
Abstracts o f the papers by Daily and Lynning

A Sel f -Modi fy ing Ex t rapo la t ion M e t h o d for
Solving O r d i n a r y Differential Equa t ions

Dar D. Dai ly
Kansas State University, Manhattan, Kansas
Author's address: 8133 Dearborn Drive, Prairie Village, KS 66208

This paper outl ines a p rogram that searches for the
p r e d o m i n a n t terms of the a sympto t i c er ror expans ion
of initial value problems in o rd ina ry differential
equa t ions and uses this i n fo rma t ion in a se l f -modifying
ex t rapo la t ion process. Dur ing the in tegra t ion process,
using a ra t io that Carl de Boor (1971) used in an inte-
gra t ion program, the me thod seeks to recognize t rends
of change in the error expans ion of the differential equa-
t ion and to adjus t the me thod of ex t rapola t ion . A basic
a lgo r i thm used in the modi fy ing process is presented
a long with a br ief exp lana t ion . Also, a compa r i son made
with the wel l -known ra t iona l ex t rapo la t ion m e t h o d
shows ra t ional ex t rapo la t ion to be general ly less efficient
in terms of funct ion eva lua t ions but also demons t ra t e s
tha t the se l f -modifying me thod is general ly not able to
reduce its e r ror to the level of ra t iona l ex t rapo la t ion .
A note, though, shows the se l f -modifying m e t h o d to
be super ior to the regular R o m b e r g ex t rapo la t ion .

Key W o r d s and Phrases : se l f -modifying ex t rapo la -
t ion, ra t iona l ex t rapo la t ion , modif ied m i d p o i n t me thod ,
R o m b e r g in tegrat ion, a sympto t i c e r ror expans ion , pre-
dominan t , s ingulari ty, ini t ial value p rob lems in o rd ina ry
differential equa t ions ; C R Categor ies : 5.10, 5.17

A C o m p u t e r Solut ion of Po lygona l Jigsaw Puzzles

Ejv ind Lynning
University of Arhus, Arhus, Denmark
Author's address: Brandeis University, Waltham, M A. 02154

A p rogram to solve any j igsaw puzzle involving
pieces of polygonal shape is described. An efficient solu-
t ion has been found to depend on a number of ad hoc
strategies, which are descr ibed in detail in the paper .
The puzzles are solved by successively placing individual
pieces in the region to be covered using a depth-f i rs t tree
search a lgor i thm. A formal representa t ion of regions,
pieces, and placings of pieces is defined. The main idea
behind the chosen represen ta t ion is to or ient clockwise
the po lygons mak ing up a region, and to or ient counter -
c lockwise the pieces to be placed. Placing a piece means
compu t ing a valid new region, i.e. one or more c lock-
wise or ien ted polygons , cons t ruc ted f rom the previous
one by removing the par t co r re spond ing to the piece
which is placed. The da ta s t ructure and the p rocedures
requi red to examine where pieces can be placed and how
to pe r fo rm the placing of the pieces are also descr ibed.
Al l puzzles so far presented to the p r o g r a m have been
successfully solved in a r easonab le t ime.

K e y W o r d s and Phrases : art if icial intelligence, p rob-
lem solving, pa t te rn recogni t ion , puzzles, po lygona l
puzzles, j igsaw puzzles, back t r ack p rog ramming , tree
search a lgor i thms ; C R Categor ies : 3.6, 3.63, 3.64

482

Algor i t hms
L.D. F o s d i c k and
A.K. Cline, Ed i to r s

Submittal of an algorithm for consideration for publication in
Communications of the A C M implies unrestricted use of the algo-
rithm within a computer is permissible.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Algorithm 450

Rosenbrock Function
Minimization [E4]
M a r e k M a c h u r a * and Andrze j M u l a w a t
[Recd. 22 M a r c h 1971]

* Institute of Automation and Measurements, Warsaw, Poland.
t Institute of Computing Machinery, Warsaw, Poland.

Key words and phrases: function minimization, Rosenbrock's
method

CR Categories : 5.19
Language : Fortran

Description
Purpose. This subroutine finds the local minimum of a function

of n variables for an unconstrained problem. It uses the method for
direct search minimization as described by Rosenbrock [1].

Method. The local minimum of a function is sought by con-
ducting cyclic searches parallel to each of the n orthogonal unit
vectors, the coordinate directions, in turn. n such searches con-
stitute one stage of the iteration process. For the next stage a new
set of n orthogonal unit vectors is generated, such that the first
vector of this set lies along the direction of greatest advance for the
previous stage. The Gram-Schmidt orthogonalization procedure is
used to calculate the new unit vectors.

Program. The communication to the subroutine ROMIN is
solely through the argument list. The user must supply two ad-
ditional subroutines FUNCT and MONITOR. The entrance to the
subroutine is achieved by

CALL ROMIN (N, X, FUNCT, STEP, MONITOR)

The meaning of the parameters is as follows. N is the number
of independent variables of the function to be minimized. X(N) is
an estimate of the solution. On entry it is an initial estimate to be
provided by the user; on exit it is the best estimate of the solution
found. FUNCT (N, X, F) is a subroutine calculating the value F of
the minimized function at any point X. STEP is an initial step
length for all searches of the first stage. The subroutine MONITOR
(N, X, F, R, B, CON, NR) supplies printouts of any parameter from
the argument list and contains convergence criteria chosen by the
user. (Different kinds of convergence criteria and their use are
discussed in [11 and [4].) R is the actual number of function evalua-
tions. B is the value of the Euclidean norm of the vector repre-
senting the total progress made since the axes were last rotated, i.e.
the total progress in one stage. CON is a logical variable. At the

Communications August 1973
of Volume 16
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355609.362324&domain=pdf&date_stamp=1973-08-01

start of the subroutine R OM IN C ON is set .FALSE.. If the con-
vergence criteria are satisfied C O N must be set .TRUE. in the sub-
routine MONITOR, which transfers control back to the main pro-
gram. NR is the M O N I T O R index used as described in 13]. The
CALL statement of the subroutine M O N I T O R with NR equal to 1
occurs once per function evaluation and with NR equal to 2 once
per stage of the iteration process.

Test results. As a test example, the parabolic valley function

J(x l , x2) = 100 (x.,. - - .x',~) 2 + (1 - - Xl) 2

was chosen. This function attains its minimum equal to 0 at the
point (1, 1). Starting from the point (- 1.2, 1.0) the best estimate of
the solution after 200 function evaluations as found by the sub-
routine R O M I N was 0.29774.10 -4 at the point (0.99513, 0.99053).
The initial step length S T E P was set equal to 0.1 [2].

References
1. Rosenbrock, H . H . An automatic method for finding the
greatest or least value of a function. Computer J. 3 (1960), 175-184.
2. Rosenbrock, H.H., Storey, C. Computational Techniques for
Chemical Engineers. Pergamon Press, New York, 1966.
3. Rutishauser, H. Interference with an ALGOL Procedure, ht
Ammal Review ht Automatic Programmhtg, Vol. 2. R. Goodman
(Ed.), Pergamon Press, New York, 1961.
4. Powell, M.J.D. An efficient method for finding the minimum of
a function of several variables without calculating derivatives.
Computer J. 6 (1964), 155-162.

