Check for
Updates

Abstracts of the papers by Daily and Lynning

A Self-Modifying Extrapolation Method for
Solving Ordinary Differential Equations

Dar D. Daily
Kansas State University, Manhattan, Kansas
Author's address: 8133 Dearborn Drive, Prairie Village, KS 66208

This paper outlines a program that searches for the
predominant terms of the asymptotic error expansion
of initial value problems in ordinary differential
equations and uses this information in a self-modifying
extrapolation process. During the integration process,
using a ratio that Carl de Boor (1971) used in an inte-
gration program, the method seeks to recognize trends
of change in the error expansion of the differential equa-
tion and to adjust the method of extrapolation. A basic
algorithm used in the modifying process is presented
along with a brief explanation. Also, a comparison made
with the well-known rational extrapolation method
shows rational extrapolation to be generally less efficient
in terms of function evaluations but also demonstrates
that the self-modifying method is generally not able to
reduce its error to the level of rational extrapolation.
A note, though, shows the self-modifying method to
be superior to the regular Romberg extrapolation.

Key Words and Phrases: self-modifying extrapola-
tion, rational extrapolation, modified midpoint method,
Romberg integration, asymptotic error expansion, pre-
dominant, singularity, initial value problems in ordinary
differential equations; CR Categories: 5.10, 5.17

A Computer Solution of Polygonal Jigsaw Puzzles

Ejvind Lynning
University of Arhus, Arhus, Denmark
Author’s address: Brandeis University, Waltham, MA. 02154

A program to solve any jigsaw puzzle involving
pieces of polygonal shape is described. An efficient solu-
tion has been found to depend on a number of ad hoc
strategies, which are described in detail in the paper.
The puzzles are solved by successively placing individual
pieces in the region to be covered using a depth-first tree
search algorithm. A formal representation of regions,
pieces, and placings of pieces is defined. The main idea
behind the chosen representation is to orient clockwise
the polygons making up a region, and to orient counter-
clockwise the pieces to be placed. Placing a piece means
computing a valid new region, i.e. one or more clock-
wise oriented polygons, constructed from the previous
one by removing the part corresponding to the piece
which is placed. The data structure and the procedures
required to examine where pieces can be placed and how
to perform the placing of the pieces are also described.
All puzzles so far presented to the program have been
successfully solved in a reasonable time.

Key Words and Phrases: artificial intelligence, prob-
lem solving, pattern recognition, puzzles, polygonal
puzzles, jigsaw puzzles, backtrack programming, tree
search algorithms; CR Categories: 3.6, 3.63, 3.64

482

L.D. Fosdick and
Algorithms A K. Cline, Editors

Submittal of an algorithm for consideration for publication in
Communications of the ACM implies unrestricted use of the algo-
rithm within a computer is permissible,

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Algorithm 450

Rosenbrock Function

Minimization [E4]

Marek Machura* and Andrzej Mulawat
[Recd. 22 March 1971]

* Institute of Automation and Measurements, Warsaw, Poland.
t Institute of Computing Machinery, Warsaw, Poland.

Key words and phrases: function minimization, Rosenbrock’s
method

CR Categories : 5.19

Language : Fortran

Description

Purpose. This subroutine finds the local minimum of a function
of # variables for an unconstrained problem. Tt uses the method for
direct search minimization as described by Rosenbrock [1].

Method. The local minimum of a function is sought by con-
ducting cyclic searches parallel to each of the n orthogonal unit
vectors, the coordinate directions, in turn. n such searches con-
stitute one stage of the iteration process. For the next stage a new
set of n orthogonal unit vectors is generated, such that the first
vector of this set lies along the direction of greatest advance for the
previous stage. The Gram-Schmidt orthogonalization procedure is
used to calculate the new unit vectors.

Program. The communication to the subroutine ROMIN is
solely through the argument list. The user must supply two ad-
ditional subroutines FUNCT and MONITOR. The entrance to the
subroutine is achieved by

CALL ROMIN (N, X, FUNCT, STEP, MONITOR)

The meaning of the parameters is as follows. N is the number
of independent variables of the function to be minimized. X(N) is
an estimate of the solution. On entry it is an initial estimate to be
provided by the user; on exit it is the best estimate of the solution
found. FUNCT (N, X, F) is a subroutine calculating the value F of
the minimized function at any point X. STEP is an initial step
length for all searches of the first stage. The subroutine MONITOR
(N, X, F, R, B, CON, NR) supplies printouts of any parameter from
the argument list and contains convergence criteria chosen by the
user. (Different kinds of convergence criteria and their use are
discussed in [1] and [4].) R is the actual number of function evalua-
tions. B is the value of the Euclidean norm of the vector repre-
senting the total progress made since the axes were last rotated, i.e.
the total progress in one stage. CON is a logical variable. At the

Communications August 1973
of Volume 16
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355609.362324&domain=pdf&date_stamp=1973-08-01

start of the subroutine ROMIN CON is set .FALSE.. If the con-
vergence criteria are satisfied CON must be set .TRUE. in the sub-
routine MONITOR, which transfers control back to the main pro-
gram. NR is the MONITOR index used as described in [3]. The
CALL statement of the subroutine MONITOR with NR equal to |
occurs once per function evaluation and with NR equal to 2 once
per stage of the iteration process.

Test results. As a test example, the parabolic valley function

S, x) =100 (v — B2 A (L — x)?

was chosen. This function attains its minimum equal to 0 at the
point (1, 1). Starting from the point (— 1.2, 1.0) the best estimate of
the solution after 200 function evaluations as found by the sub-
routine ROMIN was 0.29774-1074 at the point (0.99513, 0.99033).
The initial step length STEP was set equal to 0.1 [2].

References

1. Rosenbrock, H.H. An automatic method for finding the
greatest or least value of a function. Compurer J. 3 (1960), 175-184.
2. Rosenbrock, H.H., Storey, C. Computational Technigues for
Chemical Engineers. Pergamon Press, New York, 1966.

3. Rutishauser, H. Interference with an ALGOL Procedure, in
Annual Review in Automatic Programming, Vol. 2. R. Goodman
(Ed.), Pergamon Press, New York, 1961.

4. Powell, M.J.D. An efficient method for finding the minimum of
a function of several variables without calculating derivatives.
Computer J. 6 (1964), 155-162.

