L.D. Fosdick and
N Algorithms A K. Cline, Editors
Submittal of an algorithm for consideration for publica-

Algorithm

Check for
Updates

tion in Communications of the ACM implies unrestricted
use of the algorithm within a computer is permissible.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, ail or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Algorithm 464

Eigenvalues of a Real,
Symmetric, Tridiagonal
Matrix [F2]

Christian H. Reinsch [Recd. 11 Mar. 1971]
Mathematisches Institut der Technischen Universitit,
8000 Miinchen 2, Arcisstra 21, Germany

Key Words and Phrases: eigenvalues, QR Algorithm
CR Categories: 5.14
Language: Algol

Description

This algorithm uses a rational variant of the QR transformation
with explicit shift for the computation of all of the eigenvalues of a
real, symmetric, and tridiagonal matrix. Details are described in
[1]. Procedures tred1 or tred3 published in [2] may be used to reduce
any real, symmetric matrix to tridiagonal form. Turn the matrix
end-for-end if necessary to bring very large entries to the bottom
right-hand corner.

References

1. Reinsch, C.H. A stable, rational QR algorithm for the com-
putation of the eigenvalues of an Hermitian, tridiagonal matrix.
Math. Comp. 25 (1971), 591-597.

2. Martin, R.S., Reinsch, C.H., Wilkinson, J. H. Householder’s
tridiagonalization of a symmetric matrix. Numer. Math. 11 (1968),
181-195.

689

procedure 1g/rat (n,macheps) trans: (d,e2);
value 1, macheps;
integer n; real macheps; array d, ¢2;

comment
Input:
n order of the matrix,
macheps the machine precision, i.e. minimum of all x such that
1 4+ x > 1 on the computer,
d[1:n] represents the diagonal of the matrix,
e2[1:n] represents the squares of the sub-diagonal entries,
(e2[1] is arbitrary).
Qutput:
d1:n] the computed eigenvalues are stored in this array in
ascending sequence,
e2[1:n] is used as working storage and the original informa-
tion stored in this array is lost;
begin

integer i, k, m;real b, b2, f, g, h, p2, r2, 52,
for i := 2 step 1 until » do e2[i—1] := ¢2[i];

e2n) :=b:=b2:= f:=0.0;
for k := 1 step 1 until # do
begin

I 2= macheps X macheps X (d[k]12 + e2[k]);
if b2 < /i then
begin b := sqrt(h); b2 := hend;
comment Test for splitting;
for m := k step 1 until » do
if e2[m] < b2 then go to contl;
contl:
if m = k then go to root;
comment Form the shift from leading 2 X 2 block;
nextit:
g := d[k]; p2 := sqri(e2[k]);
h:= (dk+1]1—g) /(20X p2); r2 : = sqri{h X h+1.0);
dk] := h := p2/(if #<0.0 then i1—r2 else 1+r2);
h:=g—hf:=f+1h
for i := k + 1step 1 until ndo d[i] : = d[i] — h;
comment Rational QL transformation, rows k through m;
g 1= d[m]; if g = 0.0 then g := b;
h:=g;s52:=00;
fori:= m — 1step — 1 until &k do
begin
p2 =g X h;r2:= p2 + e2lil;
e2[i+1] := 52 X r2; 52 := e2[i]/r2;
dli+1) := h + 52 X (h+d[i]);
g 1= dli] — e2lil/g; if g = 0.0 then g : = b;
hi=g X p2/r2
end i;
e2lk) := s2 X g X h; dlk] := I
if e2[k] > b2 then go to nexiit;
root:
hi=dlk] + f;
comment One eigenvalue found, sort eigenvalues;
for i := k step —1 until 2 do
if i < d[i—1] then d[i] := d[i—1] else go to cont2;
i:=1;
cont2:
dii} :=h
end £
end rglrat;

Communications November 1973
of Volume 16
the ACM Number 11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355611.362539&domain=pdf&date_stamp=1973-11-01

Algorithm 4635
Student’s ¢ Frequency [S14]

G.W. Hill [Recd. 24 Aug. 1971, 23 Feb. 1972, 10

July 1972]
C.S.L.R.O., Division of Mathematical Statistics, Glen

Osmond, South Australia

Key Words and Phrases: Student’s t statistic, density function,
series approximation

CR Categories: 5.12, 5.5

Language: Algol

Description
The frequency function for Student’s ¢ distribution,

In+3%)

. 1 2 —(%n‘f%)’
GG 1

flln) =
is evaluated for real 7 and real n > 0 to a precision near that of
the processor, even for large values of #.

The factor involving ¢ is evaluated as exp(—14b) where b is
computed as (n + Vin(l + £/n) if #/n = ¢ is large (>cmax,
say) or, to avoid loss of precision for smaller ¢, by summing
the series for b = (2 + ¢)(1 — ¢/2 + /3 — /4 + --+) until
negligible terms occur, i.e. ¢7/(r + 1) < ¢, where ¢ is the relative
magnitude of processor round-off. The relative error up to e/
cmax in evaluating In(1 + ¢) and the accumulated round-off
error of order e +/R in summing a maximum of R terms of the
series can be limited to about the same low level by choosing
cmax = R~ where R*8/R ~~ e. Thus for R = 12, 16, 23, or 32,
values of cmax =~ 0.2887, 0.25, 0.2085, or 0.1762, respectively,
correspond to processor precision where e = 2724 2736 27%,
or 27# respectively.

Evaluation of the ratio of gamma functions by exponentiating
the difference of almost equal values of their logarithms would
involve considerable loss of precision for large n. This is avoided
by use of the asymptotic series obtained by differencing the Stirling
approximations, changing the variable to a = n — 3, and ex-
ponentiating the result (see also [1]):
rGn+9 . o

ran Ga) gCr(4a) ,
where Co=C,=1,Cy = —19/2, C; = 631/2, C, = —174317/8,
Cs = 204 91783/8, Cs = —73348 01895/16, C; = 185 85901
54455/16, Cs = —5 06774 10817 68765/128, Cy = 2236 25929
81667 88235/128, C1y = —24 80926 53157 85763 70237/256.

The relative error of the sum of the first s terms is negligible
for 1 > nmin where | C;| X [4 (nmin— §)]™* ~ ¢,eg. fors = 5
and e = 2724 or 238 nmin =~ 6.271 or 13.76, respectively, and for
s = 10 and ¢ = 275 or 278 umin ~ 15.5 or 40.89, respectively.
For smaller » the ratio of gamma functions is obtained from the
ratio for some N > nmin by the relation:

T@n+4 »n (n+2)__'(N—2)I‘(%N+%)
rGn) (+D@+3) (N—1) TGEN)

For large n, processor underflow at line 21 is avoided by use of the
normal approximation, which is adequate for values of n > 1/,
whose representation is unaffected by subtraction of 0.5. Protection
against negative or zero n is provided by returning the distinctive
value, —1.0, which may be supplemented by an error diagnostic
process, if required.

For double precision calculations speed is improved by evalu-
ating higher order terms of the gamma ratio series using single
precision operations. Comparison of double precision (e = 278)

690

results with single precision results (¢ = 27% nmin = 13.76, cmax =
0.25) for a Control Data 3200 indicated achievement generally of
about ten significant decimal digits, dropping to about eight sig-
nificant decimals for arguments beyond the 10~2° probability level.

Valuable comments from the referee are gratefully acknowl-
edged.

Reference

1. Fields, J.L. A note on the asymptotic expansion of a ratio of
Gamma functions. Proc. Edinburgh Math. Soc. Ser. 2 15 (1966),
43-45.

Algorithm

real procedure ¢ frequency (t, n);
value ¢, #; real ¢, n;

if n < 0.0 then ¢ frequency := —1.0

else

begin
real g, b, ¢, d, e, nmin, cmax;
comment for 36-bit precision processor;
nmin := 13.76; cmax := 0.25;
b:=tX tjc:=b/nyja:=d:= b+ ¢
if ¢ > cmax then b := (n+1.0) X In(1.0+¢)

else
for e := 2.0, ¢ + 1.0 while b = d do
begina := —a X ¢;b := d;d := a/e + dend;

a = n;c = 0.3989422804,

comment 1/sqrt(2x) = 0.3989422804014326779399461 . . . ;
for ¢ := a while e < nmin do

begin ¢ := ¢ X a/(a+1.0);a := a + 2.0 end;

a:=a—05;
if a > n then
begin

c = sqri{a/n) X ¢;a := 0.25/a;a := a X a;
¢ = ((((—21789.625X a+315.5) Xa—9.5) Xa+1.0) Xa+1.0)
Xe
end;
t frequency := exp(—0.5Xb) X ¢
end Student’s t-frequency

Algorithm 466

Four Combinatorial
Algorithms [G6]

Gideon Ehrlich [Recd. 25 Aug. 1971, 4 Jan. 1972, and
12 Dec. 1972]

Department of Applied Mathematics, Weizmann In-
stitute of Science, Rehovot, Israel

Key Words and Phrases: permutations and combinations
CR Categories: 5.39
Language: PL/I

Description
Each of the following algorithms produce, by successive calls,
a sequence of all combinatorial configurations, belonging to the
appropriate type.
PERMU Permutations of N>3 objects: X(1), X(2), ..., X(N).
COMBI Combinations of M natural numbers out of the first N.
COMPOMIN Compositions of an integer P to M + 1 ordered
terms, INDEX(k), each of which is not less than a given mini-
mum MIN().

November 1973
Volume 16
Number 11

Communications

o
the ACM

COMPOMAX The same as COMPOMIN but each term has its
own maximum MAX (k).

The four algorithms have in common the important property
that they use neither loops nor recursion; thus the time needed for
producing a new configuration is unaffected by the “size” (N, N
and M, P and M respectively) of that configuration.

Each algorithm uses a single simple operation for producing a
new configuration from the old one, that is:

PERMU A single transposition of two adjacent elements.

COMBI Replacing a single element x by a y having the property
that there is no element between x and y belonging to the com-
bination.

COMPOMIN(MAX) Changing the values of two adjacent terms
(usually only by 1).

The algorithms are written in PL1(F).

Special instructions for the user and notes.

PERMU (1) The mean work-time is actually a decreasing func-
tion of N since, on (N — 1)/N of the calls, it returns by the
first RETURN. (2) The procedure operates directly on any
object vector x[1:N]. (3) For the first permutation one must
call FIRSTPER; for other permutations PERMU must be
used. (4) Together with the last permutation, which is the
original one, we will get DONE = '1'B. If we continue to call
PERMU, the entire sequence will repeat indefinitely. If at any
stage we set DONE = '0'B, then at the end of the appropriate
sequence it will become '1'B. (5) The entire resulting sequence
is the same as that of Johnson [1] and Trotter [2].

COMBI Every combination is represented in two forms: (1) As a
bit array of M '1's and N — M '0's which is identical to A(1),
AQ), ..., A(N). (2) As an array C of M different integers not
greater than N. The M elements are ordered according to their
magnitude. If the second representation is not needed one can
omit Z, H and C together with the last line of the procedure.
For the first combination we can use the following initializa-
tion (for other initializations see [3]):

DECLARE A(0:N) BIT (1), (X, Y, T(N), F(O:N),

I, L, Z, H(N), C(M)) FIXED;

DOK=0TON — M; A(KK) = '0'B; END;

DOK=N-— M+ 1TO N; A(K) = '1'B; END;

DOK=1TOM;CK) =N~ M+ K,HN — M+ K) = K;
END;

TN —M)=—1,T1) =0;FN) = N— M+ 1;I =N — M,
L=N,

(The initialization was not done in the body of the procedure
COMBI only in order to simplify the procedures COMPO MIN-
MAX:.)