Algorithm
SUBROUTINE ROMINfN• X• FUNCT• STEP~ MONITR)
INTEGER N• IP
REAL STEP
DIMENSION X(N)
LOGICAL CON
INTEGER I , J, K, L, P, R
REAL FO• FI • B, BETY
DIMENSION A (3 O) • D (3 O) , V (3 0 • 3 0) , A L P H A (3 0 , 3 0) , BETA(30)~

* E (3 0) , A V (3 0)
C THIS SUBROUTINE MINIMIZES A FUNCTION OF N VARIABLES
C USING THE METHOD OF ROSENBROCK. THE PARAMETERS ARE
C DESCRIBED AS FOLLOWS:
C N IS THE NUMBER OF INDEPENDENT VARIABLES
C X(N) IS AN ESTIMATE OF THE SOLUTION (ON ENTRY -
C AN IN IT IAL ESTIMATE• ON EXIT - THE BEST ESTIMATE
C OF THE SOLUTION FOUND)
C FUNCT(N*X,F) IS A ROUTINE PROVIDED OY THE USER TO
C CALCULATE THE VALUE F OF THE MINIMIZED FUNCTION
C AT ANY POINT X
C STEP I S AN IN IT IAL STEP LENGTH FOR ALL COORDINATE
C DIRECTIONS AT THE START OF THE PROCESS
C MONITR (N,X,F,R,B,CON•NR) IS A ROUTINE PROVIDED BY
C THE USER FOR DIAGNOSTIC AND CONVERGENCE PURPOSES
C R IS THE ACTUAL NUMBER OF FUNCTION EVALUATIONS (FOR
C THE IN IT IAL ESTIMATE R=0)
C B IS THE VALUE OF THE EUCLIDEAN NORM OF THE VECTOR
C REPRESENTING THE TOTAL PHOGRESS MADE SINCE THE
C AXES WERE LAST ROTATED
C CON IS A LOGICAL VARIABLE. AT THE START OF THE
C SUBROUTINE ROMIN CON=,FALSE. I F THE CONVERGENCE
C CRITERIA OF THE ROUTINE MONITOR ARE SATISFIED
C CON MUST BE SET *TRUE. TO STOP THE PROCESS
C NR IS THE MONITOR INDEX
C IN IT IAL IZE CON, E(1) AND R
C E I I) IS A SET OF STEPS TB BE TAKEN IN THE CORRESPONDING
C COORDINATE DIRECTIONS

CON = .FALSE.
DO 1O I = I , N

E (I) = STEP
IO CONTINUE

R = 0
C V (I • J) IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY
C ORTHOGONAL COORDINATE DIRECTIONS. V (I J J) I S THE UNIT
C MATRIX AT THE START OF THE PROCESS

DO 30 I = I , N
DO 20 J = I , N

V (I , J) = 0 .0
IF (I . E O . J) V (I , J) = 1.0

20 CONTINUE
30 CONTINUE

CALL FUNCTINs X• F0)
C START OF THE ITERATION LOOP

40 DO SO I = I • N
A { I) = 0 .0
D(1) = 0 , 0

50 CONTINUE
C EVALUATE F AT THE NEW POINT X

60 DO 130 I = I , N
DO 70 J=I~N

X(J) = X(J) * F (1) * V (I , J)
70 CONTINUE

R = R + I
CALL PUNCT(N, X, F I)
CALL MONITR(N~ XJ FI~ R, 0, CON, l)
IF (CON) GO TO 2 9 0
I F (F I - F O) 8 0 , 9 0 , 9 0

C THE NEW VALUE OF THE FUNCTION IS LESS THAN THE OLD ONE
80 D(1) : DCI) * ECII

E (I) = 3.0*F(1)
FO = F l
I F (A (1) . G T . I . 5) A (I) = l , O
GO TO 1 1 0

C THE NEW VALUE OF THE FUNCTION IS GREATER THAN OR EQUAL
C TO THE OLD ONE

90 DO lO0 J = I , N
X(J) = X(J) - F (1) * V (l n J)

100 CONTINUE
E(1) = -O,5*F(I)
IF (A { I) . L T * I * 5) A (I) = O.O

l l O DO 1 2 0 J = I , N
I F (A (J) .GE .O .5) GO TO 130

120 CONTINUE
GO TO 140

130 CONTINUE
GO TO 60

C GRAM-SCHMIDT ORTHOGONALIZATION PROCESS
1 4 0 DO 160 K = I , N

DO 1 5 0 L = | , N
ALPHA(K,L) = O.O

150 CONTINUE
160 CONTINUE

DO 1 9 0 I = I • N
DO 1 8 0 J = I • N

DO 170 L = I • N
A L P H A (I , ') = A L P H A (I , ') + Of L) * V (L , J)

1 7 0 CONTINUE
180 CONTINUE
190 CONTINUE

B = O , O
DO 200 J = I , N

B = B + A L P H A (I I J) * * 2
200 CONTINUE

B = SQRT(B)
C CALCULATE THE NEW SET OF ORTHONORMAL COORDINATE
C DIRECTIONS (THE NEW MATRIX V (I , J))

DO 210 J = I • N
V (l * J) = A L P H A (I , J) / B

2 1 0 CONTINUE
DO 280 P=OtN

BETY = O . O
I P = P - l
DO 2f iB M=IsN

BETA(M) = O*O

220 CONTINUE
DO 250 J = I , N

DO 240 K = I , I P
A V I K) = 0 . 0
DO 230 L = I , N

AV(K) = AV(K) + ALPHA(P,L)*V(KJL)
230 CONTINUE

B E T A (J) = B E T A (J) - A V I K) * V (K , J)
240 CONTINUE
250 CONTINUE

DO B60 J = I , N
BETA(J) = BETA(J) + ALPHA(P,J)
BETY = BETY ÷ RETA(JI**B

260 CONTINUE
BETY = SQRT(BETY)
DO 270 J = I , N

V (P ,J) = BETA(J)/BETY
BTO CONTINUE
280 CONTINUE

C END OF GRAM-SCHMIDT PROCESS
CALL MONITR(N. X, FO, R, B, CON, 2)
I F (CON) GO TO 290

C GO TO THE NEXT ITERATION
GO TO 4 0

290 RETURN
END

Algorithm 45 l

Chi-Square Quantiles [G1]
R i c h a r d B. Golds t e in [Recd. 30 June 1971 and 20
M a r c h 19721
D e p a r t m e n t of M a t h e m a t i c s , P r o v i d e n c e College,
Prov idence , R.I.

Key Words and Phrases: Chi-square statistic, asymptotic
approximation, normal deviate, chi-square deviate, degrees of
freedom

CR Categories: 5.12, 5.5
Language: Fortran

Description
The algorithm evaluates the quantile at tile probability level

P for the Chi-square distribution with N degrees of freedom. The

483 Communications August 1973
of Volume 16
the ACM Number 8

Fig. I

tt~
lO "1

~=l~ 10 ~2

0
0

Z 10. 3
O

O
ew ~0 " 4
el"

m"5
l=

~t
IE

lo"
1 2

/\

3 4 5 8 10 2 0 30 5 0 8 0 1 0 0

D E G R E E S O F F R E E D O M

Fig.

%

va

o
o
o

z
O

11
O
11
11
Ill

la

7-
=J
=,1

11

=E

l=

>1

I=

10 - 1

10 " 2

10 - 3

10 " 4

10 - 5

10'
1

"V
\

2 3 4 5 8 1 0

D E G R E E S O F

\
\

\
2 0 3 0 5 0 8 0 1 0 0

F R E E D O M

quant i le funct ion is an inverse of the funct ion

f; P (X IN) = (2N/2r(N/2)) -1 zIN-- le -~z d Z (x > O, N >_ 1).
(p)

The funct ion G A U S S D (P) is a s sumed to return the no rma l
deviate for the level P, e.g. --1.95996 for P = .025. The proce-
dure found in Has t ings [5] may be used, or for increased accuracy,
the procedure found in C u n n i n g h a m [3] may be used.

The Wilson-Hilfer ty cubic formula [7] which is

x ~ ~ N{1 -- 2 / 9 N + X (2/9N)½13

where X is the no rma l deviate can be extended to the 19-term
asympto t ic approx imat ion :

x 2 ~.~ N{ 1 -- 2 / 9 N + (4X4+16X2--28) /1215N 2
+ (8XS+720X4+3216X2+2904) /229635N 3 + . . .
+ (2/N)~[X/3 + (- - X 3 + 3 X) / 1 6 2 N
-- (3XS+40X 3 + 45X) /5832N 2
+ (301X ; - 1519X 5 - 32769X ~ - 79349X)/7873200N ~ + ' ' •] }:~

where X is the normal deviate by taking the cube root of the poly-
nomial expans ion in Campbel l [21. For N = 1

x "~ = { GA USSD (½ P) 15

and for N = 2

x 2 = - - 2 1 n (P).

For 2 < N < 2 + 41 XI , x 2 was fit with polynomials of the same
fo rm as the asymptot ic approximat ion :

x 2 ~ N{ (1.0000886-- .2237368/N-- .01513904/N 2)
+ N-½X(.4713941 + .02607083/N-- .008986007/N 2)
+ N-xX2(.OOO1348028+.Ol128186/N+.O2277679/N 2)
+ N-at2X3(--.OO8553069--.Ol153761/N--.O1323293/N 2)
+ N-2X%OO312558+.OO5169654/N--.OO6950356/N 2)
+ N-~t2X~(--.OOO8426812+.OO253001/N+.OOlO60438/N 2)
+ N-3X~(.00009780499 - .O01450117/N+.OO1565326/N 2) }3

f rom Abramowi tz and Stegun [1] for P = .0001, . 0 0 0 5 , . . . , .995
and Hald and Sinkbaek [4] for P = .999, .9995. The deviates

4 8 4

for N = 3, 4 , . . . , 9 were made accurate within 10 -6 by us ing
Algor i thm 299 of Hill and Pike [6].

