
Programming T.A. Standish
Languages Editor

A Parser-Generating
System for
Constructing
Compressed Compilers
M.D. Mickunas and V.B. Schneider
Purdue University

This paper describes a parser-generating system
(PGS) currently in use on the CDC-6500 computer at
Purdue University. The PGS is a Fortran-coded
program that accepts a translation grammar as input
and constructs from it a compact, machine-coded
compiler. In the input translation grammar, each BNF
syntactic rule corresponds to a (possibly empty) "code
generator" realizable as an assembly language,
Fortran or Algol, subroutine that is called whenever
that syntactic rule is applied in the parse of a program.

Typical one-pass compilers constructed by the PGS
translate source programs at speeds approaching 14,000
cards per minute. For an XPL compiler, the parser
program and its tables currently occupy 288 words of
60-bit core memory of which 140 words are parsing
table entries and 82 words are links to code generators.

Key Words and Phrases: parser generators, transla-
tor writing systems, syntactic analysis, normal-form
grammars, pushdown automata, translation grammars,
translator optimization, compression algorithm

CR Categories: 4.12, 5.22, 5.23

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Work on this paper was supported by NSF Grant GJ-851 to
Purdue University. Authors' address: Computer Sciences Depart-
ment, Purdue University, Lafayette, IN 47907.

669

1. Introduction

The PGS is a FORTRAN-coded system that accepts a
" translat ion g rammar" [8, 9, 10] as input and constructs
f rom it a compact, machine-coded parser. Each BNF rule
of the grammar corresponds to a "code generator" that
is called whenever that syntactic rule is applied in a
parse of some program. Because the PGS assumes very
little about its code generators, the nature and quality
of object code generated by a constructed compiler
depends on the language implementor 's discretion.
(However, prepackaged systems of code generators for
implementing a family of PL/I-like languages are avail-
able, and other systems are being developed at Purdue.)
In fact, object code need not be generated by a compiler;
an implementor could choose instead to construct pro-
gram trees, produce macro expansions, or execute
source programs interpretively.

The PGS operates in five distinct phases. In the first
phase, the translation grammar input to the PGS is
converted into a simplified normal form for internal
use. The second phase computes the contexts in which
each rule of the resulting grammar is to be applied
during the process of parsing. The third phase uses
these contexts and the normal-form rules to generate
the table description of a bounded-context pushdown
automaton translator system. The fourth phase com-
presses the table description so as to minimize the
number of tests necessary in the syntactic portion of the
compiler under construction. The fifth phase generates
a table-driven compiler that is linked to the code gen-
erators by subroutine calls.

2. Notation and Basic Definitions

A translation grammar (TG) is a six-tuple (V, T, Q,
S, P, R) where:

(a) V is a finite set of symbols called the vocabulary.
(b) T is a proper subset of V called the terminals.
(c) Q is a finite set of symbols, including the empty
symbol e, called code generators.
(d) S is a distinguished member of V -- T called the
initial symbol
(e) P is a finite set of syntactic rules P~ of the form
A - - ~ x , whereA # x, A i s i n V - - T, a n d x i s i n V +.
(f) R is a single-valued function f rom P into Q.

V* denoteg the set of all strings composed of sym-
bols f rom V, including the empty string (denoted by e);
and V + = V X V*. A is called the left part and x the
right part of any rule of the form P~ = A ~ x. Early
capital letters, A, . . . , S are in V -- T, and early small
letters a, b, c are in T. Late small letters u , z are in
V*, except when they appear as the right parts in rules
(in which case, they are in V+). Late capital letters are
in V.

I f A --~ w is a rule, an immediate derivation of one

Communications November 1973
of Volume 16
the ACM Number 11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355611.362536&domain=pdf&date_stamp=1973-11-01

string y = u w v f r o m a n o t h e r x = uAv is written x ~ y .

The transitive complet ion of this relation is a derivation
and is written x ~ y, which means that there exists a
sequence of strings (wo, w~, . . . , w,) such that x =
w0 ~ w~ ~ • • • ~ w,~ = y for n >_ 0. For the canonical
derivation, we choose the right derivation in which each
step is of the form uAv ~ uwv, with v in T*.

x is a sentence of G if x is in T + and x can be derived
f rom S. The language of a T G is then the set of sentences
that can be derived f rom S in G:

L(c) = { x : (S * ~) & (x c :r+)].

I f x is in L(G), then a parse of x (written Parse(x)) is
the sequence of rules (P~, . . . , P ,) such that Pj im-
mediately derives wi-~ f rom wj (j = I, . . . , n) and
x -- w0, S = w,. Corresponding to the parse of x is
the translation of x (written T(Parse(x)) consisting of
the sequence of code generators (R(P1), . . . , R (P ,)) .

If (P1, • . . , P ,) is a parse of string x into symbol S,
there exists a permutat ion of (PI, . . . , P ,) that is
lef tmost; i.e. its rules cause a right derivation when
taken in reverse order and applied to S. We define an
unambiguous grammar G to be one in which every x in
L(G) has exactly one leftmost parse, denoted by
LParse(x). The translat ion T(LParse(x)) will be the
canonical code generation sequence of our sentence x.
Of course, this code generation sequence for x may in-
clude " e r ro r messages" produced by one or more code
generators, in which case x is syntactically well formed,
but anomalous for some semantic reason.

