1.5DO*ARG)
            FACTI = DSIN(1.5DO*ARG)
C CALCULATION OF AN APPROXIMATION OF THE (K+1)-TH ABSCISSA
130 YR = (XR(K)*0.67D0*AN)*FACTR - XI(K)*FACTI - 0.67DO*AN
    YI = (XR(K)+0.67DO*AN)*FACTI + XI(K)*FACTR
140 CONTINU
    END
```


Algorithm 454

The Complex Method for Constrained Optimization [E4]

Joel A. Richardson and J.L. Kuester* [Rec'd. Dec. 22, 1970 and May 5, 1971]
Arizona State University, Tempe, AZ 85281

Key Words and Phrases : optimization, constrained optimization, Box's algorithm

CR Categories: 5.41
Language: Fortran

Description

Purpose. This program finds the maximum of a multivariable, nonlinear function subject to constraints:
Maximize $F\left(X_{1}, X_{2}, \ldots, X_{N}\right)$
Subject to $G_{k} \leq X_{k} \leq H_{k}, \quad k=1,2, \ldots, M$.
The implicit variables X_{N+1}, \ldots, X_{M} are dependent functions of the explicit independent variables $X_{1}, X_{2}, \ldots, X_{N}$. The upper and lower constraints H_{k} and G_{k} are either constants or functions of the independent variables.

Method. The program is based on the "complex" method of

* The authors acknowledge financial support from a National Science Foundation summer fellowship and Arizona State University Grants Committee fellowship. Computer facilities were provided by the Arizona State University Computer Center and AiResearch Manufacturing Company.
M.J. Box [2]. This method is a sequential search technique, which has proven effective in solving problems with nonlinear objective functions subject to nonlinear inequality constraints. No derivatives are required. The procedure should tend to find the global maximum because the initial set of points is randomly scattered throughout the feasible region. If linear constraints are present or equality constraints are involved, other methods should prove to be more efficient [1]. The algorithm proceeds as follows:
(1) An original "complex" of $K \geq N+1$ points is generated consisting of a feasible starting point and $K-1$ additional points generated from random numbers and constraints for each of the independent variables: $X_{i, j}=G_{i}+r_{i, j}\left(H_{i}-G_{i}\right), i=1,2, \ldots$, N, and $j=1,2, \ldots, K-1$, where $r_{i, j}$ are random numbers between 0 and 1.
(2) The selected points must satisfy both the explicit and implicit constraints. If at any time the explicit constraints are violated, the point is moved a small distance δ inside the violated limit. If an implicit constraint is violated, the point is moved one half of the distance to the centroid of the remaining points: $X_{i, j}$ (new) $=$ $\left(X_{i, j}(\mathrm{old})+\bar{X}_{i, c}\right) / 2, \quad i=1,2, \ldots, N$, where the coordinates of the centroid of the remaining points, $\bar{X}_{i, c}$, are defined by
$\bar{X}_{i, c}=\frac{1}{K-1}\left[\sum_{j=1}^{K} X_{i, j}-X_{i, j}(\right.$ old $\left.)\right], \quad i=1,2, \ldots, N$.
This process is repeated as necessary until all the implicit constraints are satisfied.
(3) The objective function is evaluated at each point. The point having the lowest function value is replaced by a point which is located at a distance α times as far from the centroid of the remaining points as the distance of the rejected point on the line joining the rejected point and the centroid:
$X_{i, j}$ (new) $=\alpha\left(\bar{X}_{i, c}-X_{i, j}\right.$ (old $\left.)\right)+\bar{X}_{i, c}, \quad i=2, \ldots, N$.
Box [2] recommends a value of $\alpha=1.3$.
(4) If a point repeats in giving the lowest function value on consecutive trials, it is moved one half the distance to the centroid of the remaining points.
(5) The new point is checked against the constraints and is adjusted as before if the constraints are violated.
(6) Convergence is assumed when the objective function values at each point are within β units for γ consecutive iterations.

