
Management/ H. Morgan
Data Base Systems Editor

A Back-end Computer
for Data
Base Management
R.H. Canaday, R.D. Harrison, E.L. Ivie,
J.L. Ryder and L.A. Wehr
Bell Telephone Laboratories, Inc.
Piscataway, New Jersey

It is proposed that the data base management function
be placed on a dedicated back-end computer which
accepts commands (in a relatively high level language
such as the CODASYL Data Base Task Group,
April 1971 Report) from a host computer, accesses the
data base on secondary storage, and returns results.
The advantages of such a configuration are discussed.
An experimental implementation, called the experimental
Data Management System, XDMS, is described and
certain conclusions about the back-end approach are
drawn from this implementation.

Key Words and Phrases: data base management,
information retrieval, computer configurations, computer
networks, Data Base Task Group Language, data base
protection, data base portability, back-end computer

CR Categories: 3.79, 4.22, 4.33, 4.35

Background

Data base management has, more perhaps than any
other subject during the past few years, attracted and
held the interest of the business data processing com-
munity. This stems in part from an increased awareness
of the central role that the data base plays in most busi-
ness applications. It can also be attributed to the fact
that both the size and complexity of the data upon
which an application is based have increased to the
point that, typically, a sizeable portion of the resources

Copyright O 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Bell Telephone Laboratories, Inc., P.O Box.
2020, New Brunswick, NJ 08703.

allocated to that application are tied up in accessing and
changing the data base. The term, data base manage-
ment, is defined for the purposes of this paper to include
all activity related to the creation, accessing, and main-
tenance of a large collection of information containing
complex interrelationships. Typically, a data base re-
sides in a computer 's secondary storage and is used by a
number of different applications.

Data base management is distinguished from file
management in that file managment provides access to
files with simple structures (sequential, indexed sequen-
tial, etc.). A data base management system may use a
file management system to gain access to the simple
physical files which contain the complex data base rela-
tionships.

The dichotomy in the computer industry (business
versus scientific/academic) has also resulted in a diver-
gence in terminology. The term information retrieval is
often used in academic circles. It is sometimes used in
the restricted sense of document retrieval, but in its
more general context it is equivalent to data base man-
agement. We will use the term data base management in
this paper in deference to its wider acceptance in the in-
dustry.

The problem of data base management has been at-
tacked from a number of directions. Numerous data
base management systems (IMS, TOTAL, IDS, etc. [2, 3])
have been developed and are in wide use. Through the
efforts of the CODASYL Data Base Task Group, DBTG,
a data base management language has been developed
which holds promise of providing a more uniform inter-
face between the application program and the data base
management system being used. More will be said of
this effort later. Numerous proposals have been made on
the kinds of positions needed to manage a data base (e.g.
data base administrator). A number of related topics
such as data base privacy and reliability have also re-
ceived considerable attention. In this paper the data base
management problem is attacked from a still different
direction. A new computer configuration for data base
management is proposed. In the next section, Back-end
Concept, the basic idea behind the configuration will be
described. In the following two sections, Advantages
and Disadvantages, the relative merits of the approach
are discussed. An experimental implementation of the
concept is then described, Experimental Data Manage-
ment System-XDMS. The final two sections, Evaluation
and Conclusions," summarize what has been learned to
date about the back-end approach.

Back-end Concept

The basic idea behind the back-end concept is shown
in Figure 1. In a conventional data base management
system, all of the major software components--oper-
ating system, data base management system, and appli-
cation programs--execute on a single machine which

$75 Communications October 1974
of Volume 17
the ACM Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355620.361172&domain=pdf&date_stamp=1974-10-01

Fig. 1. Back-end concept.

Single Secondary
Computer Storage

Conventional System

Host Baek~nd Secondary
Computer Computer Storage

Back-end System

Fig. 2. Data transfer.

Transration & Reformatting

Conventionar System

370 end

All media compatible

14
1108 end

Back-end Systems

has direct access to the data base on secondary storage.
In the back-end system, the data base management func-
tion is implemented on a separate machine which has ex-
clusive access to the data base.