Instead of using such a large number of parameters it is pos-
sible to retain only A, I, L as parameters of the procedure and
declare and initialize the other present parameters in the body of
the procedure (as is done in PERMU). Insuchacase N, T, F,L, H
must be declared as STATIC or CONTROLLED (‘own’ in AL-
GOL).

COMPOMIN Each of the M + 1 MIN(k), as well as P, can be
any integer (positive, negative, or zero), but the sum § of all
those minima cannot be greater than P.

For the first composition set INDEX(1) = P — S + MIN(1)
INDEX(k) = MIN(k), for k > 1.

Set N = P — S + M, and declare and initialize all variables
that also appear in COMBI in the same way as was done for
COMBI.

Together with the last composition, we will get I = 0 as a
~ signal to halt.

COMPOMAX The instructions for COMPOMIN are valid for
COMPOMAX provided: (1) MIN is replaced by MAX (S
> P);and (2) N is initializedto N = S — P + M.

The vector C (but not H!) has no use in COMPOMIN(MAX),
so one can omit all statements in which it appears. A justification
for the four algorithms and for some others can be found in [3].

Acknowledgment. 1 would like to thank Professor Shimon Even
for guidance and encouragement.

691

References

1. Johnson, S.N. Generation of permutations by adjacent
transformations. Math. Comp. 17 (1963), 282-285.

2. Trotter, H.F. Algorithm 115, Perm. Comm ACM 5 (Aug.
1962), pp. 434-435.

3. Ehrlich, G., Loopless algorithms for generation permutations
combinations and other combinatorial configurations. J. ACM
20 (July 1973), 500-513.

Algorithm

FIRSTPER: PROCEDURE (X,DONE);

DECLARE (X(*), (XN,XX) STATIC) DECIMAL, DONE BIT(1)
(N,S,V,M,L,1,DI,IP1) BINARY STATIC,
(P(0:N),IP(N-1}D(N=1),T(N)) BINARY CONTROLLED;
N=DIM(X,1);

IF ALLOCATION (P} THEN FREE P,IP,D,T; ALLOCATE P,IP,D,T;
DO M=1 TO N-1; P{M),IP(M)=M; D(M)=-1; END;

XN=X(N); V==1; S,P(0),P(N)=N; M,L=1;

T(N)=N-1; T(N-1)=-2; T(2)=2;

DONE="0'B;

PERMU: ENTRY (X,DONE};

IF S~=M THEN D0; X(S)=X(StV); S=S+V; X(S)=XN; RETURN; END;
I=T(N); DI=D(I);

1P(1),IPI=IP(1)+DI; M=P{IPI); 1P(M)=IPI-DI;
P(IPI-DI)=M; P(IPI)=I; M=IPI4L;
XX=X(M); X(M)=X{M-DI); X{M-DI)=XX;
L=1-1; V=-V; M=N+1-S;

IF P(IPI+DI) < I THEN
DO; IF I=N-1 THEN RETURN;
T(N)=N-1; T(N-1) = -I; RETURN;
END;
D(1)=-D1;
IF T(I) <0 THEN
pO; IF T(I)m=1-1 THEN T(I-1)=T(I)}; T(I)=1-1; END;
IF I = =N-1 THEN DO; T(N)=N-1; T(N~1)=-1-1; END;
T(1+1)=T(1);
If 1=2 & P(2)=2 THEN DONE='1'8;
END;
COMBI PROCEDURE (A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*)BIT(1), (N,X,Y,T(*),F(*),I,L,Z,H(*),C(*})
IF T(I) <0 THEN
D0; IF -T(I)~=I-1 THEN T(I-1)=T(I); T(I)=I-1; END;
IF— A(1) THEN
00; X=I; Y=F(L);
IF A(I-1) THEN F(I)=F(I-1); ELSE F(I)=I; IF F{L)=L THEN
DO; L=I; I=T(I); GOTO CHANGE; END;
IF L=N THEN
D0; T(F(N})=-1-1; T{I+1)=T(1); I=F(N);
F(N)=F(N)+1; GOTO CHANGE;
END;
T(L)=-1-1; T(I+1)=T(1);
F(L)=F(L)+1; I=L; GOTO CHANGE
END;
Y=1;
IF I~ =L THEN
DO;
F(L),X=F(L)-1; F(I-1)=F(1};
IF L=N THEN
DO; IF I=F(N) -1 THEN DO; I=T(I}; GOTO CHANGE; END;
T(F(N)=1)=-1-1; T(I+1)=T(I);
I=F(N)-1; GOTO CHANGE;
END;
T(L)=-I-1; T(I+1)=T(I); I=L; GOTO CHANGE;
END;
X=N; F(L-1)}=F(L); F(N)=N; L=N;
IF I=N-1 THEN DO; I=T(N-1); GOTO CHANGE; END;
T(N-1)=-1-15 T(I+1)=T(1); I=N-1;
CHANGE ;
A(X)=*1'B; A(Y)="0'B;
H(X),Z=H(Y}; €(Z)=X;
END COMBI;
COMPOMIN: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*) BIT(1),
(INDEX(*) ,NoX, Y, T (*),F(*),1,L,Z,H(*),C(*))
CALL COMBI (A,N,X,Y,T,F,I,L,Z,H,C);
INDEX(Z)=INDEX(Z)+X-Y; INDEX{Z+1)=INDEX(Z+1)+Y-Xz
END COMPOMIN
COMPOMAX: PROCEDURE {INDEX,A,N,X,Y,T,F,I,L,Z,H,C};
DECLARE A{*) BIT(1),
(INDEX(*),N,X, Y, T(*),F(*),I,L,Z,H(*),C(*))
CALL COMBI (A,N,X,Y,T,F,I,L,Z,H,C);
INDEX(Z)=INDEX(Z)-X+Y; INDEX(Z+1)=INDEX(Z+1)-Y+X;
END COMPOMAX;

FIXED;

FIXED;

FIXED;

Communications November 1973
of Volume 16
the ACM Number 11

Algorithm 467

Matrix Transposition in
Place [F1]

Norman Brenner [Recd. 14 Feb. 1972, 2 Aug. 1972]
M.I.T., Department of Earth and Planetary Sciences,
Cambridge, MA 02139

Key Words and Phrases: transposition, matrix operations,
permutations, primitive roots, number theory

CR Categories: 3.15, 5.14, 5.39

Language: Fortran

Description

Introduction. Since the problem of transposing a rectangular
matrix in place was first proposed by Windley in 1959 {1], several
algorithms have been used for its solution (2, 3, 7]. A significantly
faster algorithm, based on a number theoretical analysis, is de-
scribed and compared experimentally with existing algorithms.

Theory. A matrix a, of n; rows and n. columns, may be stored
in a vector v in one of two ways. Element a;; (0-origin subscripts)
may be placed rowwise at vy, k = in; + j, or columnwise at v,
k' =i+ jn,.Clearly, lettingn = nyand m = nin, — 1,

k' = nk (mod m). 1)

Transposition of the matrix is its conversion from one mode
of storage to the other, by performing the permutation (1). This
permutation may be done with a minimum of working storage in

. a minimum number of exchanges by breaking it into its subcycles.
For example, for a 4 X 9 matrix, one subcycle representation is

©) (141629 11 9) (34 31 19 6 24 26)
(22 18 2 8 32 23) (13 17 33 27 3 12)
(5 20 10) (30 15 25) (7 28) (14 21) (35).

The notation for the sixth subcycle, for example, means that
V5 €= Voo <— Vio <~ V5.

For a subcycle starting with element s, the elements of the
subcycle are sn™ (mod m), for r = 0, 1,.... The following theo-
rems are easily established.

TueorReM 1. All the elements of the subcycle beginning with s
are divisible by d = (s, m), the largest common factor of both s and
m. They are divisible by no larger divisor of m.

Timing Tests

ProoF. Both m and s are divisible by 4, and therefore so is any
subcycle element sn™ (mod m). But #» and m have no common
factors (since m = nny — 1), so no divisor of m larger than d can
divide snm.0O

THEOREM 2. For every subcycle beginning with s, there is
another (possibly the same) subcycle beginning with m — s.

Proor. The elements of the second subcycle are just —sn”
(mod m). It is the same subcycle if for some r, n* = —1 (mod m'),
for m' = m/(s, m).O

The next theorem gives the group representation of the integers
modulo m.

THEOREM 3. Factor m into powers of primes, m = p{'' -.- pJ'L.
Let r; be a primitive root of p;; that is, the powers r* (mod p;) for
k=0,1,..., p — 2, comprise every positive integer less than p; .
Define the generator g; = 1 + Rm/p{', where R = (r; — 1)
(m/pl*)~t (mod pi't). Define the Euler totient function $(1) = 1;
otherwise ¢(k) = the number of integers less than k having no com-
mon factor with it. Then, for any integer x less than m, there exist
unique indices j; for which 0 < j; < ¢(pfi/(x, pl?)) and
x = (x, m)g{1 cee g{’(mod m).

Proor. In [4]; if any p; = 2, replace g{:i by :tSji, where 0 <
Ji < Q2% (x,2717%). O

For example, for m = 35, as in our example above, x =
22713172 (mod 35) for (x,35) = land for 0< j; < 4and0< j, < 6.

Index notation is analogous to logarithmic notation in that
multiplication modulo m becomes merely addition of indices.

The following theorem solves the problem of the subcycle
starting points. It is similar to the algorithm in [6].

THEOREM 4. Let n and m be defined as for (1). Then, for any
integer x less than m, upper bounds J; may be found so that unique
indices j; exist in the range 0 < j; < J; and x = +(x,m)
lzj"g{‘ s g]l" (mod m).

ProoF. Express # and —1 in index notation. Then, compute
from the indices of » the smallest e such that #* = 1 (mod m).
Initially, set each J; = ¢(p¥i/(x, p:,”)). Next, doing only index

arithmetic, examine each power = for nontrivial relations of the
form gii = +nfgit .- gl! (mod m/(x, m)) where 0 < ji < Ji
for each k. Then set J; = j; . Stop when the product of the J; and e
equals ¢(m/(x, m)), which is the number of integers in subcycles
divisible only by (x, m).O

Notice that the choice of J; by this method is not unique. For
example, continuing from above, for (x, m) = 7, n = 4,
x = 7-4792271 (mod 35), for 0 < j, < 2and0 < j; < 2. The rela-
tions found were (— 1)1 = 4t (mod 5),22% = 4! (mod 5) and 31! = 4°
(mod 5).