Program. The program consists of three general subroutines (JCONSX, JCEK1, JCENT) and two user supplied subroutines ($J F U N C, J C N S T 1$). The use of the program and the meaning of the parameters are described in the comments at the beginning of subroutine JCONSX. All communication between the main program and subroutines is achieved in the subroutine argument lists. An iteration is defined as the calculations required to select a new point which satisfies the constraints and does not repeat in yielding the lowest function value.

Test results. Several functions were chosen to test the program. The calculations were performed on a CDC 6400 computer. Some examples:

1. Box Problem [2]

Function: $F=\left(9-\left(X_{1}-3\right)^{2}\right) X_{2}{ }^{3} / 27 \sqrt{ } 3$
Constraints: $0 \leq X_{1} \leq 100$
$0 \leq X_{2} \leq X_{1} / \sqrt{ } 3$
$0 \leq\left(X_{3}=X_{1}+\sqrt{ } 3 X_{2}\right) \leq 6$
Starting point: $X_{1}=1.0, X_{2}=0.5$
Parameters: $K=4, \alpha=1.3, \beta=.001, \gamma=5, \delta=.0001$
Computed results Correct results:

$F=1.0000$	$F=1.0000$
$X_{1}=3.0000$	$X_{1}=3.0000$
$X_{2}=1.7320$	$X_{2}=1.7321$

$X_{2}=1.7320$

$$
X_{2}=1.7321
$$

Number of iterations: 68
Central processor time: 6 sec .
2. Post Office Problem [3]

Function: $F=X_{1} X_{2} X_{3}$
Constraints: $0 \leq X_{i} \leq 42, \quad i=1,2,3$
$0 \leq\left(X_{4}=X_{1}+2 X_{2}+2 X_{3}\right) \leq 72$
Starting point: $\bar{X}_{1}=1.0, X_{2}=1.0, X_{3}=1.0$
Parameters: $K=6, \alpha=1.3, \beta=.01, \gamma=5, \delta=.0001$
Computed results:
Correct results:
$F=3456$
$X_{1}=24.01$
$X_{2}=12.00$
$F=3456$
$X_{1}=24.00$
$X_{3}=12.00$
$X_{2}=12.00$
Number of iterations: 72
Central processor time: 6 sec .
3. Beveridge and Schechter Problem [1]

Function: $F=-\left(X_{1}-0.5\right)^{2}-\left(X_{2}-1.0\right)^{2}$
Constraints: $-2 \leq X_{1} \leq 2$

$$
\begin{aligned}
& -\sqrt{2} \leq X_{2} \leq \sqrt{ } 2 \\
& -4 \leq\left(X_{3}=X_{1}^{2}+2 X_{2}^{2}-4\right) \leq 0
\end{aligned}
$$

Starting point: $X_{1}=0, X_{2}=0$.
Parameters: $K=4, \alpha=1.3, \beta=.00001, \gamma=5, \delta=.0001$ Computed results:

Correct results:
$F=.0000$
$X_{1}=.5035$
$X_{2}=.9990$
$F=.0000$
$X_{1}=.5000$
$X_{2}=1.0000$
Number of iterations: 40
Central processor time $=5 \mathrm{sec}$.

References

1. Beveridge, G.S., and Schechter, R.S. Optimization: Theory and Practice. McGraw-Hill, New York, 1970.
2. Box, M.J. A new method of constrained optimization and a comparison with other methods. Comp. J. 8 (1965), 42-52.
3. Rosenbrock, H.H. An automatic method for finding thè greatest or least value of a function. Comp. J. 3 (1960), 175-184.