The term back-end was selected to describe this con-
figuration because of the rather obvious analogy to
front-end computers [4]. A front-end computer serves
as the interface between host computer and its external
inputs (from terminals, computer networks, etc.). The
back-end computer serves as the interface between the
host computer and its data base.

Front-end systems range from special-purpose ma-
chines, which tend to be less expensive, to general-pur-
pose computers, which offer greater flexibility. Analo-
gously, one could visualize special-purpose back-ends
which might be considered the next step up in the con-
tinuing sophistication of the hardware used to control
secondary storage devices. Or one could consider the
use of a general-purpose computer as a back-end, which
is the approach taken in the experimental system to be
described later in this paper.

With either approach, the host computer will require
some software to interface with the back-end. This in-
terface will be responsible for collecting the data base
management requests from the application programs
and transmitting them to the back-end. In turn it will
accept results and status from the back-end and dis-
tribute them to the application programs.

Potential Advantages

Having outlined what is meant by a back-end sys-
tem, we will now discuss some of the possible advan-
tages and disadvantages of such an approach. In a later
section, we will discuss the extent to which these ad-
vantages have been proved or disproved through our
experimental implementation.

Advantage 1. Economy through specialization. The
first potential advantage of the back-end approach that
will be examined is the fact that the hardware and soft-
ware used for the back-end can be specialized to handle
just the data base management function. For the soft-
ware this means that a large general purpose operating
system is not required. The back-end operating system
can now be tailored to serve just the data base manage-
ment function. This allows a greatly simplified interface
between the operating system and the data management
function and much more flexibility in the distribution of
work between these two components. Economies should
thereby accrue in at least the following areas: (a) smaller
on-line system requiring less core; (b) simpler programs
requiring less processing time; (c) smaller development
costs; and (d) shorter development cycle.

In the hardware area a machine can be selected
which is particularly suited to data base management.
A back-end computer should, for example, have good
byte manipulation facilities and have high input /output
thruput. However, it does not need floating point in-
structions, fast multiply and divide circuitry, a large
word size for high precision, a wide variety of peripher-
als, etc.

Advantage 2. Shared data. A second possible advan-
tage is an enhanced ability to share data between com-
puter systems. The simplest type of data sharing between
two computers is the transfer of files so that each system
has its own copy of the information. This transfer can be
accomplished by physically moving a tape or disk pack,
switching a secondary storage device from one system
to another, or by the transmitting of the files over some
type of computer network. If the transfer takes place be-
tween two different types of computers or between two
computers o f the same type but with different file struc-
ture conventions, then considerable reformatting and
character translation are required in one or both ma-
chines. With the back-end approach, however, data can
be transferred between even very different host machines
without reformatting and translation if the back-ends
are the same (see Figure 2).

A more challenging type of data sharing is the simul-
taneous access of the same data base by two or more
computer systems which may be physically separated
and which may differ in make or model. A multiproces-
sor system does allow for data sharing between proces-
sor units, but such processor units are not really differ-
ent computer systems and they are not normally physi-
cally separated. Another approach to real time data
sharing is the secondary storage device (say a disk) that

576 Communications October 1974
of Volume 17
the ACM Number 10

accepts requests from two computer systems concur-
rently. Such systems are finding increasingly wide use
and currently exist even between different types of com-
puters. There are however, three problems that restrict
the utility of such systems. First, adequate locking tech-
niques have not been developed to allow one or both
computers to update the data base dynamically. Second,
the reformatting and translation problem still exists be-
tween different types of computers and also between dif-
ferent data management systems on the same type of
computer. Third, these secondary storage devices have
in general not been designed for access from a distance.

A back-end system which serves two or more host
machines (see Figure 3) does, however, provide an an-
swer to these problems. Since the data management
function is centralized in the back-end, control and
coordination of update requests from several hosts are
possible. Also, physical separation of host and back-
end is feasible. This allows the host machines to be lo-
cated either remotely or locally and still share the data
base.

