L.D. Fosdick and

Algorithms
A.K. Cline, Editors

Submittal of an algorithm for consideration for publication in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible.

Copyright (C) 1973, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Algorithm 464
 Eigenvalues of a Real, Symmetric, Tridiagonal Matrix [F2]

Christian H. Reinsch [Recd. 11 Mar. 1971]
Mathematisches Institut der Technischen Universität, 8000 München 2, Arcisstra 21, Germany

Key Words and Phrases: eigenvalues, QR Algorithm
CR Categories: 5.14
Language: Algol

Description

This algorithm uses a rational variant of the QR transformation with explicit shift for the computation of all of the eigenvalues of a real, symmetric, and tridiagonal matrix. Details are described in [1]. Procedures tredl or tred3 published in [2] may be used to reduce any real, symmetric matrix to tridiagonal form. Turn the matrix end-for-end if necessary to bring very large entries to the bottom right-hand corner.

References

1. Reinsch, C.H. A stable, rational $Q R$ algorithm for the computation of the eigenvalues of an Hermitian, tridiagonal matrix. Math. Comp. 25 (1971), 591-597.
2. Martin, R.S., Reinsch, C.H., Wilkinson, J. H. Householder's tridiagonalization of a symmetric matrix. Numer. Math. 11 (1968), 181-195.
```
Algorithm
procedure tqlrat ( \(n\), macheps) trans: (d,e2);
    value \(n\), macheps;
    integer \(n\); real macheps; array \(d, e 2\);
comment
            Input:
                                    order of the matrix,
                                    the machine precision, i.e. minimum of all \(x\) such that
                                    \(1+x>1\) on the computer,
    \(d[1: n] \quad\) represents the diagonal of the matrix,
    \(e 2[1: n]\) represents the squares of the sub-diagonal entries,
                                ( \(e 2[1]\) is arbitrary).
                                Output:
    \(d[1: n] \quad\) the computed eigenvalues are stored in this array in
                                ascending sequence,
    \(e 2[1: n] \quad\) is used as working storage and the original informa-
                tion stored in this array is lost;
begin
    integer \(i, k, m\); real \(b, b 2, f, g, h, p 2, r 2, s 2\);
    for \(i:=2\) step 1 until \(n\) do \(e 2[i-1]:=e 2[i]\);
    \(e 2[n]:=b:=b 2:=f:=0.0\);
    for \(k:=1\) step 1 until \(n\) do
    begin
        \(h:=\) macheps \(\times\) macheps \(\times(d[k] \uparrow 2+e 2[k]) ;\)
        if \(b 2<h\) then
        begin \(b:=\operatorname{sqrt}(h) ; b 2:=h\) end;
        comment Test for splitting;
        for \(m:=k\) step 1 until \(n\) do
            if \(e 2[m] \leq b 2\) then go to cont 1 ;
cont 1 :
        if \(m=k\) then go to root;
        comment Form the shift from leading \(2 \times 2\) block;
nextit:
        \(g:=d[k] ; p 2:=\operatorname{sqrt}(e 2[k]) ;\)
        \(h:=(d[k+1]-g) /(2.0 \times p 2) ; r 2:=\operatorname{sqrt}(h \times h+1.0)\);
        \(d[k]:=h:=p 2 /(\) if \(h<0.0\) then \(h-r 2\) else \(h+r 2)\);
        \(h:=g-h ; f:=f+h\);
        for \(i:=k+1\) step 1 until \(n\) do \(d[i]:=d[i]-h\);
        comment Rational QL transformation, rows \(k\) through \(m\);
        \(g:=d[m]\); if \(g=0.0\) then \(g:=b\);
        \(h:=g ; s 2:=0.0\);
        for \(i:=m-1\) step -1 until \(k\) do
        begin
            \(p 2:=g \times h ; r 2:=p 2+e 2[i] ;\)
            \(e 2[i+1]:=s 2 \times r 2 ; s 2:=e 2[i] / r 2\);
            \(d[i+1]:=h+s 2 \times(h+d[i]) ;\)
            \(g:=d[i]-e 2[i] / g\); if \(g=0.0\) then \(g:=b\);
            \(h:=g \times p 2 / r 2\)
        end \(i\);
        \(e 2[k]:=s 2 \times g \times h ; d[k]:=h ;\)
        if \(e 2[k]>b 2\) then go to nextit;
root:
        \(h:=d[k]+f ;\)
        comment One eigenvalue found, sort eigenvalues;
        for \(i:=k\) step -1 until 2 do
                if \(h<d[i-1]\) then \(d[i]:=d[i-1]\) else go to cont 2 ;
            \(i:=1\);
cont2:
            \(d[i]:=h\)
    end \(k\)
end tqlrat;
```


Algorithm 465

Student's t Frequency [S14]

G.W. Hill [Recd. 24 Aug. 1971, 23 Feb. 1972, 10 July 1972]
C.S.I.R.O., Division of Mathematical Statistics, Glen Osmond, South Australia

Key Words and Phrases: Student's \mathbf{t} statistic, density function, series approximation

CR Categories: 5.12, 5.5
Language: Algol

Description

The frequency function for Student's t distribution,
$f(t \mid n)=\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{(\pi n)^{\frac{1}{2}} \Gamma\left(\frac{1}{2} n\right)}\left(1+t^{2} / n\right)^{-\left(\frac{1}{2} n+\frac{1}{2}\right)}$,
is evaluated for real t and real $n>0$ to a precision near that of the processor, even for large values of n.

The factor involving t is evaluated as $\exp (-1 / 2 b)$ where b is computed as $(n+1) \ln \left(1+t^{2} / n\right)$ if $t^{2} / n=c$ is large ($>c m a x$, say) or, to avoid loss of precision for smaller c, by summing the series for $b=\left(t^{2}+c\right)\left(1-c / 2+c^{2} / 3-c^{3} / 4+\cdots\right)$ until negligible terms occur, i.e. $c^{r} /(r+1)<\epsilon$, where ϵ is the relative magnitude of processor round-off. The relative error up to $\epsilon /$ cmax in evaluating $\ln (1+c)$ and the accumulated round-off error of order $\epsilon \sqrt{ } R$ in summing a maximum of R terms of the series can be limited to about the same low level by choosing $c_{\text {max }}=R^{-\frac{1}{2}}$ where $R^{-\frac{1}{2} R} / R \approx \epsilon$. Thus for $R=12,16,23$, or 32 , values of cmax $\approx 0.2887,0.25,0.2085$, or 0.1762 , respectively, correspond to processor precision where $\epsilon=2^{-24}, 2^{-36}, 2^{-56}$, or 2^{-84}, respectively.

Evaluation of the ratio of gamma functions by exponentiating the difference of almost equal values of their logarithms would involve considerable loss of precision for large n. This is avoided by use of the asymptotic series obtained by differencing the Stirling approximations, changing the variable to $a=n-\frac{1}{2}$, and exponentiating the result (see also [1]):
$\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} n\right)}=\left(\frac{1}{2} a\right)^{\frac{1}{2}} \sum_{r=0} C_{r}(4 a)^{-2 r}$,
where $C_{0}=C_{1}=1, C_{2}=-19 / 2, C_{3}=631 / 2, C_{4}=-174317 / 8$, $C_{5}=20491783 / 8, C_{6}=-7334801895 / 16, C_{7}=18585901$ $54455 / 16, C_{8}=-5067741081768765 / 128, C_{9}=223625929$ $8166788235 / 128, C_{10}=-2480926531578576370237 / 256$.

The relative error of the sum of the first s terms is negligible for $n>n \min$ where $\left|C_{s}\right| \times\left[4\left(n \min -\frac{1}{2}\right)\right]^{-2 s} \approx \epsilon$, e.g. for $s=5$ and $\epsilon=2^{-24}$ or 2^{-36}, nmin ≈ 6.271 or 13.76 , respectively, and for $s=10$ and $\epsilon=2^{-56}$ or $2^{-84}, ~ \mu \mathrm{~min} \approx 15.5$ or 40.89 , respectively. For smaller n the ratio of gamma functions is obtained from the ratio for some $N \geq n \min$ by the relation:
$\frac{\Gamma\left(\frac{1}{2} n+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} n\right)}=\frac{n}{(n+1)} \frac{(n+2)}{(n+3)} \cdots \frac{(N-2)}{(N-1)} \frac{\Gamma\left(\frac{1}{2} N+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} N\right)}$.
For large n, processor underflow at line 21 is avoided by use of the normal approximation, which is adequate for values of $n>1 / \epsilon$, whose representation is unaffected by subtraction of 0.5 . Protection against negative or zero n is provided by returning the distinctive value, -1.0 , which may be supplemented by an error diagnostic process, if required.

For double precision calculations speed is improved by evaluating higher order terms of the gamma ratio series using single precision operations. Comparison of double precision ($\epsilon=2^{-84}$)
results with single precision results ($\epsilon=2^{-36}$, nmin $=13.76$, cmax $=$ 0.25) for a Control Data 3200 indicated achievement generally of about ten significant decimal digits, dropping to about eight significant decimals for arguments beyond the 10^{-20} probability level.

Valuable comments from the referee are gratefully acknowledged.

Reference

1. Fields, J.L. A note on the asymptotic expansion of a ratio of Gamma functions. Proc. Edinburgh Math. Soc. Ser. 215 (1966), 43-45.
```
Algorithm
real procedure \(t\) frequency ( \(t, n\) );
    value \(t, n\); real \(t, n\);
if \(n \leq 0.0\) then \(t\) frequency \(:=-1.0\)
else
begin
    real \(a, b, c, d, e, n \min , c m a x ;\)
    comment for 36-bit precision processor;
    nmin \(:=13.76 ; c_{\text {max }}:=0.25\);
    \(b:=t \times t ; c:=b / n ; a:=d:=b+c\);
    if \(c>c\) max then \(b:=(n+1.0) \times \ln (1.0+c)\)
    else
    for \(e:=2.0, e+1.0\) while \(b \neq d\) do
    \(\operatorname{begin} a:=-a \times c ; b:=d ; d:=a / e+d\) end;
    \(a:=n ; c:=0.3989422804\);
    comment \(1 /\) sqrt \((2 \pi)=0.3989422804014326779399461 \ldots\);
    for \(e:=a\) while \(e<n \min\) do
    begin \(c:=c \times a /(a+1.0) ; a:=a+2.0\) end;
    \(a:=a-0.5\);
    if \(a \neq n\) then
    begin
        \(c:=\operatorname{sqrt}(a / n) \times c ; a:=0.25 / a ; a:=a \times a ;\)
        \(c:=((((-21789.625 \times a+315.5) \times a-9.5) \times a+1.0) \times a+1.0)\)
            \(\times c\)
    end;
    \(t\) frequency \(:=\exp (-0.5 \times b) \times c\)
end Student's t-frequency
```


Algorithm 466

Four Combinatorial Algorithms [G6]

Gideon Ehrlich [Recd. 25 Aug. 1971, 4 Jan. 1972, and 12 Dec. 1972]
Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Key Words and Phrases: permutations and combinations CR Categories: 5.39
 Language: PL/I

Description

Each of the following algorithms produce, by successive calls, a sequence of all combinatorial configurations, belonging to the appropriate type.
PERMU Permutations of $N \geq 3$ objects: $X(1), X(2), \ldots, X(N)$.
COMBI Combinations of M natural numbers out of the first N.
COMPOMIN Compositions of an integer P to $M+1$ ordered terms, $\operatorname{INDEX}(k)$, each of which is not less than a given minimum $\operatorname{MIN}(k)$.

COMPOMAX The same as COMPOMIN but each term has its own maximum MAX (k).
The four algorithms have in common the important property that they use neither loops nor recursion; thus the time needed for producing a new configuration is unaffected by the "size" (N, N and M, P and M respectively) of that configuration.

Each algorithm uses a single simple operation for producing a new configuration from the old one, that is:
$P E R M U$ A single transposition of two adjacent elements.
COMBI Replacing a single element x by a y having the property that there is no element between x and y belonging to the combination.
COMPOMIN (MAX) Changing the values of two adjacent terms (usually only by 1).
The algorithms are written in $P L 1(F)$.
Special instructions for the user and notes.
PERMU (1) The mean work-time is actually a decreasing function of N since, on $(N-1) / N$ of the calls, it returns by the first $R E T U R N$. (2) The procedure operates directly on any object vector $x[1: N]$. (3) For the first permutation one must call FIRSTPER; for other permutations PERMU must be used. (4) Together with the last permutation, which is the original one, we will get $D O N E={ }^{\prime} 1^{\prime} B$. If we continue to call $P E R M U$, the entire sequence will repeat indefinitely. If at any stage we set $D O N E={ }^{\prime} O^{\prime} B$, then at the end of the appropriate sequence it will become ' $1^{\prime} B$. (5) The entire resulting sequence is the same as that of Johnson [1] and Trotter [2].
COMBI Every combination is represented in two forms: (1) As a bit array of $M^{\prime} 1^{\prime}$'s and $N-M^{\prime} 0$'s which is identical to $A(1)$, $A(2), \ldots, A(N)$. (2) As an array C of M different integers not greater than N. The M elements are ordered according to their magnitude. If the second representation is not needed one can omit Z, H and C together with the last line of the procedure. For the first combination we can use the following initialization (for other initializations see [3]):
DECLARE $A(0: N) B I T(1),(X, Y, T(N), F(0: N)$, $I, L, Z, H(N), C(M))$ FIXED;
$D O K=0 T O N-M ; A(K)={ }^{\prime} 0^{\prime} B ; E N D ;$
$D O K=N-M+1 T O N ; A(K)={ }^{\prime} 1^{\prime} B ; E N D ;$
$D O K=1 T O M ; C(K)=N-M+K ; H(N-M+K)=K ;$ END;
$T(N-M)=-1 ; T(1)=0 ; F(N)=N-M+1 ; I=N-M ;$ $L=N ;$
(The initialization was not done in the body of the procedure COMBI only in order to simplify the procedures COMPOMIN$M A X .$.

