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1. Introduction 

The PGS is a FORTRAN-coded system that accepts a 
" translat ion g rammar"  [8, 9, 10] as input and constructs 
f rom it a compact,  machine-coded parser. Each BNF rule 
of the grammar  corresponds to a "code  generator" that 
is called whenever that syntactic rule is applied in a 
parse of some program. Because the PGS assumes very 
little about its code generators, the nature and quality 
of object code generated by a constructed compiler 
depends on the language implementor 's  discretion. 
(However, prepackaged systems of code generators for 
implementing a family of PL/I-like languages are avail- 
able, and other systems are being developed at Purdue.) 
In fact, object code need not be generated by a compiler; 
an implementor could choose instead to construct pro- 
gram trees, produce macro expansions, or execute 
source programs interpretively. 

The PGS operates in five distinct phases. In the first 
phase, the translation grammar  input to the PGS is 
converted into a simplified normal  form for internal 
use. The second phase computes the contexts in which 
each rule of the resulting grammar  is to be applied 
during the process of parsing. The third phase uses 
these contexts and the normal-form rules to generate 
the table description of a bounded-context pushdown 
automaton translator system. The fourth phase com- 
presses the table description so as to minimize the 
number of tests necessary in the syntactic portion of the 
compiler under construction. The fifth phase generates 
a table-driven compiler that is linked to the code gen- 
erators by subroutine calls. 

2. Notation and Basic Definitions 

A translation grammar  (TG) is a six-tuple (V, T, Q, 
S, P, R) where: 

(a) V is a finite set of symbols called the vocabulary. 
(b) T is a proper subset of  V called the terminals. 
(c) Q is a finite set of  symbols, including the empty 
symbol e, called code generators. 
(d) S is a distinguished member  of V -- T called the 
initial symbol 
(e) P is a finite set of syntactic rules P~ of the form 
A - - ~ x ,  whereA # x, A i s i n  V - -  T, a n d x i s i n  V +. 
(f) R is a single-valued function f rom P into Q. 

V* denoteg the set of all strings composed of sym- 
bols f rom V, including the empty string (denoted by e); 
and V + = V X V*. A is called the left part and x the 
right part of any rule of the form P~ = A ~ x. Early 
capital letters, A, . . . ,  S are in V -- T, and early small 
letters a, b, c are in T. Late small letters u . . . .  , z are in 
V*, except when they appear as the right parts in rules 
(in which case, they are in V+). Late capital letters are 
in V. 

I f  A --~ w is a rule, an immediate derivation of one 
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string y = u w v f r o m a n o t h e r x  = uAv is written x ~ y .  

The transitive complet ion of  this relation is a derivation 
and is written x ~ y, which means that there exists a 
sequence of  strings (wo, w~, . . . ,  w,)  such that  x = 
w0 ~ w~ ~ • • • ~ w,~ = y for n >_ 0. For  the canonical  
derivation, we choose the right derivation in which each 
step is of  the form uAv ~ uwv, with v in T*. 

x is a sentence of  G if x is in T + and x can be derived 
f rom S. The language of  a T G  is then the set of  sentences 
that  can be derived f rom S in G: 

L(c) = { x : ( S *  ~) & (x c :r+)]. 

I f  x is in L(G),  then a parse of x (written Parse(x)) is 
the sequence of  rules (P~, . . . ,  P , )  such that  Pj im- 
mediately derives wi-~ f rom wj ( j  = I, . . . ,  n) and 
x -- w0, S = w,. Corresponding  to the parse of  x is 
the translation of  x (written T(Parse(x)) consisting of  
the sequence of  code generators (R(P1), . . .  , R ( P , ) ) .  

If  (P1, • . . , P , )  is a parse of  string x into symbol  S, 
there exists a permutat ion of  (PI, . . . ,  P , )  that  is 
lef tmost;  i.e. its rules cause a right derivation when 
taken in reverse order and applied to S. We define an 
unambiguous grammar  G to be one in which every x in 
L(G) has exactly one leftmost parse, denoted by 
LParse(x).  The translat ion T(LParse(x ) )  will be the 
canonical  code generation sequence of  our sentence x. 
Of  course, this code generation sequence for x may in- 
clude " e r ro r  messages" produced by one or more code 
generators,  in which case x is syntactically well formed,  
but anomalous  for some semantic reason. 

We next define a normal  form for TG's ,  in terms of  
which a left-most parsing a lgor i thm can be designed. 
This normal  form simplifies the design of  a conversion 
process f rom T G ' s  into leftmost parsing algori thms by 
standardizing the calculations necessary for convert ing 
syntactic rules into decisions of  the parser. 

3. Normal Form of Translation Grammars 

A translation g rammar  G = (V, T, Q, S, P, R) is 
said to be in normal f o r m  if all the rules in P are of  the 
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forms K~_I --~ K~_IK~ or Kr' ~ K~ or K /  -+ Km,  or 
K~+~ ~ a~. (The mot ivat ion for using indices r and s will 
be apparent  in the next section.) 

