
1973 A C M Tur ing
Award Lecture
The Turing Award citation read by Richard G. Canning, chair-
man of the 1973 Turing Award Committee, at the presentation of
this lecture on August 28 at the ACM Annual Conference in
Atlanta:

A significant change in the computer field in the last five to
eight years has been made in the way we treat and handle data.
In the early days of our field, data was intimately tied to the ap-
plication programs that used it. Now we see that we want to break
that tie. We want data that is independent of the application
programs that use it--that is, data that is organized and structured
to serve many applications and many users. What we seek is the
data base.

This movement toward the data base is in its infancy. Even
so, it appears that there are now between 1,000 and 2,000 true
data base management systems installed worldwide. In ten years
very likely, there will be tens of thousands of such systems. Just
from the quantities of installed systems, the impact of data bases
promises to be huge.

This year's recipient of the A.M. Turing Award is one of the
real pioneers of data base technology. No other individual has
had the influence that he has had upon this aspect of our field. 1

single out three prime examples of what he has done. He was the
creator and principal architect of the first commercially available
data base management system--the Integrated Data Store--orig-
inally developed from 1961 to 1964.1,~,'~.4 I-D-S is today one of the
three most widely used data base management systems. Also, he
.was one of the founding members of the CODASYL Data Base Task
Group, and served on that task group from 1966 to 1968. The
specifications of that task group are being implemented by many
suppliers in various parts of the world) ,e Indeed, currently these
specifications represent the only proposal of stature for a common
architecture for data base management systems. It is to his credit
that these specifications, after extended debate and discussion,
embody much of the original thinking of the Integrated Data
Store. Thirdly, he was the creator of a powerful method for dis-
playing data relationships--a tool for data base designers as well
as application system designers7 .s

His contributions have thus represented the union of imagin-
ation and practicality. The richness of his work has already had,
and will continue to have, a substantial influence upon our field.

I am very pleased to• present the 1973 A.M. Turing Award to
Charles W. Bachman.

 l'he Programmer
as Navigator
by Charles W. Bachman

This year the whole world celebrates the five-hun-
dredth b i r thday of Nicolaus Copernicus, the famous
Polish as t ronomer and mathemat ic ian. In 1543, Coper-
nicus published his book, Concerning the Revolutions o f

Celestial Spheres, which described a new theory abou t
the relative physical movements of the earth, the plan-
ets, and the sun. It was in direct cont radic t ion with
the earth-centered theories which had been established

by Ptolemy 1400 years earlier.
Copernicus proposed the heliocentric theory, that

planets revolve in a circular orbit a round the sun. This
theory was subjected to t r emendous and persistent
criticism. Nearly 100 years later, Gali leo was ordered

Copyright O 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Honeywell Information Systems. Inc., 200
Smith Street, Waltham, MA 02154.

The abstract, key words, etc., are on page 654.
1-s Footnotes are on page 658.

653

to appear before the Inquis i t ion in Rome and forced
to state that he had given up his belief in the Copernican
theory. Even this did not placate his inquisitors, and
he was sentenced to an indefinite prison term, while
Copernicus 's book was placed upon the Index of Pro-
hibited Books, where it remained for another 200 years.

1 raise the example of Copernicus today to il lustrate

a parallel that I believe exists in the comput ing or, more
properly, the in format ion systems world. We have
spent the last 50 years with almost Ptolemaic informa-
t ion systems. These systems, and most of the th inking
abou t systems, were based on a " c ompu t e r centered"
concept. (I choose to speak of 50 years of history rather
than 25, for I see today ' s in format ion systems as dat ing
from the beginning of effective punched card equip-
ment rather t han from the beginning of the stored

program computer .)
Just as the ancients viewed the earth with the sun

revolving a round it, so have the ancients of our in-
format ion systems viewed a tab machine or computer
with a sequential file flowing through it. Each was an

Communications November 1973
of Volume 16
the ACM Number I 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355611.362534&domain=pdf&date_stamp=1973-11-01

adequate model for its time and place. But after a while,
each has been found to be incorrect and inadequate
and has had to be replaced by another model that more
accurately portrayed the real world and its behavior.

Copernicus presented us with a new point of view
and laid the foundation for modern celestial mechan-
ics. That view gave us the basis for understanding the
formerly mysterious tracks of the sun and the planets
through the heavens. A new basis for understanding is
available in the area of information systems. It is
achieved by a shift from a computer-centered to the
database-centered point of view. This new understand-
ing will lead to new solutions to our database problems
and speed our conquest of the n-dimensional data
structures which best model the complexities of the
real world.