We next define a normal form for TG's , in terms of
which a left-most parsing a lgor i thm can be designed.
This normal form simplifies the design of a conversion
process f rom T G ' s into leftmost parsing algori thms by
standardizing the calculations necessary for convert ing
syntactic rules into decisions of the parser.

3. Normal Form of Translation Grammars

A translation g rammar G = (V, T, Q, S, P, R) is
said to be in normal f o r m if all the rules in P are of the

?

forms K~_I --~ K~_IK~ or Kr' ~ K~ or K / -+ Km, or
K~+~ ~ a~. (The mot ivat ion for using indices r and s will
be apparent in the next section.)

A simple algori thm exists for convert ing any T G H
into a T G H ' in normal form such that L (H) = L (H ')
and T(LParse(x))H = T(LParse(x))u , for all x in
L (H) . Because of this algorithm, all derivations of sen-
tences in L (H) are in one- to-one correspondence with
derivations of sentences in L (H ') . The algori thm works
as follows:

Step 1. Inspect the rules of H to find the largest subset
of rules of the form A --+ al • • • aj • • • akAk+xU where
k _> j ~ 1 and all rules in the subset have the same
prefix y = al . - . a~. In all rules of this subset, re-
place y by a new symbol A' and add the rule
A' ~ y to the rules of H and the product ion (A'

y,e) to R of H . Continue Step 1 until no subsets
o f P remain to be merged.

Step 2. The rules of H that result f rom this prefix merg-
ing are either in normal form already (and so trans-
fer into P ') or are of the form Pi = A --~ X1 • • • X , ,
(n >_ 2). Each such rule is t ransformed into the
following sequence of normal form rules in P ' :
Bo ~ B,+IX,_v for v = 0, 1, . . . , n -- 2, where B0
is A, and B,_I is X1, if)(1 is in V - T of H; other-
wise, an addit ional rule of the fo rm Bn_l --~)(1 is
included in P ' of H ' .

Step 3. The By are treated as new and distinct elements
of V' - T ' of H ' . Each new rule generated by this
t ransformat ion becomes an addit ional product ion
(B ~ 4 . B~+IX,_v, e) of R ' for v = 1, . . . , n -- 2.
For v = 0, the product ion (A --+ B1X,, Q~) goes
into R', where (A ~) (1 . . . X,, Q~) is the cor-
responding product ion in R.

The fact that the B~ of the a lgor i thm are " n e w and
distinct" leads to a simple p roof of the one- to-one cor-
respondence between parses of sentences in L (H) and
L (H ') . Since each rule of P corresponds to a unique
rule or sequence of rules in P ' , it follows that, for every
parse possible in H, there is a corresponding parse in
H ' , and conversely. Hence, in particular, T(LParse (x))u

= T(LParse(x))~ , for all x in L (H) . In addition, am-
biguity in L (H) is equivalent to ambigui ty in L (H ') .

4. Leftmost Parses and Normal Form Grammars

We introduce boundary markers # to the vocabu-
lary of G. A new initial symbol S ' now takes the place
of S in G, and three new rules are added to P :

P,,+I = S' ---+ Jl#
P, = J1---+ J2S

P1 = J~. ~ #

The corresponding product ions in R are (P1, e), (P, , e),
and (P,,+I, e); i.e. no added code is generated? With
these rules, boundary markers are made to occur at
both ends of all strings produced by the grammar .

Let w0 = #al . . . a ,# be a string in the language of
such a grammar . In the initial step of the leftmost
parsing algorithm, rule PI is applied, yielding string
Wl = J2al . ' . a,#. After j steps, w0 has been reduced
to wj = J 2 K 1 . . . K r a ~ . ' . an#(1 < r < s _< n q- 1).
I f w0 is in L(G), the leftmost sequence of rules
(P I , • • • , Pj) are precisely the first j reduct ions of the
leftmost parse of w0 to S'.

For the (j + 1)-th reduction, five different cases
must be distinguished.

Case O. S' does not produce w i.
I f S ' does produce w~., we have to distinguish between

the following possibilities.

x In practice, our TWS provides "system functions" to be
performed immediately prior to and following the translation of a
program.

670 Communications November 1973
of Volume 16
the ACM Number 11

Case 1. A rule of the form Pi+l = K~'+I ~" a8 reduces
wj to wi+x.

Case 2. A rule of the form Pi+l = K / ~ Kr reduces
Wj t o Wj+I.

Case 3. A rule of the form P~+x = K~-I ~ K~_IKr
reduces wj to Wj+l.

Case 4. A rule of the form Pj+~ = K/ ~ K,a, re-
duces wi to w~+x. That only these cases need be con-
sidered is proved in [8].

In general, the decision concerning which of the
Cases 1-4 apply for the (j -k- l)-th step of a leftmost
parse must be made in terms of context. (As an ex-
ample, there may exist rules in the grammar having
K~_~K~ and K~a, on the right part.) To decide which
case applies at a given step of the parse requires al-
gorithms for discovering what symbols can legally be
adjacent to the symbols being replaced in that step of
the reduction while w0 is a sentence of G. The algorithms
to be given here are similar to those of Floyd [1] and
Wirth and Weber [11] in that they construct all legal
co-occurrences of triples of symbols in some language
from that language's grammar.