Instead of using such a large number of parameters it is possible to retain only A, I, L as parameters of the procedure and declare and initialize the other present parameters in the body of the procedure (as is done in $P E R M U$). In such a case N, T, F, L, H must be declared as STATIC or CONTROLLED ('own' in $A L$ $G O L$).
COMPOMIN Each of the $M+1 M I N(k)$, as well as P, can be any integer (positive, negative, or zero), but the sum S of all those minima cannot be greater than P.
For the first composition set $\operatorname{INDEX}(1)=P-S+M I N(1)$ $\operatorname{INDEX}(k)=\operatorname{MIN}(k)$, for $k>1$.

Set $N=P-S+M$, and declare and initialize all variables that also appear in $C O M B I$ in the same way as was done for COMBI.

Together with the last composition, we will get $I=0$ as a signal to halt.
COMPOMAX The instructions for COMPOMIN are valid for COMPOMAX provided: (1) MIN is replaced by MAX (S $\geq P$); and (2) N is initialized to $N=S-P+M$.
The vector C (but not H !) has no use in COMPOMIN $(M A X)$, so one can omit all statements in which it appears. A justification for the four algorithms and for some others can be found in [3].

Acknowledgment. I would like to thank Professor Shimon Even for guidance and encouragement.

References

1. Johnson, S.N. Generation of permutations by adjacent transformations. Math. Comp. 17 (1963), 282-285.
2. Trotter, H.F. Algorithm 115, Perm. Comm ACM 5 (Aug.
1962), pp. 434-435.
3. Ehrlich, G., Loopless algorithms for generation permutations combinations and other combinatorial configurations. J. ACM 20 (July 1973), 500-513.

Algorithm

FIRSTPER: PROCEDURE (X, DONE);
declare ($x(*)$, ($x n, x x$) STATIC) decimal, done bit (1)
($\mathrm{N}, \mathrm{S}, \mathrm{V}, \mathrm{M}, \mathrm{L}, \mathrm{I}, \mathrm{DI}, \mathrm{IPI}$) BINARY STATIC,
($\mathrm{P}(\mathrm{O}: \mathrm{N}), \operatorname{IP}(\mathrm{N}-1 \mathrm{l}, \mathrm{D}(\mathrm{N}-1), \mathrm{T}(\mathrm{N})$) BINARY CONTROLLED;
$\mathrm{N}=\mathrm{DIM}(\mathrm{X}, \mathrm{I})$;
if allocation (P) then free P, IP, D,T; ALLOCATE P,IP,D,T;
DO $M=1$ TO $N-1 ; ~ P(M), I P(M)=M ; D(M)=-1$; END;
$X N=X(N) ; V=-1 ; S, P(0), P(N)=N ; M, L=1$;
$T(N)=N-1 ; T(N-1)=-2 ; T(2)=2 ;$
DONE='O'B;
PERMU: ENTRY ($\mathrm{X}, \mathrm{DONE}$);
IF $S_{7}=M$ THEN DO; $x(S)=x(S+V) ; S=S+V ; x(S)=X N ;$ RETURN; END; $\mathrm{I}=\mathrm{T}(\mathrm{N})$; $\quad \mathrm{DI}=\mathrm{D}(\mathrm{I})$;
$\mathrm{IP}(\mathrm{I}), \mathrm{IPI}=\mathrm{IP}(\mathrm{I})+\mathrm{DI} ; \quad \mathrm{M}=\mathrm{P}(\mathrm{IPI}) ; \quad \mathrm{P}$; $\quad \mathrm{IP}(\mathrm{M})=\mathrm{IPI}-\mathrm{DI} ;$

P(IPI-DI) $=\mathrm{M}$; $\quad P(\mathrm{IPI})=\mathrm{I} ; \quad M=I P I+L ;$
$x X=x(M)$; $\quad x(M)=x(M-D I)$; $\quad x(M-D I)=x X$;
$\mathrm{L}=1-\mathrm{L}$; $\quad \mathrm{V}=-\mathrm{V}$; $\mathrm{M}=\mathrm{N}+1-\mathrm{S}$;
IF $\mathrm{P}(\mathrm{IPI}+\mathrm{DI})<\mathrm{I}$ THEN
DO; IF I=N-1 THEN RETURN;
$T(N)=N-1 ; T(N-1)=-I ;$ RETURN;
END;
$D(I)=-D I$;
If $\mathrm{T}(\mathrm{I})<0$ THEN
DO; IF $T(1)=1=1-\mathrm{I}$ THEN $T(\mathrm{I}-1)=\mathrm{T}(\mathrm{I})$; $T(\mathrm{I})=\mathrm{I}-1$; END;
IF I $ᄀ=\mathrm{N}-1$ THEN $\mathrm{DO} ; \mathrm{T}(\mathrm{N})=\mathrm{N}-1 ; \mathrm{T}(\mathrm{N}-1)=-\mathrm{I}-1$; END;
$T(1+1)=T(1)$;
If $\mathrm{I}=2$ \& $\mathrm{P}(2)=2$ THEN DONE='1'B;
END;
COMBI PROCEDURE ($A, N, X, Y, T, F, I, L, Z, H, C$);
DECLARE $A(*) B I T(1),(N, X, Y, T(*), F(*), I, L, Z, H(*), C(*))$ FIXED;
IF $\mathrm{T}(\mathrm{I})$ < 0 THEN
DO; IF $-T(\mathrm{I})-1=1$ - THEN $T(I-1)=T(\mathrm{I})$; $T(I)=1-1$; END;
IF $\neg A(I)$ THEN
DO; $X=1 ; \quad Y=F(L)$;
IF $A(1-7)$ THEN $F(I)=F(I-1)$; ELSE $F(I)=I ;$ IF $F(L)=L$ THEN
DO; L=I; I=T(I); GOTO CHANGE; END;
IF L=N THEN
D0; $T(F(N))=-I-7 ; T(I+I)=T(I) ; I=F(N) ;$
$F(N)=F(N)+1$; GOTO CHANGE;
END;
$T(\mathrm{~L})=-\mathrm{I}-\mathrm{I} ; \mathrm{T}(\mathrm{I}+\mathrm{l})=\mathrm{T}(\mathrm{I}) ;$
$F(\mathrm{~L})=\mathrm{F}(\mathrm{L})+1$; $\mathrm{I}=\mathrm{L}$; GOTO CHANGE
END;
$Y=I$;
IF I ᄀ = L THEN
D0;
$F(L), X=F(L)-1 ; F(1-1)=F(1) ;$
IF L=N THEN
DO; IF I=F(N) - 1 THEN DO; I=T(I); GOTO CHANGE; END; $T(F(N)-1)=-I-1 ; T(I+1)=T(I) ;$
$\mathrm{I}=\mathrm{F}(\mathrm{N})-\mathrm{I}$; GOTO CHANGE;
END;
$T(\mathrm{~L})=-\mathrm{I}-\mathrm{I} ; \mathrm{T}(\mathrm{I}+\mathrm{I})=\mathrm{T}(\mathrm{I})$; $\mathrm{I}=\mathrm{L}$; GOTO CHANGE;
END;
$X=N ; F(L-1)=F(L) ; F(N)=N ; L=N ;$
IF I=N-1 THEN DO; I=T(N-1); GOTO CHANGE; END;
$T(N-1)=-1-1 ; T(\mathrm{I}+1)=T(1) ; I=N-1 ;$
CHANGE;
$A(X)=1{ }^{\prime} B ; A(Y)={ }^{\prime} 0^{\prime} B ;$
$H(X), Z=H(Y) ; C(Z)=X ;$
END COMBI;
COMPOMIN: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*) BIT(1),
(INDEX(*),N,X,Y,T (*),F(*),I,L,Z,H(*),C(*)) FIXED;
CALL COMBI ($A, N, X, Y, T, F, I, L, Z, H, C)$;
$\operatorname{INDEX}(Z)=\operatorname{INDEX}(Z)+X-Y ; \quad \operatorname{INDEX}(Z+1)=\operatorname{INDEX}(Z+1)+Y-X:$
END COMPOMIN;
COMPOMAX: PROCEDURE (INDEX,A,N,X,Y,T,F,I,L,Z,H,C);
DECLARE A(*) BIT(1),
($\operatorname{INDEX}(*), N, X, Y, T(*), F(*), I, L, Z, H(*), C(*))$ FIXED; CALL COMBI ($A, N, X, Y, T, F, I, L, Z, H, C$);
$\operatorname{INDEX}(Z)=\operatorname{INDEX}(Z)-X+Y ; \quad \operatorname{INDEX}(Z+1)=\operatorname{INDEX}(Z+1)-\gamma+X ;$ END COMPOMAX;

Algorithm 467

Matrix Transposition in Place [F1]

Norman Brenner [Recd. 14 Feb. 1972, 2 Aug. 1972] M.I.T., Department of Earth and Planetary Sciences, Cambridge, MA 02139

Key Words and Phrases: transposition, matrix operations, permutations, primitive roots, number theory

CR Categories: 3.15, 5.14, 5.39
Language: Fortran

Description

Introduction. Since the problem of transposing a rectangular matrix in place was first proposed by Windley in 1959 [1], several algorithms have been used for its solution [2, 3, 7]. A significantly faster algorithm, based on a number theoretical analysis, is described and compared experimentally with existing algorithms.

Theory. A matrix a, of n_{1} rows and n_{2} columns, may be stored in a vector v in one of two ways. Element $a_{i j}$ (0 -origin subscripts) may be placed rowwise at $v_{k}, k=i n_{2}+j$, or columnwise at $v_{k^{\prime}}$, $k^{\prime}=i+j n_{1}$. Clearly, letting $n=n_{1}$ and $m=n_{1} n_{2}-1$, $k^{\prime} \equiv n k(\bmod m)$.

Transposition of the matrix is its conversion from one mode of storage to the other, by performing the permutation (1). This permutation may be done with a minimum of working storage in a minimum number of exchanges by breaking it into its subcycles. For example, for a 4×9 matrix, one subcycle representation is
(0) ($\begin{array}{lllll}1 & 4 & 16 & 29 & 11\end{array}$ 9) (34 311962426)
(22 182832 23) (13 173327312)
(5 20 10) (30 15 25) (7 28) (14 21) (35).
The notation for the sixth subcycle, for example, means that $\nu_{5} \leftarrow \nu_{20} \leftarrow \nu_{10} \leftarrow \nu_{5}$.

For a subcycle starting with element s, the elements of the subcycle are $s n^{r}(\bmod m)$, for $r=0,1, \ldots$. The following theorems are easily established.

Theorem 1. All the elements of the subcycle beginning with s are divisible by $d=(s, m)$, the largest common factor of both s and m. They are divisible by no larger divisor of m.

Proof. Both m and s are divisible by d, and therefore so is any subcycle element $s n^{r}(\bmod m)$. But n and m have no common factors (since $m=n n_{2}-1$), so no divisor of m larger than d can divide $s n^{r}$. \square

Theorem 2. For every subcycle beginning with s, there is another (possibly the same) subcycle beginning with $m-s$.

Proof. The elements of the second subcycle are just $-s n^{r}$ $(\bmod m)$. It is the same subcycle if for some $r, n^{r} \cong-1\left(\bmod m^{\prime}\right)$, for $m^{\prime}=m /(s, m)$.

The next theorem gives the group representation of the integers modulo m.

Theorem 3. Factor m into powers of primes, $m=p_{1}^{\alpha_{1}} \cdots p_{l}^{\alpha_{l}}$. Let r_{i} be a primitive root of p_{i}; that is, the powers $r_{i}{ }^{k}\left(\bmod p_{i}\right)$ for $k=0,1, \ldots, p-2$, comprise every positive integer less than p_{i}. Define the generator $g_{i}=1+R m / p_{i}^{\alpha_{i}}$, where $R \equiv\left(r_{i}-1\right)$ $\left(m / p_{i}^{\alpha_{i}}\right)^{-1}\left(\bmod p_{i}^{\alpha_{i}}\right)$. Define the Euler totient function $\phi(1)=1$; otherwise $\phi(k)=$ the number of integers less than k having no common factor with it. Then, for any integer x less than m, there exist unique indices j_{i} for which $0 \leq j_{i}<\phi\left(p_{i}^{\alpha_{i}} /\left(x, p_{i}^{\alpha_{i}}\right)\right)$ and $x \equiv(x, m) g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m)$.