The earliest databases, initially implemented on
punched cards with sequential file technology, were not
significantly altered when they were moved, first from
punched card to magnetic tape and then again to mag-
netic disk. About the only things that changed were
the size of the files and the speed of processing them.

In sequential file technology, search techniques are
well established. Start with the value of the primary
data key, of the record of interest, and pass each record
in the file through core memory until the desired record,
or one with a higher key, is found. (A primary data key
is a field within a record which makes that record
unique within the file.) Social security numbers, pur-
chase order numbers, insurance policy numbers, bank
account numbers are all primary data keys. Almost
without exception, they are synthetic attributes spe-
cifically designed and created for the purpose of unique-
ness. Natural attributes, e.g. names of people and
places, dates, time, and quantities, are not assuredly
unique and thus cannot be used.

The availability of direct access storage devices laid
the foundation for the Copernican-like change in view-
point. The directions o f " i n " and "ou t" were reversed.
Where the input notion of the sequential file world
meant " in to the computer from tape," the new input
notion became " into the database." This revolution in
thinking is changing the programmer from a stationary
viewer of objects passing before him in core into a
mobile navigator who is able to probe and traverse a
database at will.

Direct access storage devices also opened up new
ways of record retrieval by primary data key. The first
was called randomizing, calculated addressing, or hash-
ing. It involved processing the primary data key with a
specialized algorithm, the output of which identified a
preferred storage location for that record. If the record
sought was not found in the preferred location, then an
overflow algorithm was used to search places where the
record alternately would have been stored, if it existed
at all. Overflow is created when the preferred location
is full at the time the record was originally stored.

As an alternative to the randomizing technique, the

654

Copernicus completely reoriented our view of astro-
nomical phenomena when he suggested that the earth
revolves about the sun. There is a growing feeling that
data processing people would benefit if they were to
accept a radically new point of view, one that would
liberate the application programmer's thinking from the
centralism of core storage and allow him the freedom to
act as a navigator within a database. To do this, he
must first learn the various navigational skills; then he
must learn the "rules of the road" to avoid conflict
with other programmers as they jointly navigate the
database information space.

This reorientation will cause as much anguish among
programmers as the heliocentric theory did among
ancient astronomers and theologians.

Key Words and Phrases: access method, attributes,
calculated addressing, celestial mechanics, clustering,
contamination, database, database key, database set,
deadlock, deadly embrace, entity, hash addressing,
overflow, owner, member, primary data key, Ptolemy,
relationship, retrieval, secondary data key, sequential
file, set, shared access, update, Weyerhaeuser

CR Categories: 3.74, 4.33, 4.34, 5.6, 8.1

index sequential access technique was developed. It
also used the primary data key to control the storage
and retrieval of records, and did so through the use of
multilevel indices.

The programmer who has advanced from sequential
file processing to either index sequential or randomized
access processing has greatly reduced his access time
because he can now probe for a record without sequen-
tially passing all the intervening records in the file.
However, he is still in a one-dimensional world as he is
dealing with only one primary data key, which is his
sole means of controlling access.

From this point, I want to begin the programmer's
training as a full-fledged navigator in an n-dimensional
data space. However, before I can successfully describe
this process, I want to review what "database manage-
ment" is.

It involves all aspects of storing, retrieving, modify-
ing, and deleting data in the files on personnel and pro-
duction, airline reservations, or laboratory experiments
- -da ta which is used repeatedly and updated as new
information becomes available. These files are mapped
through some storage structure onto magnetic tapes or
disk packs and the drives that support them.

Database management has two main functions. First
is the inquiry or retrieval activity that reaccesses previ-
ously stored data in order to determine the recorded
status of some real world entity or relationship. This
data has previously been stored by some other job,
seconds, minutes, hours, or even days earlier, and has
been held in trust by the database management system.
A database management system has a continuing re-

Communications November 1973
of Volume 16
the ACM Number 1 !

sponsibility to maintain data between the time when it
was stored and the time it is subsequently required for
retrieval. This retrieval activity is designed to produce
the information necessary for decision making.

Part of the inquiry activity is report preparation. In
the early years of sequential access storage devices and
the resultant batch processing, there was no viable
alternative to the production of massive file dumps as
formatted as reports. Spontaneous requirements to
examine a particular checking account balance, an in-
ventory balance, or a production plan could not be
handled efficiently because the entire file had to be
passed to extract any data. This form of inquiry is now
diminishing in relative importance and will eventually
disappear except for archival purposes or to satisfy the
appetite of a parkinsonian bureaucracy.

