L.D. Fosdick and

Algorithms
A.K. Cline, Editors

Submittal of an algorithm for consideration for publication in Communications of the ACM implies unrestricted use of the algorithm within a computer is permissible.

Copyright (©) 1974, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Algorithm 478

Solution of an Overdetermined System of Equations in the l_{1} Norm [F4]

I. Barrodale and F.D.K. Roberts, [Recd. 4 Aug. 1972 and 8 May 1973]
Department of Mathematics, University of Victoria, Victoria, B.C., Canada

Key Words and Phrases: l_{1} approximation, l_{1} norm, overdetermined system of equations, linear programming, simplex method CR Categories: 5.13, 5.41
Language: Fortran

Description

The algorithm calculates an l_{1} solution to an overdetermined system of m linear equations in n unknowns, i.e., given equations $\sum_{j=1}^{n} a_{i, j} x_{j}=b_{i}$ for $i=1,2, \ldots, m, m \geq n$,
the algorithm determines a vector $x=\left\{x_{j}\right\}$ which minimizes the sum of the absolute values of the residuals

$$
\begin{equation*}
e(x)=\sum_{j=1}^{m}\left|b_{i}-\sum_{j=1}^{n} a_{i, j} x_{j}\right| \tag{1}
\end{equation*}
$$

A typical application of the algorithm is that of solving the linear l_{1} data fitting problem. Suppose that data consisting of m points with co-ordinates (t_{i}, y_{i}) is to be approximated by a linear approximating function $\alpha_{1} \phi_{1}(t)+\alpha_{2} \phi_{2}(t)+\cdots+\alpha_{n} \phi_{n}(t)$ in the l_{1} norm. This is equivalent to finding an l_{1} solution to the system of linear equations
$\sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \alpha_{j}=y_{i}$ for $i=1,2, \ldots, m$.
If the data contains some wild points (i.e. values of the dependent variable that are very inaccurate compared to the overall accuracy of the data), it is advisable to calculate an l_{1} approximation rather than an l_{2} (least-squares) approximation, or an l_{∞} approximation.

The algorithm is a modification of the simplex method of linear programming applied to the primal formulation of the l_{1} problem. A feature of the routine is its ability to pass through several simplex vertices at each iteration. The algorithm does not require that the
matrix $\left\{a_{i, j}\right\}$ satisfy the Haar condition, nor does it require that it be of full rank. Complete details of the method may be found in [1]. Computational experience with this and other algorithms indicates that it is the most efficient yet devised for solving the l_{1} problem.

The parameters M and N represent the number of equations and number of unknowns respectively. $M 2$ and $N 2$ should be set to $M+2$ and $N+2$ respectively. The simplex iterations are carried out in the two dimensional array A of size ($M 2, N 2$). Initially the coefficients of the matrix $\left\{a_{i, j}\right\}$ should be stored in the first M rows and first N columns of A, and the right hand side vector $\left\{b_{i}\right\}$ should be stored in the array B. These values are destroyed by the routine. $T O L E R$ is a real variable which should be set to a small positive value. Essentially the routine regards any quantity as zero unless its magnitude exceeds $T O L E R$. In particular, the routine will not pivot on any number whose magnitude is less than TOLER. Computational experience suggests that TOLER should be set to approximately $10^{-2 d / 3}$ where d represents the number of decimal digits of accuracy available (typically we run the routine on an IBM 370 using double precision (16 decimal digits) with TOLER set to 10^{-11}). On exit from the routine, the array X contains an I_{1} solution $\left\{x_{j}\right\}$ and the array E contains the residuals $\left\{b_{i}-\sum_{j=1}^{n} a_{i, j} x_{j}\right\}$. The array S is used for workspace. The following information is stored in the array A on exit from the routine:
$A(M+1, N+1)$, the minimum value of (1), i.e. the minimum sum of absolute values of the residuals.
$A(M+1, N+2)$-the rank of the matrix $\left\{a_{i, j}\right\}$.
$A(M+2, N+1)$-exit code with the value 1 if a solution has been calculated successfully, and 2 if the calculations are terminated prematurely. This latter condition occurs only when rounding errors cause a pivot to be encountered whose magnitude is less than TOLER, and in this event all output information pertains to the last completed simplex iteration. This condition does not occur too frequently in practice, and then only with a large ill-conditioned problem. Since an l_{1} solution is not necessarily unique, the routine attempts to determine if other optimal solutions exist. An exit code of 1 indicates that the solution is unique, while an exit code of 0 indicates that the solution almost certainly is not unique (this uncertainty can only be resolved by a close examination of the final simplex tableau contained in A : we do not consider such an examination to be warranted in practice). A solution may be nonunique simply because the matrix $\left\{a_{i, j}\right\}$ is not of full rank.
$A(M+2, N+2)$-number of iterations required by the simplex method.