Proof. In [4]; if any $p_{i}=2$, replace $g_{i}^{j_{i}}$ by $\pm 5^{j_{i}}$, where $0 \leq$ $j_{i}<\phi\left(2^{\alpha_{i}-2} /\left(x, 2^{\alpha_{1}-2}\right)\right)$.

For example, for $m=35$, as in our example above, $x \equiv$ $22^{j_{1}} 31^{j_{2}}(\bmod 35)$ for $(x, 35)=1$ and for $0 \leq j_{1}<4$ and $0 \leq j_{2}<6$.

Index notation is analogous to logarithmic notation in that multiplication modulo m becomes merely addition of indices.

The following theorem solves the problem of the subcycle starting points. It is similar to the algorithm in [6].

Theorem 4. Let n and m be defined as for (1). Then, for any integer x less than m, upper bounds J_{i} may be found so that unique indices j_{i} exist in the range $0 \leq j_{i}<J_{i}$ and $x \equiv \pm(x, m)$ $n^{j_{0}} g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m)$.

Proof. Express n and -1 in index notation. Then, compute from the indices of n the smallest e such that $n^{e} \equiv 1(\bmod m)$. Initially, set each $\mathbf{J}_{i}=\phi\left(p_{i}^{\alpha}{ }_{i}\left(x, p_{i}^{\alpha}\right)\right)$. Next, doing only index arithmetic, examine each power $\pm n^{j}$ for nontrivial relations of the form $g_{i}^{j_{i}} \equiv \pm n^{j} g_{1}^{j_{1}} \cdots g_{l}^{j_{l}}(\bmod m /(x, m))$ where $0 \leq j_{k}<J_{k}$ for each k. Then set $J_{i}=j_{i}$. Stop when the product of the J_{i} and e equals $\phi(m /(x, m))$, which is the number of integers in subcycles divisible only by (x, m). \square

Notice that the choice of J_{i} by this method is not unique. For example, continuing from above, for $(x, m)=7, n=4$, $x \equiv 7 \cdot 4^{j_{0}} 22^{j_{1}}(\bmod 35)$, for $0 \leq j_{0}<2$ and $0 \leq j_{1}<2$. The relations found were $(-1)^{1} \equiv 4^{1}(\bmod 5), 22^{2} \equiv 4^{1}(\bmod 5)$ and $31^{1} \equiv 4^{0}$ $(\bmod 5)$.

Theorem 4 is more important in theory than in practice. The

Timing Tests

n_{1}	n_{2}	m	(all tim Alg. 302 T_{1}	$\begin{aligned} & \text { in msec) } \\ & \text { Alg. } 380 \\ & I W R K=0 \\ & T_{2} \end{aligned}$	$\begin{aligned} & \text { Alg. } 380 \\ & I W R K= \\ & \left(n_{1}+n_{2}\right) / 2 \\ & T_{3} \end{aligned}$	$\begin{aligned} & X P O S \\ & \text { NWORK }=0 \\ & T_{4} \end{aligned}$	$\begin{aligned} & X P O S \\ & N W O R K= \\ & \left(n_{1}+n_{2}\right) / 2 \\ & T_{5} \end{aligned}$	T_{1} / T_{4}	T_{2} / T_{4}	T_{3} / T_{5}
45	50	$13 \cdot 173$	350	317	167	133	67	2,62	2,38	2,50
45	60	2699	558	123	117	90	100	6, 20	1,37	1,17
46	50	$11^{2} \cdot 19$	367	339	217	106	83	3,46	3,21	2,60
46	60	31.89	425	350	250	133	83	3,19	2,63	3,00
47	50	34.29	383	378	267	72	67	5,18	5,23	4,00
47	60	2819	483	127	133	90	100	5,36	1,41	1,33
45	180	7.13.89	1200	1050	816	517	300	2,25	2,03	2,72
45	200	8999	1767	408	416	283	300	6,25	1,44	1,39
46	180	17.487	1816	1233	583	267	267	6,41	4,63	2,19
46	200	9199	1700	508	417	383	317	4,44	1,33	1,32
47	180	11.769	1450	1133	667	383	267	3,78	2,96	2,50
47	200	$3 \cdot 13 \cdot 241$	983	1150	1067	550	467	1,69	2,09	2,29

November 1973
Volume 16
Number 11
tremendous labor in finding primitive roots for large primes (since a table of roots is very bulky) and in finding the index representation of n is not compensated for by time savings afterward; see the timing tests below. The same practical objection holds against the algorithm in [6].

Algorithm. An efficient program breaks naturally into two parts. First determine starting points for the subcycles and then move the data. In each part, the program below is significantly faster than Algorithm 380 in [3].

For each divisor d of m, the subcycles beginning with d and with $m-d$ are done. If the number of data moved is still less than $\phi(m / d)$, further subcycle starting points of the form sd are tried, for $s=2,3, \ldots$ The most general test is that $s d$ is acceptable if no element in its subcycle is less than $s d$ or greater than $m-s d$. Since this test requires much time-consuming computation, it is much faster to look for $s d$ in a table where marks are made to indicate that an element has been moved. In some applications, a bit within each datum may be used. For example, if the data are all biased positive, the sign bit may be used; or, for normalized, nonzero, binary floating point data, the high bit of the fraction is always one and so may be used. In general, a special table of length NWORK is used. As in [3], NWORK $=\left(n_{1}+n_{2}\right) / 2$ was found to be sufficient for most cases. However, when m has many divisors, Algorithm 380 must perform the time-consuming general test for many possible starting points when the new algorithm need not.

The inner loop of the algorithm computes (1), moves data, marks in the table, and checks for loop closure. Since the major part of the time of the inner loop is calculating (1), time is saved over Algorithm 380 by moving elements v_{k} and v_{m-k} simultaneously. In special cases, further savings may be made. For example, m is divisible by 2 only when both n_{1} and n_{2} are odd. Then the subcycles beginning at $m / 2-s$ and $m / 2+s$ may be done simultaneously with the subcycles from s and $m-s$, thus reducing the number of times (1) is computed.

Timing tests. A set of test matrices were transposed on the $360 / 65$ with all programs written in Fortran H, OPT $=2$. The new algorithm was always faster than both Algorithm 380 [3] and Algorithm 302 [2] when $N W O R K=\left(n_{1}+n_{2}\right) / 2$. When $N W O R K=0$, it was slower than Algorithm 380 (for IWRK $=0$) and Algorithm 302 only for a few cases when $n_{1} n_{2}<100$. It was especially faster than Algorithm 380 when $m=n_{1} n_{2}-1$ had many factors and there were hence many subcycles.

An experiment was made for cases when m was prime. A known primitive root of m was then taken from a table [5] and was used to generate subcycle starting points. Since no time was wasted in finding the primitive root or in finding subcycle starting points, this test showed the maximum time savable by implementing Theorem 4. For NWORK $=\left(n_{1}+n_{2}\right) / 2$ and $m>200$, no improvement was found over the normal algorithm. For $N W O R K=0$, the gain in speed was never more than 25 percent.

References

1. Windley, P.F. Transposing matrices in a digital computer. Comp. J. 2 (Apr. 1959), 47-48.
2. Boothroyd, J. Algorithm 302, Transpose vector stored array. Comm. ACM 10 (May 1967), 292-293.
3. Laflin, S., and Brebner, M.A. Algorithm 380: In-situ transposition of a rectangular matrix. Comm. ACM 13 (May 1970), 324-326.
4. Bolker, E. An Introduction to Number Theory: An Algebraic Approach. Benjamin, New York, 1970.
5. Abramowitz, M., and Stegun, I. Handbook of Mathematical Functions, Table 24.8. Nat. Bur. of Standards, Washington, D.C., 1964.
6. Pall, G., and Seiden, E. A problem in Abelian Groups, with application to the transposition of a matrix on an electronic computer. Math. Comp. 14 (1960), 189-192.
7. Knuth, D., The Art of Computer Programming, Vol. I. Addison-Wesley, Reading, Mass., 1967, p. 180, prob. 12, and p. 517, solution to prob. 12.

Algorithm

SUBRDUTINE XPOSE(A, N1, N2, N12, MOVED, NWOス̃K)
C TRANSPOSITION OF A NECTANGULAR MATRIX IN SITU.
C BY NGRMAN BRENNER, MIT, 1/72. CF. ALG. 380. CACM, 5/70.
C TRANSPOSITION OF THE NI BY N2 MATKIX A AMOUNTS TD
REPLACING THE ELEMENT AT VECTGN POSITION I (O-ØKIGIN)
C WITH THE ELEMENT AT POSITION NI*I (MOD N1*N2-1).
C EACH SUBCYCLE OF THIS PEKMUTATION IS COMPLETED IN OKDEK.
C MOVED IS A LOGICAL WORK ARRAY OF LENGTH NWOKK.
LOGICAL MOVED
DIMENSIGN A(N12), MOVED(NWOKK)
C really $A(N 1, N 2), ~ B U T$ N12 $=$ N1*N2
DIMENSIØN IFACT(8), IPOWEK(8), NEXP(8), IEXP(8)
IF (NI.LT.2 - DR. N2.LT.2) RETURN
$N=N 1$
M $=$ N1*N2 - 1
IF (NI.NE.NE) GO TO 30
C SQUARE MATRICES ARE DQNE SEPARATELY FOK SPEED
IIMIN = 2
DO 20 IIMAX $=N, M, N$
$I 2=I M M I N+N-1$
DO 10 II=IIMIN, IIMAX
ATEMP $=\mathrm{A}(\mathrm{I} 1)$
$A(I 1)=A(12)$
$A(I 2)=A T E M P$
$12=12+N$
CONTINUE
IIMIN = IIMIN + N + 1
20 CONTINUE
RETURN
C MODULUS M IS FACTORED INTO PRIME POWERS. EIGHT FACTORS
C SUFFICE UP TO M = $2 * 3 * 5 * 7 * 11 * 13 * 17 * 19=9,767,520$.
30 CALL FACTDR(M, IFACT, 1POWER. NEXP, NPOWER)
DO 40 IP $=1$, NPOWER
$\operatorname{IEXP}(I P)=0$
40 CENTINUE
C GENERATE EVERY DIUISOR OF M LESS THAN M/2 IDIV $=1$
50 IF (IDIV.GE.M/2) G0 T0 190
C THE NUMBER GF ELEMENTS WHDSE INDEX IS DIVISIBLE BY IDIV
C AND BY ND פTHEK DIVIS®R OF M IS THE EULER TOTIENT
C FUNCTION, PHI(M/IDIV).
NCOUNT $=M / I D I V$
DO 60 IP=1,NPOWER
IF (IEXP(IP).EQ.NEXP(IP)) GD T0 60 NCQUNT $=(N C O U N T / I F A C T(I P)) *(I F A C T(I P)-1)$
60 CONTINUE
DO $70 \mathrm{I}=1$, NWOKK MOVED(I) $=$.FALSE.
70 CONTINUE
C THE STARTING POINT OF A SUBCYCLE IS DIVISIBLE ONLY BY IDIV
C AND MUST NOT APPEAR IN ANY OTHER SUBCYCLE. ISTART = IDIV
80 MMIST $=M$ - ISTART
IF (ISTART.EQ.IDIV) GO TO 120
IF (ISTART.GT.NW0кK) G0 T0 90
IF (MOVED(ISTART)) GD TD 160
90 ISOID $=$ ISTART/IDIV
DO 100 IP=1,NFOWER
IF (IEXP(IP).EQ.NEXP(IP)) G TD T0 100
IF (MOD (ISOID.IFACT(IP)).EQ.O) G0 TO 160
100 CONTINUE
IF (ISTART.LE.NWORK) G® TO 120
ITEST = ISTART
110 ITEST $=$ MOD (N*ITEST,M)
IF (ITEST.LT.ISTART •OK. ITEST.GT.MMIST) GO TO 160 IF (ITEST.GT.ISTART *AND. ITEST.LT.MMIST) G® T0 110
120 ATEMP $=A(I S T A R T+1)$
BTEMP $=A(M M I S T+1)$
IAI $=I S T A R T$
130 IA2 $=\mathrm{MOD}(N * I A 1, M)$
MMIAI $=M-I A I$
MMIAZ $=M-I A 2$
IF (IAI.LE.NWORK) MOVED(IAI) = .TRUE.
IF (MMIAI.LE.NWGRK) MDVED (MMIAI) =.TKUE. NCDUNT $=$ NCBUNT - 2
C MOVE TWO ELEMENTS, THE SECOND FROM THE NEGATIVE
C SUBCYCLE. CHECK FIRST FOR SUBCYCLE CLOSURE. IF (IAR.EQ.ISTART) G0 T0 140
IF (MMIAZ.EQ.ISTART) GØ TO 150
$A(I A 1+1)=A(I A 2+1)$
$A(M M I A 1+1)=A(M M I A Z+1)$
$I A 1=1 A 2$
GO TO 130
$140 \mathrm{~A}(\mid A 1+1)=\operatorname{ATEMP}$
$A($ MMIAl +1$)=$ BTEMP
GO TD 160
$150 \mathrm{~A}(\mathrm{IA} 1+1)=\mathrm{BTEMP}$
A(MMIA1+1) = ATEMP
160 ISTART $=$ ISTART + IDIV
IF (NCOUNT.GT.O) GO TO 80
DO 180 IP=1,NPOWER
IF (IEXP(IP).EQ.NEXP(IP)) GO TO 170
$\operatorname{IEXP}(I P)=I \operatorname{EXP}(I P)+1$
IDIV $=$ IDIV*IFACT(IP)
GQ TO 50
$\operatorname{IEXP}(I P)=0$ IDIV $=$ IDIV/IPDWER(IP)

```
    180 Centinue
    190 RETURN
        END
        SUBRDUTINE FACTOR(N, IFACT, IPOWER, NEXP, NPOWER)
C FACTOR N INTO ITS PRIME POWEKS, NPOWER IN NUMBER.
C E.G., FOR N=1960=2**3 *5 *7**2, NPOWER=3, I FACT=3,5,7,
C IPOWER=8,5,49. AND NEXP=3,1,2.
    DIMENSION IFACT(8), IP@WER(8), NEXP(8)
    IP=0
    IFCUR = 0
    NPART = N
    IDIV = 2
10 IQUQT = NPART/IDIV
    IF (NPART-IDIV*IQUOT) 60, 20, 60
20 IF (IDIV-IFCUR) 40, 40, 30
30 IP = IP + 1
    IFACT(IP) = IDIV
    IPOWER(IP) = IDIV
    IFCUR = IDIV
    NEXP(IP)=1
    G0 T0 50
    4O IPOWER(IP) = IDIV*IPOWER(IP)
    NEXP(IP) = NEXP(IP) + 1
    5 0 ~ N P A R T ~ = ~ I Q U O T ~
    GO TO 10
    60 IF (IQUOT-IDIV) 100, 100,70
    70 IF (IDIV-2) 80, 80, 90
    80 IDIV = 3
    G0 TO 10
90 IDIV = IDIV + 2
    G0 JO 10
100 IF (NPART-1) 140, 140, 110
110 IF (NPART-IFCUR) 130, 130, 120
120IP = IP + I
    IFACT(IP) = NPART
    IPOWER(IP) = NPART
    NEXP(IP) = 1
    GO T0 140
130 IPOWER(IP) = NPART*IPQWER(IP)
    NEXP(IP) = NEXP(IP) + 1
14O NPOWER = IP
    RETURN
    END
```