For N = 1 and N = 2 the x 2 deviate is as accurate as the
G A U S S D and A L O G procedure o f the system. For .0001 _< P <
.9995 and N >_ 3 the absolute error in x 2 is less than .005 and the
relative error is less than .0003. This is some 100 to 1000 t imes as
accurate as the Wilson-Hilferty fo rmula even for large N. Error
curves for three approx imat ions are shown in Figures 1 and 2.

The p rog ram was tested on an IBM/360 at Rhod e Is land Col-
lege and resulted in the ou tpu t of Table I.

Table I.

T a b l e o f C o m p u t e d Va lues

Deg .
F t . 0.9995 0 .9950 0.5000 0.0010 0.0001

1 0.000000 0.000039 0.454933 10.827576 15.135827
2 0.001000 0.010025 1.386293 13.815512 18.420670
3 0.015312 0.071641 2.365390 16.268982 21.106873
4 0.063955 0.206904 3.356400 18.467987 23.510040
5 0.158168 0.411690 4.351295 20.515503 25.744583

10 1.264941 2.155869 9.341794 29.589081 35.565170
15 3.107881 4.601008 14.338853 37.697662 44.267853
20 5.398208 7.433892 19.337418 45.314896 52.387360
50 23.460876 27.990784 49.334930 86.660767 95.969482

100 59.895508 67.327621 99.334122 149.449051 161.319733

References
1. Abramowi tz , M., and Stegun, 1. (Eds.) Handbook o f
Mathematical Functions, Appl. Math . Ser. Vol. 55. Nat . Bur.
Stand. , U.S. Govt. Print ing Office, Wash ing ton , D.C., 1965,
pp. 984-985.
2. Campbel l , G.A. , Probabil i ty curves showing Poisson 's
exponent ial s u m m a t i o n . Bell Syst . J. 2 (1923), 95-113.
3. C u n n i n g h a m , S.W. F r o m no rma l integral to deviate. In
,4ppliedStatistics. Vol. 18, Roya l Statis. Soc., 1969, pp. 290-293.
4. Hald, O.O., and Sinkbaek, O.O. Skandinavisk ,4kturarie-
t idskrif t (1950), 168-175.
5. Hast ings , C. Jr. Approximations for Digital Computers'.
Princeton U. Press, Princeton, N.J. , 1958, p. 192.

Commun ica t i ons Augus t 1973
of Volume 16
the A C M N u m b e r 8

6. Hill, I.D., and Pike, M.C. Algorithm 299, Chi-squared in-
tegral. Comm. ACM, 10, 4 (Apr., 1967), 243-244.
7. Hilferty, M.M., and Wilson, E.B. Proc. Nat. Acad. Sci.,
17 (1931), 684.
8. Riordan, J. Inversion formulas in normal variable mapping.
Annals o f Math. Stads/. 20 (1949), 417-425.

AI gorithm
FUNCTION CHISQD(P, N)
DIMENSION C (O I) , A(19)
DATA C (1) / I . 5 6 5 3 2 6 E - 3 / , C (2) / 1 * 0 6 0 4 3 B E - 3 / ,

* C (3) / - 6 . 9 5 0 3 5 6 E - 3 / , C (4) / - I . 3 2 3 2 9 3 E - B / ,
* C(5)/2.277679E-2/, C(6)/-8.986007E-3/,

C (7) / - 1 . 5 1 3 9 0 4 E - 2 / , C (8) / 2 o 5 3 0 0 1 0 E - 3 / s
* C (9) / - I . 4 5 0 1 1 7 E - 3 / , C (1 0) / 5 . 1 6 9 6 5 4 E - 3 / I
* C (1 1) / - 1 . 1 5 3 7 6 1 E - 2 / , C (1 2) / I . 1 2 B I B 6 E - 2 / ,
* C (1 3) / 2 . 6 0 7 0 8 3 E - 2 / , C (1 4) / - 0 . 2 2 3 7 3 6 8 / ,
* C (1 5) / 9 . 7 8 0 4 9 9 E - 5 / , C (1 6) / - 8 . 4 2 6 8 1 2 E - 4 / ,
* C (1 7) / 3 * 1 2 5 5 B O E - 3 / , C (I B) / - B , 5 5 3 0 6 9 E - 3 / ~
* C (1 9) / I . 3 4 8 0 2 8 E - 4 / , 0 (2 0) / 0 . 4 7 1 3 9 4 1 / , 6 (~ 1) / I , 0 0 0 0 8 8 6 /

DATA A(1)/I.264616E-2/, A (2) / - I . 4 2 5 2 9 6 E ~ 2 / ,
A { 3) / I . 4 0 0 4 8 3 E - 2 / ~ A(4)/-5°886090E-3/,
A(5)/-I .091214E-2/, A(6)/-2.304527E-2/,

* A (7) / 3 . 1 3 5 4 1 1 E - 3 / , A (B) / - 2 . 7 2 8 4 8 4 E - 4 / ,
* A (9) / - 9 . 6 9 9 6 G I E - 3 / , A (I O) / I . 3 1 6 8 7 2 E - 2 / ,
* A (I I) / O . 6 1 8 9 1 4 E - O / , A (1 2) / - 0 . 2 2 2 2 2 2 2 / ,
* A(13)/5.406674E-5/, A(14)/3.483789E-5/,
* A (1 5) / - 7 . O 7 4 7 6 1 E - 4 / , A (1 6) / 3 . 2 9 2 1 8 1 E - 3 / ,
* A(17)/-B.729713E-3/j A (1 8) / 0 * 4 7 1 4 0 4 5 / , A (1 9) / I . /

I F (N - 2) lO~ 2 0 , 3 0
10 C B I S Q D = G A U S S D (° 5 * P)

C H I S Q D = C H I S O D * C H I S Q D
RETURN

2 0 CHISQD = -2°*ALOG(P)
RETURN

3 0 g = N
F I = I * / F
T = G A U S S D (I . - p)
F2 = S Q R T (F I) t T
I F (N . G E . (2 + I N T (4 . * A B S (T)))) GO TO 40
C H I S Q D = (((((((C (I) * F 2 + C (2)) * F 2 + C (3)) * F 2 + C (4)) * F 2

* + C (5)) * F O + C (6)) * F O + C (7 }) * F I + ((((((C (O) + C (9) * F O) * F 2
* + C (I O)) * F 2 + C (I 1)) * F O + C (I O)) * F O + C (1 3)) * F O + C (1 4))) * F I +
* (((((C (1 5) * F O ÷ C (1 6)) * F O + C (1 7)) * F O + C (1 8)) * F O
* + C (1 9)) * F 2 ÷ C (2 0)) * F 2 + C (2 1)

GO TO 50
40 C H I S O D = (((A (I) + A (2) * F O) * F I + (((A (3) + A (4) * F 2) * F 2

* +A(5))*FO+A(6)))*FI+(((((A(7)+A(O)*F2)*F2+A(9))*F2
* ÷ A (I O)) * F 2 ÷ A (I I)) * F O + A (1 2))) * F I + (((((A (1 3) * F 2
* ÷A(14)) *FO+A(15)) *F2+A(16)) *FO÷A(17)) *FO*F2
* + A (I B)) * F E + A (1 9)

SO C R I S Q D = C H I S O D * C H I S Q D * C H I S Q D * F
RETURN
END

Algorithm 452

Enumerating Combinations
of m Out of n Objects [G 6]
C.N. Liu and D.T. Tang [Recd. 7 July 1971 a n d
1 May 1972]
IBM Thomas J. W a t s o n R e s e a r c h Center , Y o r k t o w n
H e i g h t s , NY 10598

Key Words and Phrases: permutations, combinations
CR categories: 5.30
Language: Fortran

Description
NXCBN can be used to generate all combinations of m out of

n objects. Let the binary n-vector of ml's and (n -- m) O's repre-
senting a combination of m out of n objects be stored in an in-
teger array, say 1C(n). If NXCBN (n, m, IC) is called, a binary
vector representing a new combination is made available in the
array IC(n). If NXCBN (n, m, IC) is called (~) times successively,
then all combinations will be generated.