References

1. Barrodale, I., and Roberts, F.D.K. An improved algorithm for discrete l_{1} linear approximation. SIAM J. Numer. Anal. 10, 5 (1973), 839-848
```
Algorithm
    SUBROUTINE L,I(M,N,M2,N2,A,B,TOLER, X,E,S)
    C THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX METHOD
    C OF LINEAR PROGRAMMING TO CALCULATE AN LI SOLUTION TO AN
    C OVER-DETERMINED SYSTEM OF LINEAR EQUATIONS.
C DESCRIPTION OF PARAMETERS.
C M NUMBER OF EQUATIONS.
C M2 SET EQUAL TO M+2 FOR ADUUSTABLE DIMENSIONS.
C N2 SET EQUAL TO M+2 FOR ADJUSTABLE DIMENSIONS.
TWO DIMENSIONAL REAL APRAY OF SIZE (ME,N2).
ON ENTRY, THE COEFFICIENTS OF THE MATRIX MUST EE
    STORED IN THE FIRST M RONS AND N COLIMNS OF A.
    THESE VALUES ARE DESTROYED BY THE SURROUTINE.
    B ONE DIMENSIONAL REAL ARRAY OF SIZE M. ON ENTRY.
    MUST CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS.
    THESE VALUES ARE DESTROYED EY THE SUBROUTINE.
C TOLER A SMALL POSITIVE TOLERANCE. ENPIRICAL EVIDENCE
    A SMALL POSITIVE TOLERANCE. ENPIRICAL EVIDENCE 
        THE NUMBER OF DECIMAL DIGITS OF ACCURACY AVALAELE
        (SEE DESCRIPTION).
C ONE DIMENSIONAL REAL ARRAY OF SIZE N. ON EXIT. THIS
    ARRAY CONTAINS A SOLUTION TO THE LI PROBLEM.
    ONE DIMENSIONAL REAL ARRAY OF SIZE M. ON EXIT, THIS
    ARRAY CONTAINS THE RESIDUALS IN THE EQUATIONS.
    INTEGER ARRAY OF SIZE M USED FOR WORKSPACE.
C INTEGER ARRAY OF SIZE M USED FOR WORKSPACE.
C FOLLOWING INFORMATION.
C A(M+1,N+1) THE MINIMUMA SUM OF THE ABSOLUTE valuES OF
```



```
C A(M+1,N+2) THE RANK OF THE MATRIX OF COEFFICIENTS.
C A(M+1,N+2)
CODE WITH valUES
G - OPTIMAL SOLUTION WHICH IS PROBABLY NON
        UNI OUE (SEE DESCRIPTION)
    1 - UNIOUE OPTIMAL SOLUTION. 
        CALCULLATIONS TEP
C A(M+2,N+2) NUMBER OF SIMPLEX ITERATIONS PERFOPMED.
    DOUBLE PRECISION SUM
    REAL MIN, MAK, A(M2,N2), X(N), E(M), B(M)
    INTEGER OUT, S(M)
    OGICAL STAGE, TEST
C bIG muST be SET EQUAL tO ANY vERY lafge REAL CONSTANT.
C ITS VALUE HERE IS APPROPRIATE FOR THE IBM 37E.
    DATA BIG/1.E75/
C InItIALIzation.
    MI=M+!
    NI=N+1
    DO 10, J=1,N
        A(M2.J)=J
        X(J) = D.
    10 CONTINUE
    DO 40 I=1,M
        A(I,N2) =N + I
            A(I,N1)=B(I)
            IF (B(I).GE.0.) GO TO 30
            DO 20 J=1.N2
                A(I,J) =-A(I,J
            CONTINUE
    E(I)=0
    COMPUTE THE MARGINAL COSTS.
        DO 60 J=I,NI
            SUM = 0.D8
            DO SBEI=1,M
            continue
            A(M1,d) = SUM
    60 CONTINUE
C STAGE I.
C DETERMINE THE VECTOR TO ENTER THE EASIS.
    STAGE = .TRUE.
    KOUNT =
    KR = 1
    KL= =1
    MAX = -1. 
        IF (ARS(A(M2,J)).GT.N) GO TO 80
            D = ABS(A(M1,J)2
            IF (D.LE.MAX) GO To 80
            MAX = D
        ONTINUE
    IF (A(MI,IN).GE.G.) GO TO 100
        DO 90 I=1,M2
        A(I,IN) = -A(I,IN
    CONTINUE
C determine the vector to leave the basis.
    108 K = 0
        DO 110 t=KL,M
            D = A(I,IN)
            IF (D.LE,TOLER) GO TO 110
            K=K + 1
            B(K) = A(I,N!)/D
            S(K) * I
        TEST = .TRUE.
    118 CONTINUE
    120 IF (K.GT.E) GO TO 130
        TEST = . FALSE.
    GO TO 150
    130 M1N = EIG
        O 148 I=1,K
        IF (B(I).GE.MIN) GO TO 140
        J*I
        MIN = B(I)
        CONTINUE
        B(J) = B(K
        S(J)=S(K)
        K=K - l
C CHECK FOR liNEAR DEPENDENCE IN STAGE I.
    150 IF (TEST .OR. .NOT.STAGE) GO TO 170
        D0 }160t=1,M
                A(I,KR) = A(I,IN)
                A(1,IN) = D
    160 conTINUE
        KR = KR +
        GO TO 260
    170 1F (TEST) GO TO 180
        A(M2,N1) =2.
    G0 T0 350
    180 PIVOT * A(OUT,IN)
        IF (A(MI,IN)-PIVOT-PIVOT.LE.TOLER) GO TO 200
        DO 190 JaKR,NI
                A(M1,J)=A(M1,J) - D - D
            A(OUT,J)=-D
    190 CONTINUE
        A(OUT,N2) = -A(OUT,N2)
        GO TO 12G
    VOT ON A(OUT,IN)
    208 DO 2I| J=kR,N1
        IF (J.EQ.IN) GO TO 210
        A(OUT,J)=A(OUT,J)/PIVOT
    CONTINUE
        DO 230 I=1,MI
            IF (I.EQ.OUT) GO TO 230
            D=A(I,IN)
            0200 J=KR,N
                IF (J.EQ.IN) GO TO 22e
                A(I,J)=A(I,J) = D*A(OUT,J
    220 CONTINUE
    230 CONTINUE
        DO 248 [=1,M1
            IF (I.EQ.OUT) GO TO 240
                IF (I.EQ.OUT) GO TO 240
```

240 CONTINUE
$A(O U T, I N)=1 . / P I V O T$
$D=A(O U T, N 2)$
$D=A(O U T, N 2)$
$A(O U T, N 2)=A(M 2, I N)$
$A(M 2, I N)=D$
A(M2,IN
KOUNT $=$
$=$
KOUNT
IF (.NOT.STAGE) GO TO 270
C INTERCHANGE ROWS IN STAGE I.
$K L=K L+1$
$D=A(0 U T, d)$
$A(O U T, J)=A($ KOUNT, J)
$A($ KOUNT, J $)=D$
250 CONTINUE
C STAGE:I.
C DETERMINE THE VECTOR TO ENTER THE BASIS.
270 MAX $=-$ BIG
290 J=KR,N
IF (D.GE.D.) GO TO 280
IF (D.GT. (-2.)) GO TO 290
$D=-D-2$.
286 TF (D.LE.MAX) GO TO 290
$\operatorname{MAX}=D$
$I N=J$
290 CONTINUE
IF (MAX.LE.TOLER) GO TO 310
IF (ACMI.IN).GT.0.) GO TO 100
DO $30 \mathrm{I}=1, \mathrm{M} 2$
$A(I, I N)=-A(I, I N)$
300 CONTINUE
$A(M 1, I N)=A(M 1, I N)-2$.
C PREPARE OUTPUT
$310 \mathrm{~L}=\mathrm{KL}-1$
DO $3301=1, \mathrm{~L}$
DO $32($ OND.GE.0.) GO TO 33E
$A(I, J)=-A(I, j)$
320 CONTINUE
330 CONTINUE
IF (KR.NE, 1) GO TO 350
DO $346 \mathrm{~J}=1, \mathrm{~N}$
$D=\operatorname{ABS}(A(M 1, J))$
IF (D.LE.TOLER OR. 2.-D.LE.TOLER) GO TO 350
CONTINUE
$A(M 2, N 1)=1$
$D 03801=1, M$
$K=A(I, N 2)$
$D=A(I, N 1)$
IF (K, GT.G) GO TO 360
$\mathrm{K}=-\mathrm{K}$
$\mathrm{D}=-\mathrm{D}$
360 IF (I.GE.KL) GO TO 370

$370 \mathrm{~K}=\mathrm{K}-\mathrm{N}$
$E(K)=D$
388 CONTINUE
A(M2.N2) $=$ KOUNT
A(M1,N2) $=$
$S U M=0 . D 0$
DO 390 I $=\mathrm{KL}, \mathrm{M}$
SUM = SUM + A(I,N1)
390 CONTINUE
A(M1,N1) $=$ SUM
RETUPN
Footnote to Algorithm 478
The major portion of the computation performed by the above subroutine is transforming the two-dimensional array A at each iteration. We have experimented with a modified code which transforms the columns of A, one at a time, by passing each column to a second subroutine which involves only one-dimensional arrays. Savings in time of about 25 to 40 percent are normally achieved by this modification. This is because Fortran stores two-dimensional arrays columnwise.