A simple algori thm exists for convert ing any T G  H 
into a T G  H '  in normal  form such that  L ( H )  = L ( H ' )  
and T(LParse(x) )H = T(LParse(x ) )u ,  for all x in 
L ( H ) .  Because of  this algorithm, all derivations of  sen- 
tences in L ( H )  are in one- to-one correspondence with 
derivations of  sentences in L ( H ' ) .  The algori thm works 
as follows: 

Step 1. Inspect  the rules of  H to find the largest subset 
of  rules of  the form A --+ al • • • aj • • • akAk+xU where 
k _> j ~ 1 and all rules in the subset have the same 
prefix y = al . - .  a~. In all rules of  this subset, re- 
place y by a new symbol  A'  and add the rule 
A'  ~ y to the rules of  H and the product ion  (A' 

y,e) to R of  H .  Continue Step 1 until no subsets 
o f  P remain to be merged. 

Step 2. The rules of  H that  result f rom this prefix merg- 
ing are either in normal  form already (and so trans- 
fer into P ' )  or are of  the form Pi = A --~ X1 • • • X , ,  
(n >_ 2). Each such rule is t ransformed into the 
following sequence of  normal  form rules in P ' :  
Bo ~ B,+IX,_v for v = 0, 1, . . .  , n -- 2, where B0 
is A, and B,_I is X1, if )(1 is in V - T of  H;  other- 
wise, an addit ional  rule of  the fo rm Bn_l --~ )(1 is 
included in P '  of  H ' .  

Step 3. The By are treated as new and distinct elements 
of  V' - T '  of  H ' .  Each new rule generated by this 
t ransformat ion  becomes an addit ional  product ion  
( B ~ 4 .  B~+IX,_v, e) of  R '  for v = 1, . . . ,  n -- 2. 
For  v = 0, the product ion  (A --+ B1X,, Q~) goes 
into R',  where (A ~ ) ( 1 . . .  X,,  Q~) is the cor- 
responding product ion  in R. 

The fact that  the B~ of  the a lgor i thm are " n e w  and 
distinct" leads to a simple p roof  of  the one- to-one cor- 
respondence between parses of  sentences in L ( H )  and 
L ( H ' ) .  Since each rule of  P corresponds to a unique 
rule or sequence of  rules in P ' ,  it follows that,  for every 
parse possible in H, there is a corresponding parse in 
H ' ,  and conversely. Hence, in particular, T(LParse (x ) )u  

= T(LParse(x ) )~ ,  for all x in L ( H ) .  In addition, am- 
biguity in L ( H )  is equivalent to ambigui ty  in L ( H ' ) .  

4. Leftmost Parses and Normal Form Grammars 

We introduce boundary  markers  # to the vocabu-  
lary of  G. A new initial symbol  S '  now takes the place 
of  S in G, and three new rules are added to P :  

P,,+I = S'  ---+ Jl# 
P,  = J1---+ J2S 

P1 = J~. ~ # 

The corresponding product ions  in R are (P1, e), (P, ,  e), 
and (P,,+I, e); i.e. no added code is generated? With 
these rules, boundary  markers  are made to occur at 
both  ends of  all strings produced by the grammar .  

Let w0 = #al . . .  a ,#  be a string in the language of  
such a grammar .  In the initial step of  the leftmost 
parsing algorithm, rule PI is applied, yielding string 
Wl = J2al . ' .  a,#. After j steps, w0 has been reduced 
to wj = J 2 K 1 . . .  K r a ~ . ' .  an#(1 < r < s _< n q- 1). 
I f  w0 is in L(G),  the leftmost sequence of  rules 
( P I ,  • • • , Pj) are precisely the first j reduct ions of  the 
leftmost parse of  w0 to S'. 

For  the (j  + 1)-th reduction, five different cases 
must  be distinguished. 

Case O. S'  does not  produce w i. 
I f  S '  does produce w~., we have to distinguish between 

the following possibilities. 

x In practice, our TWS provides "system functions" to be 
performed immediately prior to and following the translation of a 
program. 
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Case 1. A rule of the form Pi+l = K~'+I ~" a8 reduces 
wj to wi+x. 

Case 2. A rule of the form Pi+l = K / ~  Kr reduces 
Wj t o  Wj+I. 

Case 3. A rule of the form P~+x = K~-I ~ K~_IKr 
reduces wj to Wj+l. 

Case 4. A rule of the form Pj+~ = K/  ~ K,a, re- 
duces wi to w~+x. That  only these cases need be con- 
sidered is proved in [8]. 

In general, the decision concerning which of the 
Cases 1-4 apply for the ( j  -k- l)-th step of a leftmost 
parse must be made in terms of context. (As an ex- 
ample, there may exist rules in the grammar  having 
K~_~K~ and K~a, on the right part.) To decide which 
case applies at a given step of the parse requires al- 
gorithms for discovering what symbols can legally be 
adjacent to the symbols being replaced in that step of 
the reduction while w0 is a sentence of G. The algorithms 
to be given here are similar to those of Floyd [1] and 
Wirth and Weber [11] in that they construct all legal 
co-occurrences of triples of symbols in some language 
from that language's grammar.  