Algorithm

SUBRBUTINE ROMINC(N, X, FUNCT, STEP, MONITR)
INTEGER N, IP
REAL STEP
DIMENSIGN X(N)
LOGICAL CON
INTEGER I, Js Ky Ls Ps R
REAL FO» F1, B, BETY
DIMENSION AC30), D(30), V(30,30), ALPHA(30,30), BETA(30),
* E(30), AV(3D)
THIS SUBRQUTINE MINIMIZES A FUNCTIQN OF N VARIABLES
USING THE METH@OD OF ROSENBROCK. THE PARAMETERS ARE
DESCRIBED AS FOLLBWS:
N IS THE NUMBER ©F INDEPENDENT VARIABLES
X(N) 1S AN ESTIMATE @F THE SOLUTI@N ¢ @N ENTRY -
AN INITIAL ESTIMATE, BN EXIT - THE BEST ESTIMATE
OF THE SOLUTI@ON FQUND)
FUNCTC(N,X»F> IS A ROUTINE PROVIDED BY THE USER T®
CALCULATE THE VALUE F OF THE MINIMIZED FUNCTI@N
AT ANY POQINT X
STEP 15 AN INITIAL STEP LENGTH FGR ALL COORDINATE
DIRECTI@NS AT THE START @F THE PROCESS
MONITR (N»X>FsR,B»CONsNR) IS A ROUTINE PROVIDED BY
THE USER F@R DIAGN@STIC AND CONVERGENCE PURPOSES
R IS THE ACTUAL NUMBER @F FUNCTION EVALUATI®NS ¢ FOR
THE INITIAL ESTIMATE R=0)
B IS THE VALUE @F THE EUCLIDEAN NGRM @F THE VECT@R
REPRESENTING THE TOTAL PRrROGRESS MADE SINCE THE
AXES WERE LAST R@TATED
CoN IS5 A LOGGICAL VARIABLE. AT THE START OF THE
SUBROUTINE ROMIN CON=.FALSE. IF THE CONVERGENCE
CRITERIA BF THE ROUTINE MONITOR ARE SATISFIED
CeN MUST BE SET «TRUE. T@ ST@P THE PROCESS
NR IS THE MENITBR INDEX
INITIALIZE CBNs ECI> AND R
ECI)> IS A SET QF STEPS TP BE TAKEN IN THE CORRESPONDING
COORDINATE DIRECTIGNS
CON = .FALSE.
D2 10 I=1,N
ECI) = STEP
10 CONTINUE
R =0
V(I,J> IS AN NXN MATRIX DEFINING A SET OF N MUTUALLY
ORTHOGONAL COORDINATE DIRECTIONS. V(I,J) IS THE UNIT
MATRIX AT THE START @F THE PROCESS
D@ 30 I=1,N
b2 20 J=1,N
VCIsJ) = 0.0
IF (LI.EQ.J) V(I»J) = 1.0
20 CONTINUE
30 CONTINUE
CALL FUNCT(N, X, FO)
C START OF THE ITERATIBN LOOP
40 D@ SO I=1lsN
ACL) = 2.0
DCI) = 0.0
S0 CONTINUE
C EVALUATE F AT THE NEW PQINT X
60 DB 130 I=1,.N
DB 70 J=1,N
XCJ) = XCJ) +» FCHI*VCIL D)
70 CeNTINUE
R=R+1
CALL FUNCT(N, X. F1)
CALL MONITR(N, X5 Fi, Rs» 0s» CON» 1)
IF (CON) GP T@ 290
IF (F1-F0> 80, 90, 90

COO0O0Q0O00OO000000000aa000

aoao

483

C THE NEW VALUE @F THE FUNCTI®N IS LESS THAN THE OLD @NE
80 DCI) = DCI) + ECID
ECI) = 3.0%FCI)
Fo = F1
IF CACI)«GT»1.5) ACL) = 1.0
Go Te 110
THE NEW VALUE OF THE FUNCTI®N IS GREATER THAN PR EQUAL
T@ THE OLD BNE
90 D2 100 J=1,N
XC(J) = X(J) - FCII*VClr,Jg
100 CONTINUE
ECI) = ~0.5%F(I)
IF (ACI)'LT«1+5) ACL) = 0.0
110 DB 120 J=1,N
IF (A(J).GE.0.S> G@ T@ 130
120 CONTINUE
Go To 140
130 CBNTINUE
Gg T 60
C GRAM-SCHMIDT @RTH@G@NALIZATIBN PROCESS
140 D@ 160 K=1,N
DP 150 L=1sN
ALPHA(K,L) = 0.0
150 CONTINUE
160 CONTINUE
DO 190 1=1,N
De 180 J=t,N
DB 170 L=I,N
ALPHACIJ) = ALPHACI,J) + DCLI*V(L,J)
170 CBNTINUE
180 CONTINUE
190 CONTINUE
B = 0.0
D@ 200 J=1-N
B = B + ALPHA(1,J)*%2
200 CONTINUE
B = SQRT(B)
CALCULATE THE NEW SET OF ORTHONZRMAL COORDINATE
DIRECTIONS (THE NEW MATRIX V(I.J3})
Do 210 J=1,N
V(1,43 = ALPHAC(1,J)/B
210 CONTINUE
DB 280 P=2,N
BETY = 0.0
IP =P -1
D@ 220 M=1,N
BETA(M) = 0.0
220 CONTINUE
DR 250 J=1,N
D@ 240 K=1,IP
AV(K) = 0.0
D@ 230 L=1,N
AV(K) = AVC(K) + ALPHACP,L)I*V(KsL)

aa

oo

230 CONTINUE
BETA(J) = BETA(J) - AVI(KI*V(K,J)
240 CONTINUE

250 CONTINUE
DO 260 J=1,N
BETA(J) = BETACJ) + ALPHA(P,J)
BETY = BETY + RETACJ)**2
260 CONTINUE
BETY = SQRT(BETY?
D@ 270 J=1,N
V(P,J) = BETA(J)/BETY
270 CONTINUE
280 CONTINUE
C END @F GRAM~SCHMIDT PROCESS
CALL MONITR(N, X, FOs, R, B, CON, 2)
IF (CeN) G2 T 290
C GO TO® THE NEXT ITERATION
GO Te 40
290 RETURN
END

Algorithm 451
Chi-Square Quantiles [G1]

Richard B. Goldstein |Reed. 30 June 1971 and 20
March 1972]

Department of Mathematics, Providence College,
Providence, R.I.

Key Words and Phrases: Chi-square statistic, asymptotic
approximation, normal deviate, chi-square deviate, degrees of
freedom

CR Categories: 5.12, 5.5

Language: Fortran

Description
The algorithm evaluates the quantile at the probability level
P for the Chi-square distribution with N degrees of freedom. The

Communications August 1973
of Volume 16
the ACM Number 8

Fig. |
i
(PN
&mu:
’ TERTY | ny
) ULA
o g \3 -—
[-2]
x_./ ‘9
!’ 1072 g ok
S 5 <
o
? /\ Val:)
z 1073 \)“
o \ Y, 4
N
[- 4
° ‘ﬂ’\/ \75:
: 1074 \Aﬁc
... \-r,\
=
D igd ™
=
=
L 4
£ ;o
1 2 3 4 s 8 10 20 30 50 80 100

DEGREES OF FREEDOM

quantile function is an inverse of the function

0

P(X|N) = @¥p(N/2))—1 f ZW ez g7 (x > 0,N > 1).

X(FP)

The function GAUSSD(P) is assumed to return the normal
deviate for the level P, e.g. —1.95996 for P = .025. The proce-
dure found in Hastings [S] may be used, or for increased accuracy,
the procedure found in Cunningham (3] may be used.

The Wilson-Hilferty cubic formula {7} which is
x? ~ N{l — 2/9N + X (2/9N)}}?

where X is the normal deviate can be extended to the 19-term
asymptotic approximation:

x2 ~ N{l — 2/9N + (4X*+416X2—28)/1215N?

+ (8X6+720X443216X2+42904)/229635N3 +- - - -

+ 2/N)4X/3 + (—X*+3X)/162N

— (3X5440X3 4+ 45X)/5832N?

+ (301 X7—1519X5—32769X°—79349X)/7873200N? + - - - |}?
where X is the normal deviate by taking the cube root of the poly-
nomial expansion in Campbell [2}. For N =1
xt = {GAUSSD(P)}?
and for N = 2
x = —21n (P).

For 2 < N < 2 + 4| X |, x* was fit with polynomials of the same
form as the asymptotic approximation:
x? =2 N{(1.0000886—.2237368/N —.01513904/N?)

+ N-1X(.4713941+.02607083/N — .008986007 /N?)

+ N-1X2(.0001348028+.01128186/N-+-.02277679/N?)

+ N-32X3(—.008553069—.01153761 /N—.01323293/N?)

+ N™2X4(.003125584.005169654/N — .006950356/N?)

+ N—52X5(— 0008426812+ .00253001/N-.001060438/N?)

+ N-3X6(.00009780499—.001450117/N+.001565326/N?)}3

from Abramowitz and Stegun [1] for P = .0001, .0005, ..., .995
and Hald and Sinkbaek [4] for P = .999, .9995. The deviates

484

1(:,'1

3&!
A~
1072 \Q N
v

. %y
P
[~
1073 %
\ ,/: GO'“ hy s N9
g

P
3

.,

L

-b \

MAXIMUM RELATIVE ERROR ON 00015Pg,9995 o?'