To implement this modification in the above subroutine, the user should: (i) delete the eight lines immediately following statement number 20 up to and including statement number 22; (ii) replace these eight lines by

```
DO 22 J=KR,N1
    IF(J.EQ.IN) GO TO 22
    CALL COL (A (1,J),A(1,IN),A(OUT,J),M1,OUT)
    CONTINUE
```

and (iii) include the following subroutine

```
SUBROUTINE COL (V1,V2,MLT,M1,IOUT)
REAL V1(M1),V2(M1),MLT
DO I I = 1,M1
    IF(I.EQ.IOUT) GO TO 1
    V1(I)= V1(I)-V2(I)*MLT
    CONTINUE
RETURN
END
```


Algorithm 479

A Minimal Spanning Tree Clustering Method [Z]

R.L. Page [Recd. 18 Feb. 1972, 8 Feb. 1973, and 29 Mar. 1973]
Department of Mathematics and Computer Science, Colorado State University, Fort Collins, CO 80521

Key Words and Phrases: clustering, pattern recognition, feature selection, minimal spanning trees

CR Categories: 3.63, 5.39, 5.5
Language: Fortran

Description

Zahn [2] describes a method for automatically detecting clusters in sets of points in N-space. The method is based on the construction of the minimal spanning tree of the complete graph on the input set of points. The motivation for using the minimal spanning tree includes some evidence (cited in [2]) that it is related to human perception of dot pictures in two dimensions, but the method is applicable in any dimension.

Advantages of the method are that it requires little input other than the data points, it is relatively insensitive to permutations in the order of the data points, and the clusters it produces in two dimensions closely parallel clusters detected visually by humans when the data is displayed as a dot picture.

Storage requirements increase linearly with the n, the number of points. The minimal spanning tree is constructed using an algorithm due to Prim and Dijkstra as implemented by Whitney [1]. The time needed is approximately proportional to n^{2}. (Time also increases slowly with N.) Whitney's algorithm is repeated here because we need to keep some information about the tree structure which his algorithm does not retain in a convenient form.

The basic idea is to detect inherent separations in the data by deleting edges from the minimal spanning tree which are significantly longer than nearby edges. Such an edge is called inconsistent. Zahn suggests the following criterion: an edge is inconsistent if (1) its length is more than f times the average of the length of nearby edges, and (2) its length is more than s standard deviations larger than the average of the lengths of nearby edges (standard deviation computed on the lengths of nearby edges). The real numbers f and s may be adjusted by the user. The question of determining which edges are "nearby" is also answered by the user. We will say point P is nearby point Q if point P is connected to point Q by a path in the minimal spanning tree containing d or fewer edges (d is an integer determined by the user).

Deleting the inconsistent edges breaks up the tree into several connected subtrees. The points of each connected subtree are the members of a cluster.

Use of the program. There are two steps involved in clustering a point set using this Fortran implementation of Zahn's algorithm.

Step 1. Call the subroutine $G R O W$ to construct the minimal spanning tree of the point set. GROW needs four parameters: (1) an array of real numbers specifying the point set; (2) an integer specifying the dimension of the space in which the points lie; (3) an integer specifying the number of points in the set; and (4) a logical value, true if the user would like a description of the minimal spanning tree to be printed on unit 6, and false otherwise. The array of parameter (1) is treated as if it were a matrix (stored by columns) in which each column represents a point in the input point set. To be more

Funds for computer time used in development of this algorithm were provided by National Science Foundation Grant GJ561.
specific, the array must be arranged so that its $(K-1) *$ DIMEN + Ith value is the Ith component of the K th vector in the point set. (DIMEN stands for the dimension of the space in which the points lie.)

Step 2. Call the subroutine CLUSTR to determine the clusters in the point set. CLUSTR needs six parameters: (1) the integer d defining the term "nearby"; (2) the real number f described above; (3) the real number s described above; (4) an array to be used for output; (5) the declared length of the output array; and (6) a logical value, true if the user desires a description of the clusters determined to be printed on unit 6 , and false otherwise. If parameter (5) is zero, the output array (parameter (4)) will not be used. Otherwise, the output array, which we call C here, will be filled with integers as follows: the first element will be the number of clusters detected; the remaining elements will be arranged in blocks of varying length, each block describing one cluster-the first element in each block being the number of points in the cluster, and the remaining elements of the block being the labels of the points in the cluster (a point's label will be its relative position in the input point set; thus the first point in the input has label 1 , the second, label 2 , etc.).

Once step 1 has been completed for a particular point set, step 2 may be repeated with different parameters without repeating step 1.

Restrictions. (1) As written, the program will handle only 100 data points, but that can be easily changed by increasing the dimensions of three arrays in GROW and five arrays in CLUSTR (see program for directions). (2) The first parameter in CLUSTR must not be larger than 18. This too can be easily changed by increasing the dimension of two arrays in CLUSTR (see program). (3) Blank common is used to store the minimal spanning tree.

Tests. The program has been tested on a CDC 6400 with several different input point sets of varying size and dimension, both artificially generated and real data. The artificially generated data included three two dimensional point sets with two, four, and five clusters and one three-dimensional point set with eight clusters as well as some higher-dimensional, larger point sets used for timing analysis. Time to run GROW increases like n^{2}; time to run CLUSTR normally increases like n, but in the worst case increases like n^{2}.

References

1. Whitney, V.K.M. Algorithm 422 Minimal spanning tree. Comm. ACM 15, 4 (Apr. 1972), 273-274.
2. Zahn, C.T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. on Computers, C-20 (1971), 68-86.
```
Algorithm
C TO CLUSTER A POINT SET USING THIS ALGORITHM, TWO THINGS
C NEED TO BE DONE. (1) BUILD THE MINIMAL SPANNING TREE BY
C CALLING GROW, AND (2) DELETE ITS INCONSISTENT BRANCHES EY
C CALLING CLUSTR. ONCE STEP (1) HAS EEEN DONE, STEP (2) CAN
C BE REPEATED OVER AND OVER WITH DIFFEPENT PARAMETERS.
C SEE THE EEGINNINGS OF GROW AND CLUSTR FOR EXPLANATIONS OF
C THE PARAMETERS.
C currently, the arrays are dimensioned to handle up to log
C POINTS. TO CHANGE THIS. SIMPLY CHANGE THE SILE OF THE
C ARRAYS MST, NIT, ANE UI IN GROV AS DIRECTED EELOW THEIP
C DECLARATIONS. ALSO, CHANGE THE LENGTHS OF
C THE ARRAYS EDGE ST, EDGE PT, AVE, SQ, AND NUMNEI AS
C DIRECTED IN THE SURROUTINE CLUSTR. IN ADDITION, IF THE
C FARAMETER D IN CLUSTP WILL BE LARGER THAN 18, CHANGE THE
C LENGTHS OF THE ARRAYS NEIG ST AND NEIG PT AS DIRECTED.
            SUBROUTINE GROW(DATA, DIMEN, NUMPTS, PRINT)
            INTEGER DIMEN, NUMPTS
            DIMENSION DATA(1
            LOGICAL PRINT
C THIS SUBROUTINE COMPUTES THE MINIMAL SPANNING TREE OF THE
C COMPLETE GRAPH ON THE NLM PTS POINTS IN APPAY DATA
C EACH POINT IS A VECTOR WITH DIMEN COMPONENTS STOREE I
C CONTIGUOUS LOCATIONS IN THE ARRAY DATA. SPECIFICALLY,
C CONTIGC (K-1)*DIMEN +I, IS THE I-TH COMPONENT OFICALLY, K-TH
C VATAG (K-1)*DIMEN +I ', IS THE I-TH COMPONENT OF THE K-
C INTEGER OR FLOATING POINT FORMAT AS LONG AS THE FORMAT IS
C CONSISTENT WITH THE TYPE SPECIFICATION OF THE PAPamETERS
C IN THE FUNCTION DIST.
C If THE PaRAmETER PRINT has the value .TRUE., THEN a
C A DESCRIPTION OF THE MINIMAL SPANNING TREE IS PRINTED ON
C UNIT 6. EACH NODE IS LABELED UITH AN INTEGER INDICATING
C ITS RELATIVE POSITION IN THE APRAY DATA.
            INTEGER DIM, N, MST(BOD), LOC(1), NER(1), NXT(1)
            REAL WT(1)
            EQUIVALENCE (MST,LOC,NBR,HT,NXT)
            COMMON DIM, N, MST
C MST (ALIAS lOC, NER, KT, NKT) IS A DESCRIPTION OF THE
```

