
Management Science/
Operations Research

D.F. Shanno
Editor

On Generation of Test
Problems for Linear
Programming Codes
A. Charnes
University of Texas, Austin
W.M. Raike
The Naval Post Graduate School, Monterey
J.D. Stutz
University of Texas, Austin
and
A.S. Walters
Carnegie-Mellon University

Users of linear programming computer codes have
realized the necessity of evaluating the capacity, effec-
tiveness, and accuracy of the solutions provided by such
codes. Large scale linear programming codes at most
installations are assumed to be generating correct solu-
tions without ever having been "bench-marked" by test
problems with known solutions. The reason for this fail-
ure to adequately test the codes is that rarely are there
large problems with known solutions readily available.
This paper presents a theoretical justification and an
illustrative implementation of a method for generating
linear programming test problems with known solutions.
The method permits the generation of test problems that
are of arbitrary size and have a wide range of numerical
characteristics.

Key Words and Phrases: linear programming, test
problem generation, LP program evaluation, LP program
validation

CR Categories: 5.41

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Address of A.S. Walters: Office of the Dean, School of Urban
and Public Affairs, Carnegie-Mellon University, Schenley Park,
Pittsburgh, PA 15213.

1. Introduction

Since the earliest computational experiments with
linear programming, users of linear programming com-
puter codes have realized the necessity of evaluating the
capacity, effectiveness, and accuracy of the solutions
provided by such codes. Even today, this question of
adequately "bench-marking" even the most thoroughly
debugged codes arises, of course, in a variety of applica-
tions of computers to mathematics and scientific prob-
lems. The nature of meaningful linear programming
problems, however, involves quite large matrices (say
2000 by 4000 with .6 to 2 percent density of nonzero
elements) and consequently the data handling and gen-
eration problems become severe even if such problems
with well-known computational characteristics can be
found for test purposes. For this reason, tasks like the
comparison of performance of linear programming
codes must be carried out with the raw materials (i.e.
test problems) at hand. Such comparisons are, of neces-
sity, incomplete. It is our purpose here to present the
(very elementary) theoretical justification and an illus-
trative, if rudimentary, implementation of a method for
generating linear programming test problems with
known solutions. The method permits the generation of
test problems that are of arbitrary size and have an ex-
tremely wide range of numerical characteristics.

It is not our claim, of course, to have solved all the
problems of testing linear programming codes. The
developmental and the validation phases in the construc-
tion of large-scale linear programming codes present
numerous challenges for adequately testing the various
parts of the codes. While these areas, too, are virtually
untracked territory, good programming practice and
modern project management techniques can help to
avert some fiascoes which are undocumented but which
have become legendary. (An early example is the "nut
mix code," so called because of its ability to speedily
solve this textbook problem, which had been used as a
test problem during development of the code, and to
solve no other problems.) The area wherein our con-
tribution lies is that of providing yardsticks for the gross
evaluation of a number of overall performance charac-
teristics of reasonably well-debugged codes. Perhaps one
of the most useful applications of our technique could be
expected to be that of measuring the solution time and
the accuracy of some well-known and widely used linear
programming systems when employed to solve very large
problems.

Finally, the availability, in quantity, of a meaningful
variety of test problems may help to influence the imple-

583 Communications October 1974
of Volume 17
the ACM Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355620.361173&domain=pdf&date_stamp=1974-10-01

mentation of new solution techniques for the general
linear programming problem. All too often, an elegant
theory, rather than having gone hand-in-hand with
effective performance in practice of new algorithms, has
been a substitute for the performance.

2. T h e o r e t i c a l B a s i s

The mathematical observation underlying our proce-
dures is not too deep. The main idea is that it is possible
to construct a linear programming problem whose solu-
tion is obvious by inspection and then to restate the
problem more generally without changing the set of
feasible solutions. "Generally" here means that the
solution would no longer be obvious were it not for the
knowledge about the origin of the restated problem.