The second activity of database management is to
update, which includes the original storage of data, its
repeated modification as things change, and ultimately,
its deletion from the system when the data is no longer
needed.

The updating activity is a response to the changes in
the real world which must be recorded. The hiring of a
new employee would cause a new record to be stored.
Reducing available stock would cause an inventory
record to be modified. Cancelling an airline reservation
would cause a record to be deleted. All of these are
recorded and updated in anticipation of future inquiries.

The sorting of files has been a big user of computer
time. It was used in sorting transactions prior to batch
sequential update and in the preparation of reports.
The change to transaction-mode updating and on-de-
mand inquiry and report preparation is diminishing the
importance of sorting at the file level.

Let us now return to our story concerning the pro-
grammer as navigator. We left him using the randomiz-
ing or the index sequential technique to expedite either
inquiry or update of a file based upon a primary data key.

In addition to a record's primary key, it is frequently
desirable to be able to retrieve records on the basis of
the value of some other fields. For example, it may be
desirable, in planning ten-year awards, to select all the
employee records with the "year-of-hire" field value
equal to 1964. Such access is retrieval by secondary
data key. The actual number of records to be retrieved
by a secondary key is unpredictable and may vary from
zero to possibly include the entire file. By contrast, a
primary data key will retrieve a maximum of one
record.

With the advent of retrieval on secondary data keys,
the previously one-dimensional data space received
additional dimensions equal to the number of fields in
the record. With small or medium-sized files, it is
feasible for a database system to index each record in
the file on every field in the record. Such totally indexed
files are classified as inverted files. In large active files,
however, it is not economical to index every field.
Therefore, it is prudent to select the fields whose con-

tent will be frequently used as a retrieval criterion and
to create secondary indices for those fields only.

The distinction between a file and a database is not
clearly established. However, one difference is per-
tinent to our discussion at this time. In a database, it is
common to have several or many different kinds of
records. For an example, in a personnel database there
might be employee records, department records, skill
records, deduction records, work history records, and
education records. Each type of record has its own
unique primary data key, and all o f its other fields are
potential secondary data keys.

In such a database the primary and secondary keys
take on an interesting relationship when the primary
key of one type of record is the secondary key of another
type of record. Returning to our personnel database as
an example-- the field named "depar tment code" ap-
pears in both the employee record and the department
record. It is one of several possible secondary data keys
of the employee records and the single primary data
key of the department records.

This equality of primary and secondary data key
fields reflects real world relationships and provides a
way to reestablish these relationships for computer
processing purposes. The use of the same data value as
a primary key for one record and as a secondary key
for a set of records is the basic concept upon which
data structure sets are declared and maintained. The
Integrated Data Store (I-D-S) systems and all other
systems based on its concepts consider their basic con-
tribution to the programmer to be the capability to
associate records into data structure sets and the cap-
ability to use these sets as retrieval paths. All the COBOL
Database Task Group systems implementations fall
into this class.

There are many benefits gained in the conversion
from several files, each with a single type of record, to a
database with several types of records and database
sets. One such benefit results from the significant im-
provement in performance that accrues from using the
database sets in lieu of both primary and secondary
indices to gain access to all the records with a particular
data key value. With database sets, all redundant data
can be eliminated, reducing the storage space required.
I f redundant data is deliberately maintained to enhance
retrieval performance at the cost of maintenance, then
the redundant data can be controlled to ensure that the
updating of a value in one record will be properly re-
flected in all other appropriate records. Performance is
enhanced by the so-called "clustering" ability of data-
bases where the owner and some or most of the members
records of a set are physically stored and accessed to-
gether on the same block or page. These systems have
been running in virtual memory since 1962.

Another significant functional and performance
advantage is to be able to specify the order of retrieval
of the records within a set based upon a declared sort
field or the time of insertion.