Communications
of
the ACM

June 1974
Volume 17
Number 6

MINIMAL SPANNING TREE. IT CONTAINS ONE LIST FOR EACH NODE, THE POINTERS TO THE HEADS OF THESE LISTS ARE STOPED IN TH C FIRST N=NUM PTS LOCATIONS OF MST AND GO BY THE NAME MST THE FIRST ELEMENT OF EACH LIST CQNSISTS OF FOUP. FIELDS a Name C A NAME WHICH IS AN ALIAS OF MST.
FIELD : LOME ON NE DATA OF THE NOLE (LOC)
FIELD 3: WEIGHT OF THIS SRANCH (VT) (NBP)
FIELD 3: WEIGHT OF THIS ERANCH (VT)
CFIELD 4: POINTER TO NEXT NEIGHBOP OR END MAPK=0 (NXT)
C EACH ADDITIONAL ELEMENT OF THE LIST CONSISTS OF thPEE
FIELDS. FIELD 1 AEOVE IS OMITTED.
THE MINIMAL SPANNING TREE is COMPLTED USING THE ALGORITHM C OF PRIM AND DIJKSTRA AS IMPLEMENTEL BY WHITNEY (CACM 15 APR 1972).
EACH COLUMN OF NIT IS A PAIR (NIT(1,I),NIT(2,I),I=1.NITP) C DENOTING A NODE NOT (YET) IN THE TREE AND ITS NEAFEST
NEIGHBOR IN THE CLRRENT TREE. UI(1) IS THE LENGTH OF THE
EDGE (NIT(1,I), NIT(2,1)). THE LENGTH OF THE APPAY Ul AND C the number of columns of nit cannot ee less than n

INTEGER NIT(2,IGO)
REAL UI (IDE)
DIM $=$ DIMEN
$\mathrm{N}=\mathrm{NUMPTS}$
COMPUTE MINIMAL SPANNING TAEE USING ALGORITHM OF WHITNEY
C INITIALIZE NODE LAEEL ARRAYS AND SET UP LIST FOP NODE N=KP NITP $=N-1$
ppdata
KO 10 ($=($ KP- 1$) * D I M+$
$18 \mathrm{I}=1 . \mathrm{NITP}$
IDATA $=(I-1)$ *DIM +
UI(1) = DIST(DATA(IDATA), DATA(KPDATA), DIM)
NIT(2,I) $=\mathrm{KP}$
IC CONTINUE
REE $=N+1$
$\operatorname{ST}(K P)=$ FPE
OC(FREE) $=(K P-1) * D I M ~ * ~+~$
FREE = FREE + 1
NXT(FFEE 2) $=0$
c UPDATE LABEL OF NODES NOT YET IN TPEE.
20 KPDATA $=(K P-1) *$ LIM +
DO 3E $I=1$, NITP
1DATA $=$ (NIT (1, 1)-1)*DIM + 1
$D=D I S T(D A T A(I D A T A)$, DATA(KPDATA), DIM)
IF (UI(I).LE.D) 60 TO 30
U1(1) ${ }^{-1} \mathrm{D}$
NIT(2,1) $=K P$
30 CONTINUE
C Find node outside tree nearest to tree
DO 40 : $=1 . \mathrm{N}$
IF (UI(I).GT,UK) GO TO 48
$\mathrm{UK}=\mathrm{UI}(\mathrm{I})$
continue
ADD NEW EDGE TO MST
C ADD NEIGHEOR TO LIST OF NODE NIT(2,K)
Change end of list mark to point to next neigheof
PT = LASTPT(NIT (2,K))
Enter name of net Ghbof
$\operatorname{NER}(F R E E)=\operatorname{NIT}(1, K)$
ENTER KEIGHT OF THIS ERANCH (OFFSET FICKS UP VT FIELD WT(FREE + 1) $=$ UI (K)
C PUT IN END OF LIST MARK (OFFSET PICKS UP POINTER FIELD) NXT(FREE+2) $=0$
FPEE = FREE + 3
NEW NODE--CREATE ITS NEIGHBOF LIST
C SET UP HEAD POINTER
NODE = NIT(1,K)
C ENTER LOCATION OF THIS NODE IN DATA
LOC(FREE) $=$ (NODE-1)*DIM +
E ENTER NAME OF NEIGHBOPING NODE (OFFSET FICKS UP NET FIELD) NER(FREE+1) = NIT(2,K)
C ENTER WEIGHT OF THIS BRANCH (OFFSET PICKS UP UT FIELD) WT (FREE +2) $=\mathrm{UI}(K)$
C ENTER END Of list Mark (OffSET pICKS UP pOinter field) NXT(FREE +3) $=0$
FREE = FREE +
C DELETE NEW TREE NODE FPOM ARRAY NIT UI(K) $=$ UI (NITP)
$\operatorname{NIT}(1, K)=\operatorname{NIT}(1, N I T P)$
NIT(2,K) $=$ NIT(2,NITP)
NITP = NITP - 1
C THE MST IS FINISMED UHEN IT CONTAINS ALL NODES $1 F$ (NITP.NE, Q) 60 TO 20 IF (PRINT) CALL PPTREE RETURN END

SUBROUTINE CLUSTR(D, FACTOR, SPREAD, C, CLEN, PRINT) INTEGER D, CLEN, C(CLEN) REAL FACTOR,
C this subroutine finds the clusters of a point set using C A MINIMAL SPANNING TREE CLUSTERING METHOD OF ZAHN. THE MINIMAL SPANNING TREE, COMPUTED BY SUBROUTINE GROW, IS C STORED IN BLANK COMMON.
C THE ZAHN ALGORITHM FINDS CLUSTERS BY DELETING INCONSISTENT C EDGES FROM THE MINIMAL SPANNING TREE, AN INCONSISTENT EDGE C being one whose veight is significantly larger than the C average wel ght of nearby edges.
C NEARBY MEANS CONNECTED TO THE EDGE IN OUESTION EY A C PATH CONTAINING D OR FEWER EDGES.
C SIGNIFICANTLY LARGER MEANS
C WEIGHT -GT. FACTOR * AVERAGE
C AND VEIGAT. GT. AVERAGE * SPREAD * STANDARD DEVIATION WHERE THE AVERAGE AND STANLARD DEVIATION ARE COMPUTED ON the weights of nearby edges.