Theorem 4 is more important in theory than in practice. The

m iy m (all times in msec)

Alg.302 Alg.380 Alg.380 XPOS XPOS

IWRK=0 IWRK= NWORK=0 NWORK=
(m~+ns)/2 (m+n2)/2

Tl T2 T3 T4 T5 TI/T4 T2/T4 T3/T5
45 50 13-173 350 317 167 133 67 2,62 2,38 2,50
45 60 2699 558 123 117 90 100 6,20 1,37 1,17
46 50 112-19 367 339 217 106 83 3,46 3,21 2,60
46 60 31-89 425 350 250 133 83 3,19 2,63 3,00
47 50 3429 383 378 267 72 67 5,18 5,23 4,00
47 60 2819 483 127 133 90 100 5,36 1,41 1,33
45 180 7-13-89 1200 1050 816 517 300 2,25 2,03 2,72
45 200 8999 1767 408 416 283 300 6,25 1,44 1,39
46 180 17-487 1816 1233 583 267 267 6,41 4,63 2,19
46 200 9199 1700 508 417 383 317 4,44 1,33 1,32
47 180 11.769 1450 1133 667 383 267 3,78 2,96 2,50
47 200 3-13-241 983 1150 1067 550 467 1,69 2,09 2,29
692 Communications November 1973

of Volume 16

the ACM Number 11

tremendous labor in finding primitive roots for large primes (since Algorithm
a table of roots is very bulky) and in finding the index representa-

. . . . SUBRBUTINE XPGSECA, N1 N2, Nt2 MOVED, NWORK)
tion of n is not compensated for by time savings afterward; see the T ANGULAR. - 1T

. .) A . C TRANSPOSITION GF A RECTANGULAR MATRIX IN SITU.
timing tests below. The same practical objection holds against the C BY NORMAN BRENNER, MIT, 1/72. CF. ALG. 380, CACM, 5/70.
Jeorithm in [6 C TRANSP@SITION OF THE N1 BY N2 MATKIX A AMOUNTS T0
algorithm in [6]. . . C REPLACING THE ELEMENT AT VECTOXK P@SITION I (0-BRIGIN)

Algorithm. An efficient program breaks naturally into two C WITH THE ELEMENT AT POSITIGN NI1%I (MOD N1*N2-1).

: ; ; : C EACH SUBCYCLE OF THIS PERMUTATION IS COMPLETED IN @RDEK.
parts. First determine starting points for the subc_\:/cle§ a{ld then C MOVED IS A LOGICAL WORK ARRAY OF LENGTH NWORKe
move the data. In each part, the program below is significantly LOGICAL M@VED
H 3 DIMENSIGN A(CN12), MOBVED(NWORK)

faster than Algqnthm 380 in [3]. - . . C REALLY ACN1,N2), BUT N12 = NI*N2

For each divisor d of m, the subcycles beginning with d and with DIMENSI@N IFACT(8), IPOWER(8), NEXP(8), IEXP(8)
m — d are done. If the number of data moved is still less than AN eLTe2 core N2.LT.2> RETURN
¢(m/d), further subcycle starting points of the form sd are tried, M= NI%N2 - 1
for s = 2, 3, The most general test is that sd is acceptable if IF (N1.NE.N2) GO T8 30 .

D . C SQUARE MATRICES ARE D@NE SEPARATELY FOR SPEED

no element in its subcycle is less than sd or greater than m — sd. IIMIN = 2
Since this test requires much time-consuming computation, it is D@ 20 I1MAX=N,M,N

ch faster to look for sd in a table wh k de t e o e N, T
much faster to look for sd in a table where marks are made to DO 10 I1=F1MIN, I1MAX
indicate that an element has been moved. In some applications, a ATEMP = ACID)

. ey e . A =
bit within each datum may be used. For example, if the data are all AE i;; i 2;;3;
biased positive, the sign bit may be used; or, for normalized, non- 12 = I2 + N
zero, binary floating point data, the high bit of the fraction is always 10 ??:'{;NSE“MIN PN e
one and so may be used. In general, a special table of length 20 CONTINUE
i i — RETURN
NWORK 18 USed. AS n [3]’ NWORK - (I’h + n;)/2 was found to C MEDULUS M IS FACTQRED INT® PRIME PGWERS. EIGHT FACTOBRS
be sufficient for most cases. However, when m has many divisors, C SUFFICE UP TO M = 2#3%SkxT#11%13%x17%19 = 9,767,520.
Algorithm 380 must perform the time-consuming general test for 36 ggL‘;OF;‘gf’fRég’wég“c“ IPOWER, NEXP» NPOWER)
. . . . =1ls

many possible starting points when the new algorithm need not. IEXPCIP) = 0

The inner loop of the algorithm computes (1), moves dat: 40 CONTINUE

. p 8 P ().’ oV .a, C GENERATE EVERY DIVISOR @F M LESS THAN M/2

marks in the table, and checks for loop closure. Since the major IDIV = 1
part of the time of the inner loop is calculating (1), time is saved 50 IF ¢IDIV.GE.M/2) G@ 70 190

THE NUMBER OF ELEMENTS WHDSE INDEX IS DIVISIBLE BY IDIV
AND BY NQ OTHERr DIVISOR OF M IS THE EULER TOTIENT
FUNCTION, PHIC(M/ZIDIV).

NCOUNT = M/IDIV

D@ 60 IP=1,NP@WER

over Algorithm 380 by moving elements v; and v« simultaneously.
In special cases, further savings may be made. For example, m is
divisible by 2 only when both n, and n, are odd. Then the subcycles

[2XeRe]

beginning at m/2 — s and m/2 + s may be done simultaneously IF CIEXPCIP).EQ.NEXPCIP)> G@ TG 60
with the subcycles from s and m — s, thus reducing the number of 60 ce§$?§3§ = (NCOUNT/IFACTCIP))*CIFACTCIPY -1
times (1) is computed. D2 70 1=1,NWERK

Timing tests. A set of test matrices were transposed on the 70 czm\zjusaé“ = -FALSE.
360/65 with all programs written in Fortran H, OPT = 2. The new C THE STARTING P@INT @F A SUBCYCLE IS DIVISIBLE @NLY BY IDIV
algorithm was always faster than both Algorithm 380 [3] and Al- C AND MUST NOT APPEAR IN ANY OTHER SUBCYCLE.
gorithm 302 [2] when NWORK = (m + m)/2. When NWORK = 0, 80 MMIST = M - ISTART
it was slower than Algorithm 380 (for /WRK = 0) and Algorithm IF C(ISTART.EQ.1DIV) 68 7@ 120
302 only f f h . IF (ISTART.GT.NWQRK) GO T@ 90

only oF a few cases when mn, < 100. It was especially faster IF (M@VEDCISTARTY) G@ T@ 160
than Algorithm 380 when m = mn, — 1 had many factors and 90 150ID = ISTART/IDIV

D@ 100 IP=1,NPQWER

there were hf.:nce many subcycles. IF C(IEXPCIP).EQ.NEXPCIP>) G@ T@ 100

An experiment was made for cases when m was prime. A known IF (M@DCIS@ID,IFACT(IP)).EQ.0) GO T 160

L 100 CONTINUE

primitive root of m was thfen takgn from a table ['5] and was used IF (ISTART.LE.NWORK) G@ T@ 120
to generate subcycle starting points. Since no time was wasted ITEST = ISTART
: ; PN : . : . 110 ITEST = M@DC(N*ITESTsM)
m'ﬁndmg the primitive root or in ﬁndmg subcycle starting points, IF CITESTeLT.ISTART «ORe ITEST+GT.MMIST) GO TO 160
this test showed the maximum time savable by implementing IF (ITEST+GT+ISTART »AND. ITEST.LT.MMIST) GO T0 110
Theorem 4. For NWORK = (m + m)/2 and m > 200, no im- 120 S;Em = QE;;IQFT‘I;;’
provement was found over the normal algorithm. For NWORK = 0, 1Al = ISTART
the gain in speed was never more than 25 percent. 130 IA2 = M@D(N*IAL,M)

MMIAL = M - 1Al

MMIA2 = M - IA2

IF (IA1.LE.NWGRK) MOVEDCIAL> = .TRUE.

IF (MMIA1.LE.NWGRK) MBVEDC(MMIAL) = oTRUE.
References NCOUNT = NCBUNT - 2

1. Windley, P.F. Transposing matrices in a digital computer. C MEVE TWo ELEMENTS, THE SECOND FReM THE NEGATIVE
Comp. J. 2 (Apr. 1959), 4748, O Cine Eo.TSTART) GO To 140 o
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. IF (MMIA2.EQ.ISTART) G@ T@ 150
Comm. ACM 10 (May 1967), 292-293. ACIAL+1) = ACIA2+1)
3. Laflin, S., and Brebner, M.A. Algorithm 380: In-situ A:\MMEA‘;;’ = AmIAZED
transposition of a rectangular matrix. Comm. ACM 13 (May (I;QITE, f;,o
1970), 324-326. 140 ACIA1+1) = ATEMP
4. Bolker, E. An Introduction to Number Theory: An Algebraic A(MMIAL+1) = BTEMP
Approach. Benjamin, New York, 1970. 6o To 160
5. Abramowitz, M., and Stegun, 1. Handbook of Mathematical 150 25;3;;111; ST;E\?-EMP
Funcrions, Table 24.8. Nat. Bur. of Standards, Washington, D.C., 160 ISTART = ISTART + IDIV
1964. IF (NCBUNT.GT.0) GO TO 80
. . . . DO 180 1P=1,NPOWER
6. I.’allZ G., and Seiden, E.A problem in Abelian Groups., with IF CIEXPCIP).EQ.NEXPCIP)) GO T8 170
application to the transposition of a matrix on an electronic IEXPCIP) = IEXPCIP) + 1
computer. Math. Comp. 14 (1960), 189-192. IDIV = IDIVXIFACTCIP)
7. Knuth, D., The Art of Computer Programming, Vol. 1. 110 fgnglsg -0
Addison-Wesley, Reading, Mass., 1967, p. 180, prob. 12, and IDIV = IDIV/IPOWERCIP)
p. 517, solution to prob. 12.
693 - Communications November 1973
of Volume 16

the ACM Number 11

180 CONTINUE
190 RETURN
END

SUBROUTINE FACT@OR(N, IFACT, IPOWER, NEXP, NPOWER)

C FACTOR N INT® ITS PRIME POWERS, NPOWER IN NUMBER.
C E«Ges FOR N=1960=2%*3 %5 *7*%2, NPOQWER=3, IFACT=3,5,7»
C IPOWER=8,5,49, AND NEXP=3,1,2.

DIMENSI®ON IFACT(8)» IPQWER(8), NEXP(8)

IP=20

IFCUR = O

NPART = N

IDIV = 2

10 IQUBT = NPART/IDIV
IF (NPART-IDIV*IQUOT) 60, 20, 60
20 IF (IDIV-IFCUR) 40, 40, 30
30 IP = IP + 1
IFACTCIP)Y = IDIV
IPQWERCIP) = IDIV
IFCUR = IDIV
NEXPCIP) = 1
Go Te SO
40 IPOWERCIP) = IDIV*IP@WERCIP)
NEXPCIP) = NEXPC(IP) + 1
50 NPART = 1QU@T
Gg T 10
60 IF (IQUBT-IDIV) 100, 100, 70
70 IF C(IDIv-2) 80, 80, 90
80 IDIV = 3
Go T2 10
90 IDIV = IDIV + 2
Go To 10
100 IF (NPART-1) 140, 140, t10
110 IF (NPART-IFCUR) 130, 130, 120
120 IP = IP + 1
IFACTCIP) = NPART
IPOWERCIP) = NPART
NEXPCIP) = 1
Go T 140
130 IPOWERCIP) = NPART*IPOWERCIP)
NEXPCIP) = NEXPCIP)Y + |
140 NPOWER = IP
RETURN
END

Algorithm 468

Algorithm for Automatic
Numerical Integration Over
a Finite Interval [D1]

T.N.L. Patterson [Recd. 20 Jan. 1971, 27 Nov. 1972,
12 Dec. 1972, 26 Mar. 1973]

Department of Applied Mathematics and Theoretical
Physics, The Queen’s University of Belfast, Belfast BT7
INN Northern Ireland

Key Words and Phrases: automatic integration, numerical
integration, automatic quadrature, numerical quadrature

CR Categories: 5.16

Language: Fortran

Editor’s note: A/gorithm 468 described here is available on magnetic
tape from the Department of Computer Science, University of
Colorado, Boulder, CO 80302. The cost for the tape is $16.00 (U.S.
and Canada) or 818.00 (elsewhere). If the user sends a small tape
(wt. less than 1 1b.) the algorithm will be copied on it and returned to
him at a charge of $10.00 (U.S. only). All orders are to be prepaid
with checks payable to ACM Algorithms. The algorithm is recorded
as one file of BCD 80 character card images at 556 B.P.l., even
parity, on seven track tape. We will supply algorithm at a density of
800 B.P.L. if requested. Cards for algorithms are sequenced starting
at 10 and incremented by 10. The sequence number is right justified in
column 80. Although we will make every attempt to insure that the
algorithm conforms ro the description printed here, we cannot guaran-
tee it, nor can we guarantee that the algorithm is correct.—L.D.F.
and A.K.C.

