
A l g o r i t h m s  

L . D .  F o s d i c k  a n d  

A . K .  C l ine ,  E d i t o r s  

Submittal of  an algorithm for consideration for publica- 
tion in Communicat ions of  the A C M  implies unrestricted 
use of  the algorithm within a computer is permissible.  

Copyright @ 1974, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Algorithm 478 

Solution of an Overdetermined 
System of Equations in the ll 
Norm [F4] 
I. B a r r o d a l e  a n d  F . D . K .  R o b e r t s ,  [Recd .  4 A u g .  1972 

a n d  8 M a y  1973] 

D e p a r t m e n t  o f  M a t h e m a t i c s ,  U n i v e r s i t y  o f  V i c t o r i a ,  

V i c t o r i a ,  B.C. ,  C a n a d a  

Key Words and Phrases: l) approximation,/l norm, over- 
determined system of equations, linear programming, simplex method 

CR Categories: 5.13, 5.41 
Language: Fortran 

Description 
The algorithm calculates an l~ solution to an overdetermined 

system of rn linear equations in n unknowns, i.e., given equations 

~ L ~ a l , j x j  = b~for i  = 1 ,2  . . . .  , m , m  >_ it, 

the algorithm determines a vector x = {xy} which minimizes the 
sum of the absolute values of the residuals 

e(x) = ~'~i~l [ b~ -- ~'-~i~l a i j  xy I. (1) 

A typical application of the algorithm is that of solving the 
linear l~ data fitting problem. Suppose that data consisting of m 
points with co-ordinates (t~, yd is to be approximated by a linear 
approximating function c~l~,~ (t) + c~,~ (t) + . - .  + a , ~  (t) in 
the l, norm. This is equivalent to finding an l~ solution to the system 
of linear equations 

~ = i  4~i (t~)c~s = Y~ for i = 1, 2 . . . . .  m. 

If the data contains some wild points (i.e. values of the dependent 
variable that are very inaccurate compared to the overall accuracy 
of the data), it is advisable to calculate an ll approximation rather 
than an/2  (least-squares) approximation, or an 1~ approximation. 

The algorithm is a modification of the simplex method of linear 
programming applied to the primal formulation of the/1 problem. 
A feature of the routine is its ability to pass through several simplex 
vertices at each iteration. The algorithm does not require that the 

matrix {a;,i } satisfy the Haar condition, nor does it require that it 
be of full rank. Complete details of the method may be found in 
[1J. Computational experience with this and other algorithms indi- 
cates that it is the most efficient yet devised for solving the /1 
problem. 

The parameters M and N represent the number of equations 
and number of unknowns respectively. M2 and N2 should be set to 
M q- 2 and N q- 2 respectively. The simplex iterations are carried 
out in the two dimensional array A of size (M2,N2). Initially the 
coefficients of the matrix {a,. j} should be stored in the first M rows 
and first N columns of A, and the right hand side vector Ibi} should 
be stored in the array B. These values are destroyed by the routine. 
T O L E R  is a real variable which should be set to a small positive 
value. Essentially the routine regards any quantity as zero unless 
its magnitude exceeds TOLER.  In particular, the routine will not 
pivot on any number whose magnitude is less than TOLER.  
Computational experience suggests that T O L E R  should be set 
to approximately 10 - ~  where d represents the number of decimal 
digits of accuracy available (typically we run the routine on an 
IBM 370 using double precision (16 decimal digits) with T O L E R  
set to 10-11). On exit from the routine, the array X contains an 
fi solution {xs} and the array E contains the residuals 
{hi -- ~-~.'~=l a~,j x~}. The array S is used for workspace. The fol- 
lowing information is stored in the array A on exit from the routine: 

A ( M + I , N + I ) ,  the minimum value of (1), i.e. the minimum sum 
of absolute values of the residuals. 
A ( M +  I , N + 2 ) - - t h e  rank of the matrix {ai,j}. 
A ( M + 2 , N + l ) - - e x i t  code with the value 1 if a solution has been 

calculated successfully, and 2 if the calculations are terminated 
prematurely. This latter condition occurs only when rounding 
errors cause a pivot to be encountered whose magnitude is 
less than TOLER,  and in this event all output information 
pertains to the last completed simplex iteration. This condition 
does not occur too frequently in practice, and then only with 
a large ill-conditioned problem. Since an/1 solution is not nec- 
essarily unique, the routine attempts to determine if other 
optimal solutions exist. An exit code of 1 indicates that the 
solution is unique, while an exit code of 0 indicates that the 
solution almost certainly is not unique (this uncertainty can 
only be resolved by a close examination of the final simplex 
tableau contained in A: we do not consider such an examina- 
tion to be warranted in practice). A solution may be nonunique 
simply because the matrix {a~,j} is not of full rank. 

A ( M + 2 , N + 2 ) - - n u m b e r  of iterations required by the simplex 
method. 

References 
1. Barrodale, I., and Roberts, F.D.K. An improved algorithm for 
discrete It linear approximation. S l A M  J. Numer. Anal. 10, 5 (1973), 
839-848 

Algorithm 
SUBROUTINE L 1 (MsN, H2sN2s As B* TOLER,X,  Es S )  

C THIS SUBROUTINE USES A MODIFICATION OF THE SIMPLEX METHOD 
C OF LINEAR PROGRAMMING TO CALCULATE AN L I  SOLUTION TO AN 
C 0VER-DETERMINED SYSTEM OF L INEAR EQUATIONS. 
C DESCRIPTION OF PARAMETERS. 
C M NUMBER OF EQUATIONS. 
C N NUMBER OF UNKNOWNS IMaGE.N). 
C M2 SET EQUAL TO M÷~ FOR ADdUSTABLE DIMENSIONS. 
C N2 SET EQUAL TO N+2 FOR ADJUSTABLE DIMENSIONS. 
C a TWO DIMENSIONAL REAL ARRAY OF SIZE (M2*N2). 
C ON ENTRY, THE C O E F F I C I E N T S  OF THE MATRIX MUST BE 
C STORED IN THE F I R S T  M ROWS AND N COLUMNS OF A. 
C THESE VALUES ARE DESTROYED BY THE SUBROUTINE.  
C B ONE DIMENSIONAL REAL ARRAY o r  SIZE M. ON ENTRY, B 
C MUST CONTAIN THE R I G H T  HAND S I D E  OF THE EQUATIONS.  
C THESE VALUES ARE DESTROYED BY THE SUBROUTINE. 
C TOLER A SMALL P O S I T I V E  TOLERANCE. E M P I R I C A L  EVIDENCE 
C SUGGESTS T O L E R ~ I 0 * * ( - D * 2 / 3 )  WHERE D REPRESENTS 
C THE NUMBER OF DECIMAL D I G I T S  OF ACCURACY AUALABLE 
C ( S E E  DESCRIPTION) .  
C X ONE DIMENSIONAL REAL ARRAY OF S I Z E  N.  ON E X I T ,  T H I S  
C ARRAY CONTAINS A SOLUTION TO THE L I  PROBLEM. 
C E ONE DIMENSIONAL REAL ARRAY OF S I Z E  M. ON E X I T ,  T H I S  
C ARRAY CONTAINS THE R E S I D U A L S  IN  THE EQUATIONS.  
C S INTEGER ARRAY OF S I Z E  M USED FOR WORKSPACE. 
C ON E X I T  FROM THE SUBROUTINE* THE ARRAY A CONTAINS THE 
C FOLLOWING INFORMATION* 
C A I M ÷ I , N ÷ I )  THE MINIMUM SUN OF THE ABSOLUTE VALUES OF 
C THE R E S I D U A L S .  

319 Communications June 1974 
of Volume 17 
the ACM Number 6 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355616.361024&domain=pdf&date_stamp=1974-06-01


C A(M*I*N+2) THE RANK OF THE MATRIX OF COEFFICIENTS. 
C A ( M e 2 , N + | )  EXIT CODE WITH VALUES, 
C 0 - OPTIMAL SOLUTION WHICH I S  PROBABLY NON- 
C UNI@DE ( S E E  D E S C R I P T I O N ) .  
C l - UNIQUE OPTIMAL S O L U T I O N .  
C 2 - CALCULATIONS TERMINATED PREMATURELY DUE TO 
C ROUNDING ERRORS, 
C A(M÷2.N+2) NUMBER 0F SIMPLEX ITERATIONS PERFORMED, 

DOUBLE P R E C I S I O N  St~ 
~EAL NIN* MAXJ A(NG*NG)* X C N ) *  E(M), B(N) 
I N T E G E R  0 W T ,  S(M) 
L O G I C A L  STAGE,  TEST 

C B I G  MUST BE SET EOUAL TO ANY VERY LARGE REAL C~NSTANT. 
C I T S  VALUE H E R E  I S  A P P R O P R I A T E  FOR THE IBM 3 7 0 .  