Case A. For a rule of the form Pj+x = K' ~ K~a8 
(or Pj+~ = K'  ~" a~) to apply in the (j  + 1)th reduction, 
the symbol K~_~ to the left of K' (or K~ to the left of K')  
must be present in some derivation of wj+~ from S'. 
That is, there must be some nonterminal Q for which 
(Q-~  Kr_IA C P) & (A * K'u) (or (Q ~. K~A C P) & 
(A ~ K'u)).  Then, the pairs (K~_x, a~) (alternatively, 
(K~, a,)) are the contexts in which P~+~ applies. 

Case B. A rule of the form Pj+I = K ' - I  ~-  K~_IK~ 
is applied in the context (K~_a, a,) if and only if there is 
some nonterminal  Q for which (Q --,'. AB ~ P) & 
(B =~ a.v) & (A ~, uK'-~). 

Case C. A rule of the form P~+~ = K /  ~- K~ is 
applied in the context (K~-x, a~) if and only if there is 
some nonterminal Q for which either (Q --~ Kr_xA C P) 
&(A  ~ B v )  &(B---~CD C P) & ( D ~ a ~ u )  & ( C ~ K / )  
or (Q--> AB C P) & ( B ~  a,v) & (A ~ uC) & (C 
K~_ID C P) & (D ~ K/).  

After the contexts for some grammar  have been 
determined as in Cases A, B, and C above, there may 
exist a subset of the rules for which, when their right 
parts and contexts are taken together, the resulting 
triples K~_~K~a~ are the same. We deal with this situa- 
tion by using a one-symbol lookahead algorithm that 
tests symbol a,+l in the input sentence of the parser to 
decide which of the conflicting rules to apply as the 
next step in a parse. As a simple example, the necessity 
for this lookahead may arise in ALGOL 60 multiple as- 
signment statements of the form v := y := u H- I; 
where the parser must look past the variable identifier 
to see whether it is followed by an assignment symbol 
(: = ) or an operator ( + ) .  Appendix I gives the algorithm 
for calculating lookahead symbols. 

Experience in producing ALGOL W and EULER com- 
pilers at Purdue has shown that one-symbol lookahead 
is adequate to handle parsers for these languages, and 
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our XPL compiler [12] gets by without any one-symbol 
lookahead. Where one-symbol lookahead is inadequate 
for constructing a unique parser, the PGS currently in 
use signals a possible ambiguity in the grammar  under- 
going conversion. Another approach,  which involves 
transforming LR(k) grammars (by Knuth ' s  criterion) 
into grammars  that can be parsed in our system with- 
out lookahead, is currently being developed and tested 
at Purdue. 

5. Pushdown Automaton Parsing Model 

The most natural method for implementing leftmost 
parsers constructed from our normal-form grammars  is 
to use a table-driven algorithm in which the parsing 
table contains the triples of symbols defined in Section 
4. An automaton model for this algorithm was chosen, 
and we will refer to this model as a bounded-context 
acceptor (BCA). 

Our BCA has the following inventory of vocabularies 
and auxiliary data structures: It has a finite set of  states 
(each state identified with a region of the parsing table), 
a finite vocabulary consisting of symbols that occur in 
its source programs, and an auxiliary stack (also called a 
pushdown store) having a stack vocabulary. In addition, 
it uses an initial (or starting) state, a final (or accepting) 
state, and the same boundary symbol # that was intro- 
duced in Section 4. 

During a parse, the aCA always operates in some 
state where it scans the topmost  stack symbol and the 
next source program symbol. By applying one of the 
normal  form rules of its grammar,  the BCA transfers to 
another state, possibly consuming either the current 
stack symbol or source program symbol in the process, 
and possibly storing a new symbol on top of its stack. 

The states, stack symbols, and source program 
symbols for a BCA can be determined by inspection of 
its normal-form grammar  as follows: 
1. The terminals of the grammar  are the source pro- 
gram symbols. 
2. The nonterminals Kr_i in rules of the form K ' - I  --~ 
Kr_l Kr are the stack symbols of the BCA. 
3. The nonterminals Kr in rules of  the form K'r-~ -+ 
Kr_a K~, K / - +  Kras, and K / ~  Kr are the states of the 
BCA, where each possible transition from state Kr cor- 
responds to one of the leftmost parse reductions indi- 
cated by the three normal-form rules above. 
4. In the starting state So, occur all transitions cor- 
responding to leftmost parse reductions caused by rules 
of the form K~+I ~ as. 
5. The final state is the initial symbol S '  of the input 
grammar.  

Our choice of stack and state symbols is motivated 
by the following observations: As defined in (2), the 
Kr-1 stack symbols are the roots of parse subtrees which 
must await in sequence the construction of the next 
subtree in the leftmost parse before they may be joined 
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to that subtree by a rule K~I ---+ K~_IK~. Conversely, the 
K~ state symbols are the roots of parse subtrees which 
may be joined immediately to a larger subtree of the 
leftmost parse through application of one of the rule 
forms in (3) above. 

Thus, for our BCh scheme to work with a given 
normal-form grammar, its stack and state symbols 
must be disjoint. Appendix II contains a simple trans- 
formation that can be applied to all normal form gram- 
mars for ensuring disjointedness of stack and state 
symbols. 