Figure 4 depicts a further extension of the back-end
concept wherein a network of back-end machines serves
a number of different host machines. Such a back-end
network offers the very interesting additional challenge
of how to appropriately partition the data base between
the back-end machines. A second interesting aspect of
such a configuration is the choice of the physical place-
ment of the host and back-end machines in remote
and /or local locations to optimize system effectiveness.
It should be noted that our experimental implementa-
tion consists of a single back-end and does not address
the multiple back-end problem.

Advantage 3. Data base protection. A third possible
benefit of the back-end approach relates to system reli-
ability and security. These two problems are major ob-
stacles in the development of adequate data base man-
agement systems.

The reliability of a computer system is threatened
when a hardware or software failure occurs. While such
failures are inevitable, measures can be taken to limit
their effect and to allow the system to recover once they
occur. A back-end system offers some unique advan-
tages in limiting the extent to which a failure can prop-
agate and in facilitating the recovery from such a fail-
ure. In a back-end system the only way that data can be
accessed is over the communication link between the
host machine and the back-end machine. Messages re-
ceived over this link can be scrutinized for consistency,
formatting, etc., to determine if a failure has occurred
on the other end. If a failure occurs in the host, then the
back-end can "rollback" any changes that are being
made by active transactions and coast to an inactive
state. This rollback is accomplished through an audit
trial of data base changes kept by the back-end. On the
other hand, if the host detects that the back-end has
failed, then it can cease requesting service and can notify
the operator. If the failure has corrupted the data base,

577

Fig. 3. Data base sharing.

then it should be restored to an earlier point in time
from a dump tape (or disk pack). The host can then
reissue the commands that were sent to the back-end
subsequent to the dump. This will be possible if the host
has kept an audit trail of those commands.

The basic point to be made here is that two machines
should be able to detect an error situation and to con-
tain its effect better than a (faulty) single machine at-
tempting to do self-analysis. The dual audits also pro-
vide insurance that the audit trail being used for re-
covery or rollback has not been corrupted by a faulty
machine. These advantages should more than offset the
slight decrease in overall system hardware reliability due
to additional back-end equipment.

The ability of a back-end system to provide adequate
security against accidental or malicious access is also
enhanced by the single link between the two machines.
There can be no sneak paths through a separate file
management system or through some type of breach of
the memory protection system which may allow for un-
authorized access to the data.

Advange 4. Data base management for new machines.
Once a back-end system has been developed for a given
host machine (e.g. UNIVAC 1108), the job of writing the
interface for a new host (e.g. IBM 370) becomes a much
smaller effort than developing the total data base man-
agement function on that machine. Also a data base
management capability can be provided on a much
smaller host machine (e.g. a minicomputer) because of
the modest core and cpu requirements for a back-end
interface.

Potential Disadvantages

On the other side of the ledger are three potential
disadvantages of the back-end approach.

Disadvantage 1. Cost of a second machine. The first
issue to consider is the cost of the back-end machine. In
examining this issue one must balance the cost of the
back-end against possible savings in the cost of the host
machine. Since the back-end handles most of the data base
management functions for the host, a reduction in the
size of the host configuration may be possible. Alterna-
tively, the host may be made available to process addi-
tional work. Although the trade-offs here are highly de-
pendent on the particular application being considered,

Communications October 1974
of Volume 17
the ACM Number 10

Fig. 4. Multi host/multi back-end network.

one can observe that in a given situation one can gen-
erally realize a savings in the host through a smaller
configuration or through accepting additional work.
The relative value of this savings in comparison to the
cost of a back-end machine depends, of course, on the
particular machines under consideration. Of perhaps
even greater significance is the fact that the cost of the
cpu is becoming a very small part of the total cost of a
computer installation. Thus having two or more cpu's
(host plus back-end) in a configuration should not have
a significant impact on the total cost of a system.