Consider the linear programming problem

max ~ dj Yi
1=1

subject to: ~ - 1 aj Y3" = K
0_< yj < Mj, for j = 1, . . . , n . (1)

In (1), all di, aj, and M3. as well as Kare assumed to
be positive. It is clear that no loss of generality is caused
by assuming all aj = 1, so henceforth we should con-
sider the problem

max ~ CjXj

subject to:)--~j~l xj = K
0_< xj. < Uj, f o r j = 1 , . . . , n . (2)

Or, restated in matrix notation,

max cx

subject to: ex = K

0 < x _< u . (3)

In (2) and (3), the quantities cj and Uj correspond
to dHai and M i / a j from (1) ; the vector e is a vector of
ones, and juxtaposition of vectors and/or matrices will
be used throughout to denote the usual multiplications.
Again with no loss of generality, we shall assume that
ci > c2 > . - . > cn.

An optimal solution, x*, to (3) is easily obtainable
by inspection; let xl* = min (K, U1), define /(i = K
- - x1*, and then calculate successive xi* and auxiliary
K~- variable via the relations xj* = min (Kj_~, Us),
K~. = Kj_x -- x~.*. However, now adjoin slack variables,
s, in (3). The resulting system is

max cx + Os

subject to: ex q- Os = K

I x + l s = U

x, s _> 0 (4)

If now we allow G to be an arbitrary r by n matrix (with
r _ n) which has full column rank, then the set of
equations obtained by premultiplying the U constraints

in (4) by G (namely Gx + Gs = GU) has exactly the
same solution set as l x q- Is = U since any such
matrix G has at least one left inverse G ~. The linear
programming problem which results from using the
new constraints is

max(c , 0) (s x)

subject to: (G O) (sX) (GK',)

x, s > 0. (5)

The solution x* is not so obvious any longer (unless
one happens to know the left inverse G~)! In fact, a
slight additional complication could be introduced into
(5) by allowing G to be r by (n + l) and premultiplying
all the equations in (4) by such a G.

The point of what we have done should now be ap-
parent. Since the matrix G is completely arbitrary (ex-
cept for the restriction to linearly independent columns),
it can be chosen to embody any particular numerical
characteristics desired. Thus, by controlling such aspects
as the proportion of nonzero entries in G and the range
(in orders of magnitude, say) of these nonzero entries,
it is possible to construct a linear programming problem
(5) having desired properties with regard to density,
scaling, matrix size, etc. On the other hand, any special
matrix structures (e.g. incidence matrices and block-
angular matrices) can be imparted to (5) via G; the only
inherent limitations are that G be of full column rank,
that the constraint matrix have the form

o)
and that GU represent a positive linear combination of
the columns of G.

3. I m p l e m e n t a t i o n

The code we present here is written in Fortran and
was originally designed for use on the Control Data 6600
computer system of the University of Texas; with detail
changes the program should be adaptable to most com-
puters having magnetic tape capability and a Fortran
compiler.

Objectives which the code was intended to accom-
plish include the following:

(i) The construction of a linear programming prob-
lem having a predetermined point as its optimal
solution.

(ii) The ability to provide a constraint matrix of
any desired size (within the theoretical limitation that
G have full column rank). If an m by p final matrix is
desired, then G must have r = m -- 1, and if the column
rank of G is to be full, p _< 2 (m-- 1).

(iii) The ability to control the density (proportion
of nonzero entries) of the constraint matrix.