DATA BIG I I .E75 /  
C IN IT IAL IZAT ION.  

Ml=N÷l 
N I a N ÷ I  
DO I B  J = I * N  

A ( M 2 * J )  = J 
X(d )  = 2 .  

10 CONTINUE 
IX) 4 0  I s l * M  

A ( I * N 2 )  = N + I 
A ( I * N I )  = B( I )  
IF ( B ( I ) . G E . 0 . )  GO TO 3 0  
DO 20 J=|,N2 

A ( I , J )  = - A ( I , J )  
2 0  CONTINUE 
3 2  E ( I }  = 2 .  
4 2  CONTINUE 

C COMPUTE THE MARGINAL COSTS.  
DO 6 0  J = I , N I  

SUN = 0.D0 
DO 50 I=|.M 

SIRq = S L ~  + A ( I , J )  
50  CONTINUE 

A ( M I , J )  = SUN 
62 CONTINUE 

C STAGE I .  
C DETERMINE THE VECTOR TO ENTER THE BASIS, 

STAGE = . T R U E .  
KOUNT = 2 
KR = l 
K L  = | 

70 MAX = - 1 .  
DO 80 J=KR*N 

I F  (ABSCACMG*J)).GT-N) GO TO 80 
D = ABS(A(MI*J)) 
IF (D.LEoMAX) G0 TO 80 
MAX = D 
I N  = J 

80 CONTINUE 
I F  ( A ( M I * I N ) . G E . 0 . )  GO TO 1 0 0  
DO 9 0  l = l *N2  

A ( I * IN )  " -A ( I * IN )  
9 0  CONTINUE 

C DETERMINE THE VECTOR TO LEAVE THE BASIS. 
1 0 8  K = 0 

DO 110  I = K L , M  
D = A ( I , I N )  
I F  ( D . L E . T O L E R )  GO TO 1 1 0  
K = K + I  
B(K) = A ( I , N I ) / D  
S(K) - I 
TEST = .TRUE. 

IIO CONTINUE 
120 IF (K.GT,O) GO TO 130 

TEST = . FALSE. 
GO TO 150  

1 3 0  M I N  = B I G  
DO 1 4 0  l = l , H  

I F  ( B C 1 ) . G E . M I N )  GO TO 1 4 0  
J m l  
NIN  s B ( I )  

OUT - S ( I )  
1 4 0  CONTINUE 

B(J) - B(K) 
S(J) = S(K) 
K ' K - I  

C CHECK FOR LINEAR DEPENDEIqCE IN STAGE I. 
150 IF (TEST , O R .  ,NOT.STAGE) GO TO 1 7 0  

DO 160 I = I , M 2  
D " A(I,KR) 
A ( I , K R )  = A ( I * I N )  
A(I*IN) = D 

160  CONTINUE 
KR = KR + 1 
GO TO 2 6 0  

1 7 0  I F  (TEST) G0 TO 180  
A(M2*NI) = 2 .  
GO TO 3 5 0  

1 8 0  P I V O T  • A ( 0 U T , I N )  
I F  ( A ( N | * I N ) - P I V O T - P I V O T . L E . T O L E R )  GO TO 2 0 0  
DO 1 9 0  J = E R , N I  

D = A(0UTJJ) 
A(MI,J) = A(HI,J) - D - D 
A ( O U T * J )  = -D 

190  CONTINUE 
A ( 0 U T * N 2 )  = ° A ( 0 U T * N 2 )  
GO TO 120  

C P I V O T  ON A ( 0 U T , I N ) .  
2 0 0  DO 2 1 0  J=KR,NI 

IF (J.EQ. IN) GO TO 2|2 
A I O W r , J )  = A ( 0 U T * J ) / P I V O T  

210 CONTINUE 
DO 2 3 0  l = l ,M l  

I F  ( I . E Q . 0 U T )  GO TO 2 3 0  
D = A ( I * I N )  
EO 2 2 0  J a K R , N I  

I F  ( J , E O * I N )  GO TO 2 2 0  
A(I*d) s A(I,J) - D*A(0UTsJ) 

2 2 0  CONTINUE 
2 3 0  CONTINUE 

DO 2 4 2  I = | , M I  
I F  (I.Eg.0UT) GO TO 2 4 0  
A ( I * I N )  = - A ( I , I N ) / P I V O T  

320 

2 4 0  CONTINUE 
A I O U T , I N )  = I . / P I V O T  
D = A ( 0 U T , N 2 )  
A(QUT*N2) = A(M2*IN) 
ACMG*IN)  = D 
KOUNT = KOUNT + I 
IF (.NOT.STAGE) G0 TO 270 

C INTERCHANGE ROW5 IN STAGE I .  
KL = KL + I 
DO 250 JmKR*NG 

D = A(0UT#J) 
A(0UT*J) = A(KOUNT,J) 
A(KOUNTJJ) = D 

250 CONTINUE 
• 2 6 0  I F  (KOUNT+HR.NE.NI) GO TO 70 
C STAGE I I • 

STAGE = • FALSE. 
C DETERMINE THE VECTOR TO ENTER THE BASIS. 

270 MAX - -BIG 
DO 290 JsKR,N 

D ~ A(MI*J) 
IF (D. GE.0.) GO TO 280 
IF (D.GT.(-2.)) GO TO 290 
D ~ -D - 2. 

280 IF (D.LE.MAX) GO TO 290 
MAX = D 
IN=J 

590 CONTINUE 
I F  (MAX.LE.TOLER) GO TO 3 1 0  
I F  (ACMI*IN).GT.0.) GO TO 100  
DO 300 I= l ,M2  

A ( I , IN )  = - A ( I * I N )  
~ 0 0  CONTINUE 

A(MI,IN) " A(MI * IN )  - 2 .  
GO TO 1B0 

C PREPARE OUTPUT, 
~|0 L = KL - I 

DO 330 I-I*L 
I F  ( A ( I * N I ) . G E . 0 . )  GO TO 3 3 0  
DO 32@ J = X R , N 2  

h ( l , d )  = -A ( I * J )  
3 2 0  CONTINUE 
3 3 0  CONTINUE 

A(MG,NI) = 0. 
IF (KR.NE.I) G0 TO 350 
DO 3 4 0  , J - I *N  

D = ARS(A (M IJJ ) )  
I F  ¢D,LE.TOLER .OR. 2.-D. LE,TOLER) GO TO 350 

340 CONTINUE 
A(M~*NI) - I .  

35@ DO 380 l = l ,M  
K - A C I * N 2 )  
D = A ( I * N I )  
IF (K, GT.E) GO TO 360 
K a -K 
D - -D 

3 6 0  IF CI,GE,KL) GO TO 3 7 0  
X(K) = D 
GO TO 3 8 0  

3 7 0  K = K - N 
E(K) = D 

3 8 0  CONTINUE 
A(M2,N2) = KOUNT 
A(MI,N2) = NI  - KR 
SUM = e. D0 
DO 3 9 0  I = K L * M  

SUM = SUM + A ( I * N I )  
390 CONTINUE 

A(MI,N|) = SUM 
RETURN 
END 

Footnote to Algorithm 478 
The major portion of the computation performed by the above 

subroutine is transforming the two-dimensional array A at each 
iteration. We have experimented with a modified code which trans- 
forms the columns of A, one at a time, by passing each column to 
a second subroutine which involves only one-dimensional arrays. 
Savings in time of about 25 to 40 percent are normally achieved by 
this modification. This is because Fortran stores two-dimensional 
arrays columnwise. 

To implement this modification in the above subroutine, the 
user should: (i) delete the eight lines immediately following state- 
ment number 20 up to and including statement number 22; (ii) re- 
place these eight lines by 

DO 22 J = K R , N 1  
IF(J .EQIN)  GO TO 22 
CALL COL (A (1,J),A(1,1N),A(OUT,J),M1,OUT) 

22 C O N T I N U E  

and (iii) include the following subroutine 

SUBROUTINE COL (V1,V2,MLT, MI,IOUT) 
REAL V1 (MI) ,V2(MI) ,MLT 
DO 1 I = I , M I  

IF(I.EQ.IOUT) GO TO 1 
VI (1) = VI (I) --V2(1).MLT 

1 CONTINUE 
RETURN 
END 

Communications June 1974 
of Volume 17 
the ACM Number 6 



Algorithm 479 

A Minimal Spanning Tree 
Clustering Method [Z] 
R.L. Page [Recd. 18 Feb. 1972, 8 Feb. 1973, and 29 Mar. 
1973] 
Department of Mathematics and Computer Science, 
Colorado State University, Fort Collins, CO 80521 

Key Words and Phrases: clustering, pattern recognition, feature 
selection, minimal spanning trees 

CR Categories: 3.63, 5.39, 5.5 
Language: Fortran 

Description 
Zahn [2] describes a method for automatically detecting clusters 

in sets of points in N-space. The method is based on the construction 
of the minimal spanning tree of the complete graph on the input set 
of points. The motivation for using the minimal spanning tree in- 
cludes some evidence (cited in [2]) that it is related to haman per- 
ception of dot pictures in two dimensions, but the method is appli- 
cable in any dimension. 