```
Algorithm
            SUBRQUTINE JCONSXCN, M, K, ITMAX, ALPHA, BETA, GAMMA,
            * DELTA, X, R, F, IT, IEV2, K0, G, H, XC, L)
c PURPOSE
    Tg FIND THE CONSTRAINED MAXIMUM OF A FUNCTION OF
    THIS IS THE PRIMARY SUBRQUTINE AND CQORDINATES THE
    SPECIAL PURPOSE SUBROUTINES (JCEKI, JCENT JFUNC,
    JCNSTI). INITIAL GUESSES GF THE INDEPENDENT VARIABLES
    RANDOM NUMBERS, SELUTION PARAMETERS, DIMENSION LIMITS
    AND PRINTER CODE DESIGNATION ARE OBTAINED FROM THE MAIN
    PRGGRAM. FINAL FUNCTION AND INDEPENDENT VARIABLE
    VALUES ARE TRANSFERRED TO THE MAIN PRDGRAM FOR
    PRINT\emptysetUT. INTERMEDIATE PRINT\emptysetUTS ARE PROVIDED IN THIS
    SUBR\emptysetUTINE. THE USER MUST PROVIDE THE MAIN PRØGRAM AND
    THE SUBRDUTINES THAT SPECIFY THE FUNCTIGN (JFUNC) AND
    CONSTRAINTS (JCNSTI). FORMAT CHANGES MAY BE REQUIRED
    WITHIN THIS SUBRDUTINE DEPENDING ON THE PARTICULAR
    PRQBLEM UNDER CONSIDERATIGN.
    USAGE
        CALL JCBNSX(N,M,K,ITMAX,ALPHA, BETA,GAMMA,DELTA,X,R,F,
        IT,IEVR,KB,G,H,XC,L
    SUBRQUTINES REQUIRED
        JCEK1(N,M,K,X,G,H,I,KODE,XC,DELTA,L,K1)
            CHECKS ALL PQINTS AGAINST EXPLICIT AND IMPLICIT
            CgNSTRAINTS AND APPLYS CORRECTIgN IF VIgLATIGNS ARE
            FgUND
        JCENT(N,M,K,IEVI,I,XC,X,L,K1)
            CALCULATES THE CENTROID OF POINTS
        UN(N,M,K,X,F,I,L)
            SPECIFIES OBJECTIVE FUNCTION (USER SUPPLIED)
        JCNST1(N,M,K,X,G,H,1,L)
            SPECIFIES EXPLICIT AND IMPLICIT CONSTRAINT LIMITS
            (USER SUPPLIED). gRDER EXPLICIT GONSTRAINTS FIRST
    DESCRIPTIGN OF PARAMETERS NOMSER DF EXPLICIT INDEPENDENT VARIABLES - DEFINE
        IN MAIN PROGRAM
        M NUMBER DF SETS OF CONSTRAINTS - DEFINE IN MAIN
        K NUMBER of points in The Cgmplex - define in main
        PRGGRAM
        ITMAX MAXIMUM NUMBER gF ITERATIgNS - DEFINE IN MAIN
            PRQGRAM
    ALPHA REFLECIIGN FACIOR - DEFINE IN MAIN PROGRAM
    BETA CONVERGENCE PARAMETER - DEFINE IN MAIN PREGRAM
    GAMMA CONVERGENCE PARAMETER - DEFINE IN MAIN PRDGRAM
    DELTA EXPLICIT CONSTRAINT VIQLATION CORRECTION - DEFINE
    IN MAIN PROGRAM
    X INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN
            R MAIN PROGRAM RANDOM NUMBERS BETWEEN O AND 1 - DEFINE IN MAIN
            PROGRAM
    F gbjective functign - define in subrgutine jfunc
    F GBJECTIUE FUNCTION - DEFINE IN SUBROUTINE JFUNC
```

```
    IEV2 INDEX OF POINT WITH MAXIMUM FUNCTIGN VALUE -
    INDEX OF POINT WITH MINIMUM
        MUM FUNCTION VALUE -
        dEFINED IN SUBRDUTINE JCENSX AND JCEKI
        PRINTER UNIT NUMBER - DEFINE IN HAIN PRgGRAM
    G LOWER CONSTRAINT - DEFINE IN SUBROUTINE JCNST