485

The algorithm has the following features; (a) each output
binary n-vector differs from the input at exactly two posit ions--
consequently each generated combination differs from the pre-
vious one by a single object: (b) the n-vectors generated by this
subroutine form a closed loop of (',*) elements--therefore the ini-
tial combination may be specified arbitrarily, and the enumeration
of any subset of (~) combinations can be readily achieved. The
second feature is not found in Chase's algorithm [I].

The algorithm underlying this procedure is based upon our
study of properties of Gray codes. It can be shown that constant
weight code vectors from a Gray code sequence are separated by a
Hamming distance of 2. The mathematical analysis is contained
in [2J and [3].

References
1. Chase, P.J. Algorithm 382, Combinations o fm out o fn
objects. Comm. ACM 13 (June 1970), 368.
2. Tang, D.T., and Liu, C.N. On enumerating m out of n
combinations with minimal replacements. Proc. of Fifth
Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971.
3. Tang, D.T., and Liu, C.N. Distance-Two Cyclic Chaining
of Constant-Weight Codes. IEEETC. C-22, 2 (Feb. 1973), 176-180.

Algorithm
SUBROUTINE N X C B N (N , M, IC)

C E X P L A N A T I O N OF THE P A R A M E T E R S I N THE C A L L I N G SEQUENCE
C N THE TOTAL NUMBER OF OBJECTS
C M THE NUMBER OF OBJECTS TO BE TAKEN FROM N
C IF M=O, OR M>=N, EXIT WITH ARGUMENTS UNCHANGED
C IC AN INTEGER ARRAY. IC CONTAINS AN N-DIMEN-
C SIONAL BINARY VECTOR WITH M ELEMENTS SET TO I
C REPRESENTING THE M OBJECTS IN A COMBINATION
C THIS ALGORITHM IS PROGRAMMED IN ANSI STANDARD FORTRAN

INTEGER IC(N)
C CHECK ENDING PATTERN OF VECTOR

I F (M . G E . N . O H . M . E O . O) GO TO 1 4 0
NI = N - I
DO I0 J = I , N I

NJ = N - J
I F (I C (N) . E Q . I C (N J)) GO TO 10
d l = J
GO TO 2 0

IO C O N T I N U E
20 IF (MOD(M,2) .ED. I) GO TO 90

C FOR M EVEN
IF (I C (N) . E O . I) GO TO 3 0
K! = N - J!
K2 = K I + 1
GO TO 1 3 0

3 0 I F (M O D (J 1 , 2) . E O . I) GO TO g40
GO TO 120

C SCAN FROM RIGHT TO LEFT
4 0 J P = (N - J I) - 1

DO 5 0 I = I , J P
I I = JP + 2 - I
I F (I C (I I) . E O . O) GO TO 50
I F (I C (I I - I) . E Q . I) GO TO 7 0
GO TO 80

50 CONTINUE
6 0 K I = 1

K2 = CN+I) - M
GO TO 1 3 0

7 0 K I = I I - 1
1'(2 = N - d l
GO TO 1 3 0

8 0 KI = I I - l

K2 = (N + l) - J l
GO TO 1 3 0

C FOR M 000
90 IF (I C (N) . E Q * I) GO TO l l O

K2 = (N - J I) - I
IF (K2.EOoO) GO TO 60
I F (I C (K 2 + I) . E O . I .AND° I C (K O) . E Q . I) GO TO 1 0 0
K I = K2 + 1
GO TO 1 3 0

IO0 KI = N
GO TO 1 3 0

| 1 0 I F (M O D (J I , 2) . E Q . I) GO TO lfiO
GO TO 4 0

1 2 0 Kl = N - J l
K2 : MINO((K I+B) ,N)

C COMPLEMENTING TNO BITS TO OBTAIN THE NEXT COMBINATION
1 3 0 I C (K I) = I - I C (K I)

IC(KB) = 1 - IC(K2)
I 4 0 R E T U R N

END

Communications August 1973
of Volume 16
the ACM Number 8

Algorithm 453

Gaussian Quadrature
Formulas for Bromwich's
Integral [D 1]
Robert Piessens [Recd. 2 Aug. 1970 and 8 Feb. 1972[
Applied Mathematics Division, University of Leuven,
Heverlee, Belgium

Key Words and Phrases: Gaussian quadrature, Bromwieh's
integral, complex integration, numerical inversion of the Laplace
transform

CR Categories: 5.16, 5.13
Language: Fortran

Description
W" " W s) B R O M I N calculates the abscissas x~- ") and e gnts k of the

Gauss i an quadra tu re formula

fc+j~ N (s) ~ / V (~) \ (l / 2 ~ r j) eZx-sF(x) dx ~- ~, wk r k . k) (l)

c 2 :Q k : l

where c is an arbi trary real positive number , s is a real nonnegat ive
parameter , and F(x) must be analytic in the r ight-half plane o f the
complex plane.

• (s)
Absc l s sasxe and weights w(k ") are to be determined so that (1)

is exact whenever F(x) is a polynomial in x -l , o f degree _<2N -- I.
The abscissas x(k ~) are the zeros o f PN,~(X -1) where

PN,s(u) = (--l);VBF0(--N, N + s -- l; -- ; u). (2)

Propert ies o f P,v,,(u) are s tudied in Ill.
The quadra tu re formulas o f even order have no real abscissas;

those o f odd order have exactly one real abscissa. All the abscissas
have positive real parts and occur in complex conjugate pairs.

The zeros o f (2) are calculated us ing N e w t o n - R a p h s o n ' s
method . F ind ing an approx imate zero as s tar t ing value for the
i teration process is based on a certain regularity in the dis t r ibut ion
o f the zeros (see [1] and [2]). The s tar t ing values, used by B R O M I N
were tested for s = 0.1(0.1)4.0 and N = 4(1)12. Each abscissa
was found to at least eight significant figures in at most six i teration
steps,

The weights are given by

(N - 1)! F 2N + s - - 272
(_ 1) u - , A~

]?(N + s 1)Nxk 2 / - - - - - ~ i - / (3) - L p~_i,~(~) J
The polynomial (2) is evaluated by a three-term recurrence rela-
t ion (see [I]) . Due to roundoff errors, the accuracy of abscissas
and weights decreases significantly for increasing N. In Table I
we give for some values o f s and N the modul i o f the relative errors
in the abscissas and weights, calculated by B R O M I N (with TOL -
0.1E -- 10) on an IBM 370 compute r in double precision (approxi-
mately 16 significant figures). For compar i son we used the 16 -- S
values given in [3].

T a b l e I. M a x i m u m R e l a t i v e E r r o r s in A b s c i s s a s a n d W e i g h t s

M a x i m u m e r ro r in M a x i m u m e r ro r in
a b s c i s s a s we igh t s

s N = 6 N = 12 N = 6 N = 12

0.1 1.8 X 10 -13 1.7 X 10 -9 1 .2 X 10 -I3 2 .3 X 10 -8
1.0 1 .9 × 10 -14 5.3 X 10 - n 1 .5 X 10 -14 6 .4 X 10 -I°
4 . 0 1.3 .,< l0 -15 2 .3 X I0 -l~ 1 .0 X 10 -14 4 .3 X 10 -II

486

Note that the relative errors in the weights are larger than in
the abscissas•

The use of complex ari thmetic is avoided in B R O M I N in
order to facilitate the conversion to a double precision subrout ine .

References
1. Piessens, R. Gauss ian quadra tu re formulas for the numerical
integration of Bromwich ' s integral and the inversion o f the Laplace
t ransform. J. Eng. Math. 5 (Jan. 1971), 1-9.
2. Piessens, R, Some aspects o f Gauss ian quadra tu re formulas
for the numerical invecsion o f the Laplace t ransform. Comput.
J. 14 (Nov. 1971), 433 435.
3. Piessens, R. Gauss i an quadra ture formulas for the numerical
integration of Bromwich ' s integral and the inversion o f the
Laplace t ransform. Rep. T W I , Appl. Math. Div. U. of Leuven,
1969.