Advantages of the method are that it requires little input other 
than the data points, it is relatively insensitive to permutations in 
the order of the data points, and the clusters it produces in two di- 
mensions closely parallel clusters detected visually by humans when 
the data is displayed as a dot picture. 

Storage requirements increase linearly with the n, the number of 
points. The minimal spanning tree is constructed using an algorithm 
due to Prim and Dijkstra as implemented by Whitney II ]. The time 
needed is approximately proportional to ,L (Time also increases 
slowly with N.) Whitney's algorithm is repeated here because we 
need to keep some information about the tree structure which his 
algorithm does not retain in a convenient form. 

Thebas ic  idea is to detect inherent separations in the data by 
deleting edges from the minimal spanning tree which are significantly 
longer than nearby edges. Such an edge is called inconsistent. Zahn 
suggests the following criterion: an edge is inconsistent if (I) its 
length is more than f times the average of the length of nearby 
edges, and (2) its length is more than s standard deviations larger 
than the average of the lengths of nearby edges (standard deviation 
computed on the lengths of nearby edges). The real numbers . /and s 
may be adjusted by the user. The question of determining which 
edges are "nearby" is also answered by the user. We will say point 
P is nearby point Q if point P is connected to point Q by a path in 
the minimal spanning tree containing d or fewer edges (d is an in- 
teger detei'mined by the user). 

Deleting the inconsistent edges breaks up the tree into several 
connected subtrees. The points of each connected subtree are the 
members of a cluster. 

Use o f  the program. There are two steps involved in clustering 
a point set using this Fortran implementation of Zahn's  algorithm. 

Step 1. Call the subroutine GROW to construct the minimal 
spanning tree of the point set. G R O W  needs four parameters: (I) an 
array of real numbers specifying the point set; (2) an integer specify- 
ing the dimension of the space in which the points lie; (3) an integer 
specifying the number of points in the set; and (4) a logical value, 
true if the user would like a description of the minimal spanning 
tree to be printed on unit 6, and false otherwise. The array of param- 
eter (I) is treated as if it were a matrix (stored by columns) in which 
each column represents a point in the input point set. To be more 

Funds for computer time used in development of this algorithm 
were provided by National Science Foundation Grant  G J561. 

321 

specific, the array must be arranged so that its (K - - I )*DIMEN + 
Ith value is the lth component of the Kth vector in the point set. 
(DIMEN stands for the dimension of the space in which the points 
lie.) 

Step 2. Call the subroutine CLUSTR to determine the clusters 
in the point set. CLUSTR needs six parameters: (1) the integer dde-  
fining the term "nearby"; (2) the real number fdescribed above; (3) 
the real number s described above; (4) an array to be used for out- 
put; (5) the declared length of the output array; and (6) a logical 
value, true if the user desires a description of the clusters determined 
to be printed on unit 6; and false otherwise. If parameter (5) is zero, 
the output array (parameter (4)) will not be used. Otherwise, the 
output array, which we call C here, will be filled with integers as 
follows: the first element will be the number of  clusters detected; the 
remaining elements will be arranged in blocks of varying length, 
each block describing one cluster--the first element in each block 
being the number of points in the duster, and the remaining ele- 
ments of the block being the labels of the points in the cluster (a 
point 's label will be its relative position in the input point set; thus 
the first point in the input has label I, the second, label 2, etc.). 

Once step I has been completed for a particular point set, step 
2 may be repeated with different parameters without repeating 
step 1. 

Reslriclio,s. (1) As written, the program will handle only 100 
data points, but that can be easily changed by increasing the dimen- 
sions of three arrays in GROW and five arrays in CLUSTR (see 
program for directions). (2) The first parameter in CLUSTR must 
not be larger than 18. This too can be easily changed by increasing 
the dimension of two arrays in CLUSTR (see program). (3) Blank 
common is used to store the minimal spanning tree. 

Tesls. The program has been tested on a CDC 6400 with several 
different input point sets of varying size and dimension, both artifi- 
cially generated and real data. The artificially generated data in- 
cluded three two dimensional point sets with two, four, and five 
clusters and one three-dimensional point set with eight clusters as 
well as some higher-dimensional, larger point sets used for timing 
analysis. Time to run GROW increases like n2; time to run CLUSTR 
normally increases like n, but in the worst case increases like n 2. 

References 
1. Whitney, V.K.M. Algor i thm422Minimalspanning tree. 
Comm. A C M I 5 ,  4 (Apr. 1972), 273-274. 
2. Zahn, C.T. Graph-theoret icalmethodsfor detecting and 
describing gestaltclusters. IEEE Trans. on Compulers, C-20 
(1971), 68-86. 

Algorithm 
C TO CLUSTER A POINT SET USING THIS ALGORITHM, TWO THINGS 
C NEED TO BE DONE. ( I )  BUILD THE MINIMAL SPANNING TREE BY 
C CALLING GROW, AND (2) DELETE ITS INCONSISTENT BRANCHES BY 
C CALLING CLUSTR. ONCE STEP (I) HAS BEEN DONE, STEP (2) CAN 
C BE REPEATED OVER AND OVER %~ITH D I F F E R E N T  PARAMETERS. 
C SEE THE BEGINNINGS OF GROV AND CLUSTR FOR EXPLANATIONS ~F 
C THE PARAMETERS. 
C CURRENTLY, THE ARRAYS ARE DIMENSIONED TO HANDLE UP TO 100 
C POINTS. TO CHANGE THIS, SIMPLY CHANGE THE SIZE OF THE 
C ARRAYS MST, NIT, AND UI IN GROV AS DIRECTED EELOV THEIR 
C DECLARATIONS. ALSO, CHANGE THE LENGTHS OF 
C THE ARRAYS EDGE ST, EDGE PT, AVE, S@, AND NUMNEI AS 
C DIRECTED IN THE SUBROUTINE CLUSTR. IN ADDITION, IF THE 
C PARAMETER D IN CLUSTR WILL BE LARGER THAN 18, CHANGE THE 
C LENGTHS OF THE ARRAYS NEIG ST AND NEIG PT AS DIRECTED. 

SUBROUTINE GROW(DATA, DIMEN, NUMPTS, PRINT) 
INTEGE R DIMEN, NUMPTS 
DIMENSION DATA(1) 
LOGICAL PRINT 

C THIS SUBROUTINE COMPUTES THE MINIMAL SP~NNINfi TREE OF THE 
C COMPLETE GRAPH ON THE NUN PTS POINTS IN ARRAY DATA 
C EACH POINT IS A VECTOR WITH DIMEN COMPONENTS STOREU IN 
C CONTIGUOUS LOCATIONS IN THE ARRAY DATA. SPECIFICALLY,  
C DATA( (K-I)*DIMEN ÷I ) IS THE I-TB COMPONENT OF THE K-TH 
C VECTOR. THE ARRAY DATA MAY CONTAIN NUMBERS IN EITHER 
C INTEGER OR FLOATING POINT FORMAT AS LONG AS THE FORMAT IS 
C CONSISTENT WITH THE TYPE SPECIFICATION OF THE PARAMETERS 
C IN THE FUNCTION DIST. 
C IF THE PARAMETER P R I N T  HAS THE VALUE . T R U E . ,  THEN A 
C A DESCRIPTION OF THE MINIMAL SP~NNING TREE IS PRINTED ON 
C UNIT 6. EACH NODE IS LABELED VITH AN INTEGER INDICATING 
C ITS RELATIVE POSITION IN THE ARRAY DATA. 