Case A. For a rule of the form Pj+x = K' ~ K~a8
(or Pj+~ = K' ~" a~) to apply in the (j + 1)th reduction,
the symbol K~_~ to the left of K' (or K~ to the left of K')
must be present in some derivation of wj+~ from S'.
That is, there must be some nonterminal Q for which
(Q-~ Kr_IA C P) & (A * K'u) (or (Q ~. K~A C P) &
(A ~ K'u)). Then, the pairs (K~_x, a~) (alternatively,
(K~, a,)) are the contexts in which P~+~ applies.

Case B. A rule of the form Pj+I = K ' - I ~- K~_IK~
is applied in the context (K~_a, a,) if and only if there is
some nonterminal Q for which (Q --,'. AB ~ P) &
(B =~ a.v) & (A ~, uK'-~).

Case C. A rule of the form P~+~ = K / ~- K~ is
applied in the context (K~-x, a~) if and only if there is
some nonterminal Q for which either (Q --~ Kr_xA C P)
&(A ~ B v) &(B---~CD C P) & (D ~ a ~ u) & (C ~ K /)
or (Q--> AB C P) & (B ~ a,v) & (A ~ uC) & (C
K~_ID C P) & (D ~ K/).

After the contexts for some grammar have been
determined as in Cases A, B, and C above, there may
exist a subset of the rules for which, when their right
parts and contexts are taken together, the resulting
triples K~_~K~a~ are the same. We deal with this situa-
tion by using a one-symbol lookahead algorithm that
tests symbol a,+l in the input sentence of the parser to
decide which of the conflicting rules to apply as the
next step in a parse. As a simple example, the necessity
for this lookahead may arise in ALGOL 60 multiple as-
signment statements of the form v := y := u H- I;
where the parser must look past the variable identifier
to see whether it is followed by an assignment symbol
(: =) or an operator (+) . Appendix I gives the algorithm
for calculating lookahead symbols.

Experience in producing ALGOL W and EULER com-
pilers at Purdue has shown that one-symbol lookahead
is adequate to handle parsers for these languages, and

671

our XPL compiler [12] gets by without any one-symbol
lookahead. Where one-symbol lookahead is inadequate
for constructing a unique parser, the PGS currently in
use signals a possible ambiguity in the grammar under-
going conversion. Another approach, which involves
transforming LR(k) grammars (by Knuth ' s criterion)
into grammars that can be parsed in our system with-
out lookahead, is currently being developed and tested
at Purdue.

5. Pushdown Automaton Parsing Model

The most natural method for implementing leftmost
parsers constructed from our normal-form grammars is
to use a table-driven algorithm in which the parsing
table contains the triples of symbols defined in Section
4. An automaton model for this algorithm was chosen,
and we will refer to this model as a bounded-context
acceptor (BCA).

Our BCA has the following inventory of vocabularies
and auxiliary data structures: It has a finite set of states
(each state identified with a region of the parsing table),
a finite vocabulary consisting of symbols that occur in
its source programs, and an auxiliary stack (also called a
pushdown store) having a stack vocabulary. In addition,
it uses an initial (or starting) state, a final (or accepting)
state, and the same boundary symbol # that was intro-
duced in Section 4.

During a parse, the aCA always operates in some
state where it scans the topmost stack symbol and the
next source program symbol. By applying one of the
normal form rules of its grammar, the BCA transfers to
another state, possibly consuming either the current
stack symbol or source program symbol in the process,
and possibly storing a new symbol on top of its stack.

The states, stack symbols, and source program
symbols for a BCA can be determined by inspection of
its normal-form grammar as follows:
1. The terminals of the grammar are the source pro-
gram symbols.
2. The nonterminals Kr_i in rules of the form K ' - I --~
Kr_l Kr are the stack symbols of the BCA.
3. The nonterminals Kr in rules of the form K'r-~ -+
Kr_a K~, K / - + Kras, and K / ~ Kr are the states of the
BCA, where each possible transition from state Kr cor-
responds to one of the leftmost parse reductions indi-
cated by the three normal-form rules above.
4. In the starting state So, occur all transitions cor-
responding to leftmost parse reductions caused by rules
of the form K~+I ~ as.
5. The final state is the initial symbol S ' of the input
grammar.

Our choice of stack and state symbols is motivated
by the following observations: As defined in (2), the
Kr-1 stack symbols are the roots of parse subtrees which
must await in sequence the construction of the next
subtree in the leftmost parse before they may be joined

Communications November 1973
of Volume 16
the ACM Number 11

to that subtree by a rule K~I ---+ K~_IK~. Conversely, the
K~ state symbols are the roots of parse subtrees which
may be joined immediately to a larger subtree of the
leftmost parse through application of one of the rule
forms in (3) above.

Thus, for our BCh scheme to work with a given
normal-form grammar, its stack and state symbols
must be disjoint. Appendix II contains a simple trans-
formation that can be applied to all normal form gram-
mars for ensuring disjointedness of stack and state
symbols.

With these preliminaries, we arrive at the following
table-driven parser definition: A BCA P is defined to be
a seven-tuple P = (Q, T, N, M, #, So, F) where:

Q is the finite set of states.
T is the finite set of source program symbols.
N is the finite set of symbols in the stack vocabulary.
So is the initial state and F is called the final state.
T N N = {#}.
M is the table that maps a subset of N X Q X T into

the subsets of {e} X Q X T U N × Q X {e} U
N X Q X T U N X N X {So} X (T U {e}).