(iv) The ability to control the range of the magni-

$84 Communications October 1974
of Volume 17
the ACM Number 10

tude of the nonzero matr ix entries. We provide for inpu t
of a "scaling parameter" s which dictates that the
matr ix entries generated must fall between 10 -8 and 10"

in absolute value.
(v) The abil i ty to generate problems in a format

suitable as inpu t to the part icular l inear p rog ramming
code being tested. For our purposes, this mean t provid-
ing an a lpha-numer ic tape acceptable to CDC'S OPTIMA
system. We therefore decided to generate the cons t ra in t
matr ix one row at a t ime and to tai lor the code's ou tpu t
section so that an OPTIMA input file could be created
directly. For this purpose we are grateful to have had
the use of the ACE II edit ing and matr ix generator
routine. 1 Since inpu t sections of major l inear program-
ming codes tend to have their idiosyncrasies, it will be
essential to tai lor the format of the generated data to
fit the part icular code being tested. Having the matr ix
in s tandard cons t ra in t form does seem, however, to be
acceptable to a n u m b e r of c o m m o n l y used matr ix
generator routines, and it is certainly readily recogniz-
able by those wishing to use the algori thm.

We elected to provide a n u m b e r of al ternatives in

the code. First, if no opt imal solut ion is specified by the
user, then the code will const ruct a problem having all
x i = 1, Sj = l, and Uj = 2 (using the no ta t ion of (5)).

The matr ix G can be either supplied by the user or
generated by the code. In the latter case, G is generated
row-by-row in a pseudo r a n d o m fashion in such a way

as to embody all specified characteristics al luded to
above. On the other hand, no special structure is pro-
vided for G in this case except for ensur ing that the

pr incipal d iagonal entries are nonzero. As a final alter-
native, an opt ion is provided for generat ing an m -- 1
by m - 1 Hilber t segment for G since such an ill-condi-
t ioned matr ix provides numerous possibilities for diffi-
culties in most matr ix inversion routines.

4. C o m p u t e r L i s t i n g wi th C o m m e n t s to User

Sections of c o m m e n t are interspersed for the pur-
pose of explanat ion. These are no t part of the code and
are denoted by - - - before and after each section.

PROGRAM GLUPP (INPUT ,OUTPUT ~TAPE1 ,TAPE2=OUTPUT ,TAPE3 ~TAPE4 jTAPE5 ,TA

IPE6=TAPEI ,TAPET= INPUT)

GLUPp GENERATES LP TEST PROBLEMS WITH KNOWN SOLUTIONS.

COMMON/TOUGH/ M ~N ~RNO ,S ~AK ,NNZ ,NO ~NV ,ANR ,ANS ,PROP

CO~ON/BALLIT/X(5000) ,U(5000) ,GI(5000) ,C(5000)

COb~ION/G OGF/A ,BP ,CC ,RDUZ

CALL RDN

CALL CRE8

CALL ACE

END

- - - If a matrix generator is being used, it should receive input from
the algorithm on tape 6. Also, the call to ACE should be replaced
by a call to the matrix generator being used (set up as a subroutine).
All common throughout the algorithm is labeled common; thus

1 A C E 1I was developed by William Briggs, who at the time was
with Control Data Corporation.

unlabeled common in a matrix generator being linked to it would
not have to be modified. If a matrix generator is not being used,
either the call to ACE can be eliminated or a return jump can be
executed in a dummy subroutine; and tape 6 should be set equal to
output. This will print out the generated matrix in standard con-
straint form, and it can then be prepared for input to the linear
programming code being used. - - -

SUBROUTINE RDN

CO~ON/TOUGH / M ,N, RHO, S ,AK ,NN Z ,NO ,NV ~ANR ,ANS ~PROP

COb~MON/BALLIT/X(5000) ,U(5000) ~GI(5000) ,C(5000)

COI~ON/GOOF/A ,BB ,CC ,KDUZ

FORMAT (215,2F5. I ,II ,12)

READ /4=NUMBER OF RCWS, N=NUMBER OF COLU/~S IN LP PROBLEM (IF N IS

ODD IT WILL BE INCREASED BY 1),S = SCALING PARAMETER (S=2 IS O.K.)~

RHO =APPROXIMATE DENSITY IN PERCENT,NC~--I IF SOLUTION WITH XJ=I IS

WANTED OR NO =2 IF THE DESIRED OPTIMAL SOLUTION X IS TO BE READ

FROM CARDS.