    H UPPER GQNSTRAINT - DEFINE IN SUBRQUTINE JCNSTI
    XC GENTRgID - DEFINED IN SUBRGUTINE JCENT
    \(L\) TGTAL NUMBER OF INDEPENDENT VARIABLES (EXPLICIT +
        IMPLICIT) - DEFINE IN MAIN PRGGRAM
    PGINT INDEX - DEFINED IN SUBRQUTINE JCONSX
    Kode KEy USED TO DETERMINE IF IMPLICIT CGNSTRAINTS ARE
        PROVIDED - DEFINED IN SUBRQUTINE JCGNSX AND JCEKI
        DO LQOP LIMIT - DEFINED IN SUBRDUTINE JCONSX
        DIMENSION X(K,L), \(R(K, N), F(K), G(M), H(M)\), XC(N)
        NTEGER GAMMA
        IT = 1
        URITE (KO,99995) IT
        \(K g D E=0\)
        IF (H-N) 20, 20, 10
    \(10 \mathrm{KDDE}=1\)
    20 continue
        Dg \(40 \quad I I=2, K\)
            D0 \(\begin{gathered}30 \mathrm{~J}=1, N \\ \mathrm{X}(\mathrm{II}, \mathrm{J})\end{gathered}=0\)
            CENTINUE
    30 CENTINUE
c CALCULATE COMPLEX PGINTS AND CHECK AGAINST CONSTRAINTS
    D0 60 II \(=2, \mathrm{~K}\)
        \(150 J=1, \mathrm{~N}\)
                CALL JCNSTI(N, M, K, X, G, \(\mathrm{H}, \mathrm{I}, \mathrm{L}\) )
                \(X(I I, J)=G(J)+R(I I, J) *(H(J)-G(J))\)
            CONTINUE
            CALL JCEKI(N, M, K, X, G, H, I, KBDE, XC, DELTA, L, KI)
            WRITE (KD,99999) II, (X(II,J), J=1,N)
    60 Continte
    \(k_{1}=k\)
    Do \(70 \quad 1=1, \mathrm{~K}\)
        CALL JFUNC(N, M, K, X, F, I, L)
    70 CONTINUE
    KOUNT \(=1\)
C FIND PGINT WITH LOWEST FUNCTION VALUE
    WRITE (KO,99998) (F (I), I=1,K)
    80 IEV1 \(=1\)
        DO 100 ICM \(=2, K\)
            IF (F(IEVI)-F(ICM)) 100, 100. 90
    90 TEVI =
c find paint with highest function value
            1 EV2 \(=1\)
            D0 120 ICM=2,
            IF (F(IEVZ)-F(ICM)) 110, 110, 120
    110 IEVR = ICM
C CHECK CONVERGENCE CRITERIA
            IF (F(IEV2)-(F(IEV1)+BETA)) \(140,130,130\)
            KQUNT = 1
            GQ TO 150
    AO KDUNT \(=\) KDUNT +1
    IF (KOUNT-GAMMA) 150, 240,240
C Replace point with lawest functian value
    150 CALL JCENT(N, M, K, IEV1, I, XC, X, L, K1
            D0 \(160 \quad \mathrm{~J}=1, \mathrm{~N}\)
            X(IEVI,J) \(=(1,+A L P H A) *(X C(J))-A L P H A *(X(I E V I, J))\)
    160 CQNTINUE
    \(1=1 E V I\)
            CALL JCEKI(N, M, K, X, G, \(R, \mathrm{I}, \mathrm{M}\), KDE, XC, DELTA, L, KI)
            CALL JFUNC(N, \(M, K, X, F, I, L\),
C REPLACE NEW POINT IF IT REPEATS AS LOWEST FUNCTION VALUE
    170 IEV2 \(=1\)
            D0 190 ICM \(=2 . \mathrm{K}\)
                IF (F (IEVZ)-F(ICM) \() 190,190.180\)
IEV2
    180
        IEVZ \(=\) ICM
            CONTINUE
            IF' (IEVZ-IEV1) 220, 200, 220
    \(200 \mathrm{DQ} 210 \mathrm{JJ=1} \mathrm{~N}\)
            X(IEVI,JJ) \(=(X(I E V I, J J)+X(J J)) / 2\).