The BCA for a given normal-form grammar G accepts
L(G) when its M-table is constructed using the follow-
ing correspondence between steps in a leftmost parse
and states in the SeA for G (see [7] for a proof of this).
The correspondence gives a four-step algorithm for
constructing M-table entries, and transforms the initial
grammar symbol S' into the final BCA state F.

Step I. Rule A¢ ~ . A¢IA,2 with contexts (A¢~, a~) :
If A~ C N, then (A¢, So, a~) C M (A a , A,2, a~).
If A~ C Q, then (e, A,, a~) C M(A;I, A~2, a~).
These transitions take care of all possibilities arising
from Case 3 of the leftmost parsing algorithm.

Step II. Rule A~ --~ A~a~2 with contexts (K~_I, a~):
If A~ E N, then (Kr_xAk, So, e) ~ M(Kr_x, A~, ak~).
If A~ E Q, then (K,._x, A~, e) E M(Kr_I, A~I, ak~).
These transitions take care of all possibilities arising
from Case 4 of the leftmost parsing algorithm.

Step III. Rule As ~ a~ with contexts (K~, a~) :
If As E N, then (KrAs, So, e) ~ M(Kr, So, a~).
If As E Q, then (K,, As, e) ~ M(Kr, So, a~).
These transitions take care of all possibilities arising
from Case 1 of the leftmost parsing algorithm.

Step IV. Rule A~ --+ An with contexts (K,_I, a~) :
If As E N, then (Kr_IA~, So, a~) ~ M(K~._I, A~x, a,).
If As E Q, then (K,_I, As, a~) E M(Kr_~, As~, a,).
These transitions take care of all possibilities arising
from Case 2 of the leftmost parsing algorithm.

When all transitions of the BCA have been defined
as described above, the PGS has completed the construc-
tion of the full M-table for a BCA that performs leftmost
parses on the sentences of its language. By causing the
BCA tO emit code generator symbols from appropriate
transitions of the M-table, we obtain a leftmost com-
piler.

6. Compression of M-Tables

The BCA parser contains more information than
needed for a successful parsing algorithm. As we will
demonstrate here, it is often not necessary to know all
contexts for which one step of a derivation is valid.
It suffices instead to know that the current reduction is
permissible on the condition that its ignored left or right
context is the correct symbol to appear in some later
step of that derivation. For example, consider some BCA
having a state A in which all transitions arise from n
rules of the form A~ ~ Ai lA (i = 1, . . . , n). If the A a
are all distinct symbols, then they alone are sufficient to
determine the state transitions, and so we can write the
following entries into the compressed M-table:
M (A a , A ,*) = ~, (i = 1 , . . . ,n) w h e r e ~ = (A~,S0,*)
i f A ~ i s a stack symbol, a n d ~ = (e, Ai ,*) i f A ~ i s a
state of the BCA. Note in the above that the asterisk (*)
means that the corresponding input symbol of the BCA
is ignored in determining the transition.

Likewise, we can compress a state B of the BOA in
which all transitions arise from m rules of the form
Bj --+ Bbjx (j = 1 , m): If the bsl are all distinct
symbols, then they alone are sufficient to determine
unique state transitions, and so we can write the follow-
ing entries into the compressed M-table: M(*, B, bsl) =
~j, (j = 1 , . . . , m). An identical analysis applies to the
initial state So, whose p entries all arise from rules of
the form Ck ~ ckl(k = 1, . . . , p).

Next, suppose in the first example above that two or
more of the symbols All are not distinct. In this case,
assuming that the full contexts (A~I, aa) are distinct,
the M-table for state A can be reordered so that those
transitions requiring full context inspection are con-
sidered before those for which it is only necessary to
inspect the A~I symbol. Similar considerations apply for
the second example above involving full-context in-
spection followed by right-context only inspection of
the M-table entries for a given state.

In more complex situations, we are often faced with
a combination of the first two examples above, namely
that all transitions from a state C arise from n rules of
the form C~ --+ C~IC(i = 1, . . . , n) and from m rules of
the form Cs' ~ Ccj2 (j = 1, . . . , m). The further com-
plication here is that one (or more) of the symbols
Cpl (1 < p < n) may also be a left context for some
rule C~' ~ Cc'q2 (1 _< q < m). In this case, the specifi-
cation of Cpa alone in an M-table entry is not sufficient
to determine uniquely which state transition, Cp ~ CpxC
or Cq' --~ Cc~2 should apply. This anomaly can be re-
moved by first inspecting the full context (C~1, c~2) to
determine if the transition Cq ~ Cc~2 should apply.
Thereafter, inspection of Cp~ alone is sufficient to deter-
mine the transition Cp ~ Cp~C and inspection of c~2
alone is sufficient to determine the transition Cq' ~ Cc~.
It could be argued that this anomaly is more easily re-
moved by first inspecting c~2 (via a right-context only
entry) to determine if the transition Cq' ~ Cc~2 should

672 Communications November 1973
of Volume 16
the ACM Number 11

apply. But then we are faced with the symmetric
anomaly that c~z may be a right context for some rule
Cr --~ C ~ C (1 < r < n). An algorithm for determining
such a mixed inspection order for left-context only and
right-context only entries must further decide where to
"break the chain" (by specifying a full context entry) in
circular cases, the simplest of which is a state arising
from the following rules :

C~ ~ C,~C one of whose contexts is (C~, c~2).
Cq' ~ Cc'~z one of whose contexts is (C~, c~z).
Cr --. C ~ C one of whose contexts is (C~, c'~).
C,' ---+ Cc'~z one of whose contexts is (C~1, c~.~).