655 Communications November 1973
of Volume 16
the ACM Number 11

In order to focus the role of programmer as navi-
gator, let us enumerate his opportunities for record
access. These represent the commands that he
can give to the database system--singly, multiply or in
combination with each o ther - -as he picks his way
through the data to resolve an inquiry or to complete
an update.
1. He can start at the beginning of the database, or at
any known record, and sequentially access the "nex t "
record in the database until he reaches a record of
interest or reaches the end.
2. He can enter the database with a database key that
provides direct access to the physical location of a
record. (A database key is the permanent virtual
memory address assigned to a record at the time that it
was created.)
3. He can enter the database in accordance with the
value of a primary data key. (Either the indexed se-
quential or randomized access techniques will yield the
same result.)
4. He can enter the database with a secondary data key
value and sequentially access all records having that
particular data value for the field.
5. He can start from the owner of a set and sequentially
access all the member records. (This is equivalent to
converting a primary data key into a secondary data
key.)
6. He can start with any member record of a set and
access either the next or prior member of that set.
7. He can start f rom any member of a set and access
the owner of the set, thus converting a secondary data
key into a primary data key.

Each of these access methods is interesting in itself,
and all are very useful. However, it is the synergistic
usage of the entire collection which gives the pro-
grammer great and expanded powers to come and go
within a large database while accessing only those rec-
ords of interest in responding to inquiries and updating
the database in anticipation of future inquiries.

Imagine the following scenario to illustrate how
processing a single transaction could involve a path
through the database. The transaction carries with it
the primary data key value or database key of the rec-
ord that is to be used to gain an entry point into the
database. That record would be used to gain access to
other records (either owner or members) of a set. Each
of these records is used in turn as a point of departure
to examine another set.

For example, consider a request to list the employees
of a particular department when given its departmental
code. This request could be supported by a database
containing only two different types of records:personnel
records and department records. For simplicity pur-
poses, the department record can be envisioned as
having only two fields: the department code, which is
the primary data key; and the department name, which
is descriptive. The personnel record can be envisioned
as having only three fields: the employee number, which

656

is the primary data key for the record; the employee
name, which is descriptive; and the employee's depart-
ment code, which is a secondary key which controls set
selection and the record's placement in a set. The joint
usage of the department code by both records and the
declaration of a set based upon this data key provide
the basis for the creation and maintenance of the set
relationship between a department record and all the
records representing the employees of that department.
Thus the usage of the set of employee records provides
the mechanism to readily list all the employees of a
particular department following the primary data key
retrieval of the appropriate department record. No other
record for index need be accessed.

The addition of the department manager 's employee
number to the department record greatly extends the
navigational opportunities, and provides the basis for a
second class of sets. Each occurrence of this new class
includes the department records for all the departments
managed by a particular employee. A single employee
number or department code now provides an entry
point into an integrated data structure of an enterprise.
Given an employee number, and the set of records of
departments managed, all the departments which he
manages can be listed. The personnel of each such de-
partment can be further listed. The question of depart-
ments managed by each of these employees can be
asked repeatedly until all the subordinate employees
and departments have been displayed. Inversely, the
same data structure can easily identify the employee's
manager, the manager 's manager, and the manager 's
manager 's manager, and so on, until the company
president is reached.

There are additional risks and adventures ahead for
the programmer who has mastered operation in the
n-dimensional data space. As navigator he must brave
dimly perceived shoals and reefs in his sea, which are
created because he has to navigate in a shared database
environment. There is no other obvious way for him to
achieve the required performance.

Shared access is a new and complex variation of
mult iprogramming or time sharing, which were in-
vented to permit shared, but independent, use of the
computer resources. In mult iprogramming, the pro-
grammer of one job doesn't know or care that his job
might be sharing the computer, as long as he is sure that
his address space is independent of that of any other
programs. It is left to the operating system to assure
each program's integrity and to make the best use of
the memory, processor, and other physical resources.
Shared access is a specialized version of mult iprogram-
ming where the critical, shared resources are the records
of the database. The database records are funda-
mentally different than either main storage or the proc-
essor because their data fields change value through
update and do not return to their original condition
afterward. Therefore, a job that repeatedly uses a data-
base record may find that record's content or set mem-

Communications November 1973
of Volume 16
the ACM Number ! 1

bership has changed since the last time it was accessed.
As a result, an algorithm attempting a complex calcu-
lation may get a somewhat unstable picture. Imagine
attempting to converge on an iterative solution while the
variables are being randomly changedt Imagine at-
tempting to carry out a trial balance while someone is
still posting transactions to the accounts! Imagine two
concurrent jobs in an airline reservations system trying
to sell the last seat on a flightt

One's first reaction is that this shared access is
nonsense and should be forgotten. However, the pres-
sures to use shared access are tremendous. The proces-
sors available today and in the foreseeable future are
expected to be much faster than are the available direct
access storage devices. Furthermore, even if the speed
of storage devices were to catch up with that of the
processors, two more problems would maintain the
pressure for successful shared access. The first is the
trend toward the integration of many single purpose
files into a few integrated databases; the second is the
trend toward interactive processing where the processor
can only advance a job as fast as the manually created
input messages allow. Without shared access, the entire
database would be locked up until a batch program or
transaction and its human interaction had terminated.