}~UZ IS NEGATIVE IF

HILBERT SEGMENT IS WANTED~ ZERO

IF MATRIX IS TO BE CREATED INTERNALLY~

POSITIVE IF MATRIX G IS SUPPLIED.

- - - The minimum required parameters supplied by the user would
be the following case.

(i) In the first 5 columns using 1 format put the number of
rows desired.

(ii) In columns 5-10, using/format, put the number of columns
desired. (Remember n(columns 5-10) must be less than or equal
to twice m (columns 1-5) -- 1, unless the Hilbert segment is wanted;
in which case m must equal n.)

(iii) In columns 11-15, using F format, state density (in per-
cent) desired. One decimal place is allowed (e.g. 10.7 or 2.1 or .2).

(iv) In columns 16--20, using F format, put scaling factor
desired (e.g. 2.0 will give nonzero entries between -100 and
--1/100, and between 1/100 and 100).

(v) In column 21 place a 1. This will give a solution vector of
all ones.

(vi) In columns 22-23 place a --1 if the Hilbert segment is
wanted (remember, this requires that m = n) or a zero, if not.

For the benefit of a user not familiar with it, a 3 X 3 Hilbert
segment is

1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6
It should be pointed out that this program generates a problem

assuming that the LP code to be used is, like OPTIMA, a minimizing

code.

SUBROUTINE GG~(I)

CO~0N/TOUGR/ /4, N,RHO,S,AK,NNZ,NO,NV,ANR,ANS,PROP

EOI~ION/EALLIT/X(5000) ,U(5000) ,OI (5000) ,C(5000)

COb~ON/O00F/A ,BB ,@C ,KDUZ

IF(KDUZ) 3 ,I ,2

2 READ(7,6) (GI(J),J=I,NV)

IF(EOF,7)9,8

6 FORMAT(SKI2.7)

8 RETURN

9 WRITE(2,1 I)

II FORMAT(52H INSUFFICIENT DATA FOR G MATRIX. GENERATION ABORTED.

CALL EXIT

1 XX=O. 0

DO 500 J=I,NV

IF(J-l) I00,I0,I00

I0 D=A*RANF (XX) ,BB

IF (ABS (D) -CC) I0,20,20

20 IT~P= (D-IFIX(D)) * 10000+SIGN (. 5 ,D)

D= ITE/~/10000+IFIX (D)

GI(J)=D

GO TO 500

585 Communications October 1974
of Volume 17
the ACM Number 10

I00 AN$.ANE- 2.0

D=RANF(XX)

IF(D -PROP)I20,120,110 i

II0 GI(J)=O.0

IF (ANS) I01,102 ,I01

I01 PROP=ANR/AN$

GO TO 500

102 PROP=1.0

GO TO 500

120 ANR=ANE- 2 . 0

IF (ANS) I03,104,103

103 PROP=ANR/ANS

GO TO I0

104 PROP= I. 0

GO TO I0

500 CONTINUE

RETURN

3 DO 5 J=I,NV

§ GI(J)~I/(l+J)

R~IIJRN

END

2 FORMAT (6E12.7)

3 FORMAT(IHI/IH ,19H[ROBLEM PARAMETERS=/IH/,IOX~3HM= ,20X33RN~ ~20X 3

19RDENS ITY=)

4 FORMAT (IH+.,I3X, I5, J 8X j 15,24X,E20.7)

READ I,MjN,E,IiHO,N(,KDUZ

NV=N/2

IF(2*NV-N) 5., i0, i0

5 N=N+I

NV=NV+I

I0 WRITE(2,3)

WRITE(2,4)M ,N ,RHO

IF(N-10000) I01,101,999

I01 IF(NV-M)9,9,999

999 WRITE (2,6)

GO TO 9999

6 FORMAT(72HPROBLEM GENERATION ABORTED; MUST HAVE N .LT. 10000 AND M

I.GT. ONE-HALF N)