With these preliminaries, we arrive at the following 
table-driven parser definition: A BCA P is defined to be 
a seven-tuple P = (Q, T, N, M,  #, So, F) where: 

Q is the finite set of states. 
T is the finite set of source program symbols. 
N is the finite set of symbols in the stack vocabulary. 
So is the initial state and F is called the final state. 
T N N = {#}. 
M is the table that maps a subset of N X Q X T into 

the subsets of {e} X Q X T U  N × Q X {e} U 
N X Q X T U  N X N X {So} X ( T U  {e}). 

The BCA for a given normal-form grammar G accepts 
L(G) when its M-table is constructed using the follow- 
ing correspondence between steps in a leftmost parse 
and states in the SeA for G (see [7] for a proof of this). 
The correspondence gives a four-step algorithm for 
constructing M-table entries, and transforms the initial 
grammar symbol S' into the final BCA state F. 

Step I. Rule A¢ ~ .  A¢IA,2 with contexts (A¢~, a~) : 
If A~ C N, then (A¢, So, a~) C M ( A a ,  A,2, a~). 
If A~ C Q, then (e, A,, a~) C M(A;I,  A~2, a~). 
These transitions take care of all possibilities arising 
from Case 3 of the leftmost parsing algorithm. 

Step II. Rule A~ --~ A~a~2 with contexts (K~_I, a~):  
If A~ E N, then (Kr_xAk, So, e) ~ M(Kr_x, A~,  ak~). 
If A~ E Q, then (K,._x, A~, e) E M(Kr_I, A~I, ak~). 
These transitions take care of all possibilities arising 
from Case 4 of the leftmost parsing algorithm. 

Step III. Rule As ~ a~ with contexts (K~, a~) : 
If As E N, then (KrAs, So, e) ~ M(Kr, So, a~). 
If As E Q, then (K,, As, e) ~ M(Kr, So, a~). 
These transitions take care of all possibilities arising 
from Case 1 of the leftmost parsing algorithm. 

Step IV. Rule A~ --+ An with contexts (K,_I, a~) : 
If As E N, then (Kr_IA~, So, a~) ~ M(K~._I, A~x, a,). 
If As E Q, then (K,_I, As, a~) E M(Kr_~, As~, a,). 
These transitions take care of all possibilities arising 
from Case 2 of the leftmost parsing algorithm. 

When all transitions of the BCA have been defined 
as described above, the PGS has completed the construc- 
tion of the full M-table for a BCA that performs leftmost 
parses on the sentences of its language. By causing the 
BCA tO emit code generator symbols from appropriate 
transitions of the M-table, we obtain a leftmost com- 
piler. 

6. Compression of M-Tables 

The BCA parser contains more information than 
needed for a successful parsing algorithm. As we will 
demonstrate here, it is often not necessary to know all 
contexts for which one step of a derivation is valid. 
It suffices instead to know that the current reduction is 
permissible on the condition that its ignored left or right 
context is the correct symbol to appear in some later 
step of that derivation. For example, consider some BCA 
having a state A in which all transitions arise from n 
rules of the form A~ ~ Ai lA (i = 1, . . . , n). If the A a  
are all distinct symbols, then they alone are sufficient to 
determine the state transitions, and so we can write the 
following entries into the compressed M-table: 
M ( A a ,  A ,* )  = ~, ( i =  1 , . . .  ,n)  w h e r e ~ =  (A~,S0,*) 
i f A ~ i s  a stack symbol, a n d ~  = (e, Ai ,*)  i f A ~ i s  a 
state of the BCA. Note in the above that the asterisk (*) 
means that the corresponding input symbol of the BCA 
is ignored in determining the transition. 

Likewise, we can compress a state B of the BOA in 
which all transitions arise from m rules of the form 
Bj --+ Bbjx (j  = 1 . . . .  , m): If the bsl are all distinct 
symbols, then they alone are sufficient to determine 
unique state transitions, and so we can write the follow- 
ing entries into the compressed M-table: M(*, B, bsl) = 
~j, (j  = 1 , . . . ,  m). An identical analysis applies to the 
initial state So, whose p entries all arise from rules of 
the form Ck ~ ckl(k = 1, . . . , p). 

Next, suppose in the first example above that two or 
more of the symbols All are not distinct. In this case, 
assuming that the full contexts (A~I, aa) are distinct, 
the M-table for state A can be reordered so that those 
transitions requiring full context inspection are con- 
sidered before those for which it is only necessary to 
inspect the A~I symbol. Similar considerations apply for 
the second example above involving full-context in- 
spection followed by right-context only inspection of 
the M-table entries for a given state. 