    210 CONTINUE
        CaLl JCEKI(N, M, K, \(X, G, H, 1\), K日DE, XC, delta, \(L, K 1\) )
        CALL JFUNC(N, M, K, X, F, I, L)
        GE T® 170
    220 CONTINUE
        WRITE (K0.99997) (X(IEV1,JB), JB=1,N)
        WRITE (K0,99998) (F(I), I=1,K)
        WRITE (KB,99996) (XC(J), J=1,N)
        \(I T=I T+1\)
        IF (IT-ITMAX) 230, 230, 240
    230 Centinue
        WRITE (K0.99995) IT
        GO TO 80
    240 RETURN
99999 FBRMAT(1H, \(15 K\), \(21 H\) Cg日RDINATES AT POINT, \(14 / 8(F 8.4,2 X)\) )
99998 FGRMAT(IH, 20X, 16 F FUNCTIQN VALUES, \(/ 8(F 10.4,2 \times\) ) )
99998 FORMAT(1H, 20X, 16 H FUNCTION VALUES, /8(F10.4, 2X))
99997 FORMAT(1H, 20X, 16 H CORRECTED POINT, \(18(F 8.4,2 X))\)
99996 FGRMAT(IH, 21H CENTROID COQRDINATES, \(2 X, 8(F 8.4,2 x)\) )
99995 FORMAT(IH, \(/ 110 \mathrm{H}\) ITERATION, \(4 X, I 5\) )
        END
            SUBROUTINE JGEKI(N, \(M, K, X, G, H, I, K \emptyset D E, X C, D E L T A, L\),
            * K1)
C PURPGSE
    CONSTRAINTS AND TE APPLY CORRECTIONS IF VIGLATIGNS ARE
    found
    USAGE
    CALL JCEK1 (N,M,K,X,G,H,I,KODE,XC,DELTA,L,K1)
    SUBRDUTINES REQUIRED
    JCENT(N,M,K,IEV1,I,XC,X,L,K1)
    JCNST1 (N, M, K, X, G, H, I,L)
C DESCRIPTIGN OF PARAMETERS
    PREVIQUSLY DEFINED IN SUBRQUTINE JCONSX
```

```
        DIMENSION X(K,L),G(M), Y(M), XC(N)
    0 KT = 0
    CALL JCNSTI<N, M, K, X,G, H, 1, L)
C CHECK AGAINST EXPLICIT CONSTRAINTS
            O0 50 J=1,N
                X(I,J) = G(J) + DELTA
            GO TO 50
            IF (H(J)-X(I,J)) 40, 40, 50
        X(I;J) = H(J) - DELTA
    CONTINUE
        IF (KODE) 110, 110,60
C CHECK AGAINST THE IMPLICIT CONSTRAINTS
    6 0 ~ C O N T I N U E ~
            NN=N+1
            O 100 J=NN,M
                CLL JCNST1(N, M, K, X,G, H, 1, L)
                IF (H(J)-x(I,J), 80, 70, 70
    70 IF(H(J)-X(I,J)) 80, 100, 100
            IEVI = I
            KT = 1
            CALL JCENT(N, M, K, IEV1, I, XC, X, L, K1)
                DO 90 JJ=1,N
                x(1,JJ) = (x(I,JJ)+xC(JJ))/2.
    90 CONTINUE
            F (KT) 110. 110, 10
            RETURN
            END
                SUBRØUTINE JCENT(N, M, K, IEVI, I, XC, X, L, K1)
C PURPOSE
C ta calculate the centraid of paints
C USAGE
C CALL JCENT(N,M,K,IEV1,I,XC,X,L,K1)
C SUBROUTINES REQUIRED
    NबNE
C DESCRIPTION OF PARAMETERS
C PREVIQUSLY DEFINED IN SUBR\emptysetUTINE JCENSK
            DIMENSION X(K,L), XC(N)
            DO 20 J=1,N
            xC(J)=0.
            De 10 1L=1,K1
                XC(J) = XC(J) + X(IL.J)
    10 CONTINUE
        RK = K1
        XC(J)=(XC(J)-X(IEV1,J))/(RK-1.)