Algorithm 468

Algorithm for Automatic Numerical Integration Over a Finite Interval [D1]

T.N.L. Patterson [Recd. 20 Jan. 1971, 27 Nov. 1972, 12 Dec. 1972, 26 Mar. 1973]
Department of Applied Mathematics and Theoretical Physics, The Queen's University of Belfast, Belfast BT7
1NN Northern Ireland

Key Words and Phrases: automatic integration, numerical integration, automatic quadrature, numerical quadrature

CR Categories: 5.16
Language: Fortran

[^0]
Description

Purpose. The algorithm attempts to calculate automatically the integral of $F(x)$ over the finite interval $[A, B]$ with relative error not exceeding a specified value ϵ.

Method. The method uses a basic integration algorithm applied under the control of algorithms which invoke, if necessary, adaptive or nonadaptive subdivision of the range of integration. The basic algorithm is sufficiently powerful that the subdivision processes will normally only be required on very difficult integrals and might be regarded as a rescue operation.

The Basic Algorithm. The basic algorithm, QUAD, uses a family of interlacing whole-interval, common-point, quadrature formulas. The construction of the family is described in detail in [1]. Beginning with the 3 -point Gauss rule, a new 7 -point rule is derived, with three of the abscissae coinciding with the original Gauss abscissae; the remaining four are chosen so as to give the greatest possible increase in polynomial integrating degree; the resulting 7-point rule has degree 11. The procedure is repeated, adding eight new abscissae to the 7 -point rule to produce a 15 -point rule of degree 23. Continuing, rules using 31, 63, 127, and 255 points of respective degree $47,95,191$, and 383 are derived. The 255 -point rule has not previously been published. In addition, a 1-point rule (abscissa at the mid-point of the interval of integration) is included in the family to make eight members in all. The 3-point Gauss rule is in fact formally the extension of this 1 -point rule. The successive application of these rules, until the two most recent results differ relatively by ϵ or better, is the basis of the method. Due to their interlacing form, no integral evaluations need to be wasted in passing from one rule to the next.

The algorithm has been used for some time on practical problems and has been found to generally perform reliably and efficiently. Its domain of applicability generally coincides with that of the Gauss formula, which is much wider than commonly supposed [2]. It will perform best on "smooth" functions, but the degree of deterioration of performance when applied to functions with various types of eccentricities depends more on the harshness of these eccentricities than on their presence as such. Integrands with large peaks or even singularities at the ends of the interval of integration are handled reasonably well. It may be noted that none of the rules actually uses the end points of the interval as abscissae. Peaks in the integrand at the center of the interval and discontinuities in the integrand are less easily dealt with. Although it is recommended that the algorithm be applied using the control algorithms described later, if desired it can be used directly as follows.

The algorithm is entered by the statement:
CALL QUAD (A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)
The user supplies:
A lower limit of integration.
B upper limit of integration.
EPSIL required relative error.
$F \quad F(X)$ is a user written function to calculate the integrand.
The algorithm returns:
RESULT an array whose successive elements $\operatorname{RESULT}(1)$, $\operatorname{RESULT}(2)$, etc., contain the results of applying the successive members of the family of rules. The number of rules actually applied depends on EPSIL. The array should be declared by the calling program to have at least eight elements.
K element, $\operatorname{RESULT}(K)$, of array $R E S U L T$ contains the value of the integral to the required relative accuracy. K is determined from the convergence criterion:

$$
|\operatorname{RESULT}(K)-\operatorname{RESULT}(K-1)| \quad \leq \operatorname{EPSIL}^{*}|\operatorname{RESULT}(K)|
$$

NPTS number of integrand evaluations.
ICHECK this flag will normally be 0 on exiting from the subroutine. However, if the convergence criterion above is not satisfied after exhausting all members of the family of rules, then the flag is set to 1 .

November 1973
Volume 16
Number 11

Table I. Test Integrals and Their Values

1. $\int_{0}^{1} \sqrt{ } x d x=\frac{2}{3}$
2. $\int_{-1}^{1}[0.92 \cosh (x)-\cos (x)] d x \doteq 0.4794282267$
3. $\int_{-1}^{1} d x /\left(x^{4}+x^{2}+0.9\right) \doteq 1.582232964$
4. $\int_{0}^{1} x^{\frac{3}{2}} d x=\frac{2}{5}$
5. $\int_{0}^{1} d x /\left(1+x^{4}\right) \doteq 0.8669729873$
6. $\int_{0}^{1} d x /(1+0.5 \sin (31.4159 x)) \doteq 1.154700669$
7. $\int_{0}^{1} x d x /\left(e^{x}-1\right) \doteq 0.7775046341$
8. $\int_{0.1}^{1} \sin (314.159 x) /(3.14159 x) d x \doteq 0.009098645256$
9. $\int_{0}^{10} 50 d x /\left(2500 x^{2}+1\right) / 3.14159 \doteq 0.4993638029$
10. $\int_{0}^{3.1415927} \cos (\cos (x)+3 \sin (x)+2 \cos (2 x)$

$$
+3 \cos (3 x)+3 \sin (2 x)) d x \doteq 0.8386763234
$$

11. $\int_{0}^{1} \ln (x) d x=-1.0$
12. $\int_{0}^{1} 4 \pi^{2} x \sin (20 \pi x) \cos (2 \pi x) d x \doteq-0.6346651825$
13. $\int_{0}^{1} d x /\left(1+(230 x-30)^{2}\right) \doteq 0.0013492485650$

The control algorithms. Two control algorithms are provided, QSUBA and QSUB, which if necessary invoke subdivision respectively in either an adaptive or a nonadaptive manner. QSUBA is generally more efficient than $Q S U B$, but since there are reasons for believing [2] that adaptive subdivision is intrinsically less reliable than the nonadaptive form, an alternative is provided.

The adaptive algorithm QSUBA. QUAD is first applied to the whole interval. If a converged result is not obtained (that is, the convergence criterion is not satisfied), the following adaptive subdivision strategy is invoked. At each stage of the process an interval is presented for subdivision (initially the whole interval (A, B)). The interval is halved, and $Q U A D$ applied to each subinterval. If QUAD fails to converge on the first subinterval, the subinterval is stacked for future subdivision and the second subinterval immediately examined. If $Q U A D$ fails to converge on the second subinterval, it is immediately subdivided and the whole process repeated. Each time a converged result is obtained it is accumulated as the partial value of the integral. When QUAD converges on both subintervals the interval last stacked is chosen next for subdivision and the process repeated. A subinterval is not examined again once a converged result is obtained for it, so that a spurious convergence is more likely to slip through than for the nonadaptive algorithm QSUB.

The convergence criterion is slightly relaxed in that a panel is deemed to have been successfully integrated if either QUAD converges or the estimated absolute error committed on this panel does not exceed ϵ times the estimated absolute value of the integral over (A, B). This relaxation is to try to take account of a common situation where one particular panel causes special difficulty, perhaps due to a singularity of some type. In this case, $Q U A D$ could
obtain nearly exact answers on all other panels, and so the relative error for the total integration would be almost entirely due to the delinquent panel. Without this condition the computation might continue despite the requested relative error being achieved. The risk of underestimating the relative error is increased by this procedure and a warning is provided when it is used.

The algorithm is written as a function with value that of the integral. The call takes the form:

QSUBA(A, B, EPSIL, NPTS, ICHECK, RELERR, F)

and causes $F(x)$ to be integrated over (A, B) with relative error hopefully not exceeding EPSIL. RELERR gives a crude estimate of the actual relative error obtained by summing the absolute values of the errors produced by $Q U A D$ on each panel (estimated as the differences of the last two iterates of $Q U A D$) and dividing by the calculated value of the integral. The reliability of the algorithm will decrease for large EPSIL. It is recommended that EPSIL should generally be less than about 0.001 . F should be declared EXTERNAL in the calling program. NPTS is the number of integrand evaluations used. The outcome of the integration is indicated by ICHECK:
$I C H E C K=0$. Convergence obtained without invoking subdivision. This corresponds to the direct use of QUAD.
$I C H E C K=1$. Subdivision invoked and a converged result obtained.
ICHECK $=2$. Subdivision invoked and a converged result obtained but at some point the relaxed convergence criterion was used. If confidence in the result needs bolstering, EPSIL and $R E L E R R$ may be checked for a serious discrepancy.
ICHECK negative. If during the subdivision process the stack of delinquent intervals becomes full a result is obtained, which may be unreliable, by continuing the integration and ignoring convergence failures of $\mathrm{Q} U A D$ which cannot be accommodated on the stack. This occurrence is noted by returning ICHECK with negative sign.
The nonadaptive algorithm QSUB. QUAD is first applied to the whole interval. If a converged result is not obtained the following nonadaptive subdivision strategy is invoked.

Let the interval (A, B) be divided into 2^{N} panels at step N of the subdivision process. $Q U A D$ is first applied to the subdivided interval on which it last failed to converge, and if convergence is now achieved, the remaining panels are integrated. Should a convergence failure occur on any panel, the integration at that point is terminated and the procedure repeated with N increased by one. The strategy insures that possibly delinquent intervals are examined before work, which later might have to be discarded, is invested on well behaved panels. The process is complete when no convergence failure occurs on any panel, and the sum of the results obtained by $Q U A D$ on each panel is taken as the value of the integral.

The process is very cautious in that the subdivision of the interval (A, B) is uniform the fineness of which is controlled by the success of $Q U A D$. In this way it is much more difficult for a spurious convergence to slip through than for $Q S U B A$. The convergence criterion is relaxed as described for $Q S U B A$.

The algorithm is used in the same way as $Q S U B A$ and is called with the same arguments as QSUBA. One of the possible values of ICHECK has a different interpretation:
ICHECK negative. If during the subdivision process the upper
limit on the number of panels which may be generated is reached, a result is obtained, which may be unreliable, by continuing the integration ignoring convergence failures of QUAD. This occurrence is noted by returning ICHECK with negative sign.
Tests. The algorithms have been found to perform reliably on a large number of practical problems. To give a feeling for the performance, results for a number of contrived examples are given using the adaptive control algorithm, $Q S U B A$. It would be difficult to justify these examples as acid tests of any method, but they have the advantage of having being quoted at various times in the literature.