INTEGER DIM, N, MST(80Z), LOC(1), NBR(1), NXT(1) 
REAL ~ T ( I )  
EQUIVALENCE (MST,LOC,NBR,WT,NXT) 
COMMON DIM, N, MST 
INTEGER L A S T P T ,  FREE, PT 

C MST (ALIAS £0C, NBR, ~T, NXT) IS A DESCRIPTION OF THE 

Communications June 1974 
of Volume 17 
the ACM Number 6 



C MINIMAL SPANNING TREE. IT CONTAINS ONE LIST FOP EACH NODE. 
C THE POINTERS TO THE HEADS OF THESE LISTS ARE STOPED IN THE 
C FIRST N=NUM PTS LOCATIONS OF MST AND GO BY THE NAME MST. 
C THE FIRST ELEMENT 0F EACH LIST CQNSISTS 0F FOUR FIELDS 
C STORED IN CONTIGUOUS WORDS OF MST. EACH FIELD IS CALLED BY 
C A NAME WHICH 15 AN ALIAS OF MST. 
C FIELD I :  LOCATION IN DATA 0F THE NODE (LOC) 
C FIELD 2: NAME OF NEIGHBORING NODE (NBR) 
C FIELD 3: VEIGHT OR THIS BRANCH (VT) 
C FIELD 4: POINTER TO NEXT NEIGHBOR OR END MARK=0 (NXT) 
C EACH ADDITIONAL ELEMENT OF THE LIST CONSISTS OF THREE 
C FIELDS. FIELD I ABOVE I S  OMITTED. 
C THE LENGTH OF THE ARRAY MST MUST BE ~T LEAST 8*N  . 
C THE MINIMAL SPANNING TREE IS COMPUTED USING THE ALGORITHM 
G OF PRIM AND DIJKSTRA AS IMPLEMENTED BY WHITNEY (CACM 15, 
C APR 1972). 
C EACH COLUMN 0F NIT 15 A PAIR ( N I T ( I * I ) , N I T ( 2 * I ) , I = I . N I T P )  
C DENOTING A NODE NOT (YET) IN THE THEE AND ITS NEAFEST 
C NEIGHBOR IN THE CURRENT TREE. UI(1) IS THE LENGTH OF THE 
C EDGE (NIT(I,I)*NIT(2*I)). THE LENGTH 0F THE ARRAY UI AND 
C THE NUMBER OF COLUMN5 OF NIT CANNOT DE LESS THAN N. 

INTEGER N I T ( 2 *  108 )  
REAL UI (188) 
DIM = DIMEN 
N : NUMPT5 

C COMPUTE MINIMAL SPANNING TREE USING ALGORITHM OF WHITNEY 
C INITIALIZE NODE LABEL ARRAYS ~,~D SET UP LIST FOP NODE N:KP 

NITP  = N - 1 
KP = N 
KPDATA = (KP-I)*DIM + I 
DO 18 I = I * N I T P  

IDATA = ( I - I ) * D I M  * I 
N I T ( I , I )  = I 
U I ( 1 )  = DIST(DATA(IDATA),DATA(KPDATA),DIM) 
N I T ( 2 , 1 )  = KP 

18 CONTINUE 
FREE = N + l 
MST(KP) = FREE 
LOG(FREE) = (KP-I)*DIM + I 
FREE = FREE + I 
NXT(FFEE÷2) = 0 

C UPDATE LAREL OF NODE5 NOT YET IN TREE- 
20  HPDATA = (KP-I)*DIM * I 

DO 32  I=I*NITP 
IDATA = ( N I T ( I , I ) - I ) * D I M  + I 
D = DIST(DATA(IDATA),DATA(KPDATA)*DIM) 
I F  (UI(I).LE.D) C0 TO 38 
U I ( 1 )  = D 
N I T ( 2 , 1 )  = KP 

3Z  CONTINUE 
C FIND NODE OUTSIDE TREE NEAREST TO TREE 

UK = U I ( I )  
DO ~0 I = I * N I T P  

I F  (UI(1).GT.UK) GO TO 48  
UK = U I ( I )  
K = I 

40 CONTINUE 
C ADD NEW EDGE TO MST 
C ADD NEIGHBOR TO LIST OF NODE NIT(2*K) 
C CHANGE END OF LIST MARK TO POINT TO NEXT NEIGHEOR 

PT = LASTPT(NIT(2*K)) 
NXT(PT) = FREE 

C ENTER NAME 0F NEIGHBOR 
NBR(FREE) = NIT(I,K) 

C ENTER WEIGHT 0Y T H I S  BRANCH (OFFSET PICKS UP I,'T F I E L D )  
WT(FREE+I) = UI(K) 

C PUT IN END 0F LIST MARK (OFFSET PICKS UP POINTER FIELD) 
NXT (FREE+2) = 
FREE : FREE + 3 

C NEW NODE--CREATE ITS NEIGHBOR LIST 
C SET UP HEAD POINTER 

NODE = NIT(I,K) 
MST(NODE) = FREE 

C ENTER LOCATION OF THIS NODE IN  DATA 
LOC(FREE) = (NODE-I)*DIM + 1 

C ENTER NAME OF NEIGHBOPING NODE (OFFSET PICKS UP NBR FIELD) 
NBR(FREE÷I) = NIT(2,K) 

C ENTER WEIGHT OF THIS BR~CH (OFFSET PICHS UP ~IT FIELD) 
WT(FREE+2) = UICK) 

C ENTER END OF LIST MARK (OFFSET PICKS UP POINTER FIELD) 
NXT(FREE+3) = @ 
FREE = FREE + 
KP = NIT(I,K) 

C DELETE NEW TREE NODE FROM ARRAY NIT 
UI(K) = UI(NITP) 
NIT(I,K) = NIT(I*NITP) 
NIT(2*K) = NIT(2*NITP) 
NITP : N ITP  " 1 

C THE MST IS FINISHED WHEN IT CONTAINS ALL NODES 
IF (N ITP .NE .8 )  GO TO 28  
IF  (PR INT)  CALL PRTREE 
RETURN 
END 

SUBROUTINE CLUSTR(D, FACTOR, SPREAD, C* CLEN* PRINT) 
INTEGER D* CLEN, C(CLEN) 
REAL  FACTOR* SPREAD 
LOGICAL PRINT  

C THIS SUBROUTINE FINDS THE CLUSTERS OF n POINT SET USING 
C A MINIMAL SPANNING TREE CLUSTERING METHOD OF ZAHN. THE 
C MINIMAL SPANNING TREE, COMPUTED BY SUBROUTINE  GROV* IS 
C STORED IN BLANK COMMON. 
C THE ZAHN ALGORITHM FINDS CLUSTERS BY DELETING INCONSISTENT 
C EDGES FROM THE MINIMAL SP~NNING TREE, AN INCONSISTENT EDGE 
C BEING ONE WHOSE WEIGHT IS  SIGNIFICANTLY LARGER THAN THE 
C AVERAGE WEIGHT 0F NEARBY EDGES. 
C NEARBY MEANS CONNECTED TO THE EDGE IN @UESTION BY A 
C PATH CONTAINING D OR FE~ER EDGES, 
C S I G N I F I C A N T L Y  LARGER MEANS 
C WEIGHT  -GT .  FACTOR * AVERAGE 
C AND WEIGHT .GT. AVERAGE ÷ SPREAD * STANDARD DEVIATION 
C WHERE THE AVERAGE AND STANDARD DEVIATION ARE COMPUTED ON 
C THE WEIGHTS OF NEARBY EDGES. 

322 

C THE OUTPUT VECTOR C DESCRIBES THE CLUSTERS DETERMINED. 
C I T  I S  ARRANGED IN BLOCKS* EACH BLOCK DESCRIBING ONE 
C CLUSTER. THE F I R S T  ELEMENT IN EACH BLOCK I S  THE NL~4BER 
C OF NODE5 IN THE CLUSTER. THE REMAINING ELEMENTS ARE THE 
C LABELS OF THE NODES IN THE CLUSTER, THE LABEL I N D I C A T I N G  
C THE RELATIVE P O S I T I O N  OF THE NODE IN THE ARRAY DATA. THE 
C F I R S T  BLOCK STARTS AT C ( 2 ) .  
C C ( I )  I S  THE NUMBER OF CLUSTERS FOUND BY THE ALGORITHM. 
C THE VALUE OF C LEN SHOULD BE THE TRUE S1ZE 0F 
C THE ARRAY C. I T  I S  USED TO PREVENT INVALID S U B S C R I P T S .  
C I F  C LEN I S  ZERO, THE ARRAY C WILL NOT BE USED. 
C I F  THE PARAMETER PRINT HAS THE VALUE . T R U E . ,  CLUSTERS 
C ARE PRINTED OUT ON UNIT 6 .  