Algorithm
SUBROUTINE BROMIN(NJ S* TOL, XR, X I , WR* Wls EPS, IER)
D O U B L E P R E C I S I B N A K , A N , A R C , C I , CR, D , D I , D 2 , E , E P S ,

* FAC, FACTI, FACTR, PIJ PR, QI* QR, RI* RR* S* TI* TB*
* TOLJ U, V, WI, WR* XI* XR* YIJ YR, Z

INTEGER IERs J~ K, Ln Ns NI , NUM* NUPs IGNAL
DIMENSION XR(N)* X I (N) * WR(N), WI(N)

C T H I S S U B R B U T I N E C A L C U L A T E S A B S C I S S A S AND W E I G H T S OF THE
C GAUSSIAN QUADRATURE FBRMULA BE eRDER N FOR THE BROMWICH
C INTEGRAL. ONLY THE ABSCISSAS BE THE FIRST QUADRANT OF
C THE COMPLEX PLANEJ THE REAL ABSCISSA (I F N IS ODD) AND
C THE CBRRESPGNDING WEIGHTS ARE CALCULATED, THE OTHER
C ABSCISSAS AND WEIGHTS ARE COMPLEX CONJUGATES.
C INPUT PARAMETERS
C N BRDER eF THE QUADRATURE FORMULA,
C N MUST BE GREATER THAN 2.
C TOL REQUESTED RELATIVE ACCURACY GF THE ABSCISSAS-
C S PARAMETER BF THE WEIGHT FUNCTION.
C QUTPUT PARAMETERS
C XR AND XI CBNTAIN THE REAL AND IMAGINARY PARTS OF
C THE ABSCISSAS. IF N IS QDD, THE REAL ABSCISSA
C I S XR(1) .
C WR AND WI CGNTAIN THE REAL AND IMAGINARY PARTS OF
C THE CBRRESPONDING WEIGHTS.
C EPS IS A CRUDE ESTIMATION OF THE OBTAINED RELATIVE
C ACCURACY eF THE ABSCISSAS,
C IER IS AN ERRBR CODE,
C IF IER=O THE COMPUTATIeN IS CARRIED OUT TO
C THE REQUESTED ACCORACY.
C IF IER.GT.O THE IER-TH ABSCISSA IS NGT FOUND.
C IF IER=-I THE COMPUTATIONS ARE CARRIED OUT*
C BUT THE REQUESTED ACCURACY IS NOT
C ACHIEVED.
C I F I E R = - 2 N IS LESS T H A N 3.
C FUNCTION PROGRAMS REQUIRED
C F U N C T I O N GAMMA(X) WHICH EVALUATES THE GAMMA
C FUNCTION FOR POSITIVE X.

IER = -2
IF (N . L T . 3) RETURN
N! = I N + I) / 2
L = N - I
AN : N
IER : 0
EPS : TQL
ARC = O.034DO*(3O.DO÷AN+AN)/(AN-[.DO)
FACTR = DCBS(ARG)
FACTI = DSIN(ARG)
FAC : I,DO
AK = O.DO
DB IO K : I . L

AK = AR + I.DO
FAC = - F A C * A K

10 C O N T I N U E
FAC : FAC*(AN+AN+S-2.DO)**2/(AN*DGAMMA(AN+S-I.DO))

C CALGULATIGN OF AN APPRBXIMATIBN BF THE FIRST ABSCISSA
YR = I.B38DO*AN + S - 1.5DO
YI = O.ODO
I F (N - N I - N I) 3 0 * 20~ 2 0

20 YI = YI + 1,6DO + O,07DD*S
C START MAIN LBBP

3 0 DB 140 R : I * N I
E : TOL
IGNAL = O
NUM = 0
NUP = O

C NEWTON-RAPHSON METHBD
D = YR*YR + Y I *Y I
YR = YR/D
YI = - Y I / D
GO T B 50

40 I G N A L : 1
50 QR = S*YR - I ° D O

QI = $*YI
PR = (S÷I .DO)* ((S÷B.DO)* (YR*YR-YI*YI) -2 .DO*YR) ÷ 1.DO
PI = 2 .DO* (S÷ I .DO)*Y I * ((S÷2 .DO)*YR- I .DO)
Z = 2 , D 0
DO 6 0 J = 3 s N

RR = QR
R I = Q I

QR = PR
Q I = P I
Z = E ÷ I . D O
U = Z + S - 2 . D 0
V = U + Z

Communica t i ons Augus t 1973
of Volume 16
the A C M N u m b e r 8

D = (V *YR+ IO .DO-S) / (V -2 ,DO)) /U
DI : (~ - I ,DO) *V / (U* (V -O .DO) I
DO = V *Y I /U
P R = (V - I . D O) * (O R * D - Q I * D O) ÷ D I * R R
P I = (V - I . D 0) * f Q I * D + Q R * D 2) + D I * R I

60 CONTINUE
I F (IGNAL .EQ. I) GO TO 1 0 0
D = (YR*YR+Y I *Y I) *V
DI = ((PR+O~) *YR+(P I+Q I) *Y I) /D + PR
D2 = C (P I+Q I I *YR- (PR÷QRI *Y I) /O + P I
O = (D I *D I+D2*D2) *AN
T I = PR*YR - PI *Y I
T2 = P I *YR ÷ PR*YI
CR = (T I *D I+TO*DOI ID
CI = (TO*O I -T I *DO) /D
YR = YR - CR
YI = YI - CI
NUM = NUM + I

C TEST OF CONVERGENCE OF ITERATION PROCESS
I F (CR*CR+CI *C I -E *E* (YR*YR÷Y I *Y I)) 4 0 , 4 0 , 7 0

C TEST OF NUMBER OF ITERATION STEPS
7 0 I 7 (NUN- IO) 50* 50. BO
80 E = E* IO,DO

IER = - I
NUP = NUP ÷ I
I F (NUP-5) 50. 50s 90

9 0 I ER = K
RETURN

C CALCULATION OF WEIGHTS
I 0 0 I F (E P S , G E . E) GO TO 1 1 0

E P S = E
1 1 0 D = (0 R * Q R ÷ O I * 0 I) * * O

D l = Y R * Q R + Y I * 0 1
DB = Y I * O R - Y R * O I
WR(K) = F A C * (D I * D I - D O * D O) / D
WI(R) = 2 , D 0 * F A C * D 2 * D I / D
D = Y R * Y R + Y I * Y I
XRCK) = YRID
X I (K) = -Y I /D
IF (K+ I -N I) 130~ 120J 150

I 00 FACTR = DGOS(I,5DO*ARG)
FACTI = DSIN(I ,BDO*ARG)

C CALCULATION OF AN APPROXIMATION OF THE (K+ I I -TH ABSCISSA
1 3 0 YR = (XR(K)÷O.67DO*AN)*FACTR - X I tR) *FACT I - 0.67DO*AN

YI = (XR(R I÷O .67DO*AN) *FACT I ÷ X I (R) *FACTR
1 4 0 C ~ N T I N U E
150 RETURN

END

Algorithm 454

M.J. Box [21. This method is a sequential search technique, which
has proven effective in solving problems with nonlinear objective
functions subject to nonlinear inequality constraints. No deriva-
tives are required. The procedure should tend to find the global
maximum because the initial set o f points is randomly scattered
throughout the feasible region. If linear constraints are present or
equality constraints are involved, other methods should prove to
be more efficient [1]. The algori thm proceeds as follows:
(1) An original "complex" of K > N + 1 points is generated
consisting of a feasible starting point and K -- 1 additional points
generated from random numbers and constraints for each of the
independent variables: X,- 5 = Gi q- r is(Hi -- G,), i = 1, 2 , . . . ,
N, and j = 1, 2 , . . . , K -- 1, where rc~ are random numbers be-
tween 0 and 1.
(2) The selected points must satisfy both the explicit and implicit
constraints. If at any time the eaplicit constraints are violated,
the point is moved a small distance a inside the violated limit. If
an implicit constraint is violated, the point is moved one half of the
distance to the centroid of the remaining points: Xcj(new) =
(X~5(old) + X c ,) / 2 , i = 1, 2 , . . . , N, where the coordinates
of the centroid of the remaining points, X,.~, are defined by

- f i , ~ - K - 1 X i , j - - X i d (o l d) , i = 1 , 2 , . . . , N .

This process is repeated as necessary until all the implicit con-
straints are satisfied.
(3) The objective function is evaluated at each point. The point
having the lowest function value is replaced by a point which is
located at a distance a times as far from the centroid of the re-
maining points as the distance of the rejected point on the line
joining the rejected point and the centroid:

X,.5(new) = c~(Xi,~ - Xis(old)) + X~, , , i = 2, . . . , N.