1 2 3 45 8 10 20 30 50 80100
DEGREES OF FREEDOM
for N =3, 4,..., 9 were made accurate within 10~¢ by using

Algorithm 299 of Hill and Pike [6].

For N =1 and N = 2 the x? deviate is as accurate as the
GAUSSD and ALOG procedure of the system. For .0001 < P <
9995 and N > 3 the absolute error in x2? is less than .005 and the
relative error is less than .0003. This is some 100 to 1000 times as
accurate as the Wilson-Hilferty formula even for large N. Error
curves for three approximations are shown in Figures 1 and 2.

The program was tested on an 1BM /360 at Rhode Island Col-
lege and resulted in the output of Table I.

Table I.
Table of Computed Values
Deg.
Fr. 0.9995 0.9950 0.5000 0.0010 0.0001
1 0.000000 0.000039 0.454933 10.827576 15.135827
2 0.001000 0.010025 1.386293 13.815512 18.420670
3 0.015312 0.071641 2.365390 16.268982 21.106873
4 0.063955 0.206904 3.356400 18.467987 23.510040
5 0.158168 0.411690 4.351295 20.515503 25.744583
10 1.264941 2.155869 9.341794 29.589081 35.565170
15 3.107881 4.601008 14.338853 37.697662 44.267853
20 5.398208 7.433892 19.337418 45.314896 52.387360
50 23.460876 27.990784 49.334930 86.660767 95.969482
100 59.895508 67.327621 99.334122 149.449051 161.319733

References

1. Abramowitz, M., and Stegun, 1. (Eds.) Handbook of
Mathematical Functions, Appl. Math. Ser. Vol. 5S5. Nat. Bur.
Stand., U.S. Govt. Printing Office, Washington, D.C., 1965,
pp. 984-985.

2. Campbell, G.A., Probability curves showing Poisson’s
exponential summation. Bell Syst. J. 2 (1923), 95-113.

3. Cunningham, S.W. From normal integral to deviate. In
Applied Statistics. Vol. 18, Royal Statis. Soc., 1969, pp. 290-293.
4. Hald, 0.0, and Sinkbaek, O.0. Skandinavisk Akturarie-
tidskrift (1950), 168-175.

5. Hastings, C. Jr. Approximations for Digital Computers.
Princeton U. Press, Princeton, N.J., 1958, p. 192.

Communications August 1973
of Volume 16
the ACM Number 8

6. Hill, 1.D., and Pike, M.C. Algorithm 299, Chi-squared in-

tegral. Comm. ACM, 10, 4 (Apr., 1967), 243-244.
7. Hilferty, M.M. and Wilson, E.B. Proc. Nat. Acad. Sci.,
17 (1931), 684.

8. Riordan, J. Inversion formulas in normal variable mapping.

Annals of Math. Statist. 20 (1949), 417-425.

Algorithm

FUNCTIQN CHISQDC(P, N)

DIMENSI@N C(21), AC19)

DATA CC1>/1+565326E-3/5 C(2)/1.06043BE-3/,
C(3)/-6+.950356E-3/, C(4)/-1.323293E-2/,
C(S)/2.277679E-2/, C(6)/-8.986007E-3/,
C(75>/-1.513904E-2/, C(8)>/2.S530010E-3/>
C(9)/-1.450117E~3/5 CC10)/5.169654E-3/»
CC11)/~1.153761E-2/5, C(12)/1.128186E~2/,»
CC13>/2.607083E-2/, C(14)/-0.2237368/,
CC153/79.780499E-5/> CC16)/-8.426812E~4/,
CC17)/3+)25580E-3/s C(18)/-8.553069E~3/>»

LA 2R 25 B IR BE 2k

DATA AC13/1+264616E-2/, AC2)/-1.425296E-2/,
A(3)/1.400483E-2/, A(4)/-5.886090E-3/,
AC5)/-1.091214E-2/5 AC6)/~2.304527E~-2/,
A(7)/3.135411E-3/, A(B)/-2.728484E-4/,
AC9>/-9.6996B1E-3/, AC10Y/1.316872E-2/,
AC11)/72.618914E-2/, AC12)/-0.2222222/,
AC13)/5.406674E-5/, AC14)/3.483789E-5/,
AC15)/-7.274761E-4/, AC16)/3.292181E-3/,
AC17)/-8+729713E-3/5 AC18)/0+4714045/5 AC19)/1./

IF (N-2) 10, 20, 30
10 CHISAD = GAUSSD(.S*P)

CHIS@D = CHISQD*CHISQD
RETURN
20 CHISAD = -2.%ALOG(P)
RETURN
30 F = N
Fl = 1./F
T = GAUSSD(1.-P)
F2 = SQRT(FI1)*T
IF (N.GE.(2+INTC(4.%ABSC(T)>))) G@ T@ 40
CHIS@D=C(CCCC(CCI*F24C(2))*F2+C(3))*F2+C(4))%F2

E K B B B)

* +C(SIIXF2+CCE)IIXF24CCTII¥FLI4+(CCCC(C(BI+C (I %F2)%F2
* +CC10))*F2+CC11))%F2+C(12))%F2+4CC13))%F24C(14)))*F1 +

* CCCCCCC15)%F2+4CC16))%F2+CC1T7))KF2+CC1B) I #F2
* +C(19))*F2+C(20))*F2+C(21)
Ge Tg SO
40 CHISOD=CCCACI)+AC2)*F2)*F1+((CAC3I+A(AI%F2)%F2

* +ACS5)IRF2+AC6))IIXFI+((CCCACTI+ACBIXF2I*F2+AC9)) *F2

* +AC10))*F2+AC11))%F2+AC12)))%F1 + (CCCCAC13)%F2
* +AC14))%F2+AC15))I%F2+AC16))%F2+AC17))%F2%F2
* +AC18))I%F2+A(19)
50 CHISQD = CHISQD*CHISQD*CHISGD#*F
RETURN
END

C(19)/1.348028E-4/5 C(20)/0.4713941/5 C(21)/1.0000886/

Algorithm 452

Enumerating Combinations
of m Out of n Objects [G 6]

C.N. Liu and D.T. Tang [Recd. 7 July 1971 and
1 May 1972]

IBM Thomas J. Watson Research Center, Yorktown

Heights, NY 10598

Key Words and Phrases: permutations, combinations
CR categories: 5.30
Language: Fortran

Description

NXCBN can be used to generate all combinations of m out of
n objects. Let the binary n-vector of ml’s and (2 — m) 0's repre-
senting a combination of m out of 5 objects be stored in an in-
teger array, say IC(n). ¥ NXCBN (n, m, IC) is called, a binary
vector representing a new combination is made available in the
array IC(n). If NXCBN (n, m, IC) is called (;) times successively,

then all combinations will be generated.

485

The algorithm has the following features; (a) each output
binary #n-vector differs from the input at exactly two positions—
consequently each generated combination differs from the pre-
vious one by a single object: (b) the n-vectors generated by this
subroutine form a closed loop of (i) elements—therefore the ini-
tial combination may be specified arbitrarily, and the enumeration
of any subset of () combinations can be readily achieved. The
second feature is not found in Chase’s algorithm [1].

The algorithm underlying this procedure is based upon our
study of properties of Gray codes. It can be shown that constant
weight code vectors from a Gray code sequence are separated by a
Hamming distance of 2. The mathematical analysis is contained
in [2] and [3].

References

1. Chase, P.J. Algorithm 382, Combinations of m out of #
objects. Comm. ACM 13 (June 1970), 368.

2. Tang, D.T., and Liu, C.N. On enumerating m out of n
combinations with minimal replacements. Proc. of Fifth

Ann. Princeton Conf. on Info. Sci. and Sys., Mar. 1971.