For comparison a number of automatic procedures were used, which include SQUANK [3] (adaptive Simpson), as well as the

November 1973
Volume 16
Number 11

Table II. Relative Error Requested, 10^{-3}

Integral	$N_{\text {CADRE }}$	$N_{Q S U B A}$	$T_{C A D R E} / T_{Q S U B A}$
1	17	15	1.8
2	17	7	2.9
3	33	15	4.4
4	9	7	1.9
5	9	7	2.2
6	175	127	3.2
7	9	7	1.8
8	1137	255	8.5
9	97	127	2.4
10	107	63	2.2
11	137	31	9.9
12	252	63	6.3
13	129	787	.52

N and T with appropriate subscripts give respectively the number of integrand evaluations and the time taken for the computation.

Table III. Relative Error Requested, 10^{-6}

1	33	63	.75
2	33	15	2.6
3	49	31	3.0
4	129	31	5.0
5	17	15	2.0
6	401	255	2.9
7	9	7	1.8
8	2633	255	18.
9	281	255	2.4
10	193	63	3.8
11	233	795	.74
12	532	127	6.4
13	305	1001	.90

Table IV. Relative Error Requested, 10^{-8}

1	65	255	.36
2	33	15	2.7
3	97	31	4.9
4	545	31	20.
5	65	31	3.6
6	569	255	3.8
7	17	15	1.6
8	4001	255	24.
9	337	255	2.8
10	305	127	2.8
11	297	2415	.28
12	932	127	10.
13	481	1017	1.1

modified Havie integrator [4] and CADRE [5] (both based on the Romberg scheme). The latter algorithm, which attempts to detect certain types of singularities using the Romberg table, was found, on the examples tried, to be the best overall competitor to QSUBA, and only this comparison is quoted. The Havie algorithm was particularly poor and had the disturbing feature of converging spuriously on periodic integrands. Thacher [6] has described the shortcomings of Romberg integration, and Algorithm 400 appears to exhibit them. SQUANK was found to be quite good when used at low accuracy, but the performance deteriorated as the demand for accuracy increased. It also gave trouble on some of the more awkward integrals such as 8 and 11. SQUANK also computes the integral in the context of absolute error, and since this is meaningless unless an estimate of the order of magnitude of the integral is known, the algorithm can hardly be described as automatic. CADRE allows a choice of absolute or relative error. A criticism sometimes levied at relative error is that should the integral turn
out to be zero a difficulty will arise. The only advice that can be offered in this respect is that, should a user suspect that this is likely to happen, a constant should be added to the integrand reflecting some appropriate quantity such as the maximum of the integrand. The constant which will be integrated exactly can be removed after the algorithm has done its work.

The test integrals are listed in Table I, and the results obtained for various required relative accuracies in Tables II, III, and IV. Generally $Q S U B A$ is superior by a substantial margin. The methods are compared in terms of the number of integrand evaluations needed to obtain the required accuracy and also in terms of the times required. For simple integrands the bookkeeping time of some methods can be significant, and QUAD can obtain a considerable advantage by its relative simplicity. Integrals 11 and 13 are interesting examples of this. The number of integrand evaluations exceeding 255 indicates that QSUBA invoked subdivision to obtain the result. In Tables III and IV QSUBA returned ICHECK = 2 on integral 11, but the requested tolerance was achieved.

Integral 8 caused special difficulty to CADRE, and for Tables III and IV a converged result could be obtained only after a relatively large investment of computer time. The feature of CADRE to detect certain singularities should show up in integrals 1 and 11, but the gain does not emerge until high accuracy is requested as in Table IV. For harsher singularities the gain would likely become apparent earlier.

References

1. Patterson, T.N.L. The optimum addition of points to quadrature formulae. Math. Comp. 22 (1968), 847-856.
2. Cranley, R., and Patterson, T.N.L. On the automatic numerical evaluation of definite integrals. Comp. J., 14 (1971), 189-198.
3. Lyness, J.N. Algorithm 379, SQUANK. Comm. ACM 13 (Apr. 1970), 260-263.
4. Wallick, G.C. Algorithm 400, Modified Havie integration. Comm. ACM 13 (Oct. 1970), 622-624.
5. de Boor, Carl. CADRE: An algorithm for numerical quadrature. Mathematical Software. J.R. Rice (Ed.) Academic Press, New York, 1971, pp. 417-449.
6. Thacher, H.C. Jr. Remark on Algorithm 60, Comm. ACM (July, 1964), 420-421.

Algorithm

```
        SUBROUTINE QUAD(A, B, RESULT, K, EPSIL, NPTS, ICHECK, F)
        DIMENSION FUNCT(127), P(381), RESULT(8)
    THIS SUBROUTINE ATTEMPTS T0 CALCULATE THE INTEGRAL OF F(X)
C QUER THE INTERVAL *A* TO *B* WITH RELATIVE ERROR NOT
C EXCEEDING *EPSIL**
THE RESULT IS gBTAINED USING A SEQUENCE QF 1,3,7,15,31,63,
127, AND 255 POINT INTEKLACING FORMULAEGNO INTEGRAND
EVALUATIONS ARE WASTED) OF RESPECTIVE DEGREE 1,5,11,23,
47,95,191 AND 383. THE FORMULAE AKE BASED ON THE OPTIMAL
EXIENSIQN ØF THE 3-PBINT GAUSS FQKMULA. DETAILSS OF
C THE FGRMULAE ARE GIVEN IN 'THE GPTIMUM ADDITIGN QF POINTS
C TO QUADRATURE FQRMULAE. BY T.N.L. PATTERSQN,MATHS.COMP.
C VOL 22,847-856,1968.
C
LOWER LIMIT OF INTEGRATION.
```



```
        EXCEED *EPSIL* THE LAST FRRMUIN COMPUTED IS TAKEN
        EXCELD KESUL THE LAST FGRMULA CBMPUTED IS TAKEN
AS IHE RESULT.
F(X) IS THE INTEGRAND.
RESULT THIS ARRAY,WHICH SHQULD BE DECLARED TO HAVE AT
    LEAST & ELEMENTS, HELDS THE RESULTS GBTAINED BY
        THE 1,3,7, ETC., POINT FGRMLLAE. THF NUMBEK GF
        FERMULAE COMPUTED DEPENDS ON *EPSIL*.
K RESULT(K) HOLDS THE VALUE OF THE INTEGRAL TO THE
        SPECIFIED RELATIVE ACCURACY.
NPTS NUMBER INTEGRAND EVALUATIONS
ICHECK ON EXIT NERMALLY ICHECK=0. HOWEVER IF CONVERGENCE
                                    TO THE ACCURACY REQUESTED IS NOT ACKIEVED ICHECK=
            gN EXIT.
ABSCISSAE AND WEIGHTS OF QUADRATURE RULES ARE STACKED IN
AKRAY *P* IN THE RRDER IN WHICH THEY ARE NEEDED
    DATA
    * P( 1),P( 2),P( 3),P( 4),P( 5),P( 6),P( 7),
    * P( 8),P( 9),P(10),P(11),P(12),P(13),P(14)*
    * P(15),P(16),P(17),P(18),P(19),P(20),P(21)*
    * P(22).P(23),P(a44)P(18),P(19)0P(20)aP(21).
```



```
    * 0.888888888888888888889E 00.0.268488089868333344073E 00,
    * 0.96049126870802028342E 00,0.104465622802646726519E OO
    * 0.43424374934680255800E 00,0.40139741477596222291E OO
    * 0.45091653865847414235E 00,0.134441525524378422036E OO
    * 0.99383196321275502221E 00,0.17001719629940260339E-01.
```

- $0.88845923287225699889 \mathrm{E} 00,0.92927195315124537686 \mathrm{E}-01$, 0.62110294673722640294E 00,0.21915685840158749640E OO, * $0.22551049979820668739 \mathrm{E} 00.0 .67207754295990703540 \mathrm{E}-01$, * $0.25807598096176653565 \mathrm{E}-01,0.10031427861179557877 \mathrm{E} 00$, * $0.84345657393211062463 \mathrm{E}-02,0.46462893261757986541 \mathrm{E}-01$, - DATA
* $P(29), P(30), P(31), P(32), P(33), P(34), P(35)$
* $P(36), P(37), P(38), P(39), P(40), P(41), P(42)$,
* $P(43), P(44), P(45), P(46), P(47), P(48), P(49)$
$* P(50), P(51), P(52), P(53), P(54), P(55), P(56)$
* $0.99909812496766759766 \mathrm{E} 00,0.25447807915618744154 \mathrm{E}-02$. * $0.98153114955374010687 \mathrm{E} 00,0.16446049854387810934 \mathrm{E}-01$, * $0.92965485742974005667 E 00,0.35957103307129322097 E-01$, * $0.83672593816886873550 \mathrm{E} 00,0.56979509494123357412 \mathrm{E}-01$, * $0.70249620649152707861 \mathrm{E} 00,0.76879620499003531043 \mathrm{E}-01$, * $0.53131974364437562397 \mathrm{E} 00.0 .93627109981264473617 \mathrm{E}-01$, * $\quad 0.33113539325797683309 \mathrm{E} 00.0 .10566989358023480974 \mathrm{E}$ OO, $0.11248894313318662575 \mathrm{E} 00,0.11195687302095345688 \mathrm{E}$ OO,
$\quad 0.11275525672076869161 \mathrm{E} 00,0.33603877148207730542 \mathrm{E}-01$, 0.11275525672076869161E 00,0.336038771482077730542E-01, $0.12903800100351265626 \mathrm{E}-01,0.50157139305899537414 \mathrm{E}-01$,
$0.42176304415588548391 \mathrm{E}-02,0.23231446639910269443 \mathrm{E}-01$, $0.42176304415588548391 \varepsilon-02,0.23231446639910269443 \mathrm{E}-01$, 0.4285156556300601145 $0.17978551568128270333 \mathrm{E}-01,0.28489754745833548613 \mathrm{E}-01 /$ DATA
P(57),P(58),P(59),P(60),P(61),P(62),P(63)
* $P(64), P(65), P(66), P(67), P(68), P(69), P(70)$,
* $P(78), P(79), P(80), P(81), P(82), P(83), P(84)$
* $0.38439810249455532039 \mathrm{E}-01,0.46813554990628012403 \mathrm{E}-01$, $0.52834946790116519862 \mathrm{E}-01,0.55978436510476319408 \mathrm{E}-01$, * 0.9998728893722219594E 00,0.36322148184553065969E-03. 0.99720625937222195908E 00,0.25790497946856882724E-02, $0.98868475754742947994 \mathrm{E} \quad 00,0.61155068221172463397 \mathrm{E}-02$, $0.97218287474858179658 \mathrm{E} \quad 00,0.10498246909621321898 \mathrm{E}-01$,
$0.94634285837340290515 \mathrm{E} \quad 00,0.15406750466559497802 \mathrm{E}-01$, $0.94634285837340290515 \mathrm{E} 00,0 \cdot 1540675046655949780$ EE-01, $0.96390793819700429250 \mathrm{E} 00.0 .20594233915912711149 \mathrm{E}-01$,
 $0.73975604435269475868 \mathrm{E} \quad 00,0.36064432780782572640 \varepsilon-01$, 0.66290966002478059546 E 00.0.40715510116944318934E-01,
0.57719571005204581484 E 00,0.44914531653632197414E-O1, 0.48361802694584102756 E 00,0.48564330406673198716E-01/, DATA
* $P(85), P(86), P(87), P(88), P(89), P(90), P(91)$
* $P(92), P(93), P(94), P(95), P(96), P(97), P(98)$
* $P(99), P(100), P(101), P(102), P(103), P(104), P(105)$,
* $P(106), P(107), P(108), P(109), P(110), P(111), P(112)$
* $0.38335932419873034692 \mathrm{E} 00,0.51583253952048458777 \mathrm{E}-01$, - $0.27774982202182431507 \mathrm{E} 00,0.53905499335266063927 \mathrm{E}-01$, $0.16823525155220746498 \mathrm{E} \quad 00,0.55481404356559363988 \mathrm{E}-01$, $0.56377628360384717388 \mathrm{E}-01,0.16801938574103865271 \mathrm{E}-01$, - $0.64519000501757369228 \mathrm{E}-02,0.25078569652949768707 \mathrm{E}-01$, - 0.21088152457266328793E-02,0.11615723319955134727E-01, - $0.21438980012503867245 \mathrm{E}-01,0.27394605263981432516 \mathrm{E}-01$, - $0.63260731936263354422 \mathrm{E}-03,0.41115039786546930472 \mathrm{E}-02$, - $0.89892757840641357233 \mathrm{E}-02,0.14244877372916774306 \mathrm{E}-01$, - $0.19219905124727766019 \mathrm{E}-01,0.23406777495314006201 \mathrm{E}-01$, * $0.26417473395058259931 \mathrm{E}-01,0.27989218255238159704 \mathrm{E}-01$, $0.30577534101755311361 \mathrm{E}-02,0.52491234548088591251 \mathrm{E}-02$, DATA
* $P(113), P(114), P(115), P(116), P(117), P(118), P(119)$
* $P(120), P(121), P(122), P(123), P(124), P(125), P(126)$ * $P(127), P(128), P(129), P(130), P(131), P(132), P(133)$, * $P(134), P(135), P(136), P(137), P(138), P(139), P(140) /$
$* \quad 0.770337 S 2332797418482 E-02,0.1029711695795635552$ $0.770337 S 2332797418482 E-02,0.10297116957956355524 E-01$,
$0.12934839663607373455 E-01,0.15536775555843982440 E-01$, $0.18032216390391286320 \mathrm{E}-01,0.20357755058472159467 \mathrm{E}-01$, 0.18232216390391286320E-01,0.20357755058472159467E-01, $0.22457265826816098707 \mathrm{E}-01,0.24282165203336599358 \mathrm{E}-01$, $0.25791626976024229388 \mathrm{E}-01,0.26952749667633031963 \mathrm{E}-01$,
$0.27740702178279681994 \mathrm{E}-01,0.28138849915627150636 \mathrm{E}-01$, $0.27740702178279681994 \mathrm{E}-01,0.28138849915627150636 \mathrm{E}-01$,
$0.99998243035489159858 \mathrm{E} 00,0.50536095207862517625 \mathrm{E}-04$, $0.99998243035489159858 E \quad 00,0.50536095207862517625 E-04$,
$0.99959879967191068325 E \quad 00,0.37774664632698466027 E-03$,
 $0.99572410469840718851 \mathrm{E} \quad 00.0 .16811428654214699063 \mathrm{E}-02$, 0.9957410469840718851 E OO,0.16811428654214699063E-02,
$0.99149572117810613240 E \quad 00,0.25687649437940203731 E-02$, $0.98537149959852037111 \mathrm{E} \quad 00,0.35728927835172996494 \mathrm{E}-02$, $0.98537149959852037111 \mathrm{E} \quad 00,0.35728927835172996494 \mathrm{E}-02$,
0.97714151463970571416 E
$00,0.46710503721143217474 \mathrm{E}-02$,
0.96663785155841656709 E
$00,0.58434498758356395076 \mathrm{E}-02 /$ DATA
- $P(141), P(142), P(143), P(144), P(145), P(146), P(147)$
* $P(148), P(149), P(150), P(151), P(152), P(153), P(154)$,
$* P(155), P(156), P(157), P(158), P(159), P(160), P(161)$,