Aside from the question of actual purchase or rental
cost, there may be other disadvantages to a second
(back-end) machine. For example, it is quite likely that
the back-end machine will be manufactured by a vendor
different from the host. This may duplicate all the prob-
lems associated with contracts, maintenance proced-
ures, operator training, systems programming support,
etc. The extent to which this could be a problem depends
in part on the extent to which the back-end becomes an
integral part of the hardware/software system offered
by the host vendor. If it is a part of the total package
and if it results in a simpler data base management
function, then maintenance and system support may
actually be simpler.

Disadvantage 2. Unbalanced resources. By dedicating
a fixed part of one's computational power to a given
function, one loses some flexibility in being able to bal-
ance the load as the functional requirements change.
For example, the cpu of the back-end machine may
turn out to be highly overloaded, while the host is
mostly idle, or vice versa. This may be a permanent mis-
match, or it could occur only at certain times during the
day. With the two separate and different machines, there
is no obvious way to balance the processor load as would
automatically occur if a single or perhaps multiprocessor
machine handled all of the functions.

Here again, as the cost of cpu's drops, the economic
impact of an unbalanced system becomes less signifi-
cant. Thus, if the back-end was underworked, it would

not mean much of a dollar loss. If it was overloaded,
upgrading to a faster (or a second) cpu would not be a
significant part of the total budget.

While the back-end processor may be only a small
part of the total installation cost, the secondary storage
equipment (disk controllers, drivers, packs) attached to
the back-end system will probably be a significant part
of the total cost. A large imbalance in this area could
thus be very expensive. One possible solution to such an
imbalance would be to have the capability of switching
(or sharing) some of the drives between the two systems,
but this option may not be available. Alternatively, one
could rent some extra drives for the overloaded machine
and return some of the unused drives on the other ma-
chine. Since secondary storage requirements are nor-
mally one of the more predictable resources and since
these requirements do not generally fluctuate rapidly
with time, balancing by rental and return is probably
adequate for most installations.

Disadvantage 3. Response time overhead. Satisfying
a particular data base request in the conventional single
machine configuration may require none, one, or a
number of accesses to secondary storage. The desired
data is then moved from a buffer to a working area
where the application program can process it. With the
back-end system, the request must first be transmitted
to the small machine, and the secondary storage ac-
cesses must be executed, and then the data must be
transferred back to the host machine. If one makes the
assumption that the secondary storage activity (num-
ber of disk accesses and associated cpu time) will be
about the same whether done in a single machine or
with a back-end configuration, then the back-end ap-
proach is left with a response time overhead consisting
of: (a) transmission time of the command to the back-
end; (b) transmission time of the results back to the
host; (c) task queueing delays related to these transmis-
sions; and (d) possible conversion overheads associ-
ated with incompatible work lengths, character sets,
data formats, etc.

The delay in response time due to items (a) and (b)
can be made arbitrarily small if the band-width between
the two machines is made sufficiently large. On the other
hand, a broad-band link increases the cost of the back-
end system. The question here is whether a suitable com-
promise can be struck which does not significantly in-
crease response time and also does not add appreciably
to the system cost.

Similar questions can be raised relating to items (c)
and (d) which are difficult to address properly except in
the context of a specific system.

Experimental Data Management System (XDMS)

Implementation Objectives
An analysis of the potential advantages and disad-

vantages of the back-end concept led to the conclusion

578 Communications October 1974
of Volume 17
the ACM Number 10

that the approach held promise. But were there unfore-
seen technical problems that would make such an ap-
proach economically unattractive? Could such a system (
be implemented in a reasonable time and with a reason-
able expenditure of resources? What would be the thru-
put per dollar of such an approach? All of these ques-
tions were impossible to answer adequately without the O~?m"~ 'e
availability of a working system. In November 1970, |
therefore, development of a prototype back-end system / was started. This prototype system is called the eXperi-
mental Data Management System, XDMS.