In more complex situations, we are often faced with 
a combination of the first two examples above, namely 
that all transitions from a state C arise from n rules of 
the form C~ --+ C~IC(i = 1, . . . , n) and from m rules of 
the form Cs' ~ Ccj2 ( j  = 1, . . . ,  m). The further com- 
plication here is that one (or more) of the symbols 
Cpl (1 < p < n) may also be a left context for some 
rule C~' ~ Cc'q2 (1 _< q < m). In this case, the specifi- 
cation of Cpa alone in an M-table entry is not sufficient 
to determine uniquely which state transition, Cp ~ CpxC 
or Cq' --~ Cc~2 should apply. This anomaly can be re- 
moved by first inspecting the full context (C~1, c~2) to 
determine if the transition Cq ~ Cc~2 should apply. 
Thereafter, inspection of Cp~ alone is sufficient to deter- 
mine the transition Cp ~ Cp~C and inspection of c~2 
alone is sufficient to determine the transition Cq' ~ Cc~. 
It could be argued that this anomaly is more easily re- 
moved by first inspecting c~2 (via a right-context only 
entry) to determine if the transition Cq' ~ Cc~2 should 
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apply. But then we are faced with the symmetric 
anomaly that c~z may be a right context for some rule 
Cr --~ C ~ C  (1 < r < n). An algorithm for determining 
such a mixed inspection order for left-context only and 
right-context only entries must further decide where to 
"break the chain" (by specifying a full context entry) in 
circular cases, the simplest of which is a state arising 
from the following rules : 

C~ ~ C,~C one of whose contexts is (C~, c~2). 
Cq' ~ Cc'~z one of whose contexts is (C~, c~z). 
Cr --.  C ~ C  one of whose contexts is (C~, c'~). 
C,' ---+ Cc'~z one of whose contexts is (C~1, c~.~). 

Besides the fact that such an algorithm is too com- 
plex to be of practical applicability, the inspection of 
the resulting "mixed left-context only and right-context 
only" subtable requires more testing and masking than 
does inspection of a "pure left- (or right-) context only" 
subtable. For these reasons, we have chosen to remove 
such anomalies by immediately specifying a full context 
entry and by producing a pure left-context only sub- 
table which must be inspected before a pure right- 
context only subtable. 

With these examples in mind, and ignoring for the 
present the problem of one-symbol lookahead, we can 
develop an algorithm that generates a compressed 
M-table by breaking up the M-table for each state into 
as many as four separate subtables that must be in- 
spected in sequence, namely: 
1. A full-context (FC) subtable followed by 
2. A left-context (LC) with unspecified right-context 
subtable followed by 
3. A right-context (RC) with unspecified left-context 
subtable followed by 
4. A no-context (NC) table whose one entry specifies 
a transition in which no contexts need be inspected. 
After describing this compression technique, we can 
explain why it is suboptimal and what further refine- 
ments of the technique might be attempted. 

Basically, the compression algorithm works as 
follows: The M-table entries for a given state A # So 
are partitioned into three disioint subsets of transitions, 

m , a  = {M(A,a ,  A,  aa) = ~:A~---~ A,~A ~ P } ,  

M~a = {M(Aj~ ,  A ,  ajz) = ~:  A~---~ Aa~2 ~ P} , 

M3A = {M(A~.3, A,  a~)  = ~ :  A~---+ A ~ P} .  

The algorithm then attempts to construct FC, LC, RC, 
and NC subtables for this state, denoted by 

MFCA , MLCA, MRCA, and M u c a  

respectively. This is done by drawing entries from Mla 
until empty, then successively exhausting the entries 
in M2A and M3a, as shown in the State Compression 
Algorithm. 

The tables MFCA, MLCA, MRCA, and MNCA that result 
in each state of a BCA from the application of the State 
Compression Algorithm are then the entries of the com- 
pressed M-table for the BCA. In the special case of the 
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T h e  S t a t e  C o m p r e s s i o n  A l g o r i t h m  

for V entries M(A,I, A, ai l )  = ~i of MIA 
do if M L C A  contah~s an entry of  the form M(Aa, A, *) = ~p 

then if ~ # ~i 
then enter M(A,.I, A, a,~) = ~ into M r c  a 

else enter M(Aa,  A, *) = ~i Otto MLCA 
end 

for V entries M(Ajl, A, ajl) = ~i of Mza 
do if  Mnca contains an entry of the form M(*, A, aiR) = ~q 

then if ~q ~ ~j 
then enter M(Aj~, A, aj~) = ~i into M~'CA 

else enter M(*, A, aj~) = ~jinto MRCA 
end 

for V entries M(Akl, A, akl) = ~k Qf M3A 
do if MLCA colttains an entry of  the form M(Akl, A, *) = ~p 

then if ~, # ~k 
then enter M(Ax.1, A, akl) = ~k iltto MFCA 

else if MRCA contains an entry of  the form M(*, A, akt) = ~q 
then if ~q ~ ~k 

then enter M(Akt, A, *) = ~k btto MLCA 
else if MN Ca contains an entry of the form M(*, A, *) = ~r 

then if ~, ~ ~k 
then enter M(*, A, akl) = ~ into Meca  

else enter M(*, A, *) = ~ into MNCA 
end 
halt 

initial state So, only the M v c a  and MRca tables are 
needed, and the compression method sketched at the 
beginning of this section is used for compressing the 
entries of So. Normally, there are other states of the 
Ben for which one or more of the partial-context tables 
resulting from compression are empty. 