Besides the fact that such an algorithm is too com-
plex to be of practical applicability, the inspection of
the resulting "mixed left-context only and right-context
only" subtable requires more testing and masking than
does inspection of a "pure left- (or right-) context only"
subtable. For these reasons, we have chosen to remove
such anomalies by immediately specifying a full context
entry and by producing a pure left-context only sub-
table which must be inspected before a pure right-
context only subtable.

With these examples in mind, and ignoring for the
present the problem of one-symbol lookahead, we can
develop an algorithm that generates a compressed
M-table by breaking up the M-table for each state into
as many as four separate subtables that must be in-
spected in sequence, namely:
1. A full-context (FC) subtable followed by
2. A left-context (LC) with unspecified right-context
subtable followed by
3. A right-context (RC) with unspecified left-context
subtable followed by
4. A no-context (NC) table whose one entry specifies
a transition in which no contexts need be inspected.
After describing this compression technique, we can
explain why it is suboptimal and what further refine-
ments of the technique might be attempted.

Basically, the compression algorithm works as
follows: The M-table entries for a given state A # So
are partitioned into three disioint subsets of transitions,

m , a = {M(A,a , A, aa) = ~:A~---~ A,~A ~ P } ,

M~a = {M(Aj~ , A , ajz) = ~: A~---~ Aa~2 ~ P} ,

M3A = {M(A~.3, A, a~) = ~ : A~---+ A ~ P} .

The algorithm then attempts to construct FC, LC, RC,
and NC subtables for this state, denoted by

MFCA , MLCA, MRCA, and M u c a

respectively. This is done by drawing entries from Mla
until empty, then successively exhausting the entries
in M2A and M3a, as shown in the State Compression
Algorithm.

The tables MFCA, MLCA, MRCA, and MNCA that result
in each state of a BCA from the application of the State
Compression Algorithm are then the entries of the com-
pressed M-table for the BCA. In the special case of the

673

T h e S t a t e C o m p r e s s i o n A l g o r i t h m

for V entries M(A,I, A, ai l) = ~i of MIA
do if M L C A contah~s an entry of the form M(Aa, A, *) = ~p

then if ~ # ~i
then enter M(A,.I, A, a,~) = ~ into M r c a

else enter M(Aa, A, *) = ~i Otto MLCA
end

for V entries M(Ajl, A, ajl) = ~i of Mza
do if Mnca contains an entry of the form M(*, A, aiR) = ~q

then if ~q ~ ~j
then enter M(Aj~, A, aj~) = ~i into M~'CA

else enter M(*, A, aj~) = ~jinto MRCA
end

for V entries M(Akl, A, akl) = ~k Qf M3A
do if MLCA colttains an entry of the form M(Akl, A, *) = ~p

then if ~, # ~k
then enter M(Ax.1, A, akl) = ~k iltto MFCA

else if MRCA contains an entry of the form M(*, A, akt) = ~q
then if ~q ~ ~k

then enter M(Akt, A, *) = ~k btto MLCA
else if MN Ca contains an entry of the form M(*, A, *) = ~r

then if ~, ~ ~k
then enter M(*, A, akl) = ~ into Meca

else enter M(*, A, *) = ~ into MNCA
end
halt

initial state So, only the M v c a and MRca tables are
needed, and the compression method sketched at the
beginning of this section is used for compressing the
entries of So. Normally, there are other states of the
Ben for which one or more of the partial-context tables
resulting from compression are empty.

We can now consider the problem of compression
in some state A of a BCA for which one-symbol look-
ahead is necessary. Since in practice lookahead is re-
quired only for a very small percentage of M-table
entries, it is dealt with by first marking those entries of
Mla, M2a, and M3~ for which M(Kr , A, as) = ~,,

(u = 1, . . . , n) & (n >_ 2), and by creating a fifth table
for state A, Mlsa = {M(*, A, a~as+~) = ~u : (M(Kr, A,
a,) = ~,) & (u C { (1 , . . . , n) & (n_> 2)}. With the
lookahead conflicts marked for state A, the compression
algorithm can then operate on the remaining M-table
entries for that state. In the resulting compressed BCA,
state A has up to five context tables that are inspected
in the sequence (M~sa, Mvca , MLCA, Mnca, M u c a) .

The algorithm for calculating the one-symbol look-
ahead entries is given in Appendix I.

7. R e su l t s O b t a i n e d U s i n g the C o m p r e s s i o n A l g o r i t h m

We might first ask just how well could the compres-
sion algorithm be expected to work, given the BCA
parser model that we are using. For n normal-form
rules input to the BCA construction phase of our PGS,
it is easy to see that the most compressed parser can
have no fewer than n entries in its tables. This theoretical
minimum number of entries is actually reached by our

Communications November 1973
of Volume 16
the ACM Number 11

compression algorithm for the following special cases
of normal-form grammars:

Case a. Finite automaton grammars having rules of
the form A ---+ a and B ~ Cd exclusively; or

Case b. Grammars having rules of the form A --~ a,
B --~ CD, and D ~ Ef, where the E's and D's are dis-
joint.