The performance of today's direct access storage
devices is greatly affected by patterns of usage. Per-
formance is quite slow if the usage is an alternating
pattern of: access, process, access, process, . . . , where
each access depends upon the interpretation of the
prior one. When many independent accesses are gen-
erated through multiprogramming, they can often be
executed in parallel because they are directed toward
different storage devices. Furthermore, when there is a
queue of requests for access to the same device, the
transfer capacity for that device can actually be in-
creased through seek and latency reduction techniques.
This potential for enhancing throughput is the ultimate
pressure for shared access.

Of the two main functions of database management,
inquiry and update, only update creates a potential
problem in shared access. An unlimited number of jobs
can extract data simultaneously from a database with-
out trouble. However, once a single job begins to up-
date the database, a potential for trouble exists. The
processing of a transaction may require the updating of
only a few records out of the thousands or possibly
millions of records within a database. On that basis,
hundreds of jobs could be processing transactions con-
currently and actually have no collisions. However, the
time will come when two jobs will want to process the
same record simultaneously.

The two basic causes of trouble in shared access are
interference and contamination. Interference is defined
as the negative effect of the updating activity of one job
upon the results of another. The example 1 have given
of one job running an accounting trial balance while
another was posting transactions illustrates the inter-

ference problem. When a job has been interfered with,
it must be aborted and restarted to give it another
opportunity to develop the correct output. Any output
of the prior execution must also be removed because
new output will be created. Contamination is defined as
the negative effect upon a job which results from a com-
bination of two events: when another job has aborted
and when its output (i.e. changes to the database or
messages sent) has already been read by the first job.
The aborted job and its output will be removed from the
system. Moreover, the jobs contaminated by the output
of the aborted job must also be aborted and restarted so
that they can operate with correct input data.

A critical question in designing solutions to the
shared access problem is the extent of visibility that the
application programmer should have. The Weyer-
haeuser Company ' s shared access version of I-D-S was
designed on the premise that the programmer should
not be aware of shared access problems. That system
automatically blocks each record updated and every
message sent by a job until that job terminates nor-
mally, thus eliminating the contamination problem en-
tirely. One side effect of this dynamic blocking of
records is that a deadlock situation can be created when
two or more jobs each want to wait for the other to
unblock a desired record. Upon detecting a deadlock
situation, the I-D-S database system responds by abort-
ing the job that created the deadlock situation, by re-
storing the records updated by that job, and by making
those records available to the jobs waiting. The aborted
job, itself, is subsequently restarted.

Do these deadlock situations really exist? The last I
heard, about 10 percent of all jobs started in Weyer-
haeuser's transaction-oriented system had to be aborted
for deadlock. Approximately 100 jobs per hour were
aborted and restarted! Is this terrible? Is this too
inefficient? These questions are hard to answer because
our standards of efficiency in this area are not clearly
defined. Furthermore, the results are application-de-
pendent. The Weyerhaeuser I-D-S system is 90 percent
efficient in terms of jobs successfully completed. How-
ever, the real questions are:

- - W o u l d the avoidance of shared access have per-
mitted more or fewer jobs to be completed each hour?

- - W o u l d some other strategy based upon the detecting
rather than avoiding contamination have been more
efficient?

- - W o u l d making the programmer aware of shared
access permit him to program around the problem and
thus raise the efficiency?

All these questions are beginning to impinge on the
programmer as navigator and on the people who design
and implement his navigational aids.

My proposition today is that it is time for the appli-
cation programmer to abandon the memory-centered
view, and to accept the challenge and opportunity of
navigation within an n-dimensional data space. The
software systems needed to support such capabilities

657 Communications November 1973
of Volume 16
the ACM Number 11

exist today a n d are becoming increasingly available.
Bertrand Russell, the noted English mathematician

and philosopher, once stated that the theory of rela-
tivity demanded a change in our imaginative picture of
the world. Comparable changes are required in our
imaginative picture of the information system world.

The major problem is the reorientation of thinking
of data processing people. This includes not only the
programmer but includes the application system de-
signers who lay out the basic applicatiofi programming
tasks and the product planners and the system pro-
grammers who will create tomorrow's operating system,
message system, and database system products.