    2O CONTINUE
        RETURN
        END
```

Certification and Remark on Algorithm 404 [S14]
Complex Gamma Function [C.W. Lucas Jr. and C.W. Terril, Comm. ACM 14 (Jan. 1971), 48]

G. Andrejková and J. Vinař, Computing Center, Šafarik University, Košice, Czechoslovakia

The following changes were made in the algorithm:
a. The function subroutine heading was changed to read

COMPLEX FUNCTION CGAMMA(Z)

in accordance with the standard.
b. The convergence tests following statement number 70 involve the computation of the quantity $\operatorname{REAL}($ TERM $) / R E A L(S U M)$. This can lead to overflow if Z is real and near to a pole. For these reasons the two statements were replaced by
IF ($\operatorname{ABS}($ REAL(TERM)) .GE. TOL*ABS(REAL(SUM))) GO TO 80
and
IF (ABS (AIMAG(TERM)) .GE. TOL*ABS(AIMAG(SUM))) GO TO 100
c. For similar reasons the statement
$S U M=C L O G(P I / C S I N(P I * Z))-S U M$
was replaced by

$$
S U M=C L O G(P I)-C L O G(C S I N(P I * Z))-S U M
$$

With these modifications the algorithm was translated on MINSK 22M using the FEL Fortran compiler (with seven significant digits
in single precision and 15 in double precision) and ran satisfactorily.
The following tests were performed:
a. The logarithms of $\operatorname{CGAMMA}(Z)$ for $z=x+i y$ with $x=1.0$ (0.1) 10.0 and $y=0.0(0.1) 3.0$ were checked against the values given in [1]. An overall accuracy of five to six digits was observed. The imaginary part frequently had one more accurate digit than the real part.
b. The behavior in the vicinity of poles was tested by computing the values of $C G A M M A(Z)$ in eight evenly spaced points on circles of decreasing diameter. The value of $1 . E-7$ for the minimum diameter was found adequate.
c. The values of $\operatorname{CGAMMA(Z)}$ were computed for $z=x+i y$ with

1. $x=0.0(1.0) 23.0, y=0.0$
2. $x=0.0, y=0.0(1.0) 26.0$
3. $x=y=0.0(1.0) 25.0$
4. $x=-y=0.0(1.0) 25.0$
5. $-x=y=0.0(1.0) 12.0$
6. $-x=-y=0.0(1.0) 12.0$
in all cases the firal value is the last for which the program did not run into overflow or, in the last two cases, try to take a logarithm of too small a number.

References

1. Table of gamma function for complex arguments. National Bureau of Standards, Applied Math. Series 34, August 1954.

Remark on Algorithm 357 [A1]
An Efficient Prime Number Generator [Richard C. Singleton, Comm. ACM 10 (October, 1969), 563]

Richard M. De Morgan [Recd 8 August 1972], Digital Equipment Co. Ltd., Reading, England

On some Algol 60 implementations, the value of $n i$ is destroyed between subsequent calls to the procedure. The second and third lines of the algorithm should be changed to make $n i$ an own integer: own integer $i j, i k, i n c, j, n i, n j$;
integer $i, j q i, k$;

Remark on Algorithm 412 [J6]
 Graph Plotter [Joseph Cermak, Comm. ACM 14 (July 1971), 492-493]

Richard P. Watkins [Recd. 31 Jan. 1972], Mathematics Department, Royal Melbourne Institute of Technology, Melbourne, Australia 3000

This algorithm is not functionally identical to Algorithm 278 as claimed. If the $x[i]$ values are not uniformly spaced or if $m>L$, it is possible for two or more of them to correspond to the same printer line. In this case, the array ind will contain only the largest of the values of i and only one set of $y[i, j]$ values, corresponding to that value of i, will be plotted.