694

Description

Purpose. The algorithm attempts to calculate automatically
the integral of F{x) over the finite interval [4, B] with relative
error not exceeding a specified value e.

Method. The method uses a basic integration algorithm
applied under the control of algorithms which invoke, if necessary,
adaptive or nonadaptive subdivision of the range of integration.
The basic algorithm is sufficiently powerful that the subdivision
processes will normally only be required on very difficult integrals
and might be regarded as a rescue operation.

The Basic Algorithm. The basic algorithm, QUAD, uses a family
of interlacing whole-interval, common-point, quadrature formulas.
The construction of the family is described in detail in [1]. Begin-
ning with the 3-point Gauss rule, a new 7-point rule is derived, with
three of the abscissae coinciding with the original Gauss abscissae;
the remaining four are chosen so as to give the greatest possible
increase in polynomial integrating degree; the resulting 7-point
rule has degree 11. The procedure is repeated, adding eight new
abscissae to the 7-point rule to produce a 15-point rule of degree 23.
Continuing, rules using 31, 63, 127, and 255 points of respective
degree 47, 95, 191, and 383 are derived. The 255-point rule has not
previously been published. In addition, a 1-point rule (abscissa at
the mid-point of the interval of integration) is included in the family
to make eight members in all. The 3-point Gauss rule is in fact
formally the extension of this 1-point rule. The successive applica-
tion of these rules, until the two most recent results differ relatively
by e or better, is the basis of the method. Due to their interlacing
form, no integral evaluations need to be wasted in passing from one
rule to the next.

The algorithm has been used for some time on practical problems
and has been found to generally perform reliably and efficiently.
Its domain of applicability generally coincides with that of the
Gauss formula, which is much wider than commonly supposed
[2]. It will perform best on “smooth” functions, but the degree of
deterioration of performance when applied to functions with various
types of eccentricities depends more on the harshness of these
eccentricities than on their presence as such. Integrands with large
peaks or even singularities at the ends of the interval of integration
are handled reasonably well. It may be noted that none of the rules
actually uses the end points of the interval as abscissae. Peaks in
the integrand at the center of the interval and discontinuities in the
integrand are less easily dealt with. Although it is recommended that
the algorithm be applied using the control algorithms described
later, if desired it can be used directly as follows.

The algorithm is entered by the statement:
CALL QUAD (A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)

The user supplies:

A lower limit of integration.

B upper limit of integration.

EPSIL required relative error. ‘

F F(X) is a user written function to calculate the integrand.

The algorithm returns:

RESULT an array whose successive elements RESULT(1),
RESULT(2), etc., contain the results of applying the succes-
sive members of the family of rules. The number of rules ac-
tually applied depends on EPSIL. The array should be de-
clared by the calling program to have at least eight elements.

K element, RESULT(K), of array RESULT contains the value
of the integral to the required relative accuracy. K is determined
from the convergence criterion:

| RESULT (K) — RESULT (K — 1) |
< EPSIL* | RESULT (K) |

NPTS number of integrand evaluations.

ICHECK this flag will normally be 0 on exiting from the sub-
routine. However, if the convergence criterion above is not
satisfied after exhausting all members of the family of rules,
then the flag is set to 1.

Communications November 1973
of Volume 16
the ACM Number 11

Table 1. Test Integrals and Their Values

1
1. j; \/xdx=§

1
2. f [0.92 cosh (x) — cos (x)] dx = 0.4794282267
1

N

1
3. f dx/(xt + xt + 0.9) = 1.582232964
-1
1
5. f dx/(1 + x*) = 0.8669729873
0
1
6. f dx/(1 4+ 0.5 sin (31.4159x)) = 1.154700669
0
1
7. f x dx/(er — 1) = 0.7775046341
0
1
8. f sin (314.159x)/(3.14159x) dx = 0.009098645256
0.1
10
9. f 50 dx/(2500x% + 1)/3.14159 = 0.4993638029
0

3.1415927
10. / cos (cos (x) + 3sin (x) + 2 cos 2x)
0
+ 3cos (3x) + 3 sin (2x)) dx = 0.8386763234

1
11. f In (x) dx = —1.0
0
1
12. f 4xr2x sin (20wx) cos (2wx) dx = —0.6346651825
0

1
13. f dx/(1 + (230x — 30)?) = 0.0013492485650
0

The control algorithms. Two control algorithms are provided,
QSUBA and QSUB, which if necessary invoke subdivision respec-
tively in either an adaptive or a nonadaptive manner. QSUBA is
generally more efficient than QSUB, but since there are reasons for
believing {2] that adaptive subdivision is intrinsically less reliable
than the nonadaptive form, an alternative is provided.

The adaptive algorithm QSUBA. QUAD is first applied to the
whole interval. If a converged result is not obtained (that is, the
convergence criterion is not satisfied), the following adaptive sub-
division strategy is invoked. At each stage of the process an interval
is presented for subdivision (initially the whole interval (4, B)).
The interval is halved, and QUAD applied to each subinterval. If
QUAD fails to converge on the first subinterval, the subinterval is
stacked for future subdivision and the second subinterval imme-
diately examined. If QUAD fails to converge on the second sub-
interval, it is immediately subdivided and the whole process re-
peated. Each time a converged result is obtained it is accumulated
as the partial value of the integral. When QUAD converges on both
subintervals the interval last stacked is chosen next for subdivision
and the process repeated. A subinterval is not examined again once
a converged result is obtained for it, so that a spurious convergence
is more likely to slip through than for the nonadaptive algorithm
QSUB.

The convergence criterion is slightly relaxed in that a panel is
deemed to have been successfully integrated if either QUAD con-
verges or the estimated absolute error committed on this panel
does not exceed e times the estimated absolute value of the integral
over (4, B). This relaxation is to try to take account of a common
situation where one particular panel causes special difficulty, per-
haps due to a singularity of some type. In this case, QUAD could

695

obtain nearly exact answers on all other panels, and so the relative
error for the total integration would be almost entirely due to the
delinquent panel. Without this condition the computation might
continue despite the requested relative error being achieved. The
risk of underestimating the relative error is increased by this pro-
cedure and a warning is provided when it is used.

The algorithm is written as a function with value that of the
integral. The call takes the form:

QSUBA(A, B, EPSIL, NPTS, ICHECK, RELERR, F)

and causes F(x) to be integrated over (4, B) with relative error
hopefully not exceeding EPSIL. RELERR gives a crude estimate of
the actual relative error obtained by summing the absolute values of
the errors produced by QUAD on each panel (estimated as the
differences of the last two iterates of QUAD) and dividing by the
calculated value of the integral. The reliability of the algorithm will
decrease for large EPSIL. It is recommended that EPSIL should
generally be less than about 0.001. F should be declared EXTERNAL
in the calling program. NPT is the number of integrand evaluations
used. The outcome of the integration is indicated by ICHECK:

ICHECK = 0. Convergence obtained without invoking subdivi-
sion. This corresponds to the direct use of QUAD.

ICHECK = 1. Subdivision invoked and a converged result ob-
tained.

ICHECK = 2. Subdivision invoked and a converged result ob-
tained but at some point the relaxed convergence criterion was
used. If confidence in the result needs bolstering, EPSIL and
RELERR may be checked for a serious discrepancy.

ICHECK negative. If during the subdivision process the stack of
delinquent intervals becomes full a result is obtained, which
may be unreliable, by continuing the integration and ignoring
convergence failures of QUAD which cannot be accommodated
on the stack. This occurrence is noted by returning ICHECK
with negative sign.

The nonadaptive algorithm QSUB. QUAD is first applied to
the whole interval. If a converged result is not obtained the follow-
ing nonadaptive subdivision strategy is invoked.

Let the interval (4, B) be divided into 2 panels at step N of
the subdivision process. QUAD is first applied to the subdivided
interval on which it last failed to converge, and if convergence is
now achieved, the remaining panels are integrated. Should a con-
vergence failure occur on any panel, the integration at that point is
terminated and the procedure repeated with N increased by one.
The strategy insures that possibly delinquent intervals are examined
before work, which later might have to be discarded, is invested on
well behaved panels. The process is complete when no convergence
failure occurs on any panel, and the sum of the results obtained by
QUAD on each panel is taken as the value of the integral.

The process is very cautious in that the subdivision of the inter-
val (A4, B) is uniform the fineness of which is controlled by the suc-
cess of QUAD. In this way it is much more difficult for a spurious
convergence to slip through than for QSUBA. The convergence
criterion is relaxed as described for QSUBA.

The algorithm is used in the same way as QSUBA and is called
with the same arguments as QSUBA. One of the possible values of
ICHECK has a different interpretation:

ICHECK negative. If during the subdivision process the upper
limit on the number of panels which may be generated is
reached, a result is obtained, which may be unreliable, by con-
tinuing the integration ignoring convergence failures of QUAD.
This occurrence is noted by returning ICHECK with nega-
tive sign.

Tests. The algorithms have been found to perform reliably on
a large number of practical problems. To give a feeling for the
performance, results for a number of contrived examples are given
using the adaptive control algorithm, QSUBA. 1t would be dif-
ficult to justify these examples as acid tests of any method, but they
have the advantage of having being quoted at various times in the
literature.

For comparison a number of automatic procedures were used,
which include SQUANK [3] (adaptive Simpson), as well as the

Communications November 1973
of Volume 16
the ACM Number 11

Table 11. Relative Error Requested, 1073

Integral Ncapre Nosvsa Tcapre/Toesuba
1 17 15 1.8
2 17 7 2.9
3 33 15 4.4
4 9 7 1.9
5 9 7 2.2
6 175 127 3.2
7 9 7 1.8
8 1137 255 8.5
9 97 127 2.4

10 107 63 2.2

11 137 31 9.9

12 252 63 6.3

13 129 787 .52

N and T with appropriate subscripts give respectively the num-
ber of integrand evaluations and the time taken for the com-
putation.

Table I11. Relative Error Requested, 10-¢

1 33 63 .75
2 33 15 2.6
3 49 31 3.0
4 129 31 5.0
5 17 15 2.0
6 401 255 2.9
7 9 7 1.8
8 2633 255 18.

9 281 255 2.4
10 193 63 3.8
11 233 795 .74
12 532 127 6.4
13 305 1001 .90
Table 1V. Relative Error Requested, 10~8

1 65 255 .36

2 33 15 2.7

3 97 31 4.9

4 545 3 20.

5 65 31 3.6

6 569 255 3.8

7 17 15 1.6

8 4001 255 24.