INTEGER E D G E S T ( 1 0 1 ) *  EDGELN, E D G E P T ( 1 0 1 )  
REAL A V E ( 1 0 0 ) *  S Q ( 1 8 0 ) *  SUPPWT* W 
INTEGER N U M N E I ( 1 0 0 )  
INTEGER N E I G S T ( 2 8 ) *  NEIGLN,  N E I G P T ( 2 0 )  

C THE ARRAY EDGE ST (EDGE STACK) I S  A STACK OF NODES USED TO 
C DIRECT THE SEARCH THROUGH THE TREE FOR INCONSISTENT EDGES. 
C I T S  LENGTH (EDGE LN) CAN GROW AS LARGE AS ONE MORE THAN 
C THE NUMBER OF NODES IN THE TREE.  
C THE ARRAY EDGE PT (EDGE POINTERS)  I S  A STACK OF POINTERS 
C TO THE NEXT UNEXAMINED NEIGHBORING NODE OF THE NODE IN THE 
C SAME P O S I T I O N  IN EDGE ST* THUS THE LENGTH OF EDGE PT 15 
C ALWAYS THE SAME AS THAT OF EDGE ST.  
C THE ARRAY NEIG ST (NEIGHBOR STACK) IS A STACK OF NODES 
C USED TO DIRECT THE AVERAGING OF THE WEIGHTS OF NEARBY 
C EpGES.  I T S  LENGTH (NEIG LN) CAN GROW AS LARGE AS D÷2.  
C THE ARRAY NEIG PT I S  USED IN CONJUNCTION WITH NEIG S T .  I T S  
C LENGTH CAN GROW AS LARGE A D+2.  
C THE ARRAYS AVE AND SQ ARE USED TO EXPEDITE THE CALCULATION 
C OF AVERAGE WEIGHTS.  S P E C I F I C A L L Y *  A V E ( I )  STORES THE SUM 0 F  
C THE WEIGHTS OF EDGES EXTENDING FRON THE I - T H  NODE AND 
C S Q ( I )  STORES THE SUM OF THE SQUARES. S I M I L A R L Y ,  NUMNEI(1 )  
C STORE5 THE NUMBER OF NEIGHBORS OF THE ~-TH NODE. THUS EACH 
C OF THESE ARRAYS MUST BE AS LONG AS THE NUMBER OF NODES. 

INTEGER FINDCN, A, B, DLESSI 
INTEGER CLS, INCLS(1)* PARENT(1), BAKWRD, BEGCL~ 
EQUIVALENCE (INCLS,EDGEST)* (PARENT,EDGEPT) 
INTEGER CP,  0THEND 
INTEGER DIM* N* NST(1), LOC(1), NBR(1)* NXT(1) 
REAL WT(1) 
EQUIVALENCE (MST,LOC,NBB, WT,NXT) 
COMMON DIM* N*  MST 
IF (PRINT) WRITE (6,99998) D* FACTOR, SPREAD 
DLESSI ~ D - ] 

C COMPUTAT ION SECT ION 
C SUM BRANCH WEIGHTS OFF EACH NODE (DEPTH 1) 

DO 20  NODE=I*N 
NUMNEI(NODE) = I 
K = MST(NODE) 
AVE(NODE) - WT(K+2) 
SQ(NODE) = WT(K+2 ) * *2  
K = NXT(K÷3) 

10 I F  (K.EQ.O) GO T0 28  
AVE(NODE) = AVE(NODE) + WT(K+I) 
SQ(NODE) = SQINODE) + WT(K+ I ) * *2  
NUMNEI(NODE) = NUMNEI(NODE) + 1 
K = NXT(K÷2) 
GO T0  10 

28  CONTINUE 
C INITIALIZE EDGE STACK WITH NODE I SURROUNDED BY ITS FIRST 
C TWO NEIGHBORS. SINCE THE TOP TWO ELEMENTS OF THE STACK 
C INDICATE THE DIRECTION OF TRAVEL ALONG A BRANCH, THE 
C SEARCH WILL FIRST BE DIRECTED AWAY FROM NODE I IN THE 
C DIRECTION OF I T S  FIRST NEIGHBOR. %~EN ALL THE TREE IN THAT 
C DIRECTION l S  SEARCHED* THE SEARCH WILL PROCEDE AWAY FROM 
C I T S  FIRST NEIGHBOR TOWARD NODE I. 
C THE EDGE PT STACK I S  USED TO KEEP TRACK OF THE NEIGHBORS 
C OF THE CORRESPONDING NODE IN EDGE ST WHICH HAVE ALREADY 
C BEEN SEARCHED. EDGE PT(1) POINTS T0 THE LOCATION OF 
C EDGE ST(I+1) IN THE LIST OF NEIGHBOR5 OF EDGE ST(1) 

EDGELN = 3 
K ~ MST(1) 
EDGE*T(2) = LOC(K)/DIM + I 
EDGE*T(1) = NBR(K+I) 
EDGE*T(0) : NBR(K+I) 
EDGEPT(1) = FINDCN(EDGEST(I)*EDGEST(2)) 
EDGEPT(2) = K • 1 
EDGEPT(3) = -I 

C CLIMB TREE TO NEXT UNTESTED BRANCH 
30 CALL CLIMB(EDGEPT* EDGE*T* EDGELN, N) 

IF (EDGELN.LE.G) GO TO 78 
C CHECK THE EDGE BETWEEN NODE EDGE ST(EDGE LN -I) AND 
C NODE EDGE ST(EDGE LN) FOR INCONSISTENCY. 

A = EDGEST(EDGELN-I) 
B = EDGEST(EDGELN) 

C SUM WEIGHTS OF ALL BRANCHES NEARBY BRANCH A--B 
NEARBY = 0 
AV = 0 .  
5TDDEU = 0. 

C INITIALZE NEIG ST TO SUM WEIGHTS HEADING OFF NODE B 
NEIGLN = 2 
NEIGST(I) = A 
NEIGPT(1) = EDGEPT(EDGELN-I) 
NEIGST(2) = B 
NEIGPT(2) = - I  
ASSIGN 50 TO 0THEND 

C GO OUT TO DEPTH D-I ALONG BRANCHES NOT YET ADDED 
40 CALL CLIMB(NEIGPT, NEIGST, NEIGLN, DLESSI) 

C ADD ~EIGHT5 0 F BRANCHES OFF THE TOP NODE LESS THE WEIGHT 
C OF THE BRANCH 5UPPORTING I T  

K = NE IGPT(NE IGLN ' I )  
SUPPWT = WT(K+I) 
K = NE IGST(NE IGLN)  
AV = AV + AVE(K) - SUPP~T 
STDDEV = STDDEV + SO(K) - SUPPWT*~2 
NEARBY = NEARBY + NUMNEI(K) - 1 

C WHEN DEPTH OF STACK RETURNS TO 2, ALL BRANCH ~EIGHTS OFF 
C THIS END HAVE BEEN ADDED 

I F  (NEIGLN.LE.2) GO TO 0THEND, (58*60) 
NEIGLN = NEIGLN - 1 
GO TO 48 

C INITIALZE NEIG ST TO SUM WEIGHTS HEADING OFF NODE A 
50 NEIGLN = 2 

Communications June 1974 
of Volume 17 
the ACM Number 6 



NEIGST(1) = B 
NEIGPT(I) = FINDCN(B,A) 
NEIGST(2) = A 
N E I G P T ( 2 )  = -1 
ASSIGN 68 T0 0THEND 
GO TO 40 

C T E S T  BRANCH A - - B  FOR I N C O N S I S T E N C Y *  
60 AV = AV/FLOAT(NEARRY) 

STDDEV = SQRT(ABS(STDDEV/FLOAT(NEARBY)-AV**2))  
H = EDGEPT(EDGELN-I) 
W = WT(H÷I) 
EDGELN = EDGELN - I 
I F  (W.LE.AV+SPREAD*STDDEV *OR. W.LE*FACTOR*AV) G0 TO 30 

C BRANCH A--B IS INCONSISTENT. DELETE IT. 
NBR(K) = -IABS(NBR(K)) 
K = NEIGPT(1) 
NBR(H) = -IABS(NBR(K)) 
GO TO 38 

C OUTPUT SECTION 
C WE COLLECT THE CLUSTERS AS FOLLOWS: I .  START WITH FIRST 
C NODE. 2. THROW IN ITS NEIGHBORS. 3. THROV IN NEIGHBORS 
C OF NEIGHBORS UNTIL NO NEW ONES CAN BE FOUND. a. EACH 
C TIME A DELETED BRANCH IS ENCOUNTERED, PUT OTHER END IN A 
C LIST OF UNUSED NODES (AT TOP OF ARRAY IN CLS). 5. WHEN 
C A FULL CLUSTER I S  COLLECTED , OUTPUT IT. 6. START AGAIN 
C AT STEP 2 WITH A NODE FROM THE LIST OF UNUSED NODES. 