In addition to providing a tool for investigating the
back-end concept, XDMS served a second important ob-
jective. One member of the development group was also
chairman of the Data Base Task Group, DBTG, com-
mittee of the COference on Data System Languages,

Execution
CODASYL. This committee had been established in 1966
to develop a language for data base management. In
October 1969, the DBTG published its first proposal,
which was subsequently revised and republished in April
1971. At the time the XDMS project was started, there
was considerable skepticism about whether the DBTG
language could be implemented efficiently. There was
also a need for implementation feedback to the DBTG
committee. Thus, the selection of the DBTG language for
the XDMS project had the fortunate result of not only
providing the back-end system with an advanced data
management language but also providing the DBTG effort
with valuable implementation feedback.

System Configuration
Selection of the DBTG language for the project led to

a second important decision : the selection of the UNIVAC
l l08 as the host computer. To understand why this
occurred, one must look a little more closely at what is
needed to implement a DBTG data management system.
The approach taken by the DBTG was to separate the
description of a data base f rom the programs which
manipulate the data base and also from the actual data
residing in the data base. Such a description of a data
base is called a schema. The language used to describe a
schema is called the Data Description Language, DDL.
The DDL describes what fields are contained in a record,
how records are interrelated, etc.

Actual access to the data base is provided through a
second language, the Data Manipulation Language,
DML. The version of DML appearing in the April 1971
Report consists of a set of 15 commands which, when
added to COBOL, gives that language an extensive data
base management capability. Other DML'S can be desig-
nated for other general purpose languages such as PL/1,
FORTRAN~ etc. Examples of DML commands are FIND a
record, MODIFY a record, ORDER a set of records, etc.

Thus, a typical DBTG system would have compilers
for the DDL and DML languages in addition to the actual
data management routines called by the application
programs at execution time. Figure 5 shows how these
components might interact. The DDL compiler accepts
the schema description and produces the schema tables

579

Fig. 5. A conventional DBTG data management system configura-
tion.

Description . Program

{ w i t h D M L)

D M L Commands

Results

~ e s t S

that are used by the data management routines at execu-
tion time to access the data base. The DML (and COBOL)
compiler accepts application programs containing DML
commands and produces object modules. Note that the
schema tables are used by the DML compiler in addition
to being used by the data management routines. Execu-
tion of a DML command in an application program re-
sults in a call to data management routines. These rou-
tines access the data base and return the results to the
user work area. An application program might typically
be associated with an on-line user terminal where the re-
quests originated and where the results are returned.

The reason UNIVAC l l08 was selected as the host
computer can now be described. UNIVAC, in parallel with
the effort described here, was developing a DBTG system
along the lines of the system shown in Figure 5 for its
1100 series machines [5]. Use of the UNIVAC DDL and
DML compilers allowed the implementors of the XDMS
project to apply all of their efforts to the development of
the back-end system and to the investigation of the data
base management techniques.

The choice of the Digital Scientific META-4 for the
back-end was based on an entirely different set of cri-
teria. Here an inexpensive machine with high input /
output capacity was needed. It was also felt that a micro-
programmable machine would allow development of
an instruction set tailored to data base management.
The META-4 is microprogrammable , and it has inter-
leaved memory with] /o cycle-stealing, which allows the
rapid transfer of large amounts of data to and f rom core
memory. Another advantage is the availability on the
META-4 of IBM 1130 software through emulation.

Communications October 1974
of Volume 17
the ACM Number 10

The configuration finally adopted is shown in Figure
6. The compile time facilities are basically those pro-
vided with the UNIVAC DBTG system. (The schema tables
are augmented to include some additional DBTG features
not yet handled by the UNIVAC DDL compiler.) The
UNIVAC execution time system has been replaced by the
XDMS interface, which controls the communicat ion be-
tween the UNIVAC 1108 and META-4. Since schema tables
information is needed in both the host and back-end,
these tables are installed on the back-end also.

The chain of events that might occur in response to
a data base request typed at a user terminal will now be
traced. A request generated by a batch run is essentially
the same. The request would first be passed to the appro-
priate application program for syntactic and semantic
analysis. Any number of user request languages could
be developed for the system by design of the suitable
application programs. In particular, an interactive data
base management language called DATABASIC, which
allows on-line manipulat ion of a data base, was de-
veloped as part of XDMS.