For more complex grammars, it is easy to show by
example that additional context will usually be required
to determine some transitions, and so the theoretical
minimum of table size is not generally attainable. As
can be seen in Table I, however, our compression al-
gorithm allows us to approach this minimum for repre-
sentative programming language grammars.

As shown in Table I, our minimum table size is
better than that obtained by the Ichbiah and Morse
algorithm [3, 4]. This occurs because the lower bound
on table size reached by their algorithm is given by the
number of normal-form rules for their input grammar
(normal form in our sense, because their parsing tables
consume one symbol at a time) plus the number of
distinct terminals in rules of the form B ---+ Cd. Since
our lower bound of table size for the same grammar is
only the number of normal-form rules, our algorithm
yields inherently smaller parsing tables.

8. Improvements Possible in the Compression Algorithm

As can be readily seen from an inspection of the
compression algorithm, the size and contents of a com-
pressed M-table are affected by the sequence in which
entries are selected from tables Mla, M2A, and M3a of
each state A in the original BCA. Moreover, for each
possible sequence of entry choices in the compression
of some BCA state, a different compression may result
f rom re-ordering the inspection of partial-context tables
so that MRca precedes MLCA. In fact, to find the smallest
compressed M-table for some state A of a aCA involves
looking for a minimum over all possible sequences for
selecting entries in M1A, M2A, and M~a and over the two
possible orderings of partial-context tables, namely
(M2~cA, MLeA, MRCA, MNCA) and (M,~ca, M,~ca, MLOA,
Muca). Such an "op t ima l " compression scheme is un-
workable for any but the smallest of M-tables, because
the number of steps for compressing any state with
n = nla + nza + n3a entries grows in size by
2nla !n2a !n3a !

We are currently developing near-optimal, heuristic
strategies for improving the PGS compression algorithm
while avoiding the combinatoric problem outlined
above.

Without further M-table compression, it is possible
to economize on the number of computer words needed
to represent an M-table by merging the full context
table entries within each state. This merging is accom-
plished by implementing each full context entry as a
pair of partial context tests, and then merging the
second tests so that m full context (60-bit) entries hav-

674

ing one context in common are coalesced into m + 1
partial context (30-bit) table entries. By optimally
merging full-context entries on common contexts, we
also reduce the sequential search time for each state of
the compressed BCA.

Since our parser performs sequential tests in each of
its states, speed of parsing depends critically on mini-
mization of state size. Experience with our PGS shows
that large programming language compilers tend to
have many small states (two or three entries when com-
pressed), together with a large initial state (around 40
or 50 entries). Furthermore, it is easy to demonstrate
[8] that as many as 50 per cent of the steps in a leftmost
parse involve a transfer out of the initial state of the
parser. We thus extract the most speed f rom our parser
by doing a one-step, indexed search of the initial state
using the preprocessor-supplied symbol index and se-
quential searches of the remaining parser state subtables.

9. Implementation of PGS Compilers

The current version of the PGS supplies a standard,
assembly-language driver program for inspecting
M-table entries. This subroutine receives input program
symbol indices in sequence f rom a standard, FORTRAN
preprocessor and searches the current M-table state to
determine stack actions, code generator calls, and trans-
fers to the next state of the M-table.

When all entries of a state have been searched
without finding a match (where M~c is empty for that

Table I. Statistics for Three PGS Compilers

Expression
sequence

(Appendix XPL Algol 60
Grammar III) [12] [12]

Number of BNF 16 119 162
productions
Total of contexts 116 5019 7344
generated
Theoretical minimum 28 182 248
number of M-table entries
Number of entries in 37 217 361
compressed M-table
Size of parser 92 207 292
in 60-bit words x
Size of compiler driver 103 288 - -
in 60-bit words 2
Size of Ichbiah-Morse 105 - - 484
parser in 60-bit words a

Assuming no code generators, a 66-word driver program (excluding the
stack) is used, together with an M-table having 30-bit packed entries in which
8 bits (for specifying the index of code generators) are wasted.

2 Assuming code generator subroutines linked to the parser, a 66-word
driver program (excluding the stack) is used with an M-table having 30-bit
packed entries. Eight bits of each entry are used as an index into a table o f code
generator subroutine entry addresses, stored one address per 60-bit word, The
added size of the compiler driver is due to this table of addresses.

a Based on a computer pr intout supplied to us by J.D. Ichbiah, we have
calculated that the Ichbiah-Morse driver program occupies 70 60-bit words
when machine coded for the CDC-6500. Thirty-bit packed entries specify its
actions and 15-bit packed entries specify their indirect jump table used for
parsing. Each 30-bit entry carries a vacant 7-bit field that can be used to specify
the index of code generators.

Communications November 1973
of Volume 16
the ACM Number 11

state), a syntactic error has been found in the input
program. For this case, the driver program calls an
"error-message code generator," erases the current
input symbol, and resets itself to the initial state. Thus,
standard recovery from an input program error con-
sists of a sequence of returns to So until a segment of
the input program is reached that can be parsed with-
out reference to previous segments of the input program.
Of course, syntactic errors block execution of the com-
piled program.

As currently implemented, a typical PGs-generated
XPL compiler occupies a total of 14,165 words of core
memory and compiles typical programs at a speed of
14,000 cards per minute on the CDC-6500 computer.
This compares with a measured speed of 13,000 cpm
for the CDC supported, nonoptimizing, RUN YOga'RAN
compiler and 16,000 cpm measured on RUM (the Uni-
versity of Washington version of RUN). The XPL parser
and its stack occupy under 6 per cent of the space re-
quired for the entire compiler; 31 per cent of compila-
tion time is currently spent in the parser, 15 per cent in
the preprocessor, 47 per cent in the code generators,
and the remaining time in doing input-output.