3. Tang, D.T., and Liu, C.N. Distance-Two Cyclic Chaining

of Constant-Weight Codes. IEEETC. C-22, 2 (Feb. 1973), 176-180.

Algorithm

SUBRGUTINE NXCBN(N, M, ICO
C EXPLANATIPN OF THE PARAMETERS IN THE CALLING SEQUENCE
N THE T@TAL NUMBER @F @OBJECTS
M THE NUMBER OF @BJECTS T@ BE TAKEN FR@M N
IF M=0s OR M>=N, EXIT WITH ARGUMENTS UNCHANGED
ic AN INTEGER ARRAY. IC CONTAINS AN N-DIMEN~
SIONAL BINARY VECT@R WITH M ELEMENTS SET T@ 1
REPRESENTING THE M @BJECTS IN A COMBINATIGN
C THIS ALGORITHM IS PROGRAMMED IN ANSI STANDARD FORTRAN
INTEGER IC(N)
C CHECK ENDING PATTERN @F VECT@R
IF (M.GE.N .9R. M.EQ.0) GO T® 140
Nl = N - 1
DB 10 J=1,N1
NJ =N -J
IF CIC(N).EQ.IC(NJY) G@ TO@ 10
J1 o= J
Gg To 20
10 CONTINUE
20 IF (MQD(M,2).EQ.1) G@ TP 90
C FOR M EVEN
IF (IC(N).EQ.1) GB T@® 30
Kl =N -1
K2 = K1 + 1
Ge Te 130
30 IF (M@DC(J1s2).EQe1) GO TO 40
Gg Te 120
C SCAN FRPM RIGHT T® LEFT
40 JP = (N=-J1) - 1
bg SO I=1,JP
I1 = Jgp + 2 -1
IF CIC(I1).E@.0) G@ T@ SO
IF ¢1CCI1t-1).EQ.1) G@ T@ 70
Ge To 80
50 CONTINUE
60 K1 = 1
K2 = (N+1) - M
GO To 130
70 K1 = 11 - 1
K2 = N - Jl
6@ To 130
80 K1 = 11 -1
K2 = (N+1) - JI
G@ To 130
C F@R M @DD
90 IF CIC(N).EQ.1) GO T@ 110
K2 = (N-J1) - 1
IF (K2.EQ.0) GB Tg 60
IF (IC(K2+1).EQ-.1 .AND. IC(K2).EQ@.1) G@ TO@ 100
Kl = K2 + 1
GO 10 130
100 K1 = N
Go T 130
110 IF (M@D¢J1,2).EQ.1) G@& To 120
G? Te 40
120 Kt = N - J1
K2 = MINOC(K1+2)5N)
C COMPLEMENTING TW@ BITS T@ @BTAIN THE NEXT C@MBINATION

[N NeNs NNl

130 ICCK1) = 1 - ICC(KI)
ICCK2) = 1 - IC(K2)
140 RETURN
END
Communications August 1973
of Volume 16

the ACM Number 8

Algorithm 453

Gaussian Quadrature
Formulas for Bromwich’s
Integral [D1]

Robert Piessens [Recd. 2 Aug. 1970 and 8 Feb. 1972]
Applied Mathematics Division, University of Leuven,
Heverlee, Belgium

Key Words and Phrases: Gaussian quadrature, Bromwich’s
integral, complex integration, numerical inversion of the Laplace
transform

CR Categories: 5.16, 5.13

Language: Fortran

Description .
BROMIN calculates the abscissas xt” and weights wi” of the
Gaussian quadrature formula

c+j® N
(1/2xj) f ’ exx~F(x) dx =~ > wi F(x{") 1
e k=1
where ¢ is an arbitrary real positive number, s is a real nonnegative
parameter, and F(x) must be analytic in the right-half plane of the
complex plane.

Abscissas x§” and weights ws” are to be determined so that (1)
is exact whenever F(x) is a polynomial in x7, of degree <2N — |.

The abscissas x> are the zeros of Py (x71) where

Pysw) = (=¥ Fo (=N, N+ s~ 1;, —; u. (2)

Properties of Py, s(u) are studied in [1].

The quadrature formulas of even order have no real abscissas;
those of odd order have exactly one real abscissa. All the abscissas
have positive real parts and occur in complex conjugate pairs.

The zeros of (2) are calculated using Newton-Raphson’s
method. Finding an approximate zero as starting value for the
iteration process is based on a certain regularity in the distribution
of the zeros (see [1] and [2]). The starting values, used by BROMIN
were tested for s = 0.1(0.1)4.0 and N = 4(1)12. Each abscissa
was found to at least eight significant figures in at most six iteration
steps.

The weights are given by

(N — D!
T(N 4 5 — 1)Nx;?

2N 45— 2
PN——I,s(X;1)

The polynomial (2) is evaluated by a three-term recurrence rela-
tion (see [1]). Due to roundoff errors, the accuracy of abscissas
and weights decreases significantly for increasing N. In Table 1
we give for some values of s and N the moduli of the relative errors
in the abscissas and weights, calculated by BROMIN (with TOL =
0.1E — 10) onan IBM 370 computer in double precision (approxi-
mately 16 significant figures). For comparison we used the 16 — S
values given in [3].

4, = (=¥ (3)

Table I. Maximum Relative Errors in Abscissas and Weights

Maximum error in Maximum error in

abscissas weights
K N=6 N =12 N =6 N =12
0.1 18X 108 1.7 X107 1.2 X 108 2.3 X 108
1.0 1.9 X 104 53 X101t 1.5 X 10014 6.4 X 10710
4.0 1.3 <1015 2,3 X 10012 1.0 X 10714 4.3 X 1071
486

Note that the relative errors in the weights are larger than in
the abscissas.

The use of complex arithmetic is avoided in BROMIN in
order to facilitate the conversion to a double precision subroutine.

References

1. Piessens, R. Gaussian quadrature formulas for the numerical
integration of Bromwich’s integral and the inversion of the Laplace
transform. J. Eng. Math. 5 (Jan. 1971), 1-9.

2. Piessens, R. Some aspects of Gaussian quadrature formulas
for the numerical inversion of the Laplace transform. Comput.

J. 14 (Nov. 1971), 433-435.

3. Piessens, R. Gaussian quadrature formulas for the numerical
integration of Bromwich’s integral and the inversion of the
Laplace transform. Rep. TWI, Appl. Math. Div. U. of Leuven,
1969.

Algorithm

SUBRGUTINE BRPMINC(N, S, T@L, XRs XI» WRs WI, EPS, I1ER)
DOUBLE PRECISION AK», AN, ARG, CI, CR, D» D1, D2, E» EPS,
* FAC» FACTI, FACTR, PIs PR» Qls, QR» RIs RR» S» T1, T2,
* TOLs, U, V, WI, WR», XIs XR» YIs YR, Z
INTEGER IER, Js Ks L» N, NI, NUMs NUP, IGNAL
DIMENSION XRCN), XICN)s WR(N), WICN)
THIS SUBROUTINE CALCULATES ABSCISSAS AND WEIGHTS OF THE
GAUSSIAN QUADRATURE F@RMULA OF GRDER N FOR THE BROMWICH
INTEGRAL. ONLY THE ABSCISSAS OF THE FIRST QUADRANT @F
THE COMPLEX PLANE, THE REAL ABSCISSA (IF N IS @DD) AND
THE CORRESPONDING WEIGHTS ARE CALCULATED. THE O@THER
ABSCISSAS AND WEIGHTS ARE C@MPLEX CONJUGATES.
INPUT PARAMETERS
N ORDER OF THE QUADRATURE FORMULA.
N MUST BE GREATER THAN 2.
ToL REQUESTED RELATIVE ACCURACY @F THE ABSCISSAS.
S PARAMETER OF THE WEIGHT FUNCTION.
@UTPUT PARAMETERS
XR AND XI CONTAIN THE REAL AND IMAGINARY PARTS OF
THE aBSCISSAS. 1IF N IS @DD, THE REAL ABSCISSA
IS XRC(1).
WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS oF
THE CORRESPONDING WEIGHTS.
EPS I5 A CRUDE ESTIMATION OF THE @BTAINED RELATIVE
ACCURACY @F THE ABSCISSAS.
IER 1S AN ERRPR CODE.
IF IER=0 THE COMPUTATIGN IS CARRIED QUT T0
THE REQUESTED ACCURACY.
IF IER.GT.0 THE IER-TH ABSCISSA 15 N@T FOUND.