We can now consider the problem of compression 
in some state A of a BCA for which one-symbol look- 
ahead is necessary. Since in practice lookahead is re- 
quired only for a very small percentage of M-table 
entries, it is dealt with by first marking those entries of 
Mla, M2a, and M3~ for which M(Kr ,  A,  as) = ~,, 

(u = 1, . . . , n) & (n >_ 2), and by creating a fifth table 
for state A, Mlsa = {M(*, A,  a~as+~) = ~u : (M(Kr, A, 
a,) = ~,) & (u C { ( 1 , . . . ,  n) & (n_> 2)}. With the 
lookahead conflicts marked for state A, the compression 
algorithm can then operate on the remaining M-table 
entries for that state. In the resulting compressed BCA, 
state A has up to five context tables that are inspected 
in the sequence (M~sa, Mvca ,  MLCA, Mnca,  M u c a ) .  

The algorithm for calculating the one-symbol look- 
ahead entries is given in Appendix I. 

7. R e su l t s  O b t a i n e d  U s i n g  the C o m p r e s s i o n  A l g o r i t h m  

We might first ask just how well could the compres- 
sion algorithm be expected to work, given the BCA 
parser model that we are using. For n normal-form 
rules input to the BCA construction phase of our PGS, 
it is easy to see that the most compressed parser can 
have no fewer than n entries in its tables. This theoretical 
minimum number of entries is actually reached by our 
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compression algorithm for the following special cases 
of normal-form grammars:  

Case a. Finite automaton grammars having rules of 
the form A ---+ a and B ~ Cd exclusively; or 

Case b. Grammars  having rules of the form A --~ a, 
B --~ CD, and D ~ Ef, where the E's and D's are dis- 
joint. 

For more complex grammars,  it is easy to show by 
example that additional context will usually be required 
to determine some transitions, and so the theoretical 
minimum of table size is not generally attainable. As 
can be seen in Table I, however, our compression al- 
gorithm allows us to approach this minimum for repre- 
sentative programming language grammars. 

As shown in Table I, our minimum table size is 
better than that obtained by the Ichbiah and Morse 
algorithm [3, 4]. This occurs because the lower bound 
on table size reached by their algorithm is given by the 
number of normal-form rules for their input grammar  
(normal form in our sense, because their parsing tables 
consume one symbol at a time) plus the number of 
distinct terminals in rules of the form B ---+ Cd. Since 
our lower bound of table size for the same grammar  is 
only the number of normal-form rules, our algorithm 
yields inherently smaller parsing tables. 

8. Improvements Possible in the Compression Algorithm 

As can be readily seen from an inspection of the 
compression algorithm, the size and contents of a com- 
pressed M-table are affected by the sequence in which 
entries are selected from tables Mla, M2A, and M3a of 
each state A in the original BCA. Moreover, for each 
possible sequence of entry choices in the compression 
of some BCA state, a different compression may result 
f rom re-ordering the inspection of partial-context tables 
so that MRca precedes MLCA. In fact, to find the smallest 
compressed M-table for some state A of a aCA involves 
looking for a minimum over all possible sequences for 
selecting entries in M1A, M2A, and M~a and over the two 
possible orderings of partial-context tables, namely 
(M2~cA, MLeA, MRCA, MNCA) and (M,~ca, M,~ca, MLOA, 
Muca). Such an "op t ima l "  compression scheme is un- 
workable for any but the smallest of M-tables, because 
the number of steps for compressing any state with 
n = nla + nza + n3a entries grows in size by 
2nla !n2a !n3a ! 

We are currently developing near-optimal, heuristic 
strategies for improving the PGS compression algorithm 
while avoiding the combinatoric problem outlined 
above. 

Without further M-table compression, it is possible 
to economize on the number of computer words needed 
to represent an M-table by merging the full context 
table entries within each state. This merging is accom- 
plished by implementing each full context entry as a 
pair of partial context tests, and then merging the 
second tests so that m full context (60-bit) entries hav- 
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ing one context in common are coalesced into m + 1 
partial context (30-bit) table entries. By optimally 
merging full-context entries on common contexts, we 
also reduce the sequential search time for each state of 
the compressed BCA. 

Since our parser performs sequential tests in each of 
its states, speed of parsing depends critically on mini- 
mization of state size. Experience with our PGS shows 
that large programming language compilers tend to 
have many small states (two or three entries when com- 
pressed), together with a large initial state (around 40 
or 50 entries). Furthermore,  it is easy to demonstrate 
[8] that as many as 50 per cent of the steps in a leftmost 
parse involve a transfer out of the initial state of the 
parser. We thus extract the most speed f rom our parser 
by doing a one-step, indexed search of the initial state 
using the preprocessor-supplied symbol index and se- 
quential searches of the remaining parser state subtables. 

9. Implementation of PGS Compilers 

The current version of the PGS supplies a standard, 
assembly-language driver program for inspecting 
M-table entries. This subroutine receives input program 
symbol indices in sequence f rom a standard, FORTRAN 
preprocessor and searches the current M-table state to 
determine stack actions, code generator calls, and trans- 
fers to the next state of the M-table. 