C THE OUTPUT VECTOR C DESCRIBES THE CLUSTERS DETERMINED IT IS ARRANGED IN ELOCKS, EACH BLOCK DESCRIBING ONE C CLUSTER. THE FIRST ELEMENT IN EACH ELOCK IS THE NUMBER OF NODES IN THE CLUSTER, THE CLUSTER, THE LABEL INDICATING LHE RELATIVE POSITION OF THE NODE IN THE ARRAY DATA. THE
C FIRST BLOCK STARTS AT C(2).
C(1) BLOCK NUMBER OF CLUSTER
C C(1) IS THE NUMEER OF CLUSTERS FOUND EY THE ALGORITHM
C THE VALUE OF C LEN SHOULD BE THE TRUE SIZE OF
C THE ARRAY C. IT IS USED TO PREUENT INVALID SUBSCRIPTS.
C IF C LEN IS 2ERO. THE ARFAY C WILL NOT EE USED.
C IF THE PARAMETER PRINT HAS THE VALUE ,TRUE., CLUSTERS
C ARE PRINTED OUT ON UNIT 6 .
INTEGER EDGEST(101), EDGELN, EDGEPT(101)
REAL AVE(160), SQ(160), SUPPWT, W
INTEGER NUMNEI(100)
INTEGER NEIGST(20), NEIGLN, NEIGPT(20
C THE ARRAY EDGE ST (EDGE STACK) IS A STACK OF NODES USED TO
C DIRECT THE SEARCH THROUGH THE TREE FOR INCONSISTENT EDGES.
C ITS LENGTH (EDGE LN) CAN GROW AS LARGE AS ONE MORE THAN
C THE NUMBER OF NODES IN THE TREE.
C THE ARRAY EDGE PT (EDGE POINTERS) IS A STACK OF POINTERS
C TO THE NEXT UNEXAMINED NEIGHBORING NODE OF THE NODE IN THE
C SAME POSITION IN EDGE ST. THUS THE LENGTH OF EDGE PT IS
C ALWAYS THE SAME AS THAT OF EDGE ST.
C THE ARRAY NEIG ST (NEIGHBOR STACK) IS A STACK OF NODES
USED TO DIRECT THE AVERAGING OF THE WEIGRTS OF NEARBY
C EDGES. ITS LENGTH (NEIG LN) CAN GROW AS LARGE AS D+2.
C LENGTH CAN GROW AS LARGE A D +2 .
C the arrays ave and sa are used to expedite the calculation
OF AUERAGE WEIGHTS. SPECIFICALLY, AVE(I) STORES THE SUM OF
C OF AUERAGE WEIGHTS. SPECIFICALLY, AVE(I) STORES TRE S
C THE WEIGHTS OF EDGES EXTENDING FROM THE I-TH NODE AND
C SHE WEIGHTS STORES THE SUM OF THE SQUARES. SIMILARLY, NUMNEI(I)
C STORES THE NUMBER OF NEIGHBORS OF THE I-TH NODE. THUS EACH
c of these arrays must be as long as the number of nodes.
INTEGER FINDCN, A, B, DLESSI
INTEGER CLS. INCLS(1), PARENT(1), EAKVRD. EEGCLS
EQUIVALENCE (INCLS, EDGEST), (PARENT, EDGEPT
INTEGER CP, OTHEND
INTEGER DIM, N, MST(1), LOC(1), NBR(1), NXT(1)
REAL WT (1)
EQUIVALENCE (MST,LOC,NBR, WT,NXT)
COMMON DIM, N, MST
IF (PRINT) WRITE (6,99998) D, FACTOR, SPAEAD
DLESSI = D -1
COMPUTATION SECTION
SUM BRANCH WEIGHTS OFF EACH NODE (DEPTH 1)
DO 20 NODE =1, N
NUMNEI(NODE) =
$K=$ MST (NODE
KUE(NODE) $=\mathrm{KT}(K+2)$
SQ(NODE) $=$ WT $(K+2) * * 2$
$K=\operatorname{NXT}(K+3)$
IF (K.EQ.D) GO TO 20
AVE (NODE) $=\operatorname{AVE}(N O D E)+\mathrm{KT}(K+1)$
$S Q(N O D E)=S Q(N O D E)+W^{\prime} T(K+1) * * 2$
NUMNEI (NODE) $=$ NUMNEI (NODE) +1
$K=N X T(K+2)$
GO TO 10
20 CONTINUE
C Intilalize ecge stack with node 1 SURROUNDED EY its firs
two nelghbors. SINGE ThE top two elements of the stack
c indicate the direction of travel along a branch. the
SEARCH WILL FIRST BE DIRECTED AWAY FROM NODE I IN THE
d drection of its first neighbor. when all the tree in that
DIRECTION IS SEARCHED, THE SEARCH WILL PROCEDE AKAY FROM
ITS FIRST NEI GKBOR TOWARD NODE 1.
C THE EDGE PT STACK IS USED TO KEEP TRACK OF THE NEIGKBORS
OF THE CORPESPONDING NODE IN EDGE ST WHICH HAVE ALREADY
C BEEN SEARCHED. EDGE PT(I) POINTS TO THE LOCATION OF
EDGE ST(I+1) IN THE LIST OF NEIGHBORS OF EDGE ST(I)
EDGELN $=3$
$K=\operatorname{MST}(1)$
$\operatorname{EDGEST}(2)=L O C(K) / D I M+1$
EDGEST(2) $=\operatorname{LOC}(K) / D$
EDGEST $(1)=$ NER(K+1)
EDGEST(3) $=$ NBR $(K+1)$
EDGEPT(1) = FINDCN(EDGEST(1),EDGEST(2))
EDGEPT(1) E FINDCN(EDGEST(1),EDGEST(2)
$\operatorname{EDGEPT}(2)=K+$
$\operatorname{EDGEPT}(3)=-1$
C CLIMB TREE TO NEXT UNTESTED BRANCH
30 CALL CLIME(EDGEPT, EDGEST, EDGELN, N)
IF (EDGELN.LE.2) GO TO 70
C CHECK THE EDGE EETHEEN NODE EDGE ST(EDGE LN - 1) AND
C NODE EDGE ST(EDGE LN) FOR INCONSISTENCY.
A $=$ EDGEST (EDGELN-1)
$B=E D G E S T(E D G E L N)$
C SUM WEIGHTS OF ALL bRANCHES NEARBY BRANCH A--B
NEARBY $=\varnothing$
$A V=B$.
$5 T D D E V$
STDDEV = 0 .
C INITIALZE NEIG St TO SUM WE: Ghts heading off NODE E
NEIGLN $=2$
$\operatorname{NEIGST}(1)=$ A
$\operatorname{NEIGPT}(1)=\operatorname{EDGEPT}(E D G E L N-1)$
$\operatorname{NEIGPT}(1)=E D$
$\operatorname{NEIGST}(2)=B$
NEIGST(2) = B
ASSIGN $50=-1$
C GO OUT TO DEPTH D-1 ALONG BRANCHES NOT YET ADDED