1F IER=-1 THE CPMPUTATIONS ARE CARRIED QUT,
BUT THE REQUESTED ACCURACY IS N@T
ACHIEVED.

IF 1ER=-2 N IS LESS THAN 3.

FUNCTIGN PRe@GRAMS REQUIRED
FUNCTIGN GAMMACX)> WHICH EVALUATES THE GAMMA
FUNCTI@N FOR POSITIVE X.
IER = -2
IF (N.LT.3) RETURN
N1 = (N+1)/2

oo aaaQaoaaoaQOan

L=N-1

AN = N

IER = O

EPS = ToL

ARG = 0.034D0%(30.DO+AN+ANY/(AN-1.D0)
FACTR = DCOSCARG)

FACTI = DSINCARG)

FAC = 1.DO

AK = 0.DO

D@ 10 K=1,L
AK = AK + 1.DO
FAC = -FAC*AK
10 CONTINUE
FAC = FAC#(AN+AN+5-2.D0)%*2/(AN*DGAMMACAN+S-1.D0))
C CALCULATIGN OF AN APPROXIMATI@N @F THE FIRST ABSCISSA
YR = 1.333D0O#AN + S - 1.5D0
Yl = 0.0D0
IF C(N~N1-N1) 30, 20, 20
20 YI = YI + 1.6D0 + 0.07D0%*S
C START MAIN L@@P
30 DO 140 K=1,N1
E = ToL
IGNAL = ©
NUM = 0
NUP = O
C NEWTON-RAPHSON METHOD
D = YR%YR + YI*YI

YR = YR/D
Yl = =Y1/D
GO T@ SO

40 IGNAL = 1
S0 QR = S*YR ~ 1.DO
|1 = SxY1
PR = ¢S5+1.D0)%((S+2.DO)*C(YR¥YR-YI*YI)-2.DO*YR) + 1.DO
PI = 2.D0%*(S+1.D0X*YI*((S+2.D0>*YR-1.D0)
Z = 2.D0
D@ 60 J=3,N
RR = QR
RI = QI
QR = PR
QI = Pl
z + 1.D0
u 5 - 2.D0
v

[T

z
z 4+
U+

Communications August 1973
of Volume 16
the ACM Number 8

D = (V¥YR+(2.D0-5)/(V-2.D0)>/U
Dy CZ=1.DOX*V/C(U*C(V-2.D0))

D2 = VxYI/U
PR = (V-1.D0)*C(QR*D-QI#D2) + DI*RR
PI = (V-1.D0>*(QI*D+QR*D2) + D1%*RI

60 CONTINUE
IF (IGNAL.EQ.1) Go TO 100
D = C(YR*YR+YI*YI)*V
D1 = C((PR+QRI*YR+(PI+QI)*YI)/D + PR
2 = ((PI+QI)*YR-(PR+QR)*YI)>/D + PIL
D = (D1*%D1+D24xD2)*AN

Ti = PR*YR - PI=*Yl
T2 = PI*YR + PR*Y1
CR = (T1%D1+T2%D2)/D
CI = (T2%D1-T1*D2)/D
YR = YR - CR

Yl = YI - CI

NUM = NUM + 1
C TEST ©F CONVERGENCE OF ITERATION PROCESS
IF (CR*CR+CIXCI-EX*E*(YR#YR+YI*YI)) 40, 40, 70
C TEST OF NUMBER @F ITERATION STEPS
70 IF (NuUM-10) 50, S50, 80
80 E = E*10.D0
IER = -t
NUP = NUP + 1
IF (NUP-5) S0, 50, 90
90 IER = K
RETURN
C CALCULATIGN QF WEIGHTS
100 IF (EPS.GE«E) GO To 110
EPS = E
110 D = (QR*Q@R+QI*AQI)*%2
D1l = YR¥QR + YI*Q@1
D2 = YI*@R - YR#*QI
WRC(K) = FAC*(D1%D1-D2%D2)/D
WICK) = 2.D0*¥FAC*D2%D1/D
D = YR®YR + YI*YIL
XKC(K) = YR/D
XKIC(K) = =-YI/D
IF (K+1-N1) 130s 120s 150
120 FACTR = DC®S(1.5DO*ARG)
FACTI = DSINC(1.5DO*ARG)
C CALCULATION OF AN APPRGXIMATION OF THE (K+1)-TH ABSCISSA
130 YR = (XR(K)+0.67DO*ANI*FACTR - XI(K)*FACTI ~ 0.67DO*AN
Y1 = C(XR(K)+0.67D0*ANI*FACTI + XI(K)*FACTR
140 CONTINUE
150 RETURN
END

Algorithm 454

The Complex Method for
Constrained Optimization [E4]

Joel A. Richardson and J.L. Kuester* [Rec’d. Dec. 22,
1970 and May 5, 1971]
Arizona State University, Tempe, AZ 85281

Key Words and Phrases : optimization, constrained
optimization, Box’s algorithm

CR Categories: 5.41

Language: Fortran

Description
Purpose. This program finds the maximum of a multivariable,
nonlinear function subject to constraints:

Maximize F(Xi, Xz, ..., Xn)
Subjectto Gr < Xy < Hp, k=1,2,..., M.

The implicit variables Xn,1, ..., X are dependent functions of
the explicit independent variables X1, X.,..., Xy . The upper
and lower constraints Hy and G are either constants or functions
of the independent variables.

Method. The program is based on the “complex’” method of

* The authors acknowledge financial support from a National
Science Foundation summer fellowship and Arizona State Uni-
versity Grants Committee fellowship. Computer facilities were
provided by the Arizona State University Computer Center and
AiResearch Manufacturing Company.

487

M.J. Box [2]. This method is a sequential search technique, which
has proven effective in solving problems with nonlinear objective
functions subject to nonlinear inequality constraints. No deriva-
tives are required. The procedure should tend to find the global
maximum because the initial set of points is randomly scattered
throughout the feasible region. If linear constraints are present or
equality constraints are involved, other methods should prove to
be more efficient [1]. The algorithm proceeds as follows:

(1) An original “complex” of K > N + 1 points is generated
consisting of a feasible starting point and K — 1 additional points
generated from random numbers and constraints for each of the
independent variables: X;; = G: + ri;(Hi — Gi), i =1, 2,...,
N,andj =1,2,..., K~ 1, where r;; are random numbers be-
tween 0 and 1.

(2) The selected points must satisfy both the explicit and implicit
constraints. If at any time the explicit constraints are violated,
the point is moved a small distance & inside the violated limit. If
an implicit constraint is violated, the point is moved one half of the
distance to the centroid of the remaining points: X;;(new) =
(X:j(old) 4 X:0)/2, i =1, 2,..., N, where the coordinates
of the centroid of the remaining points, X, ., are defined by

- 1 S .
Nic= K——-_i []Z::IX;,J' — i,j(Old):l, i=12...,N.

This process is repeated as necessary until all the implicit con-
straints are satisfied.