The Complex Method for
Constrained Optimization [E4]
J o e l A . R i c h a r d s o n a n d J . L . K u e s t e r * [R e c ' d . D e c . '22,

1970 a n d M a y 5, 1971]

A r i z o n a S t a t e U n i v e r s i t y , T e m p e , A Z 85281

Key Words and Phrases: optimization, constrained
optimization, Box's algorithm

CR Categories : 5.41
Language: Fortran

Description
Purpose. This program finds the maximum of a multivariable,

nonlinear function subject to constraints:

Maximize F(X~ , Xo, . . . , XN)
Subject to G~ < Ark < Hk, k = 1 , 2 , . . . , M .

The implicit variables XN+], • • . , XM are dependent functions of
the explicit independent variables)(1, X . , , . . . , XN. The upper
and lower constraints Ha. and G~ are either constants or functions
of the independent variables.

Method. The program is based on the "complex" method of

* The authors acknowledge financial support f rom a National
Science Foundat ion summer fellowship and Arizona State Uni-
versity Grants Commit tee fellowship. Computer facilities were
provided by the Arizona State University Computer Center and
AiResearch Manufacturing Company.

Box [21 recommends a value o f , = 1.3.
(4) If a point repeats in giving the lowest function value on con-
secutive trials, it is moved one half the distance to the centroid of
the remaining points.
(5) The new point is checked against the constraints and is ad-
justed as before if the constraints are violated.
(6) Convergence is assumed when the objective function values
at each point are within ~ units for -y consecutive iterations.

Program. The program consists o f three general subroutines
(JCONSX, JCEKI , JCENT) and two user supplied subroutines
(JFUNC, JCNST1). The use of the program and the meaning of
the parameters are described in the comments at the beginning of
subroutine J C O N S X . All communicat ion between the main
program and subroutines is achieved in the subroutine argument
lists. An iteration is defined as the calculations required to select a
new point which satisfies the constraints and does not repeat in
yielding the lowest function value.

Test results. Several functions were chosen to test the program.
The calculations were performed on a CDC 6400 computer. Some
examples:

1. Box Problem [2]
Function: F = (9 -- (XI -- 3)2)x=a/27n/3
Constraints: 0 <)(1 < 100

0 ~ X~ ~ Xl /~/3
0 _< (X:I = XI + w/3X..,) _< 6

Starting point:)(1 = 1.0, Xz = 0.5
Parameters: K = 4, a = 1.3, ~ = .001, -~ = 5, ~ = .0001

Correct results:
F = 1.0000
X l = 3.0000
X._, = 1.7321

Computed results
F = 1.0(300
)(1 = 3.0000
)(2 = 1.7320
Number of iterations: 68
Central processor time: 6 sec.

487 Communicat ions August 1973
of Volume 16
the A C M Number 8

2.

Computed results:
F = 3456
XI = 24.01
X.., = 12.00
)(3 = 12.00
N u m b e r o f iterations: 72
Central processor time: 6 sec.

Post Office Problem [3]
Funct ion: F = XIX2Xu
Constraints: 0_< Xi_< 42, i = 1 , 2 , 3

0 _< (X4 =)(1 -t- 2)(., q- 2X~) _< 72
Starting point:)(i = 1.0, X.., = 1.0, X3 =- 1.0
Parameters: K = 6, a = 1 .3 , ~ = .01 , "r = 5, ~ = .0001

Correct results:
F = 3456
XI = 24 .00
X2 = 12.00
X~ = 12.00

3. Beveridge and Schechter Problem [l J
Function: F = - - (XI -- 0.5)~ -- (X~ -- 1.0) 2
Constraints: - 2 _< Xx _< 2

- , , / 2 < Xe _< ~/2
--4_< (X3 = XI ~q- 2X~ ~ - 4) _< 0

Starting point: X~ = 0., X~ = 0.

Parameters: K = 4, ~ = 1 .3 , fl = . 0 0 0 0 1 , 3' = 5, ~ = .0001

Computed results: Correct results:
F = . 0 0 0 0 F = . 0 0 0 0

)(1 = .5035)(i = .5000
X~ = . 9990 Xe = 1.0000
Number o f iterations: 40
Central processor t ime = 5 sec.

References
1. Beveridge, G.S., and Schechter, R.S. Optimization: Theory
and Practice. McGraw-Hil l , N e w York, 1970.
2. Box, M.J. A new method of constrained opt imizat ion and a
comparison with other methods. Comp. J. 8 (1965), 42-52.
3. Rosenbrock, H .H. A n automat ic method for finding thfi
greatest or least value of a function. Comp. J. 3 (1960), 175-184.

Algorithm
SUBROUTINE JCONSX(N* M* K* ITMAX. ALPHA* BETA, GAMMA*

* D E L T A * X , R* F* I T * I E V 2 * RO* G* N* X C . L)
C PURPOSE
C TO FIND THE CONSTRAINED MAXIMUM OF A FUNCTION OF
C S E V E R A L VARIABLES BY T H E COMPLEX METHGD 8 F M. J, B O X ,
C THIS IS THE PRIMARY SUBROUTINE AND C00RDINATES THE
C SPECIAL PURPOSE SUBROUTINES (JCEKI* *CENT. JFUNCp
C J C N S T I) , I N I T I A L GUESSES OF THE I N D E P E N D E N T V A R I A B L E S .
C RANDOM NUMBERS* SOLUTION PARAMETERS* DIMENSION LIMITS
C AND P R I N T E R CODE DESIGNATION ARE OBTAINED FROM THE MAIN
C PROGRAM. F I N A L F U N C T I O N AND INDEPENDENT V A R I A B L E
C VALUES ARE TRANSFERRED TO THE MAIN PROGRAM FOR
C PRINTOUT, INTERMEDIATE PRINTOUTS ARE PROVIDED IN THIS
C SUBROUTINE. THE USER MUST PROVIDE THE MAIN PROGRAM AND
C THE SUBROUTINES THAT SPECIFY THE FUNCTION (JFUNC) AND
C CGNSTRAINTG (J C N S T 1) , FORMAT CHANGES MAY BE R E Q U I R E D
C WITHIN THIS SUBROUTINE DEPENDING ON THE PARTICULAR
C PROBLEM UNDER CONSIDERATIBN.
C UGAGE
C CALL JCONSX(N*M*K, ITMAX*ALPHA*BETA*GAMMA~DELTA*X*R,F*
C IT*IEV2*KB*G*H*XC*L)
C SUBROUTINES R E Q U I R E D
C JCEKI(N*M*K*X,G*H*I*RODE*XC*DELTA*L*RI)
C CHECKS ALL POINTS AGAINST EXPLICIT AND IMPLICIT
C CONSTRAINTS AND APPLYS CORRECTION IF VIOLATIONS ARE
C FOUND
C JCENT(N,M*K*IEVI*I*XC.X*L*KI)
C C A L C U L A T E S THE C E N T R O I D OF P O I N T S
C J F U N C (N * M * R * X * F . I * L)
C SPECIFIES OBJECTIVE FUNCTION (USER SUPPLIED)
C JCNSTI(N*MsK*X*GsH*I*L)
C SPECIFIES EXPLICIT AND IMPLICIT CONSTRAINT LIMITS
C (USER SUPPLIED), ORDER EXPLICIT CONSTRAINTS F I R S T
C DESCRIPTION OF PARAMETERS
C N NUMBER OF EXPLICIT INDEPENDENT VARIABLES - DEFINE
C IN MAIN PROGRAM
C M NUMBER 0F GETS 0F CONSTRAINTS - DEFINE IN MAIM
C PROGRAM
C H NUMBER OF POINTS IN THE COMPLEX - DEFINE IN MAIN
C PROGRAM
C ITMAX MAXIMUM NUMBER OF ITERATIONS - DEFINE IN MAIN
C PROGRAM
C ALPHA REFLECTION FACTOR - D E F I N E IN MAIN PROGRAM
C B E T A CONVERGENCE PARAMETER - D E F I N E I N M A I N PROGRAM
C GAMMA CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM
C DELTA E X P L I C I T CONSTRAINT VIOLATION CORRECTION - DEFINE
C IN MAIN PROGRAM
C X INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN
C MAIN PROGRAM
C R RANDBM NUMBERS BETWEEN 0 AND I - DEFINE IN MAIN
C PROGRAM
C F OBJECTIVE FUNCTIDN - DEFINE IN SUBROUTINE JFUNC
C IT ITERATION INDEX - DEFINED IN SUBROUTINE JCONSR