9 337 255 2.8
10 305 127 2.8
11 297 2415 .28
12 932 127 10.
13 481 1017 1.1

modified Havie integrator [4] and CADRE [5] (both based on the
Romberg scheme). The latter algorithm, which attempts to detect
certain types of singularities using the Romberg table, was found,
on the examples tried, to be the best overall competitor to QSUBA,
and only this comparison is quoted. The Havie algorithm was par-
ticularly poor and had the disturbing feature of converging spu-
riously on periodic integrands. Thacher [6] has described the short-
comings of Romberg integration, and Algorithm 400 appears to
exhibit them. SQUANK was found. to be quite good when used
at low accuracy, but the performance deteriorated as the demand for
accuracy increased. It also gave trouble on some of the more awk-
ward integrals such as 8 and 11. SQUANK also computes the in-
tegral in the context of absolute error, and since this is meaningless
unless an estimate of the order of magnitude of the integral is
known, the algorithm can hardly be described as automatic.
CADRE allows a choice of absolute or relative error. A criticism
sometimes levied at relative error is that should the integral turn

696

out to be zero a difficulty will arise. The only advice that can be
offered in this respect is that, should a user suspect that this is likely
to happen, a constant should be added to the integrand reflecting
some appropriate quantity such as the maximum of the integrand.
The constant which will be integrated exactly can be removed after
the algorithm has done its work.

The test integrals are listed in Table I, and the results obtained
for various required relative accuracies in Tables II, III, and IV.
Generally QSUBA is superior by a substantial margin. The methods
are compared in terms of the number of integrand evaluations
needed to obtain the required accuracy and also in terms of the
times required. For simple integrands the bookkeeping time of
some methods can be significant, and QUAD can obtain a con-
siderable advantage by its relative simplicity. Integrals 11 and 13 are
interesting examples of this. The number of integrand evaluations
exceeding 255 indicates that QSUBA invoked subdivision to obtain
the result. In Tables III and IV QSUBA returned ICHECK =
2 on integral 11, but the requested tolerance was achieved.

Integral 8 caused special difficulty to CADRE, and for Tables
Il and IV a converged result could be obtained only after a relatively
large investment of computer time. The feature of CADRE to
detect certain singularities should show up in integrals 1 and 11,
but the gain does not emerge until high accuracy is requested as in
Table IV. For harsher singularities the gain would likely become
apparent earlier.

References

1. Patterson, T.N.L. The optimum addition of points to quad-
rature formulae. Math. Comp. 22 (1968), 847-856.

2. Cranley, R., and Patterson, T.N.L. On the automatic numeri-
cal evaluation of definite integrals. Comp. J., 14 (1971), 189-198.
3. Lyness, J.N. Algorithm 379, SQUANK. Comm. ACM 13
(Apr. 1970), 260-263.

4. Wallick, G.C. Algorithm 400, Modified Havie integration.
Comm. ACM 13 (Oct. 1970), 622-624.

5. de Boor, Carl. CADRE: An algorithm for numerical
quadrature. Mathematical Software. J.R. Rice (Ed.) Academic
Press, New York, 1971, pp. 417-449.

6. Thacher, H.C. Jr. Remark on Algorithm 60, Comm. ACM
(July, 1964), 420-421.

Algorithm

SUBRBUTINE QUADCA, B» RESULT, Ks EPSIL» NPTS, ICHECK», F)
DIMENSION FUNCT(127), P(381), RESULT(8)
THIS SUBROUTINE ATTEMPTS TO CALCULATE THE INTEGRAL OF F(X)
@VER THE INTERVAL #*A* TQ *B* WITH RELATIVE ERR@K NOT
EXCEEDING *EPSIL#*.
THE RESULT IS @BTAINED USING A SEQUENCE OF 1,3>7,15,31563,
127, AND 255 P@INT INTERLACING FGRMULAE(NG INTEGRAND
EVALUATIQNS ARE WASTED) OF RESPECTIVE DEGREE 1,5,11,23,
47,595,191 AND 383. THE FORMULAE ARE BASED ON THE QPTIMAL
EXTENSI@N @F THE 3-PBINT GAUSS FORMULA. DETAILS OF
THE FORMULAE ARE GIVEN IN °"THE QPTIMUM ADDITION 2F PRINTS
TO QUADRATURE F@RMULAE' BY T.N.L. PATTERSON,MATHS.COMP.
VoL 22,847-856,1968.
*%k INPUT *x%%

A LOWER LIMIT @F INTEGRATION.
UPPER LIMIT OF INTEGRATION.
RELATIVE ACCURACY REQUIRED. WHEN THE RELATIVE
DIFFERENCE OF TWO SUCCESSIVE FBRMULAE DOES NOT
EXCEED *EPSIL* THE LAST FORMULA CBMPUTED 1S TAKEN
AS THE RESULT.
F F(X> 1S THE INTEGRAND.

*k%k QUTPUT #%%
THIS ARRAY,WHICH SH@ULD BE DECLARED T@ HAVE AT
LEAST 8 ELEMENTS, HOLDS THE RESULTS OGBTAINED BY
THE 153,7, ETC., POINT FORMULAE. THE NUMBER OF
FORMULAE COMPUTED DEPENDS ON *EPSIL*.

8
EPSIL

RESULT

K RESULTC(K) HOLDS THE VALUE @F THE INTEGRAL T@ THE
SPECIFIED RELATIVE ACCURACY.
NPTS NUMBER INTEGRAND EVALUATIONS.

@N EXIT NGRMALLY ICHECK=0. HOWEVER IF CONVERGENCE
T0 THE ACCURACY REQUESTED IS N@T ACHIEVED ICHECKs1
oN EXIT.

ABSCISSAE AND WEIGHTS OF QUADRATURE RULES ARE STACKED IN
ARRAY #P% IN THE @RDER IN WHICH THEY ARE NEEDED.

DATA

PC 12,PC 2)5PC 3)2PC 43,PC 5)5PC 6)5PC Ths

PC 8)»PC 9),PC10),PC11),PCI2)2PC13),PC14)s
PCIS)»PC16)sPC1TIsPC18)5PC(19,P(20)5P(21),
PC22),P(23),P(24),PC25),P(26Y,P(27),P(28)/
0.774596669241 48337704E 00,04+55555555555555555556E 00,
0.88888B8888888688B88689E 00, 0.26848808986833344073E 00,
0.96049126870802028342E 00,0.10465622602646726519E 00,
0.43424374934680255800E 00,0+40139741477596222291E 00,
0.4509165386584741 4235E 00, 0.13441525524378422036E 00,
0.51603282997079739697E~01,0.20062852937698902103E 00,
0.99383196321275502221E 00,0.170017196299 40260339E-01

ICHECK

[t Xs KNz EsReRs o R RsRs o Ns R Ro s o N NrNoNoNoRsNoNeRe Ne o No R Ne Nl

* % ¥ N ¥ X OE H X H K

Communications November 1973
of Volume 16
the ACM Number 11

697

* R OE R XN

LR R B SR I I IR R BE R 2R R IR N O R N E IR R I AR RN N A R IR R R K N LI 2R R R JE R R IR R B SR B BE R S 2R % 2 E2E 3R 35 2% R 28 R K B R R R B R I A 1

EIESE JE IR NE IR 3E K 2E 3 3R 2R BRI 3 K O

RN R R R

0.88845923287225699889E 00,0.92927195315124537686E-01,
0.62110294673722640294E 00,0.17151190913639138079E 0Cs»
0.22338668642896688163E 00,0.21915685840158749640E 00,
0.2255104997982066873%E 00,0.67207754295990703540E-01>
0.25807598096176653565E-01,0.10031427861179557877E 00,
0.84345657393211062463E-0250+46462893261757986541E-01»
0.85755920049990351154E-01,0.10957842105592463824E 00/

LR R N X

0.84454040083710883710E~01,0.28076455793817246607E-01,
0.28184648949745694339E-01,0.28176319033016602131E~01,
0.28188814180192358694E~01,0.84009692870519326354E-02,
0.32259500250878684614E-02,0.12539284826474884353E-01,
0.10544076228633167722E-02,0.5807861659977567363SE-02,
0.10719490006251933623E-01,0.13697302631990716258E-01/

DATA

DATA

P(29),P(303),P(31),P(32),P(33),P(34),P(35),
P(36)»P(37),P(38),P(39),P(40),P(41),PC42),
PCA3),PC44),PC45)sPCA46),PC4T)>P(48),P(49),
P(50),P(51),P(52),P(53),P(54),PC(55),P(56)/

0.99909812496766759766E
0.,98153114955374010687E
0.92965485742974005667E
0.83672593816886873550E
0+70249620649152707861F
0.53131974364437562397E
0.33113539325797683309E
0.11248894313318662575E
0.11275525672076869161E

005,04254478079156187441 54E-02,»
00,0.16446049854387810934E~01,»
005,0.3595710330712%322097E-01»
00,0.56979509494123357412E~01»
00,0.76879620499003531043E-01»
00,0.93627109981264473617E-01»
00,0.10566989358023480974E 00.
00,0.11195687302095345688E 00,
00,0.33603877148207730542E-01,

0.12903800100351265626E-01,0.50157139305899537414E-01>»
0442176304415588548391E-02,0.23231446639910269443E-01,
0.42877960025007734493E-01,0.547892105279 62865032E~01,
0.12651565562300680114E-0250.8223007957235929 6693E-02,
0.17978551568128270333E-01,0.28489754745833548613E-01/

DATA

PCSTY»P(58)sP(59),P(60)sP(61),P(62),P(63)s
PC64)sP(65),P(66),Pl6TISPL6BIIPCEII»P(T0),
PCT1),PCT2)»PCTI3)sPCTASPCTSISPCTEIPCTT)
PCT83,PC(T79),P(80),P(81),P(82),P(83),P(84)/

0.38439810249455532039E~
0.52834946790116519862E-

0.99987288812035761194E
0.99720625937222195908E
0.988684757547 429 4799 4AE
0.97218287474858179658E
0.94634285837340290515E
0.91037115695700429250E
0.86390793819369047715E
0.80694053195021761186E
0.73975604435269475868E
0.66290966002478059546E
0.57719571005204581 48 4E
0.48361802694584102756E
DATA

0150.46813554990628012403E-01»
01,0.55978436510476319408E-01,
00,0+36322148184553065969E~-03»
00,0+25790497946856882724E-02,
00,0.61155068221172463397E~02,
00,0.10498246909621321898E~01,»
0050415406750466559 497802E~-01,
00,0.20594233915912711149E-0t,
00,0.25869679327214746911E-01»
00,0.31073551111687964880E-01,»
00,0.36064432780782572640E-01,
00,0.40715510116944318934E-01,
00,0.44914531653632197414E-01.
00,0.48564330406673198716E-017/

PC 85),PC 86),PC 87),PC 88),PC 89),PC 90),PC 91)»
PC 92)>5PC 93),PC 94)sPC 95),PC 96)5PC 973,PC 98),
PC 99),PC100),PC101),PC102),P(103),PC104),P(105),

R 2% 20 OF JE B RN SR I B IR IR IR N

PC197),PC(198),P(199),P(200),PC201>,P(202),P(203),

P(204),P(205),P(206),P(207),P(208)»P(209),P(210),

PC2113,PC212),P(213),P(214),P(215),P(216),P(21T),

P(218),P(219),P(220),P(221),P(222),P(223),P(224)/

0+31630366082226447689E-03,0+20557519893273465236E-02,
0.44946378920320678616E~02,0.71224386864583871532E-02,
0.96099525623638830097E-02,04+11703388747657003101E-01,
0.13208736697529129966E-01,0.13994609127619079852E-01»
0+90372734658751149261E-04,0.64476204130572477933E-03»
0.152887670508T77655684E-02,0.26245617274044295626E-02,
0.38516876166398709241E-02,0.51485584789781777618E-02,»
0.64674198318036867274E-02,0.77683877779219912200E-02,
0.90161081951956431600E-02,0.10178877529236079733E-01,
0.11228632913408049354E-01,0.12141082601668299679E-01,
0.12895813488012114694E-01,0.13476374833816515982E-01,
0.13870351089139840997E-01,0.14069424957813575318E-01,
0+25157870384280661 489E~04,0418887326450650491366E-03,
0.46918492424785040975E-03,0.84057143271072246365E-037