70 NUMIN • 0 
CLS = 8 
CP = I 
K = MST(1) 
N X T C L S  = N 
INCLS(NXTCLS) = LOC(H)/DIM + I 
PARENT(NXTCLS) = 0 
BAKWRD = 0 

C START CLUSTER WITH NEXT AVAILABLE UNUSED NODE 
80 CLS = CLS + 1 

NUMIN = NUMIN + 1 
BEGCLS = NUMIN 
NXTCN • NUMIN 
NODE = INCLS(NXTCLS) 
INLIST = PARENT(NXTCLS) 
[NCLS(NUMIN) = NODE 
NXTCLS = NXTCLS ÷ I 

C LET K POINT TO F I R S T  NEIGHBOR OF NODE 
98 K • MST(NODE) ÷ 1 

C ADD NEIGHBOR TO CLUSTER AND RECORD IT ANCESTRY 
100 NXTNBR = NBR(K) 

I F  (NXTNBR.LT.0) GO TO 110 
I F  (NXTNBR.EO.BAKWRD) GO TO 120  
NUMIN - NUMIN + 1 
INCLS(NUMIN) = NXTNBR 
PARENT(NUMIN) = NODE 
GO TO 128 

C THIS NEIGHBOR IS IN A DIFFERENT CLUSTER--ADD TO UNUSED 
]18 NXTNBR = -NXTNBR 

I F  (NXTNBR. EQ,INLIST) GO TO 120  
NXTCLS = NXTCLS - 1 
I N C L S ( N X T C L S )  = N X T N B R  
P A R E N T ( N X T C L S )  = NODE 

C GET NEXT NEIGHBOR 
120 K = NXT(K÷2) 

I F  (K.NE.8) GO TO 108 
C ADD L I S T  OF NEIGHBORS OF NEXT ELEMENT OF T H I S  CLUSTER 

NXTGN = N X T C N  + l 
I F  (NXTCN.GT.NUMIN) GO TO 130 
NODE - INCLS(NXTCN) 
BAKWRD - PARENT(NXTCN) 
G0 T0 9 0  

C END OF CLUSTER--D0 OUTPUT 
138 C A L L  S T O R E ( N U M I N - B E G C L S ÷ I ,  C,  CP* C L E N )  

I F  (PRINT)  WRITE (6*99999) CLS 
DO 140 I = B E G C L S * N U M I N  

IF (PRINT) WRITE (6,99997) INCLS(1) 
CALL STORE(INCLS(1), C, CP, CLEN) 

148 CONTINUE 
I F  (NUMIN.LT.N} GO T0 8 8  
CP = 0 
C A L L  S T O R E ( C L S ,  C* CP,  G L E N )  
CALL FIXMST 
RETURN 

9 9 9 9 9  FORMAT(IHS/SHSCLUSTER* 15, 12H CONSISTS OF) 
99998 FORMAT(44HITHE TREE HAS BEEN CLUSTERED SEARCHING T0 A , 

* 8HDEPTH OF* I G / I I X *  28HINCONSISTENT EDGES HAVE BEEN, 
* 27H DETERMINED BY A FACTOR OF , G I 1 , 4 / I I X ,  10RAND A SPRE, 
* 6HAD OF * G I I . 4 ,  21H STANDARD DEVIATIONS*) 

99997 FORMAT(10X, 4HNODE, 15) 
END 

REAL FUNCTION D I S T ( A *  B, N) 
INTEGER N 
REAL A ( N ) *  B(N)  

C THIS FUNCTION COMPUTES THE WEIGHT 0 F THE BRANCH BETWEEN 
C NODE A AND NODE B. IT SHOULD BE WRITTEN TO SUIT THE DATA. 
C THE TYPE DECLARATION 0F A AND B SHOULD MATCH THE DATA. 
C T H I S  VERSION COMPUTES THE USUAL EUCLIDEAN DISTANCE.  

DIST " (A(1)-B(1))**2 
DO 10 I = 2 , N  

DIST = D I S T  * ( A ( 1 ) - B ( 1 ) ) s * 2  
10 CONTINUE 

DIST • SSRT(DIST) 
RETURN 
END 

SUBROUTINE CLIMB(P01NTR, STACK, LN, D) 
INTEGER P01NTR(I), STACK(1)* LN, D 
INTEGER S P A C E ( E ) *  MOT(1), NBR(1), NXT(I) 
EQUIVALENCE (MST*NBR,NXT) 
COMMON SPACE, MST 

C STARTING FROM THE NODE ON TOP OF THE STACK, CLIMB OUT 
C TO DEPTH D OR TO A TERMINAL NODE, WHICHEVER OCCURS F I R S T  

10 I F  ( L N . E Q . D ÷ 2 )  RETURN 
K • P01NTR(LN) 

323 

IF (H) 20* 30, 40 
C SET POINTER TO FIRST NEIGHBOR OF TOP NODE 

20 NODE • STACH(LN) 
P 0 1 N T R ( L N )  = MST(NODE) ÷ I 
GO TO 5 0  

C RACK DOWN FROM TERMINAL NODE 
30 LN = LN - I 

C CLIMB OUT ON NEXT NEIGHBOR IF POSSIBLE 
4 0  P O I N T R ( L N )  = N I T ( H ÷ 2 )  

I F  (P01NTR(LN).EQ.O) RETURN 
C CHECK DIRECTION 

50 K = P O I N T R ( L N )  
NEIGNB ~ IABS(NBR(H) )  
I F  (NEIGHB.EQ.STACK(LN-I)) GO TO 40 

C CLIMB oUT ON NEIGHBORING NODE 
LN = LN + ] 
STACK(LN) = NEIGHB 
P01NTR(LN) = -1 
GO TO 10 
END 

INTEGER FUNCTION LASTPT(NODE) 
C THE VALUE OF T H I S  FUNCTION POINTS TO THE END OF THE L I S T  
C OF NEIGHBORS OF NODE. 

I N T E G E R  S P A C E ( 2 ) *  MST(1), N X T ( I )  
EQUIVALENCE (MST, NXT) 
COMMON SPACE, MST 

C OFFSET PICKS UP pOINTER FIELD 
LASTPT = HST(NODE) ÷ 3 

10 IF (NXT(LASTPT).EO.0) RETURN 
LASTPT = NXT(LASTPT) ÷ 2 
GO TO 10 
END 

INTEGER FUNCTION FINDCN(A, B) 
INTEGER A* B 
INTEGER SPACE(2)* MST(1)*  N B R ( 1 ) ,  NXT(1)  
EQUIVALENCE (MST,NBR, NXT) 
COMMON SPACE, MST 

C T H I S  FUNCTION LOCATES NODE B IN THE L I S T  OF NEIGHBORS OF A 
C OFFSET PICKS UP NEIGHBOR FIELD 

FINDCN = MST(A) + I 
10 I F  ( I A B S ( N B R ( F I N D C N } ) . E Q . B )  RETURN 

FINBGN = NXT(FINDCN+2) 
I F  (FINDCN.NE.0) GO TO 10 
WRITE ( 6 , 9 9 9 9 9 )  B, A 

99999 FORMAT(5HONODE, 1 3 .  26H IS NOT A NEIGHBOR OF NODE, 13) 
RETURN 

END 

S U B R O U T I N E  S T O R E ( V A L U E ,  A R R A Y ,  LOC,  N )  
I N T E G E R  V A L U E ,  A R R A Y ( N ) *  LOC* N 

C T H I S  SUBROUTINE I S  USED TO STORE VALUES INT0 THE ARRAY 
C WHICH I S  THE FOURTH PARAMETER OF CLUSTR, 

I F  (N.E@.0) RETURN 
L0C = L0C + I 
IF  (LOC.GT.N) GO TO 10 
A R R A Y ( L O C )  = V A L U E  
RETURN 

10 WRITE 4 6 , 9 9 9 9 9 )  VALUE 
99999 FORMAT(4IH THE ARRAY USED TO STORE A DESCRIPTION 0F/GH TH* 

* 30HE CLUSTERS IS NOT LONG ENOUGH /ISH ITS NEXT VALUE* 
* I I H  SHOULD BE • l l O )  

RETURN 
END 

S U B R O U T I N E  PRTREE 
C T H E  D E S C R I P T I O N  0 F  THE M I N I M A L  S P A N N I N G  TREE P R I N T E D  H E R E  
C L A B E L S  EACH NODE S E @ U E N T I A L L Y  AS I T  OCCURS I N  DATA 

INTEGER DIM, N, MST(1), LOC(1)* NBR(1), NXT(I) 
REAL WT(1)  
EQUIVALENCE (MST*LOC,NBR,  WT*NXT) 
COMMON DIM, N* MST 
DO 20 NODE=IsN 

WRITE 46,99999) NODE 
K = MST(NODE) ÷ I 

10 WRITE 46,99998) NBR(H), WT(K÷I) 
K = NIT(K÷2) 
I F  ( K . N E . 0 )  GO TO 10 

20 CONTINUE 
RETURN 

9 9 9 9 9  FORMAT(SHONODE, 1 3 / 1 6 H  NEIGHBORS ARE) 
99998 FORMAT(10X, aHNODE, I 5, 14H AT DISTANCE , GII. 4) 