* $P(155), P(156), P(157), P(158), P(159), P(160), P(161)$,
$*$
$*$

* $0.95373000642576113641 \mathrm{E} 00,0.70724899954335554680 \mathrm{E}-02$, $0.93832039777959288365 \mathrm{E} 00,0.83428387539681577056 \mathrm{E}-02$, $0.92034002547001242073 \mathrm{E} 00,0.96411777297025366953 \mathrm{E}-02$, $0.89974489977694003684 \mathrm{E} 00,0.10955733387837901648 \mathrm{E}-01$, $0.87651341448470526974 E$ 0.85064449476835027976 E 0.82215625436498040737 E $0.79108493379984836143 E$
$0.75748396638051363793 E$ 0.75748396638051363793 E
0.72142308537009891548 $0.72142308537009891548 E$ 0.68298743109107922809 $0.59940393024224289297 E$ 0.55449513263193254887 E $00,0.12275830560082770087 \mathrm{E}-01$,
$00,0.13591571009765546790 \mathrm{E}-01$, $00,0.13591571009765546790 \mathrm{E}-01$, $00,0.14893641664815182035 \mathrm{E}-01$,
$00,0.16173218729577719942 \mathrm{E}-01$, $0,0.16173218729577719942 \mathrm{E}-01$,
$0,0.17421930159464173747 \mathrm{E}-01$, $00,0.17421930159464173747 \mathrm{E}-01$,
$00,0.18631848256138790186 \mathrm{E}-01$. $00,0.18631848256138790186 \mathrm{E}-01$, 00,0.19795495048097499488E-01, $0,0.20905851445812023852 \mathrm{E}-01$, $00.0 .22940964229387748761 \mathrm{E}-01$ DATA
* $P(169), P(170), P(171), P(172), P(173), P(174), P(175)$, * $P(176), P(177), P(178), P(179), P(180), P(181), P(182)$, * $P(183), P(184), P(185), P(186), P(187), P(188), P(189)$, * $P(190), P(191), P(192), P(193), P(194), P(195), P(196)$
$* \quad 0.50768775753371660215 E 00,0.23854052106038540080 \mathrm{E}-01$. $0.45913001198983233287 \mathrm{E} 00,0.24690524744487676909 \mathrm{E}-01$, $0.40897982122988867241 \mathrm{E} \quad 00,0.25445769965464765813 \mathrm{E}-01$, 0.35740383783153215238 E 0.30457644155671404334 E 0.25067873030348317661 $00,0.26115673376706097680 \mathrm{E}-01$, $0.19589750271110015392 \mathrm{E} \quad 00,0.27579749566481873035 \mathrm{E}-01$,
0.14042423315256017459 E
$0,0.27877251476613701609 \mathrm{E}-01$,
* $0.84454040083710883710 \mathrm{E}-01,0.28076455793817246607 \mathrm{E}-01$, * $0.28184648949745694339 \mathrm{E}-01,0.28176319033016602131 \mathrm{E}-01$. * $\quad 0.28188814180192358694 \mathrm{E}-01,0.84009692870519326354 \mathrm{E}-02$, * $\quad 0.32259500250878684814 \mathrm{E}-02,0.12539284826474884353 \mathrm{E}-01$, DATA
P $P(197), P(198), P(199), P(200), P(201), P(202), P(203)$ $P(204), P(205), P(206), P(207), P(208), P(209), P(210)$,
$* P(211), P(212), P(213), P(214), P(215), P(216), P(217)$ * P(218),P(219),P(220),P(221),P(222),P(223),P(224) - $0.31630366082226447689 \mathrm{E}-03.0 .20557519893273465236 \mathrm{E}-02$. * $0.96099525623638830097 \mathrm{E}-02,0.11703388747657003101 \mathrm{E}-01$, - 0.13208736697529129966E-01,0.13994609127619079852E-01, * $0.90372734658751149261 \mathrm{E}-04,0.64476204130572477933 \mathrm{E}-03$, $0.15288767050877655684 \mathrm{E}-02,0.26245617274044295626 \mathrm{E}-02$, 0.38516876166398709241E-02,0.51485584789781777618E-02, $0.64674198318036867274 \mathrm{E}-02,0.77683877779219912200 \mathrm{E}-02$,
 - $0.1228632913408049354 \mathrm{E}-01,0.12141082601668299679 \mathrm{E}-01$, * $0.13870351089139840997 \mathrm{E}-01,0.14069424957813575318 \mathrm{E}-01$, $0.25157870384280661489 \mathrm{E}-04,0.18887326450650491366 \mathrm{E}-03$. * O.
* $P(225), P(226), P(227), P(228), P(229), P(230), P(231)$
* $P(232), P(233), P(234), P(235), P(236), P(237), P(238)$
* $P(239), P(240), P(241), P(242), P(243), P(244), P(245)$
$* P(246), P(247), P(248), P(249), P(250), P(251), P(252)$
* $0.12843824718970101768 \mathrm{E}-02,0.17864463917586498247 \mathrm{E}-02$, $0.23355251860571608737 \mathrm{E}-02,0.29217249379178197538 \mathrm{E}-02$, $\begin{aligned} & 0.35362449977167777340 \mathrm{E}-02,0.41714193769840788528 \mathrm{E}-02, \\ & * \\ & *\end{aligned} \quad 0.48205888648512683476 \mathrm{E}-02,0.54778666939189508240 \mathrm{E}-02$, * $0.61379152800413850435 \mathrm{E}-02,0.67957855048827733948 \mathrm{E}-02$, * $0.74468208324075910174 \mathrm{E}-02,0.80866093647888599710 \mathrm{E}-02$. * $0.87109650797320868736 \mathrm{E}-02,0.93159241280693950932 \mathrm{E}-02$, * $0.98977475240487497440 \mathrm{E}-02,0.10452925722906011926 \mathrm{E}-01$, * $0.10978183152658912470 \mathrm{E}-01,0.11470482114693874380 \mathrm{E}-01$, * $0.11927026053019270040 \mathrm{E}-01,0.12345262372243838455 \mathrm{E}-01$, - $0.12328884982732382906 \mathrm{E}-01,0.130578366883 \mathrm{~S} 3048840 \mathrm{E}-01$, - 0. $0.137898748324093517 E 01,0.13938625733185508045$ DATA
$P(253), P(254), P(255), P(256), P(257), P(258), P(259)$
* $P(260), P(261), P(262), P(263), P(264), P(265), P(266)$
- $P(274), P(275), P(276), P(277), P(278), P(279), P(280)$
* $0.99999759637974846462 \mathrm{E} 00,0.69379364324108267170 \mathrm{E}-05$, * $0.99994399620705437576 \mathrm{E} \quad 00,0.53275293669780613125 \mathrm{E}-04$, $0.99976049092443204733 \mathrm{E} 00,0.13575491094922871973 \mathrm{E}-03$,
$0.99938033802502358193 \mathrm{E} 00,0.24921240048299729402 \mathrm{E}-03$. 0.99874561446809511470E 00,0.38974528447328229322E-03, $\quad 0.99780535449595727456 \mathrm{E} 00,0.55429531493037471492 \mathrm{E}-03$. $0.99651414591489027385 \mathrm{E} \quad 00,0.74028280424450333046 \mathrm{E}-03$, $0.99483150280062100052 \mathrm{E} 00,0.94536151685852538246 \mathrm{E}-03$, - $0.99272134428278861533 \mathrm{E} 00,0.11674841174299594077 \mathrm{E}-02$, $0.99015137040077015918 \mathrm{E} 00,0.14049079956551446427 \mathrm{E}-02$, $0.98709252795403406719 E$
$0.98351865757863272876 E$
$00.0 .1619712971013872412 S E-02$, $0.97940628167086268381 \mathrm{E} \quad 00,0.21944069253638388388 \mathrm{E}-02$, 0.97473445975240266776E 00,0.24789582266575679307E-02, DATA
P(281).P(282),P(283).P(284),P(285),P(286))P(287)
P $P(288), P(289), P(290), P(291), P(292), P(293), P(294)$
* $P(295), P(296), P(297), P(298), P(299), P(300), P(301)$,
$* P(302), P(303), P(304), P(305), P(306), P(307), P(308)$
* $P(302), P(303), P(304), P(305), P(306), P(307), P(308423177 E 00,0.27721957645934509940 \mathrm{E}-02$, * 0.96364062156981213252E 00,0.30730184347025783234E-02, 0.95718821610986096274 E 00, $0.33803979910869203823 \mathrm{E}-02$,
$0.95011529752129487656 \mathrm{E} 00,0.36933779170256508183 \mathrm{E}-02$, - 0.94241156519108305981E 00,0.40110687240750233989E-02. - $0.93406843615772578800200,0.43326409680929828545 \mathrm{E}-02$, * $0.92507893290707565236 \mathrm{E} 00,0.46573172997568547773 \mathrm{E}-02$, * $0.91543758715576504064 \mathrm{E} 00.0 .49843645647655386012 \mathrm{E}-02$. - $0.90514035881326159519 \mathrm{E} 00.0 .53130866051870565663 \mathrm{E}-02$, - $0.89418456833555902286 \mathrm{E} 00,0.56428181013844441585 \mathrm{E}-02$, - $0.88256884024734190684 \mathrm{E} 00,0.59729195655081658049 \mathrm{E}-\mathrm{O2}$, $0.87029305554811390585 E \quad 00,0.63027734490857587172 \mathrm{E}-02$,
0.85735831088623215653 E
0
 data
* P(309),P(310),P(311),P(312),P(313),P(314):P(315),
* $P(316), P(317), P(318), P(319), P(320), P(321), P(322)$,
* $P(323), P(324), P(325), P(326), P(327), P(328), P(329)$
* $P(330), P(331), P(332), P(333), P(334), P(335), P(336)$
* 0.82952219463740140018 E 00, $0.72849479805538070639 E-02$, $0.81462878765513741344 E \quad 00,0.76079896857190565832 E-02$,
0.79909229096084140180 E
$00.0 .79279493342948491103 \mathrm{E}-02$, $0.79909229096084140180 \mathrm{E} 00.0 .79279493342948491103 \mathrm{E}-02$, $0.78291939411828301639 \mathrm{E} \quad 00,0.82443037630328680306 \mathrm{E}-02$, $\begin{array}{ll}0.76611781930376009072 E & 00,0.85565435613076896192 E-02, \\ 0.74869629361693660282 E & 00.0 .88641732094824942641 E-02,\end{array}$ 0.748662936169366028 E 00.0.88641732094824942641E $00,0.91667111635607884067 \mathrm{E}-02$ 0.73066452124218126133 E 00.0.91667111635607884067E-02, 0.69281376977911470289 F 00, $0.97546565363174114611 \mathrm{E}-02$. $0.67301883023041847920 \mathrm{E} 00,0.10039172044056840798 \mathrm{E}-01$, 0.65266166541001749610 E 00.0.10316812330947621682E-01, $0.63175643771119423041 \mathrm{E} \quad 00,0.10587167904885197931 \mathrm{E}-01$, 0.61031811371518640016 E 00,0.10849844089337314099E-01, DATA
* $P(337), P(338), P(339), P(340), P(341), P(342), P(343)$
* $P(344), P(345), P(346), P(347), P(348), P(349), P(350)$,
* $P(351), P(352), P(353), P(354), P(355), P(356), P(357)$
* $P(358), P(359), P(360), P(361), P(362), P(363), P(364)$
* $0.56590588542365442262 \mathrm{E} 00,0.11350654315980596602 \mathrm{E}-01$ $0.54296566649831149049 \mathrm{E} 00,0.11588074033043952568 \mathrm{E}-01$, $0.51955966153745702199 \mathrm{E} 00,0.11816385890830235763 \mathrm{E}-01$, $0.49570640791876146017 \mathrm{E} 00,0 \cdot 12035270785279562630 \mathrm{E}-01$, 0.47142506587165887693 E 00.0. $0.12244424981611985899 \mathrm{E}-01$ $0.44673538766202847374 \mathrm{E} \quad 00,0.12443560190714035263 \mathrm{E}-01$, $0.42165768662616330006 E \quad 00,0.12632403643542078765 E-01$,
0.39621280605761593918 E
0 0.39621280605761593918 E OO*O.12810698163877361967E-01.
＊ $0.34430734159943802278 \mathrm{E} 00,0.13134690091960152836 \mathrm{E}-01$
＊ $0.31789081206847668318 E 00,0.13279951743930530650 \mathrm{E}-01$
＊ $0.26424337241092676194 \mathrm{E} 00,0.13413793085110098513 \mathrm{E}-01$ ，
＊O．26424334241092676194E 00．0．13546518102571291428E－01
DATA $, P(365), P(366), P(367), P(368), P(369), P(370), P(371)$,
＊$P(372), P(373), P(374), P(375), P(376), P(377), P(378)$,
＊$P(379), P(380), P(381) /$
＊ $0.20966523824318119477 \mathrm{E} 00.0 .13745093443001896632 \mathrm{E}-01$
＊0．18208649675925219825E 00．0．13831631909506428676E－01
＊ $0.15434681148137810869 \mathrm{E} 00,0.13906019601325461264 \mathrm{E}-01$ ．
＊0．12647058437230196685E 00．0．13968158806516938516E－01．
＊0．98482396598119202090E－01，0．14017968039456608810E－01，
＊0．70406976042855179063E－01．0．14055382072649964277E－01．
＊ $0.42269164765363603212 \mathrm{E}-01.0 .14080351962553661325 \mathrm{E}-01$ ，
＊ $0.14093886410782462614 \mathrm{E}-01.0 .14092845069160408355 \mathrm{E}-01$ ．
＊O．14094407090096179347E－01／
1 CHECK $=0$
C CHECK FOR TRIVIAL CASE
IF（A．EQ．B）GG T0 70
C SCALE FACTORS．
SUM $=(B+A) / 2.0$
C 1－POINT GAUSS
FZERE $=F(S U M)$
RESUR（1）$=2$.
RESURT（1）$=2.0 * F Z E R 0 * D I F F$
I $=0$
$10 L D^{\circ}=$
I QLD $=0$
INEW $=1$
$\mathrm{K}=2$
ACUM $=0$.
GO TO 30
10 IF（K．EQ．8）GO T0 50
$K=K+1$
$A C U M=0.0$
C CONTRIBUTI日N FROM FUNCTION VALUES ALREADY COMPUTED．
DO $20 \mathrm{~J}=1, \mathrm{I}$ aL
$I=I+1$
ACUM $=A C U M+P(I) *$ FUNCT（J）
20 Cantinue
C CONTRIBUTION FROM NEW FUNCTION VALUES．
O IOLD $=1$ I LLD + INEW
$40 \mathrm{~J}=\mathrm{INEW}, 1$ OLD
$I_{1}=I+1$
$x=P(I) \neq D I F F$
FUNCT（J）$=F($ SUM $+X)+F($ SUM $-X)$
$I=I+1$
© CONTINUE ACUM＋P（I）＊FUNCT（J）
O CONTINUE