When all entries of a state have been searched 
without finding a match (where M~c is empty for that  

Table I. Statistics for Three PGS Compilers 

Expression 
sequence 

(Appendix XPL Algol 60 
Grammar III) [12] [12] 

Number of BNF 16 119 162 
productions 
Total of contexts 116 5019 7344 
generated 
Theoretical minimum 28 182 248 
number of M-table entries 
Number of entries in 37 217 361 
compressed M-table 
Size of parser 92 207 292 
in 60-bit words x 
Size of compiler driver 103 288 - -  
in 60-bit words 2 
Size of Ichbiah-Morse 105 - -  484 
parser in 60-bit words a 

Assuming no code generators, a 66-word driver program (excluding the 
stack) is used, together with an M-table having 30-bit packed entries in which 
8 bits (for specifying the index of code generators) are wasted. 

2 Assuming code generator subroutines linked to the parser, a 66-word 
driver program (excluding the stack) is used with an M-table having 30-bit 
packed entries. Eight bits of each entry are used as an index into a table o f  code 
generator subroutine entry addresses, stored one address per 60-bit word, The 
added size of  the compiler driver is due to this table of  addresses. 

a Based on a computer pr intout  supplied to us by J.D. Ichbiah, we have 
calculated that the Ichbiah-Morse driver program occupies 70 60-bit words  
when machine coded for the CDC-6500. Thirty-bit packed entries specify its 
actions and 15-bit packed entries specify their indirect jump table used for 
parsing. Each 30-bit entry carries a vacant 7-bit field that can be used to specify 
the index of  code generators. 
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state), a syntactic error has been found in the input 
program. For this case, the driver program calls an 
"error-message code generator," erases the current 
input symbol, and resets itself to the initial state. Thus, 
standard recovery from an input program error con- 
sists of a sequence of returns to So until a segment of 
the input program is reached that can be parsed with- 
out reference to previous segments of the input program. 
Of course, syntactic errors block execution of the com- 
piled program. 

As currently implemented, a typical PGs-generated 
XPL compiler occupies a total of 14,165 words of core 
memory and compiles typical programs at a speed of 
14,000 cards per minute on the CDC-6500 computer. 
This compares with a measured speed of 13,000 cpm 
for the CDC supported, nonoptimizing, RUN YOga'RAN 
compiler and 16,000 cpm measured on RUM (the Uni- 
versity of Washington version of RUN). The XPL parser 
and its stack occupy under 6 per cent of the space re- 
quired for the entire compiler; 31 per cent of compila- 
tion time is currently spent in the parser, 15 per cent in 
the preprocessor, 47 per cent in the code generators, 
and the remaining time in doing input-output. 
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Appendix I. One-Symbol Lookahead Calculations 
The PGS provides for one-symbol lookahead when- 

ever full-context specification is insufficient to drive the 
BCA deterministically. When this necessity arises, the 
method used in Section 4 to calculate contexts is ex- 
tended to construct all legal co-occurrences of four- 
tuples of symbols, thus calculating contexts which in- 
clude a lookahead symbol. 

Case 1. A rule of the form Pj+I = K/ --~ K~a, (or 
Pi+* = K/  --~ a,) is applied in the lookahead context 
(K~_~, a,a,+l) if and only if there is some nonterminal Q 
for which either 
(Q ---+ Kr-l.4 ~ P) & (`4 ~ Bv) & (B ~ CD ~ P) 

a (D ~ a,+lu) a (C ~ K/) or 
(a  --+ ,4B ~ P) ~ (B ~ as+iv) ~ (/1 ~ uC) 

a ( C ~ K , _ I D  6 P) a ( D ~ K / ) .  

Case 2. A rule of the form Pj~_~ = K:-~ ---+ K,_IK, is 
applied in the lookahead context (K,_,, a,a,+~) if and 
only if there is some nonterminal Q for which either 
(Q ---+ ,4B 6 P) & (B ~ a,+xw) & (.4 ~ uC) 

a (C--+ DE E P) a (E ~ a,) a (D ~ vK:-~) or 
(Q---+ AB E P) & (B ~ Cw) & (C ~ DE E P) 

& (E ~ a,T,v) & (D & a.) & (A ~ uK:_,) 

Case 3. A rule of the form Pj+~ = K /  ~ K, is 
applied in the lookahead context (K,_~, a,a,+,) if  and 
only if there is some nonterminal Q for which either 
(Q ~ ,4B E e) a (B ~ a.+~w) a (.4 ~ uC) 

& (C----> DE 6 P) & (E ~ a~) & (D =~ vF) 
a (F--~K,_IGE P) a (G ~ K / )  or 

(Q ~ ,4B C P) & (a ~ Cw) & (C---* DE E P) 
& (E A a,+,v) & (D ~ a,) & (A ~ uF) 
& (F---+ K,_,G E P) a (G ~ K/) or 

(Q -~ K,_~,4 6 P) & (`4 ~ By) & (B--~ CD E P) 
a (a~a,+~u) a ( C ~ E )  a ( E ~ F G C  P) 
& ( G - - a . )  & ( F = ~ K / )  or 

(Q --+ X,_,,4 6 P) & (`4 ~ aw) & (B ~ CD E P) 
& (D =~. Ev) & (E ---+ FG 6 P) & (G =~ a.+,u) 
a ( r ~ a , )  & ( C = ~ K / )  or 