DATA

E R IR R R R BF R IR O L R R K R R A N

P(225),P(226),P(227),P(228),P(229),P(230),P(231),

P(232),P(233),P(234),P(235),P(236),P(237),P(238),

P(239),P(240),P(241),P(242),P(243),P(244),P(245),

P(246),P(247),P(248),P(249),P(250),P(251),P(252)/

0.12843824718970101768E~02,0,17864463917586498247E-02»
0.23355251860571608737E~02,0.29217249379176197538E-02»
0.35362449977167777340E-02,0.41714193769840788528E~02>
0.4820588864851268347T6E-0250.54778666939189508240E-02,
0.61379152800413850435E-02,0.67957855048827733948E-02»
0+74468208324075910174E-02,0.80866093647888599710E-02,
0.87109650797320868736E-02,0.93159241280693950932E~02,
0.98977475240487497440E-02,0.10452925722906011926E-01,
0.109781831526589124T0E-0150.11470482114693874380E-01,»
0.11927026053019270040E-01,0.12345262372243838455E-01»
0.12722884982732382906E~01,0.130578366883530488 40E-01>»
0.13348311463725179953E-01,0.13592756614812395910E-01»
0.13789874783240936517E-01,0.13938625738306850804E-01»
0.14038227896908623303E-01,0.14088159516508301065E-01/

DATA

P(253),P(254),P(255),P(256),P(257)»,P(258),P(259),»
PC260),P(261>P(262),P(263),P(264),P(265),P(266),

PC267),P(268),P(269),P(270),P(271),P(272),P(273),
PC274)5P(275),P(2T76),P(277),P(278),P(279),P(280)/

PC(106),P(107),P(108),P(109),PC110),P(111).PC112)/
0.38335932419873034692E 00,0.51583253952048458777E-01,»
0.27774982202182431507E 00,0.53905499335266063927E-01>»
0.16823525155220746498E 00,0+55481404356559363988E-01,»
0.56344313046592789972E-01,0.56277699831254301273E-01.»
0.56377628360384717388E~01,0.16801938574103865271E-01>
0.64519000501757369228E-02,0.25078569652949768707E-01.,
0.21088152457266328793E-02,04+11615723319955134727E-01»
0.21438980012503867246E~01,0.27394605263981432516E-01,
0.63260731936263354422E~03,0.41115039786546930472E-02,
0.89892757840641357233E-02,04+14244877372916774306E-01,
0.19219905124727766019E-01,0+23406777495314006201E-01>
0.26417473395058259931E-01,0.27989218255238159704E-01>»
0.18073956444538835782E-03,0.12895240826104173921E-02»
0.30577534101755311361E-02,0.52491234548088591251E-02/

DATA

PCI13),PC114),PCELE5),PC116)2PC11TI,PC118)2P(119),

PC1203,PC1213,P(122),P(123),P(124),PC(125),P(126)»

PC127),PC128),PC129),P(130),P(1313,PC132),P(133)»

PC134>,PC135),PC1363,P(137),PC138),P(139),P(140)/
0.77033752332797418482E-02,0.10297116957956355524E~-01>»
0.12934839663607373455E-01,0.15536775555843982440E-01,
0.18032216390391286320E-01,0.20357755058472159467E-01»
0.22457265826816098707E-01,0.24282165203336599358E-01,»
0.25791626976024229388E-01,0.26952749667633031963E-01»
0.27740702178279681994E-01,0.28138849915627150636E~-01,

0.999982430354891 59858E
0.999598799267191068325E
0.99831663531840739253E
0+99572410469840718851E
0,99149572117810613240E
0.98537149959852037111E
0+97714151463970571416E
0.96663785155841656709E
DATA

00,0.50536095207862517625E-04»
00,0.37774664632698466027E-03»
0050+93836984854238150079E-03,
00,0.16811428654214699063E-02,
00,0.25687649437940203731E-02,
005,0.35728927835172996494E-02,
00,0.46710503721143217474E-02>»
00»,0+58434498758356395076E-02/

PC141)5,PC142),P(143)5P(144),P(145),PC146),P(147),
PC14B),P(149)5PC1502,P(151),P(152>sP(153)5,P(C154),
PC155),PC156)5PC157)5P(1583,P(159)5PC160),PC(161)»
PC162),PC163),P(164),P(165),P(166),P(167),P(168)/

0.95373000642576113641E
0.93832039777959288365E
0.92034002547001242073E
0.89974489977694003664E
0.87651341448470526974E
0.85064449476835027976E
0.82215625436498040737E
0.791084933799848361 43E
0.75748396638051363793E
0.72142308537009891548E
0.68298743109107922809E
0.64227664250975951377E
0.59940393024224289297TE
0.55449513263193254887E
DATA

00,0.70724899954335554680E-02,
00,0483428387539681577056E~-02,»
00,0.96411777297025366953E-02»
00,0.10955733387837901 648E-01,
00,0.12275830560082770087E-01»
00,0.13591571009765546790E-01»
00,0.14893641664815182035E-01>
00,0.16173218729577719942E-01>
00,0.17421930159464173747E-01,
00,0.18631848256138790186E-01.»
00,0419795495048097499488E-01»
00,0.20905851445812023852E-01»
00,0.21956366305317824939E-01»
00,0.22940964229387748761E-01/

PC169),PC1T03,PC171)5PC1T72),P(173),P(174)5P(175),
PC176),PC1773,PC178),PC179),P(180),PC(181),P(182),
PC183),PC(184),P(185),P(1863,PC187),P{188),P(189),
PC190),PCI913,PC192),P(193)5P(194),PC195),P(196)/

0.50768775753371660215E
0.45913001198983233287E
0.40897982122988867241E
0.35740383783153215238E
0.30457644155671404334E
0.25067873030348317661E
0.19589750271110015392E
0.14042423315256017459E

0050.23854052106038540080E-01»
00,0.24690524744487676909E-01,
00,0.25445769965464765813E-01,»
00,0-.2611567337670609768B0E-01
00,0.26696622927450359906E-01»
00,0.27185513229624791819E-01,»
00s0.27579749566481873035E~01»
00,0.27877251476613701609E-01,

0.99999759637974B46462E
0.99994399620705437576E
0.99976049092443204733E
0.99938033802502358193E
0.99874561446809511470E
0.99780535449595727 456E
0.99651414591489027385E
0.992483150280062100052E
0.99272134428278861533E
0.99015137040077015918E
0.98709252795403406719E
0.98351865757863272BT6E
0+97940628167086268381E
0.97473445975240266776E
DATA

EIE 2R I 2R 3R IR IR IR 2R B I B R I A N

0.96948465950245923177E
0.96364062156981213252E
0.9571882161098609627 4E
0+95011529752129487656E
0+94241156519108305981E
0.93406843615772578800E
0.92507893290707565236E
0.91543758715576504064E
0.90514035881326159519E
0+89418456833555902286E
0.88256884024734190684E
0.87029305554811390585E
0.85735831088623215653E
0.84376688267270360104E
DATA

E2E IR O 20 R R R 3R 2R NN IR R O IR 4

0.82952219463740140018E
0.81462878765513741344E
0+79909229096084140180E
0.78291939411828301639E
0.76611781930376009072E
0.74B69629361693660282E
0.73066452124218126133E
0.71203315536225203459E
0.69281376977911470289E
0.67301883023041847920E
0.65266166541001749610E
0.63175643771119423041E
0.61031811371518640016E
0.58836243444766254143E
DATA

PR 3R 2R O B B B NE AR IR IR R N R B A 4

0.56590588542365442262E
0.54296566649831149049E
0.51955966153745702199E
0.49570640791876146017E
0.47142506587165887693E
0.44673538766202847374E
0.42165768662616330006E
0.39621280605761593918E
0.37042208795007823014E

N E N RN RRE KR RW

Communications
of
the ACM

00,0.69379364324108267170E-05,
00,0.53275293669780613125E-04,
00,0.13575491094922871973E-03>»
00,0.24921240048299729 402E-03.,
00,0.38974528447328229322E-035
00,0.55429531493037471492E-03»
005, 0.74028280424450333046E~03,
00,0.94536151685852538246E-03»
00,0.11674841174299594077E-02,
005s0+14049079956551446427E-02,
0050+16561127281544526052E~02,
00,0.19197129710138724125E-02»
00,0.2194406925363838838BBE-02»
00,0.24789582266575679307E-02/

P(281),P(282),P(283),P(284),P(285),P(286),P(287),
P(288),P(289),P(290),P(291),P(292)>,P(293),P(294)>»
P(295),P(296),P(297),P(298),P(299),P(300),P(301),
P(302),P(303),P(304),P(305),P(306),P(307),P(308)/

00,0.27721957645934509940E-02,
00,0.30730184347025783234E-02,
00,0.33803979910869203823E-02,
00,0.36933779170256508183E-02,
00,0.40110687240750233989E-02»
00,0.,43326409680929828545E-02»
00,0,46573172997568547773E-02,
00,0.49843645647655386012E-02,
00,0.53130866051870565663E~-02»
00,0.56428181013844441585E-02,
005,0459729195655081 658049E-02,
0050.63027734490857587172E-02,
00,0.66317812429018878941E-02,
00,0.69593614093904229394E-027

P(309),P(310),P(311),P(312),P(313),P(314),P(315),
P(316),P(317),P(318),P(319),P(320),P(321),P(322),
P(323),P(324)5P(325),P(326),P(327),P(3283,P(329),
PC¢330)>,P(331),P(332),P(333),P(334),P(335),P(336)/

00,0.72849479805538070639E~02,
00,0.76079896657190565832E~-02,
00,0.79279493342948491103E-02,
00,0.82443037630328680306E-02»
00,0.85565435613076896192E-02»
00,0.88641732094824942641E-02,
00,0+91667111635607884067E-02,
00,0.946368999383006529 43E-02,
00,0+97546565363174114611E-02»
00,0.10039172044056840798E-01>
00,0.10316812330947621682E-01.»
00,0.10587167904885197931E-01>»
00,0.10849844089337314099E-01»
00,0.11104461134006926537E-01/

P(337),P(338),P(339),P(340),P(341),P(342),P(343),
P(344),P(345),P(346>,P(347)5,P(348),P(349),P(350)»
P(3513,P(352),P(353),P(354),P(355),P(3563),PC357)>»
P(358),P(359),P(360),P(361),P(362),P(363),P(364)/

0050.11350654315980596602E-015
00,0.11588074033043952568E-01»
00,0.11816385890830235763E-01»
00,0.12035270785279562630E-01»
00,0.12244424981611985899E-01,
00,0.12443560190714035263E-01,»
00,0.12632403643542078765E-01»
00,0.12810698163877361967E-01,»
00,0.12978202239537399286E-01»