END 

S U B R O U T I N E  F I X M S T  
I N T E G E R  D I N s  N*  M O T ( I ) *  N B R ( I ) ,  N I T ( I )  
EQUIVALENCE ( M S T , N B R s N X T )  
COMMON DIM, N, MST 
DO 2 0  I ' I , N  

K = MST(1) + 1 
10 NBR(K) - IABS(NBR(K)) 

H = NXT(K÷2) 
IF (H.NE.O) GO TO 10 

20 CONTINUE 
RETURN 
END 

Communications June 1974 
of Volume 17 
the ACM Number 6 



Remark on Algorithm 400 [D1] 

M o d i f i e d  H ~ v i e  I n t e g r a t i o n  

[ G e o r g e  C. W a l l i c k ,  C o m m .  A C M  13 (Oct .  1970),  6 2 2 -  

6241 

R o b e r t  P i e s sens  ]Recd .  17 A p r .  1973] 

A p p l i e d  M a t h e m a t i c s  a n d  P r o g r a m m i n g  D i v i s i o n ,  U n i -  

ve r s i t y  o f  L e u v e n ,  B - 3 0 3 0  H e v e r l e e ,  B e l g i u m  

Recently, Casaletto et al. [1] tested a number of automatic in- 
tegrators by calculating 50 test integrals with different specified 
tolerances. We shall refer to these integrals as #1, #2 . . . . .  #50. (A 
list can be found in Ill or [2].) One of the aims of their tests was to 
give a summary of the number of failures (when the computed value 
was not within the requested tolerance) and overflows (when an 
upper bound on the number of integrand evaluations prevented the 
specified accuracy from being reached) of each integrator. We have 
examined some other recently published integrators in a similar way. 
Our study reveals that HR VINT fails more frequently than the other 
integrators. For example, for the specified relative accuracy ACC = 
10 -3, HVRINTfails  on #26, #31, #34, #45, and #47, and for ACC = 
10 -4 , on #20, #26, #31, #32, #34, #45, and #47. It is worth while to 
note that #20 and #32 are integrals with very smooth integrand. 

Most failures can be avoided by changing the statement labeled 
75 to 
75 IF (MFIN--2)  100, 100, 76 
76 FAC = ABS (T ( K ) - U ( K ) )  
Indeed, with this alteration failures occur only on//47 (for both ac- 
curacies ACC = 10 -3 and 10-4). 

References 
1. Casaletto, J., Pickett, M., and Rice, J. A comparison of some 
numerical integration programs. SIGNUM Newsletter 4, 3(1969), 
30-40. 
2. Gentleman, W.A. Implementing Clenshaw-Curtis quadrature, 
I. Methodology and experience. Comm. ACM 15 (May 1972), 
337-342. 

Remark on Algorithm 418 [DI] 
C a l c u l a t i o n  o f  F o u r i e r  I n t e g r a l s  [Bo E i n a r s s o n ,  C o m m .  

A C M  15 ( J an .  1972),  4 7 - 4 8 ]  

R o b e r t  P i e s sens  [Recd .  1 J u n e  1973] 

A p p l i e d  M a t h e m a t i c s  a n d  P r o g r a m m i n g  D i v i s i o n ,  U n i -  

ve r s i ty  o f  L e u v e n ,  B - 3 0 3 0  H e v e r l e e ,  B e l g i u m  

The algorithm has been tested in double precision on an IBM 
370/155 with success. However, in the case that the Fourier cosine 
integral C and the Fourier sine integral S of the function F(x) are 
wanted simultaneously (LC and LS positive on entry), the efficiency 
can be improved, since each value of F(x) is then computed twice. 
This causes a considerable waste of computing time, which can 
easily be avoided by the following alterations: 
(i) insert statement 
FX = F(X) 
5 lines after statement 20, 
(ii) replace statement 50 by 
50 SUMSIN = SUMSIN + FX*SIN(WX) 
and statement 60 by 
60SUMCOS = SUMCOS + FX*COS(WX) 

Remark on Algorithm 420 [J6] 
H i d d e n - L i n e  P l o t t i n g  P r o g r a m  [ H u g h  

C o m m .  A C M  15 (Feb .  1972),  100-103] .  
W i l l i a m s o n ,  

B l a i n e  G a i t h e r  [Recd .  3 A p r .  1973] 

N e w  M e x i c o  I n s t i t u t e  o f  M i n i n g  

( T E R A ) ,  S o c o r r o ,  N M  87801 

a n d  T e c h n o l o g y  

The algorithm was compiled and run without corrections on an 
IBM 360/G44. It has been in use for a year now with no problems. 
However, there is danger of division by zero if NFNS equals 1. To 
eliminate this danger the statement: 
IF(NFNS.EQ.1)  NFNS = - 1  
should be inserted between the statements: 
I F ( N G . L T . - 1 )  SIGN = - 1  
IF(NFNS.LE.0)  GO TO 46 

Depth axis may be added by the following changes. Where 
Z M I N  and Z M A X  are the values for the nearest and farthest curves 
respectively, replace the continuation card of HIDE's subroutine 
statement with: 
1 XLNTH,YLNTH,X M 1N,DELTAX,Y M1N,DELTAY, 

ZMIN,ZMAX) 
In place of the statement labeled 42 insert: 

4 2 D E L Z  = Z M A X -  ZMIN 
IF (DELZ) 9601, 9602, 9601 

9601 XSC = XLNTH - 9. 
YSC = 6. - YLNTH 
IF (XSC) 9604, 9603, 9604 

9603 A N G Z  = 90. 
GO TO 9605 

9604 A N G Z  = ATAN(YSC/XSC).57.29578 
9605 ZLEN = SQRT(XSC*XSC+YSC,YSC) 

IF ( Z L E N - 1  .) 9602, 9602, 9606 
9606 CALL PAXIS (0. ,YSC, 1 H, - 1 ,ZLEN,ANGZ,ZMAX, 

- D E L Z / Z L E N )  
9602 1F (YLNTH.LT.0.)  GO TO 43 

I f Z M I N  equals Z M A X  or if the length of the depth axis would 
be less than or equal to 1., these changes will have no effect. The 
max and rain numbers on the depth axis may overlap with those of 
the horizontal and vertical axis. 

Remark on Algorithm 420 [J6] 
H i d d e n - L i n e  P l o t t i n g  P r o g r a m  [ H u g h  

C o m m .  A C M  15 (Feb .  1972) 100-103.1  

W i l l i a m s o n ,  

T . M . R .  El l i s  [Recd .  26 M a r .  1973 a n d  30 Ju ly  1973] 

C o m p u t i n g  Serv ices ,  U n i v e r s i t y  o f  Sheff ie ld ,  E n g l a n d  

Algorithm 420 has been implemented on an 1CL 1907 computer 
and used to plot the surface entitled "Test for Plotting Routine 
Hide" as well as a number of other surfaces. The system plotting 
routines for the ICL 1900 series computers more or less duplicate 
those used by Williamson, except in the case of PDATA for which 
no equivalent routine exists. There is however a system routine 
which draws a smooth curve through a set of points, and only slight 
modifications were required to reproduce the exact effect ofPDA TA. 

The implementation was checked by the satisfactory reproduc- 
tion of the "Test for Plotting Roatine Hide," and subsequently it 
produced good representations of other surfaces. However, when 
attempting to plot a square-based pyramid, the program failed due 
to an error in HIDE. 

When HIDE is searching for points at which the current line 
appears and disappears, it searches for the zeros of a function 
( G -  Y) where G is the current visual maximum (i.e. as already 
drawn) and Y is the current ordinate (as to be drawn). This search 

324 Communications June 1974 
of Volume 17 
the ACM Number 6 



Fig. 1. 

i i i f 

xo xl  x~. X3 

Fig. 2. 

/ 
/ ! x 

¢ / x 
/ 

Fig. 3. 
X l  

\\  X Z  

Z 
l / X X 

Y / / \ 

( F I  = F 2  = O )  

Fig. 4. 
~ X X 

XI . . . .  N 

X2 

/ 
% 

I 

C F I  -" F Z  -- O )  

is carried out by comparing the values of the function ( G -  Y) at 
adjacent points in the current line (Y) and/or the current visual 
maximum (G), as shown in Figure 1. 

Due to the fact that each line drawn is shifted upward and to 
the left, in order to simulate perspective, data points on successive 
lines which in the actual surface would have the same abscissa will 
have different abscissa in the drawing. Thus X0 and XI might repre- 
sent the same value of the abscissa in the surface. At X0 and XI in 
the above drawing the function ( G -  Y) has a negative value, while 
at X2 and X3 it is positive. Clearly if FI and F2 are the values of 
( G -  Y) at XJ and X2 there is a zero between XI and X2 if and only 
if F1 and F2 have opposite signs. This is tested for by the statement: 
1002 IF(FI*F2.GT.0 . )  GO TO 1005 

If a zero is found to exist, its abscissa is calculated by linear 
interpolation, the slope of the line being determined by the next 
statement: 
SLOPE = (F2- -F1) / (X2-X1)  

A check is subsequently made to avoid dividing by zero if 
SLOPE is too small. 