RESULT（K）$=$
（P（I）＊FZER0）＊DIFF
IF（ABSCRESGENGE
＊ 60 （ABS（RESULT（K）－RESULT（K－1））－EPSIL＊ABS（RESULT（K））） 60, convergence not achieved．

50 ICHECK $=1$
NORMAL TERMINATION．
60 NPTS $=1 N E W+$ IØLD
RETURN
C TRIVIAL CASE
$70 \mathrm{~K}=2$
RESULT（1）$=0.0$
RESULT（2）$=0.0$
NPTS＝ 0
RETUR

FUNCTION QSUBCA，B，EPSIL，NPTS，ICHECK，KELERR，F C THIS FUNCTION ROUTINE PERFORMS AUTOMATIC INTEGRAT C ALGORITHM QUAD，TOGETHER WITH，IF NECESSARY，A NON－ C ADAPTIVE SUBDIVISIGN PROCESS．
the call takes the form
QSUB（A，B，EPSIL，NPTS，ICHECK，RELERR，F）
C AND CAUSES $F(X)$ TD BE INTEGRATED OVER（A，B）WITH KELATIVE C ERR＠R HOPEFULLY NGT EXCEEDING EPSIL．SH＠ULD QUAD CØNVERGE （ 1 CHECK＝0）THEN QSUB WILL RETURN THE VALUE OBTAINED BY IT OTHERWISE SUBDIVISION WILL BE INVOKED AS A RESCUE gPERATIGN IN A NON－ADAPTIVE MANNER．THE ARGUMENT RELERR gBtained．
THE SUBDIVISIGN STRATEGY IS AS FOLLOWS
LET THE INTERVAL（A，B）BE DIVIDED INTO 2＊＊N PANELS AT STEP C N OF THE SUBDIVISION PROCESS．QUAD IS APPLIED FIRST TO C THE SUBDIVIDED INTERVAL ON WHICH QUAD LAST FAILED TO c converge and if convergence is now achieved the remaining C PANELS ARE INTEGRATED．SHOULD A CGNVERGENCE FAILURE ØCCUR GN ANY PANEL THE INTEGRATI日N AT THAT POINT IS TERMINATED C AND THE PROCEDURE REPEATED WITH N INCREASED BY 1 ．THE STRATEGY INSURES THAT POSSIBLY DELINQUENT INTERVALS ARE C EXAMINED BEFORE WORK，WHICH LATER MIGHT HAVE TE BE DISCARDED，IS INVESTED ON WELL BEHAVED PANELS．THE PRY PANE ANY PANEL AND THE SUM OF THE RESULTS GBTAINED BY QUAD ON EACH PANEL IS TAKEN AS THE VALUE OF THE INTEGRAL

THE INTERVAL（AB）IS UNIFORM，THE FINENESS OF WHICH IS OF CONTROLLED BY THE SUCCESS OF QUAD．IN THIS WAY IT IS C RATHER DIFFICLLT FOR A SPURIOUS CONVERGENCE TO SLIP C THRgUGH．
the convergence criteriden of guad is Slightiy relaxed IN THAT A PANEL IS DEEMED TO HAVE BEEN SUCCESSFULLY INTEGRATED IF EITHER QUAD CONVERGES OR THE ESTIMATED C absglute errar committed gn this panel does not exceed EPSIL TIMES THE ESTIMATED ABSOLUTE VALUE OF THE INTEGRAL OVER（A，8）．THIS RELAXATION IS TO TRY TO TAKE ACCOUNT OF A COMMON SITUATION WHERE ONE PARTICULAR PANEL CAUSES SPECIAL DIFFICULTY，PERHAPS DUE TQ A SINGULARITY OF SOME C TYPE．IN THIS CASE QUAD COLLD OBTAIN NEARLY EXACT C ANSWERS ON ALL OTHER PANELS AND SO THE RELATIVE ERROR FQR THE TGTAL INTEGRATIGN WGULD BE ALMOST ENTIRELY DUE TO THE DEL INQUENT PANEL．WITHGUT THIS CQNDITIGN THE CEMPUTATIGN might continue despite the reouested relative error being ACHIEVED．

THE gUTCame gf the integration is indicated by icheck． ICHECK＝0－CQNVERGENCE DBTAINED WITHOUT INUOKING SUBDIUISIQN．THIS CQRRESPGNDS TO THE DIRECT USE OF QUAD．
1CHECK＝1－ RESULT OBTAINED AFTER INVOKING SUEDIVISIGN．
ICHECK＝2－AS FOR ICHECK＝1 BUT AT SOME POINT THE RELAXED CQNUERGENCE CRITERIgN WAS USED． THE RISK gF UNDERESTIMATING THE RELATIVE ERRQR WILL BE INCREASED．IF NECESSARY． CONFIDENCE MAY BE RESTERED BY CHECKING EPSIL AND RELERR FQR A SERI DUS DISCREPANCY．
ICHECK NEGATIV
IF DURING THE SUBDIVISION PROCESS THE ALL OWED UPPER LIMIT ON THE NUMBER GF PANELS
THAT MAY BE GENERATED（PRESENTLY AO96）IS
REACHED A RESULT IS OBTAINED WHICH MAY BE
unRELIABLE BY CONTINUING THE INTEGRATIGN
WITHQUT FURTHER SUBDIVISIGN IGNORING
FONVERGENCE RAILURES THIS OCCURRECE IS
LAGGED BY RETURNING ICHECK WITH NEGATIVE
THE RELIABILITY QF
IY THE ALGORITHM WILL DEGREASE GOR LARGE
VALUES OF EPSIL．IT IS RECOMMENDED THAT EPSIL SHQLLD
ABOUT 0.001 ．
INTEGER BAD，OUT
L＠GICAL RHS
EXTERNAL F
CALL QUAD（A，B，RESULT，K，EPSIL，NPTS，ICHECK，F）
QSUB＝RESULT（K）
RELERR $=0.0$
IF（QSUB．NE．O．0）RELERR＝
＊ABS（（RESULT（K）－RESULT（K－1））／QSUB）
C CHECK IF SUBDIVISION IS NEEDED．
IF（1CHECK．EQ．O）RETURN
c subdivide
ESTIM $=$ ABS（QSUB＊EPSIL）
$1 \mathrm{IC}=1$
RHS $=$ ．FALSE
$N=1$
$H=B-A$
$B A D=1$
10 QSUB $=0.0$
RELERR $=0.0$
$\mathrm{H}=\mathrm{H} * 0.5$
$\mathrm{~N}=\mathrm{N}+\mathrm{N}$
C INTERVAL（A，B）DIVIDED INTE N EQUAL SUBINTERVALS．
INTEGRATE gVER SUBINTERVALS BAD T0（BAD＋1）WHERE TR®UBLE
C has accurred．
$M 1=B A D$
$M 2=B A D$
GUT $=1$
C INTEGRATE OVER SUBINTERVALS 1 TO（BAD－1）
$20 \mathrm{M1}=1$
M2 $=$ BAD -1
BUT $=2$
C integrate guer subinterval．（badtr）to n．
30 MI＝BAD＋ 2
$\mathrm{M} 2=\mathrm{N}$
QUT $=3$
GE TO 50
c subdivision result
40 ICHECK $=10$
RELERR $=$ RELERR／ABS（QSUB）
RETURN
C INTEGRATE OVER SUBINTERVALS M1 TO M2．
SO IF（M1．GT．M2）GO TO 90
De 80 JJ
$\mathrm{J}=\mathrm{JJ}$
C EXAMINE FIRST THE LEFT OR RIGHT HALF OF THE SUBDIVIDED
TRøUBLES日ME INTERVAL DEPENDING ON THE gBSERVED TREND．
$I F$（RHS）$J=M 2+M 1-J J$
ALPHA $=A+H *(J-1)$
BETA $=$ ALPHA +H
CALL QUADCALPHA，BETA，RESULT，M，EPSIL，NF，ICHECK，F）
COMP $=$ ABS（RESULT $(M)-$ RESULT $(M-1))$
NPTS＝NPTS＋NF
IF（ICHECK．NE．1）G® T0 70
IF（COMP．LE．ESTIM）GO TE 100
SUBinierval J has Gaused Trbuble．
C CHECK IF FURTHER SUBDIVISIGN SHOULD BE CARRIED QUT．
IF（N．E日．NMAX）GO TØ 60
$B A D=2 * J-1$
$R H S=. F A L S E$.
IF（（J－2＊（J／2））．EQ．0）RHS＝．TRUE．
GO T0 10
60 IC＝ 70 －IABS（IC）
BO CONTINUE $=$ QSUB＋RESULT（M）
CONTINUE
RELERR $=$ RELERR＋COMP
c RELAXED CONVERGENCE
RELAXED CONVEKGENCE
$100 \mathrm{IC}=\mathrm{ISIGN}(2, I G)$
Ge T0 70
END
FUNCTION OSUBA（A，B，EPSIL，NPTS，ICHECK，RELERR，F）
C THIS FUNCTION ROUTINE PERFORMS AUTOMATIC INTEGRATI
ALG®RITHM GUAD TOGETHER WITH，IF NECESSARY AN ADAPTIVE SUBDIVISI日N PROCESS．IT IS GENERALLY MRRE EFFICIENT THAN THE NON－ADAPTIVE ALGQRITHM QSUB BUT IS LIKELY TØ BE LESS RELIABLE（SEE COMP．J．，14，189，1971）．