November 1973
Volume 16
Number 11

0.34430734159943802278E 00,0.13134690091960152836E~01,
0.31789081206847668318E 00,0.13279951743930530650E-01»
0.29119514851824668196E 00,0.13413793085110098513E-01,»
0.26424337241092676194E 00,0.13536035934956213614E-01»
0.23705884558982972721E 00,0.13646518102571291428E-01/
DATA
P(365),P(366),P(367),P(368),P(369),P(370),P(371),
P(372),P(373),P(374),P(3753),P(376),P(3773,P(378),»
PC379),P(380),P(381)/
0.20966523824318119477E 00,0.13745093443001896632E-01,
0.18208649675925219825E 00,0.13831631909506428676E-01,
0.15434681148137810869E 00,0.13906019601325461264E~01,
0.12647058437230196685E 00,0.13968158806516938516E~-01,
0.98482396598119202090E-01,0.14017968039456608810E~01,»
0.70406976042855179063E-01,0.14055382072649964277E-01»
0.42269164765363603212E-0150.14080351962553661325E-01,
0.14093886410782462614E-01,0.14092845069160408355E-01,
0.+14094407090096179347E-01/
ICHECK = 0
C CHECK F@R TRIVIAL CASE.
IF (A.EQ@.B) G@ T@ 70.
C SCALE FACTORS.
SUM = (B+A)/2.0
DIFF = (B-A)/2.0
C 1-PBINT GAUSS
FZER® = F(SUM)
RESULTC1) = 2.0%FZERP*DIFF
1 =0
IgLd = 0
INEW = 1
K=2
ACUM = 0.0
Go T9 30
10 IF (K.EQ.8) GO To 50
K= K+ 1
ACUM = 0.0
C CONTRIBUTI®N FREM FUNCTI@ON VALUES ALREADY C@MPUTED.
D@ 20 J=1,10LD
1 =1+
ACUM = ACUM + PCI)*FUNCT(J)
20 CONTINUE
C CONTRIBUTION FR2M NEW FUNCTION VALUES.
30 16LD = IOLD * INEW
D@ 40 J=INEW,1QLD
I.=1+1
X = PC(I)*DIFF
FUNCT(J) = F(SUM+X) + F(SUM=-X)
1 =1+1
ACUM = ACUM + PCIX®FUNCT(J)
40 CONTINUE
INEW = I@LD + 1
I =1+1
RESULTC(K) = (ACUM+PC(I)*FZERQ)*DIFF
C CHECK FOR CONVERGENCE.
IF (ABSCRESULT(K)-RESULT(K-1))-EPSIL*ABS(RESULT(K>)) 60,
* 60, 10
CONVERGENCE NOT ACHIEVED.
S0 ICHECK = 1
NORMAL TERMINATION.
60 NPTS = INEW + I0LD
RETURN
C TRIVIAL CASE
70 K = 2
RESULTC1)
RESULT(2)
NPTS = 0
RETURN
END

* R R RN

LR I 2R IR 2R B IR B NNy

aQ o

0
0.0

FUNCTI@N QSUBCA, B, EPSIL, NPTS, ICHECK, RELERR» F)

THIS FUNCTI@N ROUTINE PERFORMS AUTOMATIC INTEGRATION
OVER A FINITE INTERVAL USING THE BASIC INTEGRATION
ALGORITHM QUAD, TOGETHER WITH, IF NECESSARY, A NON-
ADAPTIVE SUBDIVISIBN PROCESS.

THE CALL TAKES THE FORM

QSUB(A,B,EPSIL,NPTSs ICHECK, RELERR,F)
AND CAUSES F(X) T@ BE INTEGRATED @VER (A,B) WITH RELATIVE
ERRGR H@PEFULLY N@GT EXCEEDING EPSIL. SH@ULD QUAD CONVERGE
(ICHECK=0) THEN QSUB WILL RETURN THE VALUE BBTAINED BY IT
@THERWISE SUBDIVISION WILL BE INVEKED AS A RESCUE
QPERATION IN A NON-ADAPTIVE MANNER. THE ARGUMENT RELERR
GIVES A CRUDE ESTIMATE @F THE ACTUAL RELATIVE ERROR
OBTAINED.

THE SUBDIVISI®BN STRATEGY IS AS FOLLOWS
LET THE INTERVAL (A,B) BE DIVIDED INTO 2%*N PANELS AT STEP
N OF THE SUBDIVISI@N PROCESS. QUAD IS APPLIED FIRST T@
THE SUBDIVIDED INTERVAL ©ON WHICH QUAD LAST FAILED T@
CONVERGE AND IF CONVERGENCE IS N@W ACHIEVED THE REMAINING
PANELS ARE INTEGRATED. SH@ULD A CBNVERGENCE FAILURE @CCUR
ON ANY PANEL THE INTEGRATION AT THAT P@INT IS TERMINATED
AND THE PROCEDURE REPEATED WITH N INCREASED BY 1. THE
STRATEGY INSURES THAT POSSIBLY DELINQUENT INTERVALS ARE
EXAMINED BEF@RE WORK, WHICH LATER MIGHT HAVE T@ BE
DISCARDED, IS INVESTED ON WELL BEHAVED PANELS. THE
PROCESS IS COMPLETE WHEN N@ CONVERGENCE FAILURE @CCURS ©ON
ANY PANEL AND THE SUM OF THE RESULTS ©BTAINED BY QUAD ON
EACH PANEL IS TAKEN AS THE VALUE @F THE INTEGRAL.

THE PROCESS IS VERY CAUTIQUS IN THAT THE SUBDIVISI@N @F
THE INTERVAL (A,B) 1S UNIFQRM, THE FINENESS OF WHICH IS
CONTROLLED BY THE SUCCESS OF QUAD. IN THIS WAY IT IS
RATHER DIFFICULT FPR A SPURI®US CONVERGENCE T@ SLIP
THROUGH .

THE CONVERGENCE CRITERION OF QUAD IS SLIGHTLY RELAXED
IN THAT A PANEL IS DEEMED T@ HAVE BEEN SUCCESSFULLY
INTEGRATED IF EITHER QUAD CONVERGES @R THE ESTIMATED
ABSOLUTE ERROR COMMITTED @N THIS PANEL DOES N®T EXCEED
EPSIL TIMES THE ESTIMATED ABSPLUTE VALUE OF THE INTEGRAL
@VER (A,B). THIS RELAXATION IS T@ TRY TO TAKE ACCOUNT OF
A CPMMON SITUATI®N WHERE BNE PARTICULAR PANEL CAUSES
SPECIAL DIFFICULTY, PERHAPS DUE T@ A SINGULARITY OF SOME
TYPE. IN THIS CASE QUAD COULD GBTAIN NEARLY EXACT
ANSWERS ©N ALL OTHER PANELS AND S0 THE RELATIVE ERRGR F@R
THE TOTAL INTEGRATION WOULD BE ALMGBST ENTIRELY DUE T@ THE
DELINQUENT PANEL. WITHOUT THIS CONDITIGN THE COMPUTATION
MIGHT CONTINUE DESPITE THE REQUESTED RELATIVE ERR@R BEING
ACHIEVED.

698

Qoocoooa0OOOQOO00O0O00OQ0O0OC0aOaCOOa0O0000aaO0Q00

zErNelsNeloNsNoRe N NoNoRoRoNsNe R o NN o No e e X v Xy]

c
c

(2] aan

(]

(2]

ao

C
c
o
c
C
c
c
c
c
c
[+
c
[+
C

THE QUTCQME OF THE INTEGRATIBN IS INDICATED BY ICHECK.
ICHECK=0 - CONVERGENCE @BTAINED WITHOUT INVOKING
SUBDIVISI@N. THIS CORRESPONDS T@ THE
DIRECT USE OF QUAD.
ICHECK=1 - RESULT ®BTAINED AFTER INVBKING SUBDIVISION.
ICHECK=2 =~ AS F@R ICHECK=1 BUT AT SOME PQINT THE
RELAXED CONVERGENCE CRITERI®N WAS USED.
THE RISK @F UNDERESTIMATING THE RELATIVE
ERROR WILL BE INCREASED. IF NECESSARY.,
CONFIDENCE MAY BE RESTORED BY CHECKING
EPSIL AND RELERR F@R A SERIQUS DISCREPANCY.
ICHECK NEGATIVE
IF DURING THE SUBDIVISION PRACESS THE
ALLOWED UPPER LIMIT @ON THE NUMBER OF PANELS
THAT MAY BE GENERATED (PRESENTLY 4096) 1S
REACHED A RESULT IS OBTAINED WHICH MAY BE
UNRELIABLE BY CONTINUING THE INTEGRATIGN
WITHBUT FURTHER SUBDIVISION IGNORING
CONVERGENCE FAILURES. THIS @CCURRENCE 1S
FLAGGED BY RETURNING ICHECK WITH NEGATIVE
SIGN.
THE RELIABILITY OF THE ALGORITHM WILL DECREASE FOR LARGE
VALUES @F EPSIL. IT IS RECOMMENDED THAT EPSIL SHeWD
GENERALLY BE LESS THAN ABOUT 0.001.
DIMENSION RESULT(8)
INTEGER BAD,» @UT
LOGICAL RHS
EXTERNAL F
DATA NMAX/4096/
CALL QUADCA, B» RESULT, Ks EPSIL» NPTS, ICHECK, F)
QSuUB = RESULT(K)
RELERR = 0.0
IF (QSUB.NE.0.0)> RELERR =
* ABSC(RESULT(K)-RESULT(K-1))/QSUB)
CHECK IF SUBDIVISI@N IS NEEDED.
IF C(I1CHECK.EQ.0) RETURN
SUBDIVIDE
ESTIM = ABS(QSUB*EPSIL)

«FALSE.

10 QSUB = 0.0
RELERR = 0.0
H = H*0.S
N=N4+N
INTERVAL (A,B) DIVIDED INTQ N EQUAL SUBINTERVALS.
INTEGRATE OVER SUBINTERVALS BAD T@ (BAD+1) WHERE TROUBLE
HAS @CCURRED.
M1 = BAD
M2 = BAD + 1
QuUT = 1
Go Te 50
INTEGRATE QVER SUBINTERVALS t T@ (BAD-1)
20 M1 = 1
M2 = BAD - 1
RHS = +FALSE.
QUT = 2
Ge Tg SO
INTEGRATE OVER SUBINTERVALS (BAD+2) T@ N.
30 M1 = BAD + 2

M2 = N
ouT = 3
Ge Te S0

SUBDIVISION RESULT
40 ICHECK = IC
RELERR = RELERR/ABS(QSUB)
RETURN
INTEGRATE @QVER SUBINTERVALS M1 To M2.
50 IF (M1.6T.M2) G& TG 90
D@ 80 JJ=M1,M2

EXAMINE FIRST THE LEFT @R RIGHT HALF @F THE SUBDIVIDED
TROUBLES@PME INTERVAL DEPENDING ON THE @BSERVED TREND.
IF (RHS) J = M2 + M1 - JJ
ALPHA = A + H*(J-1)
BETA = ALPHA + H
CALL QUADCALPHA, BETA, RESULT» Ms EPSIL, NF, ICHECK,
CPMP = ABS(RESULT(M)-RESULT(M-1))
NPTS = NPTS + NF
IF CICHECK.NE.1) GB T@ 70
IF (COMP.LE.ESTIM) G@ T@ 100
SUBINTERVAL J HAS CAUSED TROUBLE.
CHECK IF FURTHER SUBDIVISIGN SH@ULD BE CARRIED @UT.
IF (N.EQ.NMAX) GO TO 60
BAD = 2%J - 1
RHS = JFALSE.
IF (¢J=-2%¢J/2)).EQ.0) RHS = .TRUE.
Ge Te 10
60 IC = -IABS(IC)
70 QSUB = @SUB + RESULT(M)
80 CONTINUE
RELERR = RELERR + COMP
90 GO TO (20,30,40), QUT
RELAXED CGNVERGENCE
100 IC = ISIGN(2,IC)>
Ge Te 70
END

FUNCTION QSUBACA, Bs EPSIL, NPTS, ICHECKs RELERRs F)

THIS FUNCTIGN ROUTINE PERFORMS AUTBMATIC INTEGRATION
@VER A FINITE INTERVAL USING THE BASIC INTEGRATION
ALGORITHM QUAD TQGETHER WITH, 1IF NECESSARY AN ADAPTIVE
SUBDIVISION PROCESS. IT IS GENERALLY MORE EFFICIENT THAN
THE NON-ADAPTIVE ALGPRITHM QSUB BUT IS LIKELY TO BE LESS
RELIABLECSEE COMP+J«,14,189,1971).