Having interpreted the request, the application pro-
gram would then issue the necessary DML command(s)
to the XDMS interface program. The command would
then be encoded and transmitted to the back-end system
over the data link. The XDMS system in the back-end
would interpret the DML command and would access the
data base using schema table information. None, one,
or perhaps a large number of calls to the data base in
secondary storage might be necessary to satisfy tile DML
command. Having executed the command, the back-end
would transmit the results back to the interface program
in the host. These results would then be passed on to the
application program for display at the user terminal as
appropriate.

System Capabilities
I t is not the purpose of this paper to fully describe

the XDMS system. Instead, three of the more salient
features of the system will be discussed, in order to
establish the fact that XDMS is more than an experimental
toy. It is a working prototype which has the basic capa-
bilities which one would expect in a full production
system.

Capability 1. Multi-user system• XDMS was designed
to handle many users simultaneously. In the host com-
puter, this was accomplished by designing the xoMs
interface so that commands can be collected from, and
results distributed to, a number of application programs.
This design took the form of a re-entrant processor and
a communicat ions handler as shown in Figure 7. In the
back-end, a data partition area is provided in core for
each active DML command and a user data area is pro-
vided on secondary storage containing status informa-
tion about the user. The maximum number of users (N)
and the max imum number of possible active DML com-
mands (M) can be varied. They are currently set at 10
and 4 respectively.

Fig. 6. XDMS data management system components.

r SChDim a I 't~ Descriptio n (L)

DDL J c°=e/ I c

Resu Encod!DML
:ommands

Execution / Time
I

_- x0Ms L Back-end
System I

Results

Results

~ Application Program

J OML& COBOL Compiler

-- Application Program
-I ~ u ~ 2 , A S A S , C ,

Host Computer (UNIVAC- 1108)
Ba~~e Back-end Computer

(Digital Scientific META-4)

Fig. 7. XDMS multiuser capability.

4:7

Data 1 Partition 1

t PartOiit°an ~

Par tt~ion

T
(l~se:~a:].(N()

Capability 2. Concurrent update. Allowing more
than one user to simultaneously read f rom a data base
is a fairly straightforward problem. Consider, however,
the difficulties that arise as soon as more than one user
can change the data base simultaneously. Will the data

580 Communications October 1974
of Volume 17
the ACM Number 10

base look consistent to a user who is reading and /o r
updating the same part of the data base that is under-
going change by another user? Even worse, will the data
base be kept in a rational condition if two users simul-
taneously update the same section?

Various "locking" techniques have been proposed
which allow users to update a data base in a multi-user
system. The simplest locking technique is to suspend the
access rights of all other users while a given user is
changing the data base. This can be done for the whole
data base or for some large portion of the data base
(perhaps a DBTG area). The problem with this solution
is that the response time for users that are locked out is
degraded. In fact, if the updating load reaches a certain
level, it is possible that some users may never get serv-
iced.

To avoid this congestive situation, locking must be
done on as small a portion of the data base as possible.
XDMS locks on a physical record within a page. This adds
some complexity to XDMS but helps to minimize conges-
tion. The only lower level of locking that might be con-
sidered is the locking of fields within a record. Actually
in XDMS a logical DBTG record is separated into two
physical records (pointers and data) so locking on enti-
ties within a logical record is provided, which is con-
sidered to be the lowest level of locking that is reason-
able.

Associated with the locking problem is the deadlock
problem: user A has record 1 locked and is waiting for
record 2 while user B has record 2 locked and is waiting
for record 1. The XDMS system currently provides the
capability for one user to back off once deadlock is de-
tected.

Capability 3. Rollback and recovery. The dual audit
capability described in the section on back-end advan-
tages was implemented on XDMS. Actually rollback exists
at two levels: command and transaction. Command
rollback allows the effects of a given DML command to
be erased if a problem is encountered in the back-end.
Status is then returned to the host indicating that the
command was not executed. Transaction rollback allows
the effects of a series of DML commands (a transaction)
to be erased. This might be initiated by a user at a termi-
nal or by the host machine if problems are encountered.