C GO OUT TO DEPTH D-1 ALONG BRANCHES NOT YET ADDED
C ADD WEIGHTS OF BRANCHES OFF THE TOP NODE LESS THE WEI GHT
C ADD UEIGHTS OF BRANCHES OFF
C OF THE BRANCH SUPPORTING IT
$K=$ NEIGPT (NEIGLN -1)
SUPPWT $=\mathrm{WT}(\mathrm{K}+1)$
$K=$ NEIGST(NEIGLN
$A V=A V+A V E(K)-5 U P P V T$
STDDEV = STDDEU + SQ(K) - SUPPVT**2
NEAREY = NEARBY + NUMNEL (K)
C WMEN DEPTM OF STACK RETURNS TO 2, ALL BRANCH WEIGHTS OFF
C THIS END MAVE BEEN ADDED
If (NEIGLN.LE,2) GO TO OTHEND. (50.60)
GO TO 40 NEIGLN -
GO TO 40
C INITIALZE NEIG ST TO SUM WEIGKTS READING OFF NODE A
$5 \varnothing$ NEIGLN $=2$

```
    NEIGST(1)=
    NEIGPT(1) = FINDCN(E,A)
    NEIGST(2) = A
    NESIGN 60 TO OTHEND
    GO TO 40
C TEST BRANCH A--E FOR INCONSISTENCY
    AV = AV/FLOAT (NEARBY)
    STDDEV = SQRT(ABS(STDDEV/FLOAT(NEAREY)-AV**2))
    K = EDGEPT(EDGELN-1)
    W=WT(K+1)
    EDGELN = EDGELN - 1
    IF (W.LE.AV+SPREAD*STDDEV .OR. W.LE.FACTOR*AV) GO TO 3E
C BRANCH A--B IS INCONSISTENT. DELETE IT.
    NBR(K) = -1ABS(NER(K))
    K = NEIGPT(i)
    NBR(K) = -1ABS(NER(K)
    GO TO 30
C OUTPUT SECTION
C WE COLLECT THE CLUSTERS AS FOLLOWS: 1. START WITH FIRST
C NODE. 2. THROW IN ITS NEIGHEORS. 3. THROW IN NEIGHBORS
C OF NEIGHBORS UNTIL NO NEW ONES CAN BE FOUND. 4. EACH
C TIME A DELETED BRANCH IS ENCOUNTERED, PUT OTHER END IN A
C A FULL UNUSED NODES (AT TOP OF ARRAY TT IN CUSSTOT AGAEN
C AT STEP O WITH A NODE FPOM THE LIST OF UNUSED NODESSG
    THE LIST OF UNUSED NODES
    NUMIN=0
        CLS = &
        K}=\mathrm{ MST(1)
    NXTCLS = N
    INCLS(NXTCLS) = LOC(K)/DIM + 1
    PARENT(NXTCLS) = 0
    BAKWRD = Ø
C START CLUSTER WITH NEXT aVAILABLE UNUSED NODE
    80 CLS = CLS + I
        NUMIN = NUMIN + + 
        BEGCLS = NUMIN
        NXTCN = NUMIN
        NODE = INCLS(NXTCLS)
        NLIST = PARENT(NXTCLS)
        NCLS(NUMIN) = NODE
    NXTCLS # NXTCLS + 1
C LET K POINT TO FIRST NEIGHBOR OF NODE
    O K = MST(NODE) + 1
C ADD NEIGHEOR TO CLUSTER AND RECORD IT ANCESTRY
    ADD NEIGHEOR TO CLUS
    IF (NXTNBR.LT.0) GO TO :10
    F (NXTNBR.EQ.BAKKRD) GO TO 120
    NUMIN - NUMIN + I
    INCLS(NUMIN) = NXTNBP
    PARENT(NUMIN) = NODE
    GO To 120
C THIS NEIGMBOR IS IN A DIFFERENT CLUSTER--ADD TO UNUSED
    110 NXTNBR = -NXTNBR
        IF (NXTNBR.EQ.INLIST) GO TO 120
            NXTCLS = NXTCLS - I
            INCLS(NXTCLS) = NXTNBR
            PARENT(NXTCLS) = NODE
C GET NEXT NEIGHBOR
    K = NXT(K+2)
    IF (K.NE.B) GO TO 100
C ADD LIST OF NEIGHBORS OF NEXT ELEMENT OF THIS CLUSTER
    NTCN = NXTCN + +
    IF (NXTCN.GT.NUMIN) GO TO 130
    NODE = INCLS(NXTCN)
    BAKWRD a PARENT(NXTCN)
    GO TO 90
C END OF CLUSTER--DO OUTPUT
    130 CALL STORE(NUMIN-BEGCLS+1, C, CP, CLEN)
        F (PRINT) WRITE (6,99999) CLS
        140 I=BEGCLS,NUMIN
            IF (PRINT) WRITE (6,99997) INCLS6:
        CALL STORE(INCLS(I), C, CP, CLEN)
    140 continue
        F (NUMIN.LT.N) GO TO 80
        CP=L STORE(CLS, C, CP, CLEN)
        CALL FIXMST
        RETURN
999 FOMMAT(IKERBHECLUSTER, I5, I2H CONSISTS OF)
9999B FORMAT (44HITHE TREE HAS BEEN CLUSTERED SEARCHING TO A.
    * 8HDEPTH OF, 13/IIX, 28HINCONSISTENT EDGES HAVE BEEN,
    * 27H DETERMINED BY A FACTOR OF, GII,4/IIX, 1BHAND A SPRE
    * GHAD OF, Gll.4, 2IH STANDARD DEVIATIONS.)
99997 FORMAT(10X, 4HNODE, I5)
    END
    REAL FUNCTION DIST(A, B,N)
    INTEGER N
    REAL A(N) B(N)
C THIS FUNCTION COMPUTES THE WEIGRT OF THE GRANCH BETWEEN
C THIS FUNCTION COMPUTES THE WEIGHT OF THE GRANCH BETWEEN 
THE TYPE DECIARATION SF AND B SHOULD MATCH THE DATA
C THIS UERSION COMPUTES THE USUAL EUCLIDEAN DISTANCE.
    DIST = (A(I)-B(1))**2
        DO 10 1=2,N
            DIST = DIST + (A(I)-B(I))***
    10 CONTINUE
        DIST = SORT(DIST)
        RETURN
            END
            SUBROUTINE CLIMELPOINTR, STACK, LN, D)
            INTEGER POINTR(1), STACK(1), LN, D
            NTEGER SPACE(2), MST(1), NBR(1), NXT(1)
            EOUIVALENCE (MST,NBR,NXT)
            EOUIVALENCE <MST,
C STARTING FROM THE NODE ON TOP OF THE STACK, CLIME OUT
C STARTING FROM THE NODE ON TOP OF THE STACK, CLIME OUT
    10 IF (LN.EQ.D+2) RETURN
            K = POINTR(LN)
```