(3) The objective function is evaluated at each point. The point
having the lowest function value is replaced by a point which is
located at a distance « times as far from the centroid of the re-
maining points as the distance of the rejected point on the line
joining the rejected point and the centroid:
X;;(new) = a(X;, — X;;(0ld) +Xie, i=2,...,N.

Box [2] recommends a value of o = 1.3.

(4) If a point repeats in giving the lowest function value on con-
secutive trials, it is moved one half the distance to the centroid of
the remaining points.

(5) The new point is checked against the constraints and is ad-
Jjusted as before if the constraints are violated.

(6) Convergence is assumed when the objective function values
at each point are within 8 units for y consecutive iterations.

Program. The program consists of three general subroutines
(JCONSX, JCEK1, JCENT) and two user supplied subroutines
(JFUNC, JCNST!). The use of the program and the meaning of
the parameters are described in the comments at the beginning of
subroutine JCONSX. All communication between the main
program and subroutines is achieved in the subroutine argument
lists. An iteration is defined as the calculations required to select a
new point which satisfies the constraints and does not repeat in
yielding the lowest function value.

Test results. Several functions were chosen to test the program.
The calculations were performed on a CDC 6400 computer. Some
examples:

1. Box Problem (2]
Function: F = (9 — (X; — 3)2)X:*/27/3
Constraints: 0 < X; < 100
0< X £X/V3
0L Xy =X + +/3X:) €6
Starting point: X; = 1.0, X, = 0.5
Parameters: K = 4, a = 1.3, 8 = .001, v = 5, 8 = .0001
Computed results Correct results:

F = 1.0000 F = 1.0000
X1 = 3.0000 X1 = 3.0000
X, =1.7320 X, =1.7321

Number of iterations: 68
Central processor time: 6 sec.

Communications August 1973
of Volume 16
the ACM Number 8

2. Post Office Problem (3]
Function: F = X;X3X,
Constraints: 0 < X; <42, i=1,2,3
0< (Xy=X1 +2X. +2X;) <72
Starting point: X; = 1.0, X, = 1.0, X5 = 1.0

Parameters: K = 6, o = 1.3, 8 = .01, v = 5, § = .000!

Computed results: Correct results:

F = 3456 F = 3456
X1 = 24.01 X, =24.00
X, =12.00 X = 12.00
X; = 12.00 X; = 12.00

Number of iterations: 72
Central processor time: 6 sec.

3. Beveridge and Schechter Problem (1]
Function: F = — (X, — 0.5)* — (X, — 1.0)?
Constraints: —2 < X, < 2
~V2< X £ V2
~4 < (Xs = X2+ 2X# —4) <0
Starting point: X; = 0., X, = 0.

Parameters: K = 4, « = 1.3, 8 = .00001, v = 5, § = .0001

Computed results: Correct results:

F = .0000 F = .0000
X, = .5035 X = .5000
X, = .9990 X, = 1.0000

Number of iterations: 40
Central processor time = 5 sec.

References

1. Beveridge, G.S., and Schechter, R.S. Optimization: Theory

and Practice. McGraw-Hill, New York, 1970.

2. Box, M.J. A new method of constrained optimization and a

comparison with other methods. Comp. J. 8 (1965), 42-52.
3. Rosenbrock, H.H. An automatic method for finding the

greatest or least value of a function. Comp. J. 3 (1960), 175-184.

Algorithm
SUBRBUTINE JCONSX(N, M, K» ITMAX, ALPHA, BETA, GAMMA,
* DELTA» X» R, F, 1T, IEV2: K8, G, H» XC» L)
PURP@GSE
T@ FIND THE CONSTRAINED MAXIMUM @F A FUNCTIGN OF
SEVERAL VARIABLES BY THE COMPLEX METH@D ®F M. J. B@X.
THIS IS THE PRIMARY SUBROUTINE AND CRORDINATES THE
SPECIAL PURP@SE SUBROUTINES (JCEK1, JCENT, JFUNC»
JCNSTL1) » INITIAL GUESSES @F THE INDEPENDENT VARIABLES.
RAND@M NUMBERS, SOLUTI@N PARAMETERS, DIMENSION LIMITS
AND PRINTER CGDE DESIGNATI@BN ARE OBTAINED FROM THE MAIN
PROGRAM .« FINAL FUNCTIGON AND INDEPENDENT VARIABLE
VALUES ARE TRANSFERRED T@ THE MAIN PROGRAM FOR
PRINTQUT. INTERMEDIATE PRINTOUTS ARE PROVIDED IN THIS
SUBROUTINE. THE USER MUST PRVIDE THE MAIN PROGRAM AND
THE SUBROUTINES THAT SPECIFY THE FUNCTIBN (JFUNC) AND
CONSTRAINTS (JCNST1). F@RMAT CHANGES MAY BE REQUIRED
WITHIN THIS SUBRRUTINE DEPENDING @N THE PARTICULAR
PRPBLEM UNDER CONSIDERATION.
USAGE
CALL JCONSX(NsM,K,1TMAX, ALPHA,BETA, GAMMA, DELTA,X>R,»F,
1T, 1EV2,K@, 6o Hs XCoL)
SUBRQUTINES REQUIRED
JCEK1 (NsMsKsX5GsHs 12KODE» XC, DELTASL K1)
CHECKS ALL PQINTS AGAINST EXPLICIT AND IMPLICIT
CONSTRAINTS AND APPLYS CORRECTION IF VIgLATIOBNS ARE
FBUND
JCENT(N2MsKs IEVI» 15 XCoXsLaK1)
CALCULATES THE CENTR@ID OF PRINTS
JFUNCC(N»MsK,XaF,I,L)
SPECIFIES OBJECTIVE FUNCTI@ON (USER SUPPLIED)
JONST1CNs M Ka X5 6o Hs 1,L)
SPECIFIES EXPLICIT AND IMPLICIT CONSTRAINT LIMITS
CUSER SUPPLIED). @RDER EXPLICIT CONSTRAINTS FIRST
DESCRIPTI®N @F PARAMETERS

N NUMBER @F EXPLICIT INDEPENDENT VARIABLES ~ DEFINE
IN MAIN PROGRAM

M NUMBER @F SETS @F CONSTRAINTS - DEFINE IN MAIN
PROGRAM

K NUMBER BF PBINTS IN THE COMPLEX - DEFINE IN MAIN
PRBGRAM

ITMAX MAXIMUM NUMBER 9F ITERATI@NS - DEFINE IN MAIN
PROGRAM

ALPHA REFLECTI@ON FACTBR - DEFINE IN MAIN PROGRAM

BETA CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM

GAMMA CONVERGENCE PARAMETER - DEFINE IN MAIN PROGRAM
DELTA EXPLICIT CONSTRAINT VIQLATION CBRRECTISON - DEFINE
IN MAIN PROGRAM

s EsNsEsEsNoNoNoNoNoRsNe e e NN NoNo RN Es RN e e N o NN NN R N e Ro R Re NN v NoNs RN RN Ne NeNoRe No N RN o]