Status
The XDMS System first achieved a limited operational

capability in June 1972. Since that time there has been
extensive upgrading and debugging. In general, XD~S
has reached a point where (provided the link and disk
capacity was improved) it could be used for a live appli-
cation.

The cost of implementing XDMS has been about six
man-years and about $60K in equipment. The back-end
port ion of the XDMS system occupies about 15K of 16-bi t
words, with the other 17K being used for input /output
buffers. The XDMS interface in the host is about 4.5K of
36-bit words and about 1K of buffer space.

581

The capabilities of the XDMS system can best be de-
scribed in terms of the DBTG language. Every significant
feature of that language was considered in the design of
the system. An extensive and useful subset of the lan-
guage is currently operational. The only major DBTG
capabilities which are not operational in the XDMS sys-
tem are: (1) SUBSCHEMAS; (2) ORDER DML command; (3)
ON conditions; (4) PRIVACY facilities; (5) special data
items; and (6) MODE IS CHAIN evaluation.

Having briefly described the XDMS system, we will
now focus our attention on what was learned from de-
veloping the system. In particular, we will ana lyze- -
based on XDMS experience--the projected advantages
and disadvantages of the back-end approach that were
covered in the first part of this paper.

Advantage 1. Economy through specialization. The
core size of XDMS and the effort and money required to
develop it have already been noted. Intuitively these
numbers appear to be very good. Comparat ively they
also look good. A conventional DBTG system in about
the same stage of development has been examined which
implements the same language, and which has roughly
equivalent capabilities. Its current core size is about
twice the size of XDMS ; it has been in development some-
what longer; and it appears to have taken more in man-
power and computer costs to develop.

Development costs are only one economic factor to
be considered. For a long life system or for one which
will be used in a number of installations, the operational
costs (machine rental, etc.) may far outweigh develop-
ment and maintenance costs. In order to at tack this
problem, a trial data base (a Bell Labs internal personnel
and organization file of about 1500 records) was loaded
into XDMS and into the conventional system. A battery
of eight different DML command streams representing
various types of possible applications was also gen-
erated. The eight DML command streams were then run
against both systems measuring core residency, cpu
time, I / o time, etc. Next, costs were assigned to each of
these resources, and an overall cost to perform the eight
DML command streams on the conventional system and
on the back-end XDMS system was determined. For
simple commands (e.g. FIND NEXT) the costs were more
or less equivalent, but for complex commands (e.g.
STORE a record that is a member of several sorted sets)
the back-end system was less expensive by one or two
orders of magnitude.

Advantage 2. Shared data base. The sharing of data
by transfer between XDMS systems has not been at-
tempted, but it appears obvious at this point that there
would be no difficulty in doing this. The simultaneous
sharing of a data base by two different types of compu-
ters is the more interesting experiment. An XDMS inter-
face for the mM 370 was investigated and has been
partially implemented. No real obstacles have been un-
covered in providing access to the same data base con-
currently f rom both the UNIVAC 1108 and IBM 370. How-
ever, final verification of this advantage is not complete.

Communications October 1974
of Volume 17
the ACM Number 10

Advantage 3. Data base protection. It has already
been noted that we have implemented the double-audit
approach as well as the command and transaction roll-
back in the XDMS system. These capabilities have been
exercised, and appear to offer a substantial contribution
to maintaining data base integrity. The real proof of this
advantage will come when a sizeable data base has been
maintained in a live environment over a sustained period
of time.

No facilities have as yet been implemented which
take advantage of the back-end configuration to deny
access to unauthorized users.

Advantage 4. Data base management for new ma-
chines. The first claim in this area is that data base man-
agement capability can be provided on a new machine
much more quickly when using an existing back-end.
The XDMS interface for the UNIVAC-1108 was designed
and implemented by one member of the group in a few
months. To this, we would have to add the cost of de-
veloping suitable DML and DDL compilers. This latter
activity might be simplified by use of cross-compilers.