Remark on Algorithm 400 [D1]
Modified Håvie Integration
[George C. Wallick, Comm. ACM 13 (Oct. 1970), 622624]

Robert Piessens [Recd. 17 Apr. 1973]
Applied Mathematics and Programming Division, University of Leuven, B-3030 Heverlee, Belgium

Recently, Casaletto et al. [1] tested a number of automatic integrators by calculating 50 test integrals with different specified tolerances. We shall refer to these integrals as \#1, \#2, ... \#50. (A list can be found in [1] or [2].) One of the aims of their tests was to give a summary of the number of failures (when the computed value was not within the requested tolerance) and overflows (when an upper bound on the number of integrand evaluations prevented the specified accuracy from being reached) of each integrator. We have examined some other recently published integrators in a similar way. Our study reveals that $H R V I N T$ fails more frequently than the other integrators. For example, for the specified relative accuracy $A C C=$ $10^{-3}, H V R I N T$ fails on \#26, \#31, \#34, \#45, and \#47, and for $A C C=$ 10^{-4}, on \#20, \#26, \#31, \#32, \#34, \#45, and \#47. It is worth while to note that \#20 and \#32 are integrals with very smooth integrand.

Most failures can be avoided by changing the statement labeled 75 to
75 IF (MFIN-2) 100, 100, 76
$76 \quad \mathrm{FAC}=\mathrm{ABS}(\mathrm{T}(\mathrm{K})-\mathrm{U}(\mathrm{K}))$
Indeed, with this alteration failures occur only on \#47 (for both accuracies $A C C=10^{-3}$ and 10^{-4}).

References

1. Casaletto, J., Pickett, M., and Rice, J. A comparison of some numerical integration programs. SIGNUM Newsletter 4, 3(1969), 30-40.
2. Gentleman, W.A. Implementing Clenshaw-Curtis quadrature, I. Methodology and experience. Comm. ACM 15 (May 1972), 337-342.

Remark on Algorithm 418 [D1]
Calculation of Fourier Integrals [Bo Einarsson, Comm. ACM 15 (Jan. 1972), 47-48]
Robert Piessens [Recd. 1 June 1973]
Applied Mathematics and Programming Division, University of Leuven, B-3030 Heverlee, Belgium

The algorithm has been tested in double precision on an IBM $370 / 155$ with success. However, in the case that the Fourier cosine integral C and the Fourier sine integral S of the function $F(\mathrm{x})$ are wanted simultaneously ($L C$ and $L S$ positive on entry), the efficiency can be improved, since each value of $F(x)$ is then computed twice. This causes a considerable waste of computing time, which can easily be avoided by the following alterations:
(i) insert statement
$F X=F(X)$
5 lines after statement 20.
(ii) replace statement 50 by

50 SUMSIN $=$ SUMSIN + FX*SIN(WX)
and statement 60 by
60 SUMCOS $=$ SUMCOS $+\mathrm{FX}^{*} \mathrm{COS}(\mathrm{WX})$

Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program [Hugh Williamson, Comm. ACM 15 (Feb. 1972), 100-103].

Blaine Gaither [Recd. 3 Apr. 1973]
New Mexico Institute of Mining and Technology (TERA), Socorro, NM 87801

The algorithm was compiled and run without corrections on an IBM 360/G44. It has been in use for a year now with no problems. However, there is danger of division by zero if NFNS equals 1. To eliminate this danger the statement:
IF(NFNS.EQ.1) NFNS $=-1$
should be inserted between the statements:
IF(NG.LT. -1) SIGN $=-1$
IF(NFNS.LE.0) GO TO 46
Depth axis may be added by the following changes. Where $Z M I N$ and $Z M A X$ are the values for the nearest and farthest curves respectively, replace the continuation card of HIDE's subroutine statement with

```
1 XLNTH,YLNTH,XMIN,DELTAX,YMIN,DELTAY,
    ZMIN,ZMAX)
In place of the statement labeled 42 insert:
    42DELZ = ZMAX - ZMIN
        IF (DELZ) 9601, 9602,9601
    9601 XSC = XLNTH - 9.
        YSC = 6. - YLNTH
        IF (XSC) 9604, 9603, 9604
    9603 ANGZ = 90.
        GO TO 9605
    9604 ANGZ = ATAN(YSC/XSC)*57.29578
    9605 ZLEN = SQRT(XSC*XSC+YSC*YSC)
        IF (ZLEN - 1.) 9602, 9602,9606
    9606 CALL PAXIS (0.,YSC,1H,-1,ZLEN,ANGZ,ZMAX,
        -DELZ/ZLEN)
    9602 1F (YLNTH.LT.0.) GO TO 43
    If ZMIN equals ZMAX or if the length of the depth axis would
be less than or equal to 1., these changes will have no effect. The
max and min numbers on the depth axis may overlap with those of
the horizontal and vertical axis.
```

```
Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program [Hugh Williamson,
Comm. ACM 15 (Feb. 1972) 100-103.]
```

T.M.R. Ellis [Reed. 26 Mar. 1973 and 30 July 1973] Computing Services, University of Sheffield, England

Algorithm 420 has been implemented on an ICL 1907 computer and used to plot the surface entitled "Test for Plotting Routine Hide" as well as a number of other surfaces. The system plotting routines for the ICL 1900 series computers more or less duplicate those used by Williamson, except in the case of PDATA for which no equivalent routine exists. There is however a system routine which draws a smooth curve through a set of points, and only slight modifications were required to reproduce the exact effect of PDATA.

The implementation was checked by the satisfactory reproduction of the "Test for Plotting Routine Hide," and subsequently it produced good representations of other surfaces. However, when attempting to plot a square-based pyramid, the program failed due to an error in HIDE

When $H I D E$ is searching for points at which the current line appears and disappears, it searches for the zeros of a function ($G-Y$) where G is the current visual maximum (i.e. as already drawn) and Y is the current ordinate (as to be drawn). This search

```
Communications
of
the ACM

Fig. 1.


Fig. 2.


Fig. 3.


Fig. 4.

is carried out by comparing the values of the function \((G-Y)\) at adjacent points in the current line \((Y)\) and/or the current visual maximum ( \(G\) ), as shown in Figure 1.

Due to the fact that each line drawn is shifted upward and to the left, in order to simulate perspective, data points on successive lines which in the actual surface would have the same abscissa will have different abscissa in the drawing. Thus \(X 0\) and \(X 1\) might represent the same value of the abscissa in the surface. At \(X 0\) and \(X 1\) in the above drawing the function \((G-Y)\) has a negative value, while at \(X 2\) and \(X 3\) it is positive. Clearly if \(F 1\) and \(F 2\) are the values of \((G-Y)\) at \(X 1\) and \(X 2\) there is a zero between \(X 1\) and \(X 2\) if and only if \(F 1\) and \(F 2\) have opposite signs. This is tested for by the statement: 1002 IF(F1*F2.GT.0.) GO TO 1005

If a zero is found to exist, its abscissa is calculated by linear interpolation, the slope of the line being determined by the next statement:
SLOPE \(=(\mathrm{F} 2-\mathrm{Fl}) /(\mathrm{X} 2-\mathrm{X} 1)\)
A check is subsequently made to avoid dividing by zero if SLOPE is too small.

In the case of the square based pyramid referred to above, the projection used was such that it was viewed down its rear face, and therefore all lines traversing the far face of the pyramid were both parallel to one another and passed through the same point on the
graph (the peak of the pyramid). Thus for a part of their length all the lines after that which goes over the peak are drawn on top of each other, as shown in Figure 2. When plotting the second of these coincident lines the respective \(G\) and \(Y\) functions are therefore as shown in the exploded form in Figure 3.

This clearly means that for a number of consecutive abscissa values both \(F 1\) and \(F 2\) are zero. Due to the way in which HIDE keeps track of its path along the two functions \(G\) and \(Y\), the effect of both \(F 1\) and \(F 2\) being zero is for the abscissa ( \(X 1\) ) corresponding to the first of the two "zeros" to be entered in the visual maximum array for a second time. During the plotting of the next line therefore, the visual maximum function \(G\) vs. \(X G\) has two identical entries, and thus the stage comes when \(X 1\) corresponds to the first, and \(X 2\) to the second (see Figure 4).

If, as in this case, this (third) line would be coincident with the second (and the first) at this point, then \(F 1=F 2=0\) and the test at 1002 (above) will lead to the calculation of SLOPE, and hence failure due to the division by zero ( \(X 2-X 1\) ).

The problem can, however, be very easily corrected by inserting the following statement immediately after the statement with label 1002:

\section*{IF(FI.EQ.FZ) GO TO 1005}

Since this statement can only be reached if \(F 1 * F 2\) is less than or equal to zero, then clearly the jump will be made if and only if \(F 1=F 2=0\). In this case the second "zero" is ignored, and the program proceeds satisfactorily.

\author{
Remark on Algorithm 425 [G5] \\ Generation of Random Correlated Normal Variables [Rex L. Hurst and Robert E. Knop, Comm. ACM 15 (May 1972), 355-357]
}
R.L. Page [Recd. 3 Oct. 1973]

Computer Science Program, Colorado State University, Fort Collins, CO 80521

The work array parameters \(B\) and \(C\) of SUBROUTINE RNVR, which may prove cumbersome for some users, may be removed by making some minor changes. The removal of \(C\) is simple: simply change references to \(C(I)\) to \(A(I, I)\). (The diagonal of \(A\) is presently unused once the conditional moments are computed.)

The vector \(X\) can be used in place of \(B\) provided its components are computed in reverse order. Thus, \(D O\) loop 8 (starting at statement 6) becomes two separate loops as shown below.
```