Copernicus laid the foundation for the science of
celestial mechanics more than 400 years ago. It is this
science which now makes possible the minimum energy
solutions we use in navigating our way to the moon and
the other planets. A similar science must be developed
which will yield corresponding minimum energy solu-
tions to database access. This subject is doubly in-
teresting because it includes the problems of traversing
an existing database, the problems of how to build one
in the first place and how to restructure it later to best
fit the changing access patterns. Can you imagine re-
structuring our solar system to minimize the travel
time between the planets?

It is important that these mechanics of data struc-
tures be developed as an engineering discipline based
upon sound design principles. It is important that it
can be taught and is taught. The equipment costs of the
database systems to be installed in the 1980's have been
estimated at $100 billion (at 1970 basis of value). It has
further been estimated that the absence of effective

Footnotes to the Turing Award citation on page 653 are:
A general purpose programming system for random access

memories (with S.B. Williams). Proc. AFIPS 1964 FJCC, Vol. 26,
AFIPS Press, Montvale, N.J., pp. 411-422.

2 Integrated Data Store. DPM.4 Quarterly (Jan. 1965).
3 Software for random access processing. Datamation (Apr.

1965), 36-41.
4 Integrated Data Store--Case Study. Proc. Sec. Symp. on Com-

puter-Centered Data Base Systems sponsored by ARPA, SDC, and
ESD, 1966.

Implementation techniques for data structure sets. Proc. of
SHARE Working Conf. on Data Base Systems, Montreal, Canada,
July 1973.

The evolution of data structures. Proc. NordDATA Conf.,
Aug. 1973, Copenhagen, Denmark, pp. 1075-1093.

7 Data structure diagrams. Data Base 1, 2 (1969), Quarterly
Newsletter of ACM SIGBDP, pp. 4-10.

s Set concepts for data structures. In Encyclopedia of Computer
Science, Amerback Corp. (to be published in 1974).
Related articles are:

The evolution of storage structures. Comm. ACM 15, 7 (July
1972), 628-634.

Architectural Definition Technique: its objectives, theory,
process, facilities and practice (with J. Bouvard). Proc. 1972 ACM
SIGFIDET workshop on Data Description, Access and Control,
pp. 257-280.

Data space mapped into three dimensions; a viable model for
studying data structures. Data Base Management Rep., lnfoTech
Information Ltd., Berkshire, U.K., 1973.

A direct access system with procedurally generated data struc-
turing capability (with S. Brewer). Honeywell Comput. J. (to
appear).

658

standardization could add 20 percent or $20 billion to
the bill. Therefore, it is prudent to dispense with the
conservatism, the emotionalism, and the theological
arguments which are currently slowing progress. The
universities have largely ignored the mechanics of data
structures in favor of problems which more nearly fit a
graduate student's thesis requirement. Big database
systems are expensive projects which university budgets
simply cannot afford. Therefore, it will require joint
university/industry and universi ty/government projects
to provide the funding and staying power necessary to
achieve progress. There is enough material for a half
dozen doctoral theses buried in the Weyerhaeuser sys-
tem waiting for someone to come and dig it out. By
this I do not mean research on new randomizing al-
gorithms. I mean research on the mechanics of nearly a
billion characters of real live business data organized in
the purest data structures now known.

The publication policies of the technical literature
are also a problem. The ACM SIGBDP and SIGFIDET pub-
lications are the best available, and membership in these
groups should gro w . The refereeing rules and practices
of Communicat ions of the ACM result in delays of one
year to 18 months between submittal and publication.
Add to that the time for the author to prepare his
ideas for publication and you have at least a two-year
delay between the detection of significant results and
their earliest possible publication.

Possibly the greatest single barrier to progress is the
lack of general database information within a very large
portion of the computer users resulting f rom the dom-
ination of the market by a single supplier. I f this group
were to bring to bear its experience, requirements, and
problem-solving capabilities in a completely open ex-
change of information, the rate of change would cer-
tainly increase. The recent action of SHARE to open its
membership to all vendors and all users is a significant
step forward. The SHARE-Sponsored Working Confer-
ence on Database Systems held in Montreal in July
(1973) provided a forum so that users of all kinds of
equipment and database systems could describe their
experiences and their requirements.

The widening dialog has started. I hope and trust
that we can continue. If approached in this spirit,
where no one organization attempts to dominate the
thinking, then I am sure that we can provide the pro-
grammer with effective tools for navigation.

Communications November 1973
of Volume 16
the ACM Number 11