X INDEPENDENT VARIABLES - DEFINE INITIAL VALUES IN
MAIN PRBGRAM

R RANDZM NUMBERS BETWEEN O AND 1 - DEFINE IN MAIN
PROGRAM

F @BJECTIVE FUNCTION - DEFINE IN SUBRQUTINE JFUNC

IT ITERATI@GN INDEX - DEFINED IN SUBRAUTINE JCONSX

488

IEV2 INDEX OF POINT WITH MAXIMUM FUNCTI@N VALUE -
DEFINED IN SUBROUTINE JCONSX

IEV1 INDEX OF POINT WITH MINIMUM FUNCTI@BN VALUE -
DEFINED IN SUBROUTINE JC@NSX AND JCEKI1

Ko PRINTER UNIT NUMBER - DEFINE IN MAIN PROGRAM

G LOWER CONSTRAINT ~ DEFINE IN SUBRGUTINE JCNST1

H UPPER CPNSTRAINT ~ DEFINE IN SUBRBUTINE JCNSTI1
CENTR@ID - DEFINED IN SUBRAUTINE JCENT

L TOTAL NUMBER @F INDEPENDENT VARIABLES (EXPLICIT +
IMPLICIT) - DEFINE IN MAIN PREGRAM

1 POINT INDEX - DEFINED IN SUBROUTINE JCBNSX

KODE KEY USED T@ DETERMINE IF IMPLICIT CONSTRAINTS ARE
PROVIDED - DEFINED IN SUBRGUTINE JCONSX AND JCEK1
K1 DO LoeP LIMIT - DEFINED IN SUBRBUTINE JCONSX
DIMENSIBN X(K>L)s R(KsN)» F(K)» G(M), H(M), XCC(N)
INTEGER GAMMA
IT =1
WRITE (K@8,99995) IT
K@DE = 0
IF (M=N> 20, 20, 10
10 K@DE = 1
20 CONTINUE
D@ 40 11=2,K
D® 30 J=1,N
XCI1sJ) = 0.
30 CONTINUE
40 CONTINUE
C CALCULATE COMPLEX P@INTS AND CHECK AGAINST CONSTRAINTS
D@ 60 11i=2,K
D@ 50 J=1,N
I =11
CALL JCNSTIC(N, M» Ks Xs G» H, I, L)
XCIIaJ) = G(J) + RCII,J)*(HCJI-GCI))
S0 CONTINUE
Kt = II
CALL JCEK1(N, M, K» X, G» Hs I, KODE, XC, DELTA, L.
WRITE (K0599999> Il, (X(IIl,J)sJ=1.N)
60 CONTINUE
K1 = K
DB 70 I=1,K
CALL JFUNC(N, Ms K» X, F» 1, L)
70 CANTINUE
KOUNT = 1t
1A =0
C FIND POINT WITH LOWEST FUNCTION VALUE
WRITE (K©9,99998) (FC(I),I=1,K)
80 IEV1 = 1
D@ 100 ICM=2,K
IF (FCIEVI)-FCICM)) 100, 100> 90
90 IEV] = ICM
100 CONTINUE
C FIND POINT WITH HIGHEST FUNCTION VALUE
IEV2 = 1
D9 120 ICM=2,K
IF (FCIEV2)-FCICM)>)> 110, 110, 120
110 1EV2 = ICM
120 CONTINUE
C CHECK CONVERGENCE CRITERIA
IF (FCIEV2)-(F(IEVI)+BETAY) 140, 130, 130
130 KQUNT = 1
Ge Te 150
140 KQUNT = KOUNT + 1
IF (KGUNT-GAMMA) 150, 2405 240
C REPLACE POINT WITH LOWEST FUNCTIGN VALUE
150 CALL JCENT(N, M, Ks» IEV1, I, XCs» X» Las K1)
D@ 160 J=1,N
XCIEVE,J) = (1.+ALPHAY*(XC(J)) - ALPHA*(X(IEV1,J)»)
160 CONTINUE
1 = [EV]

aoaoaooooaaaooan
x
(2]

K1)

CALL JCEK1(N, Ms K» Xs G» Hs I, K@DE» XCs DELTA» L» KI)

CALL JFUNC(N, M» Ks X» F» I, LD
C REPLACE NEW POINT IF IT REPEATS AS L@WEST FUNCTI@N VALUE
170 IEVZ2 = 1
D@ 190 ICM=2,K
IF (FCIEV2)>-FC(ICM)>)> 1905 190, 180
180 IEV2 = ICM
190 CONTINUE
IF (IEV2~IEV1) 220, 200, 220
200 D@ 210 JJ=1,N
XCIEVL»JJ) = (XCIEVL, JJY+XCCJdrdsz.
210 CONTINUE
1 = IEV]

CALL JCEK!(N, M, Ks» X, G» Hs 1, KODE, XC, DELTA, L, K1)

CALL JFUNC(N, M, K» X, F» I, LD
GB T® 170
220 COBNTINUE
WRITE (K@,99997) (X(IEV1,JB)»JB=1,N)
WRITE (KB3,99998) (F(l13,I=1,K)
WRITE (KR»99996) (XC(Jr»J=1:N)
IT = IT + 1
1F (IT-ITMAX)> 230, 230, 240
230 CONTINUE
WRITE (K©@,99995) IT
Gg To 80
240 RETURN
99999 FRRMATC(IH , 15X, 21H CQORDINATES AT PQINT, 14/8(F8.4,
99998 FORMATC(IH , 20X, 16H FUNCTI@N VALUES, /B(F10.4» 2X))
99997 FORMAT(IH , 20X, 16H CORRECTED PRQINT, /8(FB8.4, 2X))
99996 FEBRMATC(IH
»

99995 FORMATC(1H /710H ITERATION, 4X, I5)

END
SUBROUTINE JCEK1(Ns» M, K, X» G» H» I, KODE» XC» DELTA»
* K1)
C PURP@SE
c T® CHECK ALL POINTS AGAINST THE EXPLICIT AND IMPLICIT
[CONSTRAINTS AND T8 APPLY CORRECTI@GNS IF VIGBLATIBNS ARE
C FOUND
C USAGE
[CALL JCEK1(N,MsKsXsGsH, I1,K8DEsXC>DELTA,L-K1)
C SUBROUTINES REQUIRED
C JCENTC(N,M,Ks IEVIS I, XCrX, L, K1)
c JONSTIC(N>Ms K, XsG-Hs 151D
C DESCRIPTIBN BF PARAMETERS
c PREVIQUSLY DEFINED IN SUBRQAUTINE JCBNSX
Communications August 1973
of Volume 16

the ACM Number 8

21H CENTRQID CBORDINATES, 2X» B(FB.4, 2X))

2X))

Ls

DIMENSIBN X(KsL)» G(M), H(M), XC(N)
10 KT = 0
CALL JCNSTIC(N, M, Ks X» G» Hs I, L)
C CHECK AGAINST EXPLICIT CONSTRAINTS
D@ 50 J=1,N
IF (XC1,J)-G(J)) 20, 20, 30
20 X(I»J) = G(J> + DELTA
Go Te S50
30 IF CHC(D)=XC1,J)> 40, 40, S0
40 XC¢I,JY = H(J) - DELTA
50 CONTINUE
IF (KODE) 110, 110, 60
C CHECK AGAINST THE IMPLICIT CONSTRAINTS
60 CONTINUE
NN = N + 1
D2 100 J=NN-M
CALL JCNSTI1(Ns Ms» Ks» X» G» H» 1, L)
IF (XCI,J)-GCJy) 80, 70, 70
70 IF C(HCJ)-XC(1,J)) 80, 1005 100
80 IEVYI = 1
KT = 1
CALL JCENT(Ns» Ms K, 1EV1s I, XCs» Xs Ls» K1)
DB 90 JJ=1,N
XC1add) = (XC1sJD+XCCIIII /2.
90 CONTINUE
100 CONTINUE
IF (KT) 110, 110, 10

110 RETURN
END
SUBREUTINE JCENT(N, M> K, IEV1s Is XC» X» L, K1)
PURPQSE
T8 CALCULATE THE CENTRRID OF POINTS
USAGE

CALL JCENT(Ns»MsKs IEVIsI,XCoXsLsK12
SUBROUTINES REQUIRED
N@NE
DESCRIPTI®ON OF PARAMETERS
PREVIQUSLY DEFINED IN SUBROUTINE JCBNSX
DIMENSION X(K,L)» XC(N)
DB 20 J=1.,N
XC¢J> = 0.
DZ 10 IL=1,Ki
XCCJ) = XCCd) + X(CILs»J>
10 CONTINUE
RK = K1
XCCJI = (XCOH-XCIEV1,J))/(RK-14)
20 CONTINUE
RETURN
END

caonoaao

Certification and Remark on Algorithm 404 [S14]
Complex Gamma Function [C.W. Lucas Jr. and C.W.
Terril, Comm. ACM 14 (Jan. 1971), 48]