488

C I E V 2 I N D E X OF P O I N T W I T H N A X I N U M F U N C T I O N V A L U E -
C D E F I N E D I N S U B R O U T I N E JCONGX
C I E V I I N D E X GF P O I N T W I T H MINIMUM F U N C T I B N V A L U E -
C D E F I N E D I N S U B R O U T I N E JCONGX AND J C E K I
C K0 PRINTER UNIT NUMBER - DEFINE IN MAIN PROGRAM
C G LOWER CONGTRAINT " DEFINE IN SUBROUTINE JCNSTI
C H U P P E R C O N S T R A I N T ~ D E F I N E I N S U B R O U T I N E J C N S T I
C XC C E N T R O I D - D E F I N E D I N S U B R O U T I N E J C E N T
C L TOTAL NUMBER OF INDEPENDENT VARIABLES (EXPLICIT +
C I M P L I C I T) - D E F I N E IN MAIN PROGRAM
C I POINT INDEX - DEFINED IN SUBROUTINE JCONSX
C NODE KEY USED TO DETERMINE I F IMPLICIT CONSTRAINTS ARE
C P R O V I D E D - D E F I N E D I N S U B R O U T I N E J C B N S X AND J C E K I
C KI DO LOOP LIMIT - DEFINED IN SUBROUTINE JCONSX

D I M E N S I O N X (K s L) * R (K . N) * F (K) J G (M) * H I M) . X C I N)
I N T E G E R GAMMA
I T = I
WRITE (K0,99995I I T
KGDE = 0
I F (M - N) 20, 2 0 * I O

I O RODE = I
BO CONTINUE

DO 40 I I = B , K
DO 3 0 J = I * N

XIII*J) = O .
30 CONTINUE
40 CONTINUE

C C A L C U L A T E COMPLEX P O I N T S AND CHECK A G A I N S T C O N S T R A I N T S
DO 6 0 I I = 2 * K

DO 50 J = I * N
I = I I
CALL JCNSTI(N, M, R* X* G, H, I * L)
X (I I * J) = G(J) + R (I I . J) * (H (J) - G (J))

50 CONTINUE
Kl : IT
C A L L J C E K I I N , M, K , X . G* H . I * KODE* X C . D E L T A , L * K I)
WRITE (K0.99999) I I . (X (I I , J) m J = I , N)

60 CONTINUE
H l = R
DO 7 0 l = l * K

CALL JFUNCIN* M* R* X* F, I* L)
70 CONTINUE

FOUNT = t
IA = O

C FIND POINT WITH LOWEST FUNCTION VALUE
WRITE (K0,99998) (F (1) . I = I * K)

8 0 l E V I = I
DO 100 I C M = B * K

IF I F (I E V I) - F (I C M)) 10B. IOO, 90
90 IEVI = ICM

I00 CONTINUE
C FIND POINT WITH HIGHEST FUNCTION VALUE

I E V 2 = I
DO IBO ICM=2,R

IF (F(IEVB)-F(ICM)) 110, 110, IBO
II0 IEV2 : ICM
120 C O N T I N U E

C CHECK CONVERGENCE CRITERIA
IF (FIIEVO)-(F(IEVI)+BETA)') 1 4 0 , 1 3 0 , 130

130 KOUNT = I
GO TO 150

140 KOUNT = KOUNT + I
IF (KOUNT-GAMMA) 150. 240* 240

C R E P L A C E P O I N T W I T H LOWEST F U N C T I O N V A L U E
150 CALL *CENT(N, M* K. IEVI , I* XC* X* L* KIT

DO 160 J=I*N
X (IEV I *J) = (I .+ALPHA)*(XCIJ)) - ALPHA*(X(IEVI*J))

1GO CONTINUE
I = I E V I
CALL JCEKI(N, M* R* X* G* H* I, RODE, XC* DFJ. TA. L, KI)
CALL JFUNCIN* M. R* X, F* I. L)

C REPLACE NEW POINT IF I T REPEAT5 AS LOWEST FUNCTION VALUE
1 7 0 IEV2 = 1

D0 190 ICM=2*R
IF (F(IEV2)-FIICM)) 190. 190. IBO

180 IEV2 = ICM
190 CONTINUE

I F ' (I E V B - I E V I) 220. 200. 220
200 DO 010 JJ=I .N

X(IEVI *JJ) = (X (I E V I * J J) + X C [J J)) / 2 .
2 1 0 CONTINUE

I = I E V I
C A L L J C E K I (N , M, K* X* G* H. I * RODE* XC , D E L T A , L , H I)
C A L L JFUNC(N* M, R* X* F, I , L)
GO TO 1 7 0

2 2 0 C O N T I N U E
WRITE (K0,999971 IX(IEVI.JB)*JB=I*N)
WRITE IR0,99998) (F (1) , I = I * K I
WRITE (H0*99996) (X C (J) * j : I * N)
IT = I T + 1
I F (I T - I T M A X) 2 3 0 , 2 3 0 , 2 4 0

2 3 0 CONTINUE
WRITE (H0,99995) I T
GO T0 80

240 RETURN
99999 FORMAT(IH , 15X, 2 I H COORDINATES AT POINT, 14/B(FB.4* 2X))
99998 FORMAT(IH , BOX* 16H FUNCTION VALUES, /B(FIO,4* 2X))
99997 FORMAT(IH * 20X* 16H CORRECTED POINT. /G(FB,4* 2X))
9 9 9 9 6 FORMAT(IH . 2IH CENTR01D COORDINATES, 2X, B(FS,4* 2X))
99995 FORMAT(IH , / / IOH ITERATION. 4X, 15)

END

SUBROUTINE JCEKI(N, M. K, X* G. H, I , RODE, XC, DELTA. L,
• H I)

C PURPOSE
C TO CHECK ALL POINTS AGAINST THE EXPLICIT AND IMPLICIT
C CONSTRAINTS AND TO APPLY CORRECTIONS IF VIOLATIONS ARE
C FOUND
C USAGE
C C A L L JCERI(N,M*K*X*G,H.I*KODE, XC~DELTA*L.KI)
C SUBROUTINES R E Q U I R E D
C JCENT(N,M*R*IEVI*I*XC,X*L*HI)
C JCNSTI(N*M*R*X,G.H*I*L)
C DESCRIPTION OF PARAMETERS
C PREVIOUSLY DEFINED IN SUBROUTINE JCONSX

Communicat ions August 1973
of Volume 16
the A C M N u m b e r 8

DIMENSION X (K*L) , G(H), HIM), XC(N)
1 0 KT = O

CALL JCNSTI(N, M, Kn X. Gn Hn I . L)
C CHECK AGAINST EXPLICIT CONSTRAINTS

DO 50 J = I , N
I F (X (I t J) - G (J)) 2On 2 0 3 3 0

20 X (I s J) = G(J) + DELTA
GO TO 5 0

3 0 I F (H (J) - X (I , J)) 4On 4OJ 50
40 X (I , J) = H(J) - DELTA
50 C O N T I N U E

I F (R O D E) 1 1 0 , l i o n 60
C CHECK A G A I N S T THE I M P L I C I T C O N S T R A I N T S

60 C O N T I N U E
N N = N + I
DO t O 0 J = N N . M

CALL JCNSTI(Nn M. R~ X, G, H, In L)
IF (X (I n J) - G (J)) 80n 70, 70

7 0 I F C H (J) - X (I n J)) 8 0 n I O 0 , l O 0
OO lEVI = I

KT = I

CALL JDENT(N, M, K. IEV I , I , XC, X, L, K I)
DO 9 0 J J = I n N

X (I , J J) = (X (I , J J) + X C (J J)) / 2 ,
90 CONTINUE

IO0 CONTINUE
IF (KT) I I 0 , l lOn 10

IIO RETURN
END

SUBROUTINE JCENTINn M. K, IEV I , I . XC, Xn Ls K l)
C PURPOSE
C TO C A L C U L A T E T H E C E N T R O I D OF P O I N T S
C USAGE
C C A L L J C E N T (N n M , K , I E V I * I n X C n X s L , K I)
C SUBROUTINES REQUIRED
C NONE
C DESCRIPTION 0F PARAMETERS
C PREVIOUSLY DEFINED IN SUBROUTINE JCONSX

DIMENSION X (K t L) , XC(N)
DO 20 J= I *N

XC(J) = O.
DO IO I L = I , K I

XC(J) = XC(J) + X (I L~J)
I O C O N T I N U E

RK = K I
XC(J) = (X C (J) - X (I E V I , J)) / (R R - I ,)

20 CONTINUE
RETURN
END

Certification and Remark on Algorithm 404 [S14]
C o m p l e x G a m m a F u n c t i o n [C.W. L u c a s Jr . a n d C . W .