In the case of the square based pyramid referred to above, the 
projection used was such that it was viewed down its rear face, and 
therefore all lines traversing the far face of the pyramid were both 
parallel to one another and passed through the same point on the 

graph (the peak of the pyramid). Thus for a part of their length all 
the lines after that which goes over the peak are drawn on top of 
each other, as shown in Figure 2. When plotting the second of these 
coincident lines the respective G and Y functions are therefore as 
shown in the exploded form in Figure 3. 

This clearly means that for a number of consecutive abscissa 
values both FI and F2 are zero. Due to the way in which HIDE 
keeps track of its path along the two functions G and Y, the effect 
of both F1 and F2 being zero is for the abscissa (XI) corresponding 
to the first of the two "zeros" to be entered in the visual maximum 
array for a second time. During the plotting of the next line there- 
fore, the visual maximum function G vs. XG has two identical 
entries, and thus the stage comes when XI corresponds to the first, 
and X2 to the second (see Figure 4). 

If, as in this case, this (third) line would be coincident with the 
second (and the first) at this point, then FI = F2 = 0 and the test 
at 1002 (above) will lead to the calculation of SLOPE, and hence 
failure due to the division by zero (X2-X1) .  

The problem can, however, be very easily corrected by insert- 
ing the following statement immediately after the statement with 
label 1002: 
IF (FI .EQ.FZ)  GO TO 1005 

Since this statement can only be reached if FI*F2 is less than or 
equal to zero, then clearly the jump will be made if and only if 
FI = F2 = 0. In this case the second "zero" is ignored, and the 
program proceeds satisfactorily. 

Remark on Algorithm 425 [G5] 
G e n e r a t i o n  o f  R a n d o m  C o r r e l a t e d  N o r m a l  V a r i a b l e s  

[Rex L. H u r s t  a n d  R o b e r t  E. K n o p ,  C o m m .  A C M  15 

( M a y  1972), 355-357]  

R .L .  Page  [Recd.  3 Oct .  1973] 

C o m p u t e r  Sc ience  P r o g r a m ,  C o l o r a d o  S ta te  U n i v e r s i t y ,  

F o r t  Col l ins ,  C O  80521 

The work array parameters B and C of SUBROUTINE RNVR, 
which may prove cumbersome for some users, may be removed 
by making some minor changes. The removal of C is simple: simply 
change references to C(I) to A(1, 1). (The diagonal of A is presently 
unused once the conditional moments are computed.) 

The vector Xcan be used in place of B provided its components 
are computed in reverse order. Thus, DO loop 8 (starting at state- 
ment 6) becomes two separate loops as shown below. 

6 D O 7  l = 1, NV 
7 X(I) = RNOR(IARG),A(I , I )  

D O 8 [  = 2, NV 
NB = N V - I + I  
D O 8 J  = I, NB 

8 X(NB+I)  = X ( N B + I ) + A ( N B + I ,  J)*X(J) 

The revised algorithm was tested on covariance matrices of 
orders two through six. Assuming the algorithm generates sample 
vectors from the zero mean normal distribution with the given co- 
variance, the difference between the sample covariance and the 
given covariance, divided by the standard error of the covariance 
estimator, would give samples from a standard normal distribution. 
Our test did not contradict this assumption since 37 of 55 of these 
numbers, 67 percent, were in the range - I to 1 (one would expect 
about 68 percent) and 54 of 55, 98 percent, were in the range - 2 
to 2 (one would expect about 95 percent). 

325 Communications June 1974 
of Volume 17 
the ACM Number 6 



Remark on Algorithm 434 [G2] 
Exact Probabil i t ies  for R X C Cont ingency Tables [D.L. 
March,  Comm. A C M  15 (Nov. 1972), 991] 

D.M. Boul ton [Recd. 5 Mar.  1973 and 30 July 1973] 
Depar tmen t  of In fo rmat ion  Science, Monash  Univer-  

sity, Melbourne ,  Austral ia  

Algorithm 434 calculates the exact probability of a two-dimen- 
sional contingency table by generating all possible cell frequency 
combinations which satisfy the marginal sum constraints, and 
summing the probabilities of all combinations as likely or less 
likely than the observed combination. The method used to generate 
all the cell frequency combinations is rather inefficient as it operates 
by generating all combinations which satisfy a weakened set of 
constraints and then rejecting those combinations which violate 
the actual marginal sum constraints. As the number of combina- 
tions rejected very often far exceeds the actual number accepted, 
the process is very wasteful. 

A more efficient combination generating algorithm is described 
in Boulton and Wallace [1]. It generates explicitly only those com- 
binations which satisfy the marginal sum constraints. In addition, 
because the combinations are generated by a set of nested DO loops 
each with a different cell frequency as its controlled variable, the 
order of generation is such that one combination usually only differs 
from the next in the values of a few cell frequencies in the lower 
right corner of the table. This ordering can be used to reduce the 
time taken to obtain the logarithm of the probability of each com- 
bination. Instead of always summing over all cells, an array of 
partial sums of logarithms of cell frequencies is maintained, and 
for each new combination only that part of the logarithm which 
has changed is evaluated and then added to the relevant partial sum. 

March's algorithm has been modified to use the combination 
generating algorithm of Boulton and Wallace and to take advantage 
of the order in which the combinations are generated. A series of 
comparison tests were run on a CDC 3200, and the results of a few 
are shown in Table I. The modified algorithm was always faster, 
and as can be seen in Table I, the speed improvement can be quite 
large. 

Scientific R.J. H a n s o n  
Appl icat ions  Editor  

An Evaluation of 
Statistical Software in 
the Social Sciences 
William D. Slysz 
University of Connecticut 

Several hundred college and university computer  
installations now offer various types of statistical 
packages for general use. Among those most widely 
available are OSIRIS, SPSS, BMD, DATA-TEXT, and 

TSAR. In order to provide users with a basis for selection 
and use, tests were made for each of these systems, and 

the results are summarized as to cost and performance. 
Key Words and Phrases:  statistical computation,  

statistical software, descriptive statistics, bivariate tables, 
Pearson correlation, regression, factor analysis,  one-way 
analysis  of variance 

CR Categories:  1.3, 3.30, 4.19, 4.22, 4.49, 5.5 

Table I. Times for Evaluating Probabilities 

Time (sec) 
Contingency 
table Probability Original Improved 

8 12, (20) .05767116 .026 ,013 
8, 2, (10) 

(16) (14) (30) 
5, 3, 3, 0 ( 1 1 )  .35262364 .290 .095 
2, 3, 1 , 2  (8)  

(7) (6) (4) (2) (19) 
5, 1, 0, 0 (6) 
1, 1, 2, 1 (5) .10625089 3.31 .510 
0, 1, 1, 1 (3) 

(6) (3) (3) (2) (14) 
2, 0, 0, 0 (2) .12380952 13.9 .693 
o, 1, o, 1 (2) 
o, o, 2, 0 (2) 
o, 1, o, 1 (2) 

(2) (2) (2) (2) (8) 

Finally, it is worth noting that the com.bination generating 
algorithm of Boulton and Wallace can be systematically extended 
for contingency tables of more than two dimensions. It can thus be 
used as the basis of a subroutine for calculating exact probabilities 
in more than two dimensions. 

References 
1. Boulton, D.M., and Wallace, C.S. Occupancy of a rectangular 
array. Comp. J. 16, 1 (1973), 57-63. 

1. Introduction 

There is little doub t  that  researchers, educators,  and  
students'  have begun to make extensive use of general  
purpose computer  software of the type recently de- 
veloped in the social sciences for the m a n a g e m e n t  and  
analysis of research data. A cursory census can current ly  
identify literally several hundred  universi ty and  college 
computer  instal la t ions mak ing  this software available.  
Schucany,  Shannon ,  and  Min ton  [I] have recently 

classified 37 software "packages"  of this type, and  
Anderson  [2] has assessed a n u m b e r  of these systems 
and libraries in terms of their value to unde rg radua te  
instruct ion.  Allerbeck [3] has developed a compara t ive  

Copyright © 1974, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

This work was supported by the University of Connecticut 
Research Foundation and carried out at the Social Science Data 
Center and the University Computer Center, University of Con- 
necticut. Author's address: Social Science Data Center, Uni- 
versity of Connecticut, Storrs, CT 06268. 

326 Communications June 1974 
of Volume 17 
the ACM Number 6 