G. Andrejkovd and J. Vinar, Computing Center,
Safarik University, KoSice, Czechoslovakia

The following changes were made in the algorithm:
a. The function subroutine heading was changed to read

COMPLEX FUNCTION CGAMMA(Z)

in accordance with the standard.

b. The convergence tests following statement number 70 involve
the computation of the quantity REAL(TERM)/REAL(SUM).
This can lead to overflow if Z is real and near to a pole. For these
reasons the two statements were replaced by

IF (ABS(REAL(TERM)) .GE. TOLxABS(REAL(SUM))) GO TO
80

and

IF (ABS(AIMAG(TERM)) .GE. TOL*ABS(AIMAG(SUM))) GO
T0 100

c. For similar reasons the statement

SUM = CLOG(PI/CSIN(PI*Z))—SUM

was replaced by

SUM = CLOG(PI)— CLOG(CSIN(PI+Z))—SUM

With these modifications the algorithm was translated on MINSK
22M using the FEL Fortran compiler (with seven significant digits

489

in single precision and 15 in double precision) and ran satisfactorily.
The following tests were performed:

a. The logarithms of CGAMMA(Z) for z = x-+iy with x = 1.0
(0.1)10.0 and y = 0.0(0.1)3.0 were checked against the values given
in [1]. An overall accuracy of five to six digits was observed. The
imaginary part frequently had one more accurate digit than the real
part.

b. The behavior in the vicinity of poles was tested by computing
the values of CGAMMA(Z) in eight evenly spaced points on circles
of decreasing diameter. The value of 1.E—7 for the minimum diam-
eter was found adequate.

c. The values of CGAMMA(Z) were computed for z = x+iy with

1. x = 0.0(1.0)23.0, y = 0.0
2. x = 00,y = 0.0(1.0)26.0
3. x =y = 0.0(1.0)25.0

4. x = —y = 0.0(1.0)25.0
5. —x = y = 0.0(1.0)12.0

6. —x = —y = 0.0(1.0)12.0

in all cases the final value is the last for which the program did not
run into overflow or, in the last two cases, try to take a logarithm
of too small a number.

References
1. Table of gamma function for complex arguments. National
Bureau of Standards, Applied Math. Series 34, August 1954.

Remark on Algorithm 357 [A1]
An Efficient Prime Number Generator [Richard C.
Singleton, Comm. ACM 10 (October, 1969), 563]

Richard M. De Morgan [Recd 8 August 1972], Digital
Equipment Co. Ltd., Reading, England

On some Algol 60 implementations, the value of #i is destroyed
between subsequent calls to the procedure. The second and third
lines of the algorithm should be changed to make ni an own integer:

own integer i/, ik, inc, j, ni, nj;

integer /, jqi, k;

Remark on Algorithm 412 [J6]
Graph Plotter [Joseph Cermak, Comm. ACM 14 (July
1971), 492-493]

Richard P. Watkins [Recd. 31 Jan. 1972], Mathematics
Department, Royal Melbourne Institute of Technology,
Melbourne, Australia 3000

This algorithm is not functionally identical to Algorithm 278
as claimed. If the x[i] values are not uniformly spaced or if m > L,
it is possible for two or more of them to correspond to the same
printer line. In this case, the array ind will contain only the largest
of the values of i and only one set of y[i, j] values, corresponding to
that value of i, will be plotted.

The array ind is redundant. The following changes enable
plotL to take over the functions of ind (where all line numbers refer
to lines relative to the label escape):

a. Line 4. Replace
for i := 1step 1 until L do plorL[i] := 1

Communications August 1973
of Volume 16
the ACM Number 8

by

for i := 1 step 1 until L do ploiLli] := 0

b. Line9. Replace

plotLlr] := 0; indlr] := i

by

ploiLir] := i

c. Line 21. Replace

if plotL[il = O then

by

if plotL|il > O then

d. Line 24. Replace

plotS (1 + entier(0.5 + q X (ylind\i}] —ymin))] := 3
by

plotS [1 + entier(0.5 + ¢ X (y|plotL[i}) —ymin))] :
e. Line 27. Replace |
plotS (1 + entier(0.5 + ¢ X (ylind\il,j} — ymin))] :=j + 2
by

plotSi1 + entier(0.5 + g X (ylplotLli|,j} — ymin))] := j + 2

(The referee has noted that there is a typographical error on the
fifth line before the line labeled escape. Replace

If
w

for j : = step 1 until 12 do
by
for j := 1 step 1 until » do

He has also noted that the array declaration for ind should be
deleted if the above changes are made.—L.D.F.)

Remark on Algorithm 424 [D 1]
Clenshaw-Curtis Quadrature [W.M.Gentleman, Comm.
ACM 15 (May 1972), 353-355.]

Albert J. Good [Recd. 19 December 1972] Systems,
Science and Software, La Jolla, CA 92037

As published, this algorithm will not execute correctly under
some compilers (e.g. Fortran V in the Univac 1108). One minor
change is sufficient for proper operation: replace the variable J REV
by the index J8 inside the DO 120 loop.

The appearance of J REV and J8 in an EQUIVALENCE state-
ment is not meaningful since the memory location associated with
a DO loop index does not always contain the current value of the
index (this depends on the compiler).

Remark on Algorithm 428 [Z]

Hu-Tucker Minimum Redundancy Alphabetic Coding
Method [J.M. Yohe, Comm. ACM 15 (May 1972),
360-362}

J.G. Byrne [Recd. 26 June 1972] Department of Com-
puter Science, Trinity College, Dublin 2, Ireland

Algorithm 428 was translated into Basic Fortran 1V and run
on IBM System 360/44 running under RAX. When the line just
after the label B2:

if il > # then go to El else

490

was changed to
if i > n then go to E1 else

the algorithm gave correct results for the example given and for the
example in Gilbert and Moore [1]. In the latter case the cost
defined as

L o=LW)
Lo

and code lengths were correct.

When the L array was set to 1's on entry, the optimum (Huff-
man) codes were obtained, and they were the same as those given
by the Schwartz and Kallick {2] method as claimed in the author’s
description.

Table I.

Size of alphabet 10 27 60

Time to find optimum alphabetic codes 0-02 0-14 0-62
(secs)

Time to find optimum codes (secs) 0-02 0.08 0-34

Table 1, which gives the cpu time required, shows that the
algorithm is very fast for small alphabets and that the time is
approximately proportional to n2, as expected.

References

1. Gilbert, ENN., and Moore, E.F. Variable length binary
encodings. Bell Systems Tech. J. 38 (1959), 933-968.

2. Schwartz, E.S., and Kallick, B. Generating a canonical prefix
encoding. Comm. ACM 7 (Mar. 1964), 166-169.

Remark on Algorithm 429 [C2]
Localization of the Roots of a Polynomial [W. Squire,
Comm. ACM 15 (Aug. 1972), 776]

Edward J. Williams |Recd. 15 Sept. 1972] Computer
Science Department, Ford Motor Company, P.O.
Box 2053, Dearborn, MI 48121

Corrections are needed in the third paragraph. The theorem
that the positive real roots of (1) are less than

1 + [maxi<s<a | i)l .. should read
1 4+ [maxi<i<n cico | Ci|]Um

Further, the four words “ RADIUS” in this paragraph should be
replaced by “ BOUND”.

References
1. Zaguskin, O.0. Solution of Algebraic and Transcendental
Equations, Pergamon Press, New York, 1961, p. 21.

Communications August 1973
of Volume 16
the ACM Number 8