Acknowledgments. An earlier version of this PGS
was programmed by D. Browning, T. Davis, and C.
Rieger while they were students in the Formal Compil-
ing Techniques course offered by the Purdue University
Computer Sciences Department. Many improvements
in the PGS algorithms are due to suggestions by Ronald
L. Lancaster of Purdue University. The authors wish to
acknowledge lively and stimulating discussions on the
subject of the PGS with J.D. Ichbiah and F. DeRemer.

Appendix I. One-Symbol Lookahead Calculations
The PGS provides for one-symbol lookahead when-

ever full-context specification is insufficient to drive the
BCA deterministically. When this necessity arises, the
method used in Section 4 to calculate contexts is ex-
tended to construct all legal co-occurrences of four-
tuples of symbols, thus calculating contexts which in-
clude a lookahead symbol.

Case 1. A rule of the form Pj+I = K/ --~ K~a, (or
Pi+* = K/ --~ a,) is applied in the lookahead context
(K~_~, a,a,+l) if and only if there is some nonterminal Q
for which either
(Q ---+ Kr-l.4 ~ P) & (`4 ~ Bv) & (B ~ CD ~ P)

a (D ~ a,+lu) a (C ~ K/) or
(a --+ ,4B ~ P) ~ (B ~ as+iv) ~ (/1 ~ uC)

a (C ~ K , _ I D 6 P) a (D ~ K /) .

Case 2. A rule of the form Pj~_~ = K:-~ ---+ K,_IK, is
applied in the lookahead context (K,_,, a,a,+~) if and
only if there is some nonterminal Q for which either
(Q ---+ ,4B 6 P) & (B ~ a,+xw) & (.4 ~ uC)

a (C--+ DE E P) a (E ~ a,) a (D ~ vK:-~) or
(Q---+ AB E P) & (B ~ Cw) & (C ~ DE E P)

& (E ~ a,T,v) & (D & a.) & (A ~ uK:_,)

Case 3. A rule of the form Pj+~ = K / ~ K, is
applied in the lookahead context (K,_~, a,a,+,) if and
only if there is some nonterminal Q for which either
(Q ~ ,4B E e) a (B ~ a.+~w) a (.4 ~ uC)

& (C----> DE 6 P) & (E ~ a~) & (D =~ vF)
a (F--~K,_IGE P) a (G ~ K /) or

(Q ~ ,4B C P) & (a ~ Cw) & (C---* DE E P)
& (E A a,+,v) & (D ~ a,) & (A ~ uF)
& (F---+ K,_,G E P) a (G ~ K/) or

(Q -~ K,_~,4 6 P) & (`4 ~ By) & (B--~ CD E P)
a (a~a,+~u) a (C ~ E) a (E ~ F G C P)
& (G - - a .) & (F = ~ K /) or

(Q --+ X,_,,4 6 P) & (`4 ~ aw) & (B ~ CD E P)
& (D =~. Ev) & (E ---+ FG 6 P) & (G =~ a.+,u)
a (r ~ a ,) & (C = ~ K /) or

(Q ---* ,4B E P) a (B ~ a,+,u) a (A ~ vC)
& (C--+K,_~D E P) & (D ~ E) & (E ~ F G 6 P)
& (G ~ a.) & (F Z X/)

Appendix II. Prevention of State-Stack Conflicts
The Boa construction algorithm generates a non-

unique acceptor for a normal-form grammar having
some symbol J that is both a state and a stack symbol.
When this conflict arises, we transform the normal-
form grammar as follows:
1. Create a new symbol J ' and include J ' in V' -- T'.
2. Wherever nonterminal J appears as a stack symbol
in the right part of a rule ,4 ~ JB, replace that rule by
the rule ,4 ~ J'B.
3. Add the rule J ' ~ J to P' and the production
(J ' ~ J, e) to R.

This transformation makes J ' a stack symbol and J
a state symbol in the resulting BCA, and leaves un-
changed the language generated by the resulting normal-
form grammar.

Appendix IlL A Simple Expression Sequence Grammar
Input to the PGS

EXPRG < > NAME I,[UNBER .
PROGRAM = $ < A S S I G N H E N T - L I 5 T $ > .
ASSIGNHENT-LIST = ASSIGNMENT ,

ASSIGNIIENT-LIST ASSIGNMENT .
ASSIGNMENT = NAME /L2AI $= EXPRESSION /L2A2
EXFRESSION = TERM ,

ADD-OP TERM /LSBI ,
EXPRESSION ADD-OP TERM /L3Cl

TERM = FACTOR ,
" TERN HULT-OP FACTOR /LWBI

FACTOR = NA/IE / L S A I ,
NUMBER /L_qB1 ,
S(EXPRESSION $)

ADD-OP = $+ /LSAI ,
$ - ILSBI .

HULT-OP = $* /LTAI
$/ /LTBI .