998 WRITE (2,7)

GO TO 9999

7 FORMAT(43HPROBLEM GENERATION ABORTED; DENSITY TOO LOW)

9 IF (NO- I) 200,200,100

i00 READ 2, (X(J) ,J=1 ,NV)

GO TO 210

200 DO 201 J=I,NV

201 X(J)=1,0

210 NNZ= ,0 I*REO*M*N-NV

IF(KDUZ) 2i1,212,212

211 M=NV+I

WRITE(2,213)M

213 FORMAT(67H HILBERT SKGMIR~T GENERATION REQUIRES SQUARE G MATRIX, M

CHANGED TO , I5)

212 ANR=NNZ-N

AN$= M*(M-I) -N

PROP=RNR/ABE

BB=IO ~O**S

A= 2.0*BB

CC:lO.O**(-S)

IF (NNE-NV) 998,998,220

220 AK=0.0

DO 221 J=I,NV

AK=AK+X (J)

IF(X(,)) 997,300,400

400 U(J)=X(J)

C(J)=-I.O

GO TO 221

300 U(J)=999999.9999

C(J)=-IO.0

221 CONTINUE

222 DO 223 J:,I,NV

IF(X(J)) 224 ~ 224,225

224 GO TO 223

225 C(J)=-5 .0

U(J)=2.0* X(J)

GO TO 900

223 CONTINUE

900 RETURN

997 WRITE(2,8)J,X(J)

8 FORMAT(23HYOU DUM-DDM, YOU SET X(,15,1IH) EQUAL TO ,E20.7,21H; GEN

IERATION ABORTED.)

9999 RETURN

END

SUBROUTINE CRE8

CO~ON/TOUGH/ M,N,RRO,S,AK,NNZ,NO,NV,ANR,ANS,PROP

CO~D4ON/BALLIT X(5000),U(5OO0),GI(5000),C(5000)

CO~40N/UOOF/A,BB~CCjKDUE

DIMENSION CH(2)

DATA EH(1),CH(2)/IHX,IHS/

2 FORMAT (13H FILE PHD ~ 67X)

WRITE (6,. 2)

I FORMAT(4X,10HSUBMATRIX:~66X)

WRITE(6~I)

KI=NV+IO000

DO I00 L=I,2

I01 FOKMAT(4X ,10(A 1315,1X) ,6X)

100WRITE(6,101) (G~(I,),J,J=IOOO1,Ki)

105 FORIdAT(4X,6H~IS..I,FOX)

WRITE(6,105)

106 FOP~MAT(4X,4HR000,72X)

WRITE(6,106)

107 FORMAT(4X,6(FII.4,1X),4X)

WRITE(6,107)(C(J),J~I,NV)

B=O.0

WI~ITE(6,107)(B,J=I,NV))

K]=M+9999

DO 500 I=IOOOI~KI

I08 FORMAT(4X,IHR,15,70X)

WRITE (6,108)1

CALL GGEN(I-I0000)

WRITE(6,107) ((;I (J) ,J=l ~NV) ~ (GI (J) ,J=l ,NV)

B=0.0

DO 230 J=I,NV

230 B=B+GI(J)*U(J)

112 FORMAT(4Xj2N= ,FII~4~61X)

500 WRITE(6,112)B

510 KITEMP=KI+I

WRITE(6~I08)KIT~P

B=I.0

WRITE(6~I07) (B,J=I,NV)

B=0.0

WRITE(6~I07 (B~J=I~NV)

WRITE(6,512)AK

512 FORMAT(4X,2H= ,FII.4,10X~IR;,S2X)

WRITE(6,601)

601 FORMAT(4H END,76X/4H EOF,76X)

ENDFILE 6

aEWIND 6

RETURN

END

- - - If the matrix is being printed out of rather than read into a
matrix generator the " R EWI N D 6" should be removed

Received January 1974; revised May 1974

586 Communications October 1974
of Volume 17
the A C M Number 10