DO 7I = 1,NV
X(I)=RNOR(IARG)*A(I, I)
DO 8 I = 2,NV
NB=NV-I+1
DO 8 J = 1,NB
8
X(NB+1) = X(NB+1) +A(NB+1,J)*X(J)

```

The revised algorithm was tested on covariance matrices of orders two through six. Assuming the algorithm generates sample vectors from the zero mean normal distribution with the given covariance, the difference between the sample covariance and the given covariance, divided by the standard error of the covariance estimator, would give samples from a standard normal distribution. Our test did not contradict this assumption since 37 of 55 of these numbers, 67 percent, were in the range -1 to 1 (one would expect about 68 percent) and 54 of 55,98 percent, were in the range -2 to 2 (one would expect about 95 percent).
D.M. Boulton 〔Recd. 5 Mar. 1973 and 30 July 1973]

Department of Information Science, Monash University, Melbourne, Australia

\begin{abstract}
Algorithm 434 calculates the exact probability of a two-dimensional contingency table by generating all possible cell frequency combinations which satisfy the marginal sum constraints, and summing the probabilities of all combinations as likely or less likely than the observed combination. The method used to generate all the cell frequency combinations is rather inefficient as it operates by generating all combinations which satisfy a weakened set of constraints and then rejecting those combinations which violate the actual marginal sum constraints. As the number of combinations rejected very often far exceeds the actual number accepted, the process is very wasteful.

A more efficient combination generating algorithm is described in Boulton and Wallace [1]. It generates explicitly only those combinations which satisfy the marginal sum constraints. In addition, because the combinations are generated by a set of nested \(D O\) loops each with a different cell frequency as its controlled variable, the order of generation is such that one combination usually only differs from the next in the values of a few cell frequencies in the lower right corner of the table. This ordering can be used to reduce the time taken to obtain the logarithm of the probability of each combination. Instead of always summing over all cells, an array of partial sums of logarithms of cell frequencies is maintained, and for each new combination only that part of the logarithm which has changed is evaluated and then added to the relevant partial sum.

March's algorithm has been modified to use the combination generating algorithm of Boulton and Wallace and to take advantage of the order in which the combinations are generated. A series of comparison tests were run on a CDC 3200, and the results of a few are shown in Table I. The modified algorithm was always faster, and as can be seen in Table I, the speed improvement can be quite large.
\end{abstract}

Table I. Times for Evaluating Probabilities
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Contingency table}} & & & \multirow[b]{2}{*}{Probability} & \multicolumn{2}{|r|}{Time (sec)} \\
\hline & & & & & & Original & Improved \\
\hline 8 & 12, & & & & . 05767116 & . 026 & . 013 \\
\hline \[
\begin{gathered}
8 \\
(16)
\end{gathered}
\] & \[
\begin{array}{r}
2, \\
(14)
\end{array}
\] & & & & & & \\
\hline 5, & 3 , & 3 , & 0 & (11) & . 35262364 & . 290 & . 095 \\
\hline 2, & 3 , & 1, & 2 & (8) & & & \\
\hline (7) & (6) & (4) & (2) & (19) & & & \\
\hline 5, & 1, & 0 , & 0 & (6) & & & \\
\hline 1, & 1. & 2, & 1 & (5) & . 10625089 & 3.31 & . 510 \\
\hline 0 , & 1, & 1, & 1 & (3) & & & \\
\hline (6) & (3) & (3) & (2) & (14) & & & \\
\hline 2, & 0 , & 0 , & 0 & (2) & . 12380952 & 13.9 & . 693 \\
\hline 0 , & 1, & 0, & 1 & (2) & & & \\
\hline 0 , & 0 , & 2, & 0 & (2) & & & \\
\hline 0 , & 1, & 0 , & 1 & (2) & & & \\
\hline (2) & (2) & (2) & (2) & (8) & & & \\
\hline
\end{tabular}

Finally, it is worth noting that the combination generating algorithm of Boulton and Wallace can be systematically extended for contingency tables of more than two dimensions. It can thus be used as the basis of a subroutine for calculating exact probabilities in more than two dimensions.

\section*{References}
1. Boulton, D.M., and Wallace, C.S. Occupancy of a rectangular array. Comp. J. 16, 1 (1973), 57-63.
\begin{tabular}{ll} 
Scientific & R.J. Hanson \\
Applications & Editor
\end{tabular}

\section*{Applications}

Editor
An Evaluation of Statistical Software in the Social Sciences

\author{
William D. Slysz \\ University of Connecticut
}

\begin{abstract}
Several hundred college and university computer installations now offer various types of statistical packages for general use. Among those most widely available are OSIRIS, SPSS, BMD, DATA-TEXT, and TSAR. In order to provide users with a basis for selection and use, tests were made for each of these systems, and the results are summarized as to cost and performance.

Key Words and Phrases: statistical computation, statistical software, descriptive statistics, bivariate tables, Pearson correlation, regression, factor analysis, one-way analysis of variance

CR Categories: 1.3, 3.30, 4.19, 4.22, 4.49, 5.5
\end{abstract}

\section*{1. Introduction}

There is little doubt that researchers, educators, and students' have begun to make extensive use of general purpose computer software of the type recently developed in the social sciences for the management and analysis of research data. A cursory census can currently identify literally several hundred university and college computer installations making this software available. Schucany, Shannon, and Minton [1] have recently classified 37 software "packages" of this type, and Anderson [2] has assessed a number of these systems and libraries in terms of their value to undergraduate instruction. Allerbeck [3] has developed a comparative

Copyright (C) 1974, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

This work was supported by the University of Connecticut Research Foundation and carried out at the Social Science Data Center and the University Computer Center, University of Connecticut. Author's address: Social Science Data Center, University of Connecticut, Storrs, CT 06268.

Communications```