~TATISTICS
9 TYPE I RULES (K ~ N S) WITH 29 CONTEXTS
3 TYPE 2 RULE~ (K ~ S T) WITH 8 CONTEXTS
7 TYPE 3 RULES (K ~ S) WITH 53 CONTEXT.5
9 TYPE q RULES (K ~ T) WITH 28 CONqEXTS

--28 TOTAL NORMAL FORM RULES WITH 116 TOTAL CONTEXTS

0 FULL-CONTEXT-WITH-LOON-AHEAD M-TABLE ENTRIES
0 ENTRIES RESULTED FROII TYPE q RULES

! I FULL-CONTEXT }/-TABLE ENTRIES
2 ENTPIE-% RE59L'I 'ED FROM TYPE q RULES

8 RIGHT-CONTEXT-ONLY N-TABLE E_N]RIE5
0 ENTRIES RESULTED FN'OU TYPE # RULES

13 LEFT-CONTE?.(I'-OI~LY M-TADLE ENTPIE5
UNSPECIFIED-CONTEXT /{-TABLE ENTRIES

--~7 TOTAL M-TABLE ENTRIES
69 PER-CENT M-TA_P, LE C<MF'RESSION, EXCLUSIVE OF LOOK-AHEAD
69 PER-CENT TOTAL COMMPRESSION

0 APPARENT AMBIGUITIES DETECTED

675 Communications
of
the ACM

November 1973
Volume 16
Number 11

Received January 1972; revised January 1973

References
1. Floyd, R.W. A descriptive language for symbol manipulation
J..4CM 8, 4 (Oct. 1961), 579-584.
2. Homing, J.J., and Lalonde, W.R. Empirical comparison of
LR(k) and precedence parsers. ACM SIGPLAN Notices 5, 11
(Nov. 1970), 10-24.
3. Ichbiah, J.D., and Morse, S.P. A technique for generating
almost optimal Floyd-Evans Productions for precedence
grammars. Comm. ACM 13, 8 (Aug. 1970), 501-508.
4. Ichbiah, J.D. Computer printout of an ALGOL 60 parser
run through the Ichbiah-Morse system, 1971.
5. McKeeman, W.M., Homing, J.J. and Wortman, D.B. A
Compiler Generator. Prentice-Hall, Englewood Cliffs, N.J., 1970.
6. Mickunas, M.D. User's manual for the PUCSD translator-
writing system. Comput. Sci. Dep., Purdue U., Lafayette, Ind.,
1971.
7. Schneider, V. Pushdown-store processors of context-free
languages. Ph.D. diss., Northwestern U., Evanston, I11., 1966.
8. Schneider, V. A system for designing fast programming
language translators. Proc. AFIPS 1969 SJCC, AFIPS Press,
Montvale, N.J.; pp. 777-792.
9. Schneider, V. Some syntactic methods for specifying
extendible programming languages. Proc. AFIPS 1969 SJCC,
AFIPS Press, Montvale, N.J.; pp. 145-156.
10. Schneider, V. A translation grammar for ALGOL 68. Proc.
AFIPS 1970 SJCC, AFIPS Press, Montvale, N.J., pp. 493-505.
11. Wirth, N., and Weber, H. A generalization of ALGOL and
its formal definition: Parts I and II. Comm ACM 9 (1966),
13-25; 89-99.
12. Mickunas, M.D. and Schneider, V. B. Translation grammars
for XPL and ALGOL 60. Tech. Rep., Comput. Sci. Dep., Purdue
U., Lafayette, Ind., 1972.

Corrigendum

In "Adapt ive Correct ion of Program Statements"
by E.B. James and D.P. Partridge, Comm. A C M 16,
1 (Jan. 1973), 27-37, the following correction should
be made. On page 31, first column, line 10 from the
bot tom, the word CONTINUE is incorrect. The correct
word is COTINUE.

Graphics and W. Newman
Image Processing Edi tor

A Scan Conversion
Algorithm with
Reduced Storage
Requirements
B.W. Jordan Jr.
Northwestern University
and
R.C. Barrett
Hughes Aircraft Co.

Most graphics systems using a raster scan output
device (CRT or hardcopy) maintain a display file in the
XY or random scan format. Scan converters, hardware
or software, must be provided to translate the picture
description from the XY format to the raster format.
Published scan conversion algorithms which are fast
will reserve a buffer area large enough to accommodate
the entire screen. On the other hand, those which use a
small buffer area are slow because they require multiple
passes through the XY display file. The scan conversion
algorithm described here uses a linked list data structure
to process the lines of the drawing in strips corresponding
to groups of scan lines. A relatively small primary
memory buffer area is used to accumulate the binary
image for a group of scan lines. When this portion of the
drawing has been plotted, the buffer is reused for the next
portion. Because of the list processing procedures used,
only a single pass through the XY display file is required
when generating the binary image and only a slight
increase in execution time over the fully buffered core
results. Results show that storage requirements can be
reduced by more than 80 percent while causing less than
a 10 percent increase in execution time.

Key Words and Phrases: graphics, scan conversion,
raster plotter, line drawing, discrete image, dot
generation

CR Categories: 4.41, 6.35, 8.2
Copyright © 1973, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work supported in part by the Office of Naval Research
under Contract NO 014-67-A-0356 Mod. AE. Authors' addresses:
B. W. Jordan, Departments of Computer Sciences and Electrical
Engineering, Northwestern University, Evanston, IL 60201;
R. C. Barrett, Computer Applications Department, Hughes Aircraft
Co., Culver City, CA 90230.

676 Communications November 1973
of Volume 16
the ACM Number 11