THE CALL TAKES THE FORM

QSUBACA,B,EPSIL,NPTS, ICHECK, RELERR,F)

AND CAUSES F(X) Te BE INTEGRATED OVER (AsB) WITH RELATIVE
ERROR HOPEFULLY NOT EXCEEDING EPSIL. SHOULD QUAD CONVERGE
CICHECK=0) THEN QSUBA WILL RETURN THE VALUE @BTAINED BY IT
OTHERWISE SUBDIVISION WILL BE INVOKED AS A RESCUE
OPERATION IN AN ADAPTIVE MANNER. THE ARGUMENT RELERR GIVES
A CRUDE ESTIMATE ©F THE ACTUAL RELATIVE ERROR O@BTAINED.

Communications November 1973
of Volume 16
the ACM Number 11

F>

[+ THE SUBDIVISI@N STRATEGY 1S AS FOLLOWS
C AT EACH STAGE @F THE PROCESS AN INTERVAL 1S PRESENTED FOR
C SUBDIVISI@N C(INITIALLY THIS WILL BE THE WHOLE INTERVAL
C (AsB)). THE INTERVAL IS HALVED AND QUAD APPLIED T@ EACH
€ SUBINTERVAL. SH@ULD QUAD FAIL BN THE FIRST SUBINTERVAL
C THE SUBINTERVAL IS STACKED FOR FUTURE SUBDIVISION AND THE
C SECOND SUBINTERVAL IMMEDIATELY EXAMINED. SHOULD QUAD FAIL
C ON THE SECOND SUBINTERVAL THE SUBINTERVAL IS
C IMMEDIATELY SUBDIVIDED AND THE WHOLE PROCESS REPEATED.
C EACH TIME A CONVERGED RESULT IS @BTAINED IT IS
C ACCUMULATED AS THE PARTIAL VALUE OF THE INTEGRAL. WHEN
C QUAD COGNVERGES ON B@TH SUBINTERVALS THE INTERVAL LAST
C STACKED IS CHBSEN NEXT FOR SUBDIVISI@N AND THE PROCESS
C REPEATED. A SUBINTERVAL 1S N@T EXAMINED AGAIN ONCE A
C CONVERGED RESULT 1S @BTAINED FOR IT S@ THAT A SPURIQUS
C CONVERGENCE IS M@RE LIKELY T@ SLIP THROUGH THAN F@R THE
C NON-ADAPTIVE ALGERITHM GSUB.
c THE C@NVERGENCE CRITERION GF QUAD IS SLIGHTLY RELAXED
C IN THAT A PANEL 1S DEEMED T8 HAVE BEEN SUCCESSFULLY
C INTEGRATED IF EITHER QUAD CONVERGES OR THE ESTIMATED
C ABSQLUTE ERRGR COMMITTED ON THIS PANEL D@ES N@T EXCEED
C EPSIL TIMES THE ESTIMATED ABSOLUTE VALUE OF THE INTEGRAL
C OVER (AsB). THIS RELAXATION IS T@ TRY T2 TAKE ACCOUNT OF
C A CoMMPN SITUATION WHERE ONE PARTICULAR PANEL CAUSES
C SPECIAL DIFFICULTY, PERHAPS DUE T@ A SINGULARITY OF SOME
C TYPE. IN THIS CASE QUAD COULD @BTAIN NEARLY EXACT
C ANSWERS eN ALL @THER PANELS AND 5@ THE RELATIVE ERROR FOR
C THE TeTAL INTEGRATION WOULD BE ALM@ST ENTIRELY DUE TO THE
C DELINQUENT PANEL. WITHOUT THIS CONDITI@N THE COMPUTATIEN
C MIGHT CONTINUE DESPITE THE REQUESTED RELATIVE ERROR BEING
C ACHIEVED.
c THE QUTCOME @F THE INTEGRATION IS5 INDICATED BY ICHECK.
C ICHECK=0 - CONVERGENCE @BTAINED WITHBUT INVE@KING SUB-
c DIVISION. THIS WQULD CORRESPOND T@® THE
[+ DIRECT USE @F QUAD.
c ICHECK=1 = RESULT @BTAINED AFTER INVOKING SUBDIVISION.
c ICHECK=2 - AS F@R ICHECKBI BUT AT SOME POQINT THE
c RELAXED CONVERGENCE CRITERION WAS USED.
c THE RISK OF UNDERESTIMATING THE RELATIVE
C ERROR WILL BE INCREASED. IF NECESSARYs
c CONFIDENCE MAY BE REST@RED BY CHECKING
[+ EPSIL AND RELERR F@R A SERI@US DISCREPANCY.
c ICHECK NEGATIVE
c IF DURING THE SUBDIVISION PROGCESS THE STACK
c OF DELINQUENT INTERVALS BEC@MES FULL CIT IS
C PRESENTLY SET Te@ HoLD AT M@ST 100 NUMBERS)
[A RESULT IS @BTAINED BY CONTINUING THE
c INTEGRATION IGNBRING CONVERGENCE FAILURES
c WHICH CANNOT BE ACCOMMODATED 9N THE STACK.
[THIS @CCURRENCE IS FLAGGED BY RETURNING
C ICHECK WITH NEGATIVE SIGN.
C THE RELIABILITY @F THE ALGORITHM WILL DECREASE FBR LARGE
€ VALUES @F EPSIL. IT IS5 RECOMMENDED THAT EPSIL SHQULD
C GENERALLY BE LESS THAN AB@UT 0.00l.
DIMENSION RESULT(8)» STACK(100)
EXTERNAL F
DATA ISMAX/100/
CALL QUADCA, B, RESULTs Ks EPSILs NPTS, ICHECK, F)
QSUBA = RESULT(K)
RELERR = 0.0
IF (QSUBANE.0.0)
* RELERR = ABS((RESULT(K)-RESULT(K-1))/8SUBA)
C CHECK IF SUBDIVISION IS NEEDED
IF C(ICHECK.EQ.0) RETURN
C SUBDIVIDE
ESTIM = ABSC(QSUBA*EPSIL)
RELERR = 0.0
asuBa = 0.0

IS = 1
IC = 1
SUB1 = A
SUB3 = B
10 SUB2 = (SUB1+SUB3)%*0.5
CALL QUAD(SUB1, SUB2, RESULT, K, EPSIL, NF» ICHECK, F)
NPT5 = NPTS + NF

C@MP = ABS(RESULT(K)-RESULT(K-1))
IF (ICHECK.E@.0) GB T@ 30
IF (COMP.LE.ESTIM) G@ T2 70
IF (IS.GE.ISMAX) G& T@ 20
C STACK SUBINTERVAL (SUB1,SUB2) F@R FUTURE EXAMINATION

STACK(IS) = SUBt

1S = IS + 1

STACK(IS) = sUB2

IS = IS + 1

Ge Te 40

20 IC = -IABS(1C)
30 @SUBA = QSUBA + RESULT(K)
RELERR = RELERR + CaMP
40 CALL QUAD(SUB2, SUB3, RESULT, K» EPSIL, NF» ICHECK, F)>

NPTS = NPTS + NF

COMP = ABS(RESULT(K)~RESULT(K-1))

IF CICHECK.EQ.0) G@ T@ S0

IF (COMP.LE.ESTIM) G@ T@ 80

SUBDIVIDE INTERVAL (SUB2,SUB3)
S5UB1 = SUB2
Gg TG 10
50 QSUBA = QSUBA + RESULTCK)
RELERR = RELERR + CoMmP
IF C(IS.E@.1) GO T@ 60

a

C SUBDIVIDE THE DELINQUENT INTERVAL LAST STACKED
Is =15 - 1
SUB3 = STACK(1S)
Is = 15 - 1
SUB1 = STACK(IS)
Ge TQ 10

C SUBDIVISI@N RESILT
60 ICHECK = IC
RELERR = RELERR/ABS(@SUBA)>
RETURN
€ RELAXED CONVERGENCE
70 IC = ISIGN(2,1C)>
Go Te 30
80 IC = ISIGN(2,IC)>
G2 Te SO
END

699

Algorithm 469

Arithmetic Over a
Finite Field [A1]

C. Lam* and J. McKayT [Recd. 8 Oct. 1971]

* Department of Mathematics, Caltech University, Pasa-
dena, CA 91101 1 School of Computer Science, McGill
University, P.O. Box 6070, Montreal 101, P.Q. Canada

Key Words and Phrases: algebra; CR Categories: 5.19
Language: Algol

Description

The rational operations of arithmetic over the finite field Fy,
of ¢ = p*(n > 1) elements, may be performed with this algorithm.

On entry a[i] contains a; € F,with0 <a;, <p, i =0,...,
n — 1, and x € F, satisfies the primitive irreducible polynomial
P(x) = x* + 2 i dawx*. fg produces e;inelil, i = —1,...,9 — 2,
where 1 + x¢ = x°i with the convention that —1 represents * and
x* = 0. During execution the range of the a; is altered to —p <
a; <0,i=0...n— 1. The storage used is 2g + n + 6 locations
including the final array e.

With appropriate conventions for *, multiplication and division
are trivial, and addition and subtraction are given by xo + x* =
x¢(1 + x¥e)fora < band x2 — x* = xo 4 x¥«V x> when p # 2.
For small values of g, it is suggested that addition and multiplica-
tion tables be generated by this algorithm. A description of the
method and its generalization to a multi-step process when # is com-
posite is in [2]. A list of primitive irreducible polynomials is given
in (1], Further useful information (especially for p = 2) is to be
found in [3].

References

1. Alanen, A.J., and Knuth, D.E. Tables of finite fields. Sankhya-
(A) 26 (1964), 305-328.

2. Cannon, J.J. Ph.D. Th,, 1967 U, of Sydney, Sydney, Australia.
3. Conway, J.H,, and Guy, M.J.T. Information on finite fields. In
Computers in Mathematical Research. North-Holland Pub. Co.,
Amsterdam, 1967.

Algorithm
procedure fg(p, n, a, e);
integer p, n; integer array a, ¢

begin
integer array c[0:n—1], f[0:p T n—1]; integer g, i, J, d, s, w;
g:=p1Tn

for i := O step 1 until n — 1do if a[i] 5 O then ali] : = ali] — p;
for i := 1step 1 until # — 1do c[i] := 0;
cf0]:=1; f{1]:=0; fl0]:= —1:
for i := 1step 1 until ¢ — 2 do
begin
d:=en—1} s:=0;
forj:=n — 1step —1until 1do
begin
w:=cli-1] —d Xalj]; wi=w—w+pXp;
cljli=w;, s:=pXs+w

end;
w:=—dXal0]; w:=w—w-+pXp; c[0] :=w
SIo X s+ wl:=i
end;
for i := g step — p until p do
begin

elfli—1]] := fli—pl;
forj:=i— pstep 1until i — 2do e[f[j]] := f[j+1]

end
end
Communications November 1973
of Volume 16

the ACM Number 11