The array ind is redundant. The following changes enable plot L to take over the functions of ind (where all line numbers refer to lines relative to the label escape):
a. Line 4. Replace
for $i:=1$ step 1 until L do plot $L[i]:=1$
by
for $i:=1$ step 1 until L do plot $L[i]:=0$
b. Line 9. Replace
plotL[$[r]:=0 ;$ ind $[r]:=i$
by
plotL[r]:=i
c. Line 21. Replace
if $p \operatorname{lot} L[i]=0$ then
by
if $p l o t L[i]>0$ then
d. Line 24. Replace
plots $[1+\operatorname{entier}(0.5+q \times(y\lfloor i n d[i\rfloor]-y m i n))]:=3$
by
plotS $[1+\operatorname{entier}(0.5+q \times(y \mid p l o t L[i]]-y n i n i))]:=3$
e. Line 27. Replace
plotS $[1+\operatorname{entier}(0.5+q \times(y[i n d[i\rfloor, j\rfloor-y m i n))]:=j+2$
by
plotS $[1+$ entier $(0.5+q \times(y[p l o t L\lfloor i\rfloor, j\rfloor-y m i n))]:=j+2$
(The referee has noted that there is a typographical error on the fifth line before the line labeled escape. Replace
for $j:=$ step 1 until n do
by
for $j:=1$ step 1 until $/ 1$ do
He has also noted that the array declaration for ind should be deleted if the above changes are made.--L.D.F.)

Remark on Algorithm 424 [D 1]
Clenshaw-Curtis Quadrature [W.M.Gentleman, Comm. ACM 15 (May 1972), 353-355.]

Albert J. Good [Recd. 19 December 1972〕 Systems, Science and Software, La Jolla, CA 92037

As published, this algorithm will not execute correctly under some compilers (e.g. Fortran V in the Univac 1108). One minor change is sufficient for proper operation: replace the variable J REV by the index $J 8$ inside the $D O 120$ loop.

The appearance of J REV and $J 8$ in an EQUIV ALENCE statement is not meaningful since the memory location associated with a $D O$ loop index does not always contain the current value of the index (this depends on the compiler).

Remark on Algorithm 428 [Z]
Hu-Tucker Minimum Redundancy Alphabetic Coding Method [J.M. Yohe, Comm. ACM 15 (May 1972), 360-362]

J.G. Byrne [Recd. 26 June 1972] Department of Computer Science, Trinity College, Dublin 2, Ireland

[^0]was changed to
if $i>n$ then go to $E 1$ else
the algorithm gave correct results for the example given and for the example in Gilbert and Moore [1]. In the latter case the cost defined as
$\frac{\sum_{i=1}^{N} Q(I) * L(I)}{\sum_{i=1}^{N} Q(I)}$
and code lengths were correct.
When the L array was set to 1 's on entry, the optimum (Huffman) codes were obtained, and they were the same as those given by the Schwartz and Kallick [2] method as claimed in the author's description.

Table 1.

Size of alphabet	10	27	60
Time to find optimum alphabetic codes	0.02	0.14	0.62
(secs)	0.02	0.08	0.34

Table I, which gives the cpu time required, shows that the algorithm is very fast for small alphabets and that the time is approximately proportional to n^{2}, as expected.

References

1. Gilbert, E.N., and Moore, E.F. Variable length binary encodings. Bell Systems Tech. J. 38 (1959), 933-968.
2. Schwartz, E.S., and Kallick, B. Generating a canonical prefix encoding. Comm. ACM 7 (Mar. 1964), 166-169.

Remark on Algorithm 429 [C2]

Localization of the Roots of a Polynomial [W. Squire, Comm. ACM 15 (Aug. 1972), 776]

Edward J. Williams [Recd. 15 Sept. 1972〕 Computer Science Department, Ford Motor Company, P.O. Box 2053, Dearborn, MI 48121

Corrections are needed in the third paragraph. The theorem that the positive real roots of (1) are less than
$1+\left[\max _{1 \leq i \leq n}|C i|^{1 / m} \ldots\right.$ should read
$1+\left[\max _{1 \leq i \leq n} \quad \text { Ci<0 }|C i|\right]^{1 / m}$
Further, the four words "RADIUS" in this paragraph should be replaced by " $B O U N D$ ".

References

1. Zaguskin, O.O. Solution of Algebraic and Transcendental Equations, Pergamon Press, New York, 1961, p. 21.

Communications	August 1973
of	Volume 16
the ACM	Number 8

[^0]: Algorithm 428 was translated into Basic Fortran IV and run on IBM System 360/44 running under $R A X$. When the line just after the label $B 2$:
 if $i l>u$ then go to $E l$ else