(Q ---* ,4B E P) a (B ~ a,+,u) a (A ~ vC) 
& (C--+K,_~D E P) & (D ~ E )  & ( E ~ F G  6 P) 
& (G ~ a.) & (F Z X/) 

Appendix II. Prevention of State-Stack Conflicts 
The Boa construction algorithm generates a non- 

unique acceptor for a normal-form grammar having 
some symbol J that is both a state and a stack symbol. 
When this conflict arises, we transform the normal- 
form grammar as follows: 
1. Create a new symbol J '  and include J '  in V' -- T'. 
2. Wherever nonterminal J appears as a stack symbol 
in the right part of a rule ,4 ~ JB, replace that rule by 
the rule ,4 ~ J'B. 
3. Add the rule J '  ~ J to P'  and the production 
(J '  ~ J, e) to R. 

This transformation makes J '  a stack symbol and J 
a state symbol in the resulting BCA, and leaves un- 
changed the language generated by the resulting normal- 
form grammar. 

Appendix IlL A Simple Expression Sequence Grammar 
Input to the PGS 

EXPRG < > NAME I,[UNBER . 
PROGRAM = $ <  A S S I G N H E N T - L I 5 T  $ >  . 
ASSIGNHENT-LIST = ASSIGNMENT , 

ASSIGNIIENT-LIST ASSIGNMENT . 
ASSIGNMENT = NAME /L2AI $= EXPRESSION /L2A2 
EXFRESSION = TERM , 

ADD-OP TERM /LSBI , 
EXPRESSION ADD-OP TERM /L3Cl 

TERM = FACTOR , 
" TERN HULT-OP FACTOR /LWBI 

FACTOR = NA/IE / L S A I  , 
NUMBER /L_qB1 , 
S( EXPRESSION $) 

ADD-OP = $+ /LSAI , 
$ -  ILSBI . 

HULT-OP = $* /LTAI 
$/ /LTBI . 

***~TATISTICS*** 
9 TYPE I RULES ( K ~ N S ) WITH 29 CONTEXTS 
3 TYPE 2 RULE~ ( K ~ S T ) WITH 8 CONTEXTS 
7 TYPE 3 RULES ( K ~ S ) WITH 53 CONTEXT.5 
9 TYPE q RULES ( K ~ T ) WITH 28 CONqEXTS 

--28 TOTAL NORMAL FORM RULES WITH 116 TOTAL CONTEXTS 

0 FULL-CONTEXT-WITH-LOON-AHEAD M-TABLE ENTRIES 
0 ENTRIES RESULTED FROII TYPE q RULES 

! I FULL-CONTEXT }/-TABLE ENTRIES 
2 ENTPIE-% RE59L'I 'ED FROM TYPE q RULES 

8 RIGHT-CONTEXT-ONLY N-TABLE E_N]RIE5 
0 ENTRIES RESULTED FN'OU TYPE # RULES 

13 LEFT-CONTE?.(I'-OI~LY M-TADLE ENTPIE5 
UNSPECIFIED-CONTEXT /{-TABLE ENTRIES 

--~7 TOTAL M-TABLE ENTRIES 
69 PER-CENT M-TA_P, LE C<MF'RESSION, EXCLUSIVE OF LOOK-AHEAD 
69 PER-CENT TOTAL COMMPRESSION 

0 APPARENT AMBIGUITIES DETECTED 
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Corrigendum 

In "Adapt ive  Correct ion of Program Statements"  
by E.B. James and  D.P. Partridge, Comm. A C M  16, 
1 (Jan. 1973), 27-37, the following correction should 
be made. On page 31, first column,  line 10 from the 
bot tom,  the word CONTINUE is incorrect.  The correct 
word is COTINUE. 

Graphics  and  W. Newman  
Image Processing Edi tor  

A Scan Conversion 
Algorithm with 
Reduced Storage 
Requirements 
B.W. Jordan Jr. 
Northwestern University 
and 
R.C. Barrett 
Hughes Aircraft Co. 

Most graphics systems using a raster scan output 
device (CRT or hardcopy) maintain a display file in the 
XY or random scan format. Scan converters, hardware 
or software, must be provided to translate the picture 
description from the XY format to the raster format. 
Published scan conversion algorithms which are fast 
will reserve a buffer area large enough to accommodate 
the entire screen. On the other hand, those which use a 
small buffer area are slow because they require multiple 
passes through the XY display file. The scan conversion 
algorithm described here uses a linked list data structure 
to process the lines of the drawing in strips corresponding 
to groups of scan lines. A relatively small primary 
memory buffer area is used to accumulate the binary 
image for a group of scan lines. When this portion of the 
drawing has been plotted, the buffer is reused for the next 
portion. Because of the list processing procedures used, 
only a single pass through the XY display file is required 
when generating the binary image and only a slight 
increase in execution time over the fully buffered core 
results. Results show that storage requirements can be 
reduced by more than 80 percent while causing less than 
a 10 percent increase in execution time. 

Key Words and Phrases: graphics, scan conversion, 
raster plotter, line drawing, discrete image, dot 
generation 
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