The second claim was that data base management
could be provided on much smaller machines through
the back-end approach. This contention is supported by
the relatively small size of the UNIVAC 1108 XDMS inter-
face (~ 6 K words).

Disadvantage 1. Cost of a second machine. It was
pointed out under Advantage 1 that the cost savings of
using a back-end approach appear to be substantial for
the cases tested. In these studies the back-end cost in-
cluded both the XDMS interface in the host and in the
back-end system. Thus, adding the second machine is
a cost-effective step if the host can be applied to other
productive work or if the host can be reconfigured into
a smaller system with a corresponding savings which
exceeds the back-end costs.

Disadvantage 2. Unbalanced resources. The XDMS im-
plementation demonstrates that the cost of the back-end
processor can be kept to a small fraction of the total
installation cost. Thus an imbalance in the processor
load on the two machines should not cause a serious
economic loss. The problem of a disk capacity imbalance
has not yet been attacked in XDMS.

Disadvantage 3. Response time overhead. The re-
sponse time for a back-end system has four additional
components not present in conventional system: (a)
transmission time to send a command to the back-end;
(b) transmission time to send the results to the host; (c)
task queueing delays associated with the transmissions;
and (d) conversion times due to incompatibilities (e.g.
word sizes, character sets).

A typical DBTG command might require a total of
250 bytes to be transmitted to send the command over
and to get the results back. For our 2000 BAUD link this
takes about 1 sec. To this one must add another second
for line turnarounds.

Use of a 50K BAUD link would cut the transmission
time to .04 sec with about that much again for turn-

arounds. The additional delay of less than a tenth of a
second would not be noticeable to a user waiting for the
results at a terminal. It could, however, have some im-
pact of core residency requirements in the host. This
would of course depend on how core was allocated and
how users were swapped.

The third item which will tend to increase the re-
sponse time through a back-end system is task queueing
for those tasks associated with the transmission. We
have not developed meaningful measurements in this
area.

The fourth component ot' back-end response time,
conversion and formatting, amounts to approximately
5 msec in the host and another 5 msec in back-end. This
is insignificant in comparison with the total response
time, and can be ignored.

Conclusions

Final verification of the utility of the back-end con-
cept must await its use in a production environment.
Experimental results to date, however, support the con-
clusion that the back-end approach is an economically
attractive alternative for data base management. Not
only is there an apparent advantage in throughput per
dollar, but there are also a number of new capabilities
that such a configuration offers such as the simultaneous
sharing of a common data base by different computers
and increased security of the data base.

As a side benefit, the XDMS system has demonstrated
that a data management system implementing the
CODASYL DBTG language can be developed on a small
machine (32K 16-bit words) in a relatively short time
(18 months) with a relatively small expenditure of man-
power (six man-years).

Acknowledgment. In addition to the authors, three
former members of the group, Earl Jones, Tax Metax-
ides, and T.S. Shao, have also made substantial con-
tributions to the project.

Received March 1974

References
1. COnference of DAta SYstems Languages (CODASYL) Data
Base Task Group Report, ACM, New York, Oct. 1969 and Apr.
1971.
2. COnference of DAta SYstems Languages (CODASYL)
Systems Committee, Feature analysis of generalized data base
management systems, ACM, New York, May 1971.
3. Dodd, George G. Elements of data management systems,
Computing Surveys 1 (June 1969), 117-133.
4. Feinroth, Y., Franceschini, Y., and Goldstein, M.,
Telecommunications using a front-end minicomputer, Comm.
ACM 16, 3 (Mar. 1973), 53-160
5. UNIVAC DMS 1100 Data Manipulation Language UP-7908
6. UNIVAC DMS 1100 Schema Definition UP-7907 Rev. 1
7. UNIVAC DMS 1100 System Support Functions UP-7909
Rev. I

582 Communications October 1974
of Volume 17
the ACM Number 10