Ter r i l , C o m m . A C M 14 (J a n . 1971), 48]

G . A n d r e j k o v ~ i a n d J. Vina~, C o m p u t i n g C e n t e r ,

S a f a r i k U n i v e r s i t y , Kog ice , C z e c h o s l o v a k i a

The following changes were made in the algorithm:
a. The function subroutine heading was changed to read

C O M P L E X FUNCTION CGAMMA(Z)

in accordance with the standard.
b. The convergence tests following statement number 70 involve
the computation of the quantity REAL(TERM)/REAL(SUM).
This can lead to overflow if Z is real and near to a pole. For these
reasons the two statements were replaced by

IF (ABS(REAL(TERM)) .GE. TOL*ABS(REAL(SUM))) GO TO
80

and

IF (ABS(AIMAG(TERM)) .GE. TOL*ABS(AIMAG(SUM))) GO
TO 100

c. For similar reasons the statement

S U M = CLOG(PI /CSIN(P1.Z)) - -SUM

was replaced by

S U M = CLOG(PI)--CLOG(CSIN(PI*Z))--SUM

With these modifications the algorithm was translated on MINSK
22M using the FEL Fortran compiler (with seven significant digits

489

in single precision and 15 in double precision) and ran satisfactorily.
The following tests were performed:

a. The logarithms of CGAMMA(Z) for z = x+iy with x = 1.0
(0.1) 10.0 and y = 0.0(0.1) 3.0 were checked against the values given
in [1]. An overall accuracy of five to six digits was observed. The
imaginary part frequently had one more accurate digit than the real
part.
b. The behavior in the vicinity of poles was tested by computing
the values of CGAMMA(Z) in eight evenly spaced points on circles
of decreasing diameter. The value of I .E--7 for the minimum diam-
eter was found adequate.
c. The values of CGAMMA(Z) were computed for z = x+iy with

1. x = 0.0(1.0)23.0, y = 0.0
2. x = 0.0, y = 0.0(1.0)26.0
3. x = y = 0.0(1.0)25.0
4. x = --y = 0.0(1.0)25.0
5. - -x = y = 0.0(1.0)12.0
6. - -x = --y = 0.0(1.0)12.0

in all cases the final value is the last for which the program did not
run into overflow or, in the last two cases, try to take a logarithm
of too small a number.

References
1. Table of gamma function for complex arguments. National
Bureau of Standards, Applied Math. Series 34, August 1954.

Remark on Algorithm 357 [A1]

A n Ef f i c i en t P r i m e N u m b e r G e n e r a t o r [R i c h a r d C.

S i n g l e t o n , C o m m . A C M 10 (O c t o b e r , 1969), 563]

R i c h a r d M . D e M o r g a n [R e c d 8 A u g u s t 1972], D i g i t a l

E q u i p m e n t Co . L td . , R e a d i n g , E n g l a n d

On some Algol 60 implementations, the value of ni is destroyed
between subsequent ca l l s to the procedure. The second and third
lines of the algorithm should be changed to make ni an own integer:

own integer ij, ik, hie, j, hi, nj;

integer i, jqi, k;

Remark on Algorithm 412 [J6]

G r a p h P l o t t e r [J o s e p h C e r m a k , C o m m . A C M 14 (Ju ly

1971) , 4 9 2 - 4 9 3]

R i c h a r d P. W a t k i n s [Recd . 31 J a n . 1972[, M a t h e m a t i c s

D e p a r t m e n t , R o y a l M e l b o u r n e I n s t i t u t e o f T e c h n o l o g y ,

M e l b o u r n e , A u s t r a l i a 3000

This algorithm is not functionally identical to Algorithm 278
as claimed. If the x[i] values are not uniformly spaced or if m > L,
it is possible for two or more of them to correspond to the same
printer line. In this case, the array ittd will contain only the largest
of the values of i and only one set of y[i, j] values, corresponding to
that value of i, will be plotted.

The array ind is redundant. The following changes enable
plotL to take over the functions of ind (where all line numbers refer
to lines relative to the label escape) :

a. Line 4. Replace

for i : = 1 step 1 until L do plotL[i] : = 1

Communications August 1973
of Volume 16
the ACM Number 8

by

for i : = 1 step 1 until L do plotL[i] : = 0

b. Line 9. Replace

plotL[r] := 0; ind[r] := i

by

plotL[r] := i

c. Line 21. Replace

if plotL[i] = 0 then

by

if plotL[i] > 0 then

d. Line 24. Replace

plots [1 q- emier(0.5 + q X (y[ind[ii] --yrnin))] := 3

by

plotS [1 q- entier(0.5 + q)< (y[plotL[i]] -yrnin))] := 3

e. Line 27. Replace

plotS [1 q- entier(0.5 q- q X (y[ind[il,j] -- yrnin))] := j q- 2

by

plotS[1 q- entier(0.5 q- q X (y[plotL[il,j] -- yrnin))] := j q- 2

(The referee has noted that there is a typographical error on the
fifth line before the line labeled escape. Replace

for j := step 1 until it do

by

f or j : = 1 step 1 until n do

He has also noted that the array declaration for iml should be
deleted if the above changes are made.--L.D.F.)

R e m a r k on A l g o r i t h m 4 2 4 [D 1]

C l e n s h a w - C u r t i s Q u a d r a t u r e [W . M . G e n t l e m a n , C o m m .

A C M 15 (M a y 1972), 353-355.]

A l b e r t J. G o o d]Recd . 19 D e c e m b e r 1972] Sys tems,

Sc ience a n d S o f t w a r e , La Jo l l a , C A 92037

As published, this algorithm will not execute correctly under
some compilers (e.g. Fortran V in the Univac 1108). One minor
change is sufficient for proper operation: replace the variable J REV
by the index J8 inside the DO 120 loop.

The appearance of J R E V and J8 in an E Q U I V ALENCE state-
ment is not meaningful since the memory location associated with
a DO loop index does not always contain the current value of the
index (this depends on the compiler).

Remark on Algorithm 428 [Z]
Hu-Tucker Minimum Redundancy Alphabetic Coding
M e t h o d [J .M. Y o h e , C o m m . A C M 15 (M a y 1972),

360-362]

J.G. Byrne]Recd. 26 June 1972] Department of Com-
puter Science, Trinity College, Dublin 2, Ireland

was changed to

if i > n then go to E l else

lhe algorithm gave correct results for tile example given and for the
example in Gilbert and Moore [1]. In the latter case the cost
defined as

~ = ~ Q(I)*L(I)

~,G Q(I)

and code lengths were correct.
When the L array was set to 1 :s on entry, the optimum (Huff-

man) codes were obtained, and they were the same as those given
by the Schwartz and Kallick [2] method as claimed in the author's
description.

Table 1.

Size of alphabet 10 27 60

Time to find optimum alphabetic codes 0.02 0.14 0.62
(sees)

Time to find optimum codes (sees) 0.02 0.08 0-34

Table I, which gives the cpu time required, shows that the
algorithm is very fast for small alphabets and that the time is
approximately proportional to n ~, as expected.

References
1. Gilbert, E.N., and Moore, E.F. Variable length binary
encodings. Bell Systems Tech. J. 38 (1959), 933-968.
2. Schwartz, E.S., and KaUick, B. Generating a canonical prefix
encoding. Comm. A C M 7 (Mar. 1964), 166-169.

R e m a r k o n A l g o r i t h m 4 2 9 [C2]

L o c a l i z a t i o n o f t he R o o t s o f a P o l y n o m i a l [W. Squi re ,

C o m m . A C M 15 (Aug . 1972), 776]

E d w a r d J. W i l l i a m s]Recd. 15 Sept . 1972] C o m p u t e r

Sc ience D e p a r t m e n t , F o r d M o t o r C o m p a n y , P .O.

Box 2053, D e a r b o r n , M I 48121

Corrections are needed in the third paragraph. The theorem
that the positive real roots of (I) are less than

1 + [maxl<~< ~ [Ci I1 v'~. . . should read

1 + [maxl_</_<,~ el<0 [C i l N '~

Further, the four words "RADIUS"' in this paragraph should be
replaced by "BO UND".

References
1. Zaguskin, O.O. Solution o f Algebraic and Transcendental
Equations, Pergamon Press, New York, 1961, p. 21.

Algorithm 428 was translated into Basic Fortran IV and run
on IBM System 360/44 running under RAX. When the line just
after the label B2:

if i l > n then go to E l else

490 Communications August 1973
of Volume 16
the ACM Number 8