THE CALL TAKES THE FORM
QSUBA（A，B，EPSIL，NPTS，ICHECK，REL ERR，F）
AND CAUSES $F(X)$ TO BE INTEGRATED DVER（ A, B ）WITH RELATIVE ERROR HOPEFULLY NOT EXCEEDING EPSIL．SHDULD QUAD CONVERGE （ICHECK＝0）THEN QSUBA WILL RETUKN THE VALUE GBTAINED BY IT OTHERWISE SUBDIVISIGN WILL BE INVOKED AS A RESCUE
A CRUDE ESTIMATE OF THE ACTUAL RELATIVE ERRQR RELERR GIVES

Communications
of
the ACM

November 1973
Volume 16
Number 11

```
THE SUBDIVISION STRATEGY IS AS FOLLOWS
AT EAGH STAGE OF THE PR\emptysetCESS AN INTERVAL IS PRESENTED FOR
C SUBDIVISION (INITIALLY THIS WILL BE THE WHOLE INTERVAL
C SUBINTERVAL TNTERVAL IS HALVED AND QUAD APPLIED TO EACH
C THE SUBINTEPVAL SHOLD GUCKED FOR FUTURE SUBDIVISION AND THE
C SECOND SURINTERVAL STACKED FOR FUTURE SU. SHOULD QUAD THE
C ON THE SECOND SUBINTERVAL THE SUBINTERVAL IS
IMMEDIATELY SUBDIVIDED AND THE WHOLE PROCESS R
EACH TIME A CONVERGED RESULT IS OBTAINED IT IS
ACCUMULATED AS THE PARTIAL VALUE OF THE INTEGRAL. WHEN
QUAD CONVERGES ON BOTH SUBINTERVALS THE INTERVAL LAST
C STACKED IS CHOSEN NEXT FOR SUBDIVISION AND THE PROCESS
C REPEATED. A SUBINTERVAL IS NOT EXAMINED AGAIN ONCE A
CONVERGED RESULT IS OBTAINED FOR IT SO THAT A SPURIOUS
convergence is more LikEly tg SLIf thrgugh than for the
NGN-ADAPTIVE ALGGORITHM OSUB.
    THE CONUERGENCE CRITERION gF QUAD IS SLIGHTLY RELAXED
IN THAT A PANEL IS DEEMED TO HAVE BEEN SUCCESSFULLY
INTEGRATED IF EITHER GUAD CONVERGES OR THE ESTIMATED
ABS\emptysetLUTE ERROR COMMITTED ON THIS PANEL DQES NOT EXCEED
EPSIL TIMES THE ESTIMATED ABSOLUTE VALUE OF THE INTEGRAL
C OVER (A,B). THIS RELAXATION IS TO TRY TO TAKE ACCOUNT OF
A COMMBN SITUATION WHERE ONE PARTICULAR PANEL CAUSES
SPECIAL DIFFICULTY, PERHAPS DUE TQ A SINGULARITY OF SOME
C TYPE. IN THIS CASE OUAD COULD OBTAIN NEARLY EXACI
ANSWERS ON ALL OTHER PANELS AND SO THE RELATIVE ERROR FOR
DEL TOULNT PANEL. NITHOUT THIS CONDITION THE COMPUTATION
MLGHT CONTINUE DESPITE THE REOUESTED RELATIVE ERHOR BEING
ONSPITE THE REOUESTED RELATIVE ERROR BEING
    THE OUT
        THE OUTCOME OF THE INTEGRATION IS INDICATED BY ICHECK.
        ICHECK=0 - CONVERGENCE GBTAINED WITHOUT INVOKING SUB-
                        CONVERGENCE OBTAINED WITHQUT INVOKING SUB
                IVISION. THIS WOULD CORRESPOND TO THE
                DIRECT USE OF OUAD.
    ICHECK=1 - RESULT QBTAINED AFTER INVOKING SUBDIVISION.
    ICHECK=2 - AS FOR ICHECKBI BUT AT SOME POINT THE
        RELAXED CONVFRGENCE CRITERIQN WAS USED
        THE RISK OF UNDERESTIMATING THE RELATIVE
        ERROR WILL BE INCREASED. IF NECESSARY,
        CONFIDENCE MAY BE RESTORED BY CHECKING
        EPSIL AND RELERR FOR A SERIOUS DISCREPANCY.
    ICHECK NEGATIVE
        IF DURING THE SUBDIVISION PROCESS THE STACK
        OF DELINQUENT INTERVALS BECOMES FULL (IT IS
        PRESENTLY SET T0 HØLD AT MDST 100 NUMBERS)
        A RESULT IS OBTAINED BY CONTINUING THE
        INTEGRATION IGNGRING CONVERGENGE FAILURES
        WHICH CANNOT BE ACCOMMODATED ON THE STACK.
        THIS gCCURRENCE IS FLAGGED BY RETURNING
        ICHECK WITH NEGATIVE SIGN.
    THE RELIABILITY GF THE ALGgRITHM WILL DECREASE FgR LARGE
    VALUES OF EPSIL. IT IS RECOMMENDED THAT EPSIL SHOULD
    NERALLY BE LESS THAN ABQU, 0.001
            IMENSION RESULT(8), STACK(100)
            EXTERNAL F
            CALL OUADCAOO
            OSLL (HE, RESULT, K, EPSIL, NPTS, ICHECK, F)
            RELERP = 0.0
            RELERR = 0.0
            *)
        * RELERR = ABS((RESULT(K)-RESULT(K-1))/OSUBA)
            IF (ICHECK.EQ.O) IS NEEDED
C SubdIVIDE
            ESTIM = ABS(OSUBA*EPSIL)
            RELERR = 0.0
            QSUBA =0.0
            IS = 1
            SUB1 =
            SUB1=A
    0 SUB2 = (SUB1+SUB3)*0.
            CALL QUAD(SUB1, SUB2, RESULT, K, EPSIL, NF, ICHECK, F)
            NPTS = NPTS + NF
            COMP = ABS(RESULT(K)-RESULT(K-1))
            IF (ICHECK.EQ.O) GO TO 30
            IF (IS.GE,ISMAX) GO TO 20
            T0 20
C STACK SUBINTERVAL (SUBI,SUB2) FOR FUTURE EXAMINATIDN
            STACK(IS) = SUBI
            IS=IS + 
            STACK(IS) = SUB2
            GO T0 40
            o IC = -IABS(IC)
    30 ESUBA = QSUBA + RESULT(K)
            RELERR = RELERR + CgMP
                            40 CALL QUAD(SUB2, SUB3, RESULT, K, EPSIL, NF, ICHECK, F)
            NPTS = NPTS + NF
            COMP = ABS(RESULT(K)-RESULT(K-1))
            IF (ICHECK.EQ.O) GO TO 50
            IF (COMP.LE.ESTIM) GO T0 80
C SUBDIVIDE INTERVAL (SUB2,SUB3)
            SUB1 = SUB2
            Gg T0 10
    SO QSUBA = OSUBA + RESULT(K)
            RELERR = RELERR + COMP
            IF (IS.EQ.1) GO TO }6
C SUBDIVIDE THE DELINQUENT INTERVAL LAST STACKEd
            IS = IS - 1
            SUB3 = STACK(IS)
            SUB1 = STACK(IS)
            G0 T0 10 (ackris)
    Go IOIO
C SUBDIVISION RESILT
    ICHECK = IC
        RELERR = RELERR/ABS(QSUBA)
        RETURN
C RELAXED CONVERGENCE
    O IC = ISIGN(2,IC)
            G0 T0 30
    80 IC = ISIGN(2,IC)
        GQ TO 50
            END
```

Algorithm 469
Arithmetic Over a
Finite Field [A1]

C. Lam* and J. McKay \dagger [Recd. 8 Oct. 1971]
* Department of Mathematics, Caltech University, Pasadena, CA $91101 \dagger$ School of Computer Science, McGill University, P.O. Box 6070, Montreal 101, P.Q. Canada

Key Words and Phrases: algebra; CR Categories: 5.19 Language: Algol

Description

The rational operations of arithmetic over the finite field F_{q}, of $q=p^{n}(n \geq 1)$ elements, may be performed with this algorithm.

On entry $a[i]$ contains $a_{i} \in F_{p}$ with $0 \leq a_{i}<p, i=0, \ldots$, $n-1$, and $x \in F_{q}$ satisfies the primitive irreducible polynomial $P(x)=x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}$. fq produces e_{i} in $e[i], i=-1, \ldots, q-2$, where $1+x^{i}=x^{e_{i}}$ with the convention that -1 represents $*$ and $x^{*}=0$. During execution the range of the a_{i} is altered to $-p<$ $a_{i} \leq 0, i=0 \ldots n-1$. The storage used is $2 q+n+6$ locations including the final array e.

With appropriate conventions for *, multiplication and division are trivial, and addition and subtraction are given by $x^{a}+x^{b}=$ $x^{a}\left(1+x^{b-a}\right)$ for $a \leq b$ and $x^{a}-x^{b}=x^{a}+x^{d\left(q^{-1)}\right.} x^{b}$ when $p \neq 2$. For small values of q, it is suggested that addition and multiplication tables be generated by this algorithm. A description of the method and its generalization to a multi-step process when n is composite is in [2]. A list of primitive irreducible polynomials is given in [1]. Further useful information (especially for $p=2$) is to be found in [3].

References

1. Alanen, A.J., and Knuth, D.E. Tables of finite fields. Sankhy $\bar{a}-$ (A) 26 (1964), 305-328.
2. Cannon, J.J. Ph.D. Th., 1967 U. of Sydney, Sydney, Australia.
3. Conway, J.H., and Guy, M.J.T. Information on finite fields. In

Computers in Mathematical Research. North-Holland Pub. Co.,
Amsterdam, 1967.

```
Algorithm
procedure \(f q(p, n, a, e)\);
    integer \(p, n\); integer array \(a, e\)
begin
    integer array \(c[0: n-1], f[0: p \uparrow n-1]\); integer \(q, i, j, d, s, w\);
        \(q:=p \uparrow n ;\)
    for \(i:=0\) step 1 until \(n-1\) do if \(a[i] \neq 0\) then \(a[i]:=a[i]-p\);
    for \(i:=1\) step 1 until \(n-1\) do \(c[i]:=0\);
        \(c[0]:=1 ; \quad f[1]:=0 ; \quad f[0]:=-1:\)
    for \(i:=1\) step 1 until \(q-2\) do
        begin
        \(d:=e[n-1] ; \quad s:=0\);
        for \(j:=n-1\) step -1 until 1 do
            begin
            \(w:=c[i-1]-d \times a[j] ; \quad w:=w-w \div p \times p ;\)
            \(c[j]:=w ; \quad s:=p \times s+w\)
            end;
        \(w:=-d \times a[0] ; \quad w:=w-w \div p \times p ; \quad c[0]:=w ;\)
                \(f[p \times s+w]:=i\)
        end;
for \(i:=q\) step \(-p\) until \(p\) do
        begin
        \(e[f[i-1]]:=f[i-p]\);
for \(j:=i-p\) step 1 until \(i-2\) do \(e[f[j]]:=f[j+1]\)
        end
end
```


[^0]: Editor's note: Algorithm 468 described here is available on magnetic tape from the Department of Computer Science, University of Colorado, Boulder, CO 80302. The cost for the tape is $\$ 16.00$ (U.S. and Canada) or $\$ 18.00$ (elsewhere). If the user sends a small tape (wt. less than 1 lb.) the algorithm will be copied on it and returned to him at a charge of $\$ 10.00$ (U.S. only). All orders are to be prepaid with checks payable to ACM Algorithms. The algorithm is recorded as one file of BCD 80 character card images at 556 B.P.I., even parity, on seven track tape. We will supply algorithm at a density of 800 B.P.I. if requested. Cards for algorithms are sequenced starting at 10 and incremented by 10 . The sequence number is right justified in column 80. Although we will make every attempt to insure that the algorithm conforms to the description printed here, we cannot guarantee it, nor can we guarantee that the algorithm is correct.-L.D.F. and A.K.C.

