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Users of  linear programming computer codes have 
realized the necessity of  evaluating the capacity, effec- 
tiveness, and accuracy of the solutions provided by such 
codes. Large scale linear programming codes at most 
installations are assumed to be generating correct solu- 
tions without ever having been "bench-marked" by test 
problems with known solutions. The reason for this fail- 
ure to adequately test the codes is that rarely are there 
large problems with known solutions readily available. 
This paper presents a theoretical justification and an 
illustrative implementation of  a method for generating 
linear programming test problems with known solutions. 
The method permits the generation of  test problems that 
are of  arbitrary size and have a wide range of  numerical 
characteristics. 
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1. Introduction 

Since the earliest computational experiments with 
linear programming, users of linear programming com- 
puter codes have realized the necessity of evaluating the 
capacity, effectiveness, and accuracy of the solutions 
provided by such codes. Even today, this question of 
adequately "bench-marking" even the most thoroughly 
debugged codes arises, of course, in a variety of applica- 
tions of computers to mathematics and scientific prob- 
lems. The nature of meaningful linear programming 
problems, however, involves quite large matrices (say 
2000 by 4000 with .6 to 2 percent density of nonzero 
elements) and consequently the data handling and gen- 
eration problems become severe even if such problems 
with well-known computational characteristics can be 
found for test purposes. For this reason, tasks like the 
comparison of performance of linear programming 
codes must be carried out with the raw materials (i.e. 
test problems) at hand. Such comparisons are, of neces- 
sity, incomplete. It is our purpose here to present the 
(very elementary) theoretical justification and an illus- 
trative, if rudimentary, implementation of a method for 
generating linear programming test problems with 
known solutions. The method permits the generation of 
test problems that are of arbitrary size and have an ex- 
tremely wide range of numerical characteristics. 

It is not our claim, of course, to have solved all the 
problems of testing linear programming codes. The 
developmental and the validation phases in the construc- 
tion of large-scale linear programming codes present 
numerous challenges for adequately testing the various 
parts of the codes. While these areas, too, are virtually 
untracked territory, good programming practice and 
modern project management techniques can help to 
avert some fiascoes which are undocumented but which 
have become legendary. (An early example is the "nut 
mix code," so called because of its ability to speedily 
solve this textbook problem, which had been used as a 
test problem during development of the code, and to 
solve no other problems.) The area wherein our con- 
tribution lies is that of providing yardsticks for the gross 
evaluation of a number of overall performance charac- 
teristics of reasonably well-debugged codes. Perhaps one 
of the most useful applications of our technique could be 
expected to be that of measuring the solution time and 
the accuracy of some well-known and widely used linear 
programming systems when employed to solve very large 
problems. 

Finally, the availability, in quantity, of a meaningful 
variety of test problems may help to influence the imple- 
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mentation of new solution techniques for the general 
linear programming problem. All too often, an elegant 
theory, rather than having gone hand-in-hand with 
effective performance in practice of new algorithms, has 
been a substitute for the performance. 

2.  T h e o r e t i c a l  B a s i s  

The mathematical observation underlying our proce- 
dures is not too deep. The main idea is that it is possible 
to construct a linear programming problem whose solu- 
tion is obvious by inspection and then to restate the 
problem more generally without changing the set of 
feasible solutions. "Generally" here means that the 
solution would no longer be obvious were it not for the 
knowledge about the origin of the restated problem. 

Consider the linear programming problem 

max ~ dj Yi 
1=1 

subject to: ~ - 1  aj Y3" = K 
0_< yj < Mj, for j =  1, . . . , n .  (1) 

In (1), all di, aj, and M3. as well as Kare  assumed to 
be positive. It is clear that no loss of generality is caused 
by assuming all aj = 1, so henceforth we should con- 
sider the problem 

max ~ CjXj 

subject to: )--~j~l xj = K 
0_< xj. < Uj, f o r j  = 1 , . . . , n .  (2) 

Or, restated in matrix notation, 

max cx  

subject to: ex = K 

0 < x _< u .  (3) 

In (2) and (3), the quantities cj and Uj correspond 
to dHai  and M i / a j  from (1) ; the vector e is a vector of 
ones, and juxtaposition of vectors and/or  matrices will 
be used throughout to denote the usual multiplications. 
Again with no loss of generality, we shall assume that 
ci > c2 > . - .  > cn. 

An optimal solution, x*, to (3) is easily obtainable 
by inspection; let xl* = min (K, U1), define /(i = K 
- -  x1*, and then calculate successive xi* and auxiliary 
K~- variable via the relations xj* = min (Kj_~, Us), 
K~. = Kj_x -- x~.*. However, now adjoin slack variables, 
s, in (3). The resulting system is 

max cx  + Os 

subject to: ex  q- Os = K 

I x  + l s =  U 

x, s _> 0 (4) 

If  now we allow G to be an arbitrary r by n matrix (with 
r _ n) which has full column rank, then the set of 
equations obtained by premultiplying the U constraints 

in (4) by G (namely Gx + Gs = GU) has exactly the 
same solution set as l x  q- Is = U since any such 
matrix G has at least one left inverse G ~. The linear 
programming problem which results from using the 
new constraints is 

max(c ,  0 ) ( s  x )  

subject to: (G O) (sX) (GK',) 

x, s > 0. (5) 

The solution x* is not so obvious any longer (unless 
one happens to know the left inverse G~)! In fact, a 
slight additional complication could be introduced into 
(5) by allowing G to be r by ( n + l )  and premultiplying 
all the equations in (4) by such a G. 

The point of what we have done should now be ap- 
parent. Since the matrix G is completely arbitrary (ex- 
cept for the restriction to linearly independent columns), 
it can be chosen to embody any particular numerical 
characteristics desired. Thus, by controlling such aspects 
as the proportion of nonzero entries in G and the range 
(in orders of magnitude, say) of these nonzero entries, 
it is possible to construct a linear programming problem 
(5) having desired properties with regard to density, 
scaling, matrix size, etc. On the other hand, any special 
matrix structures (e.g. incidence matrices and block- 
angular matrices) can be imparted to (5) via G; the only 
inherent limitations are that G be of full column rank, 
that the constraint matrix have the form 

o) 
and that GU represent a positive linear combination of  
the columns of G. 

3.  I m p l e m e n t a t i o n  

The code we present here is written in Fortran and 
was originally designed for use on the Control Data 6600 
computer system of the University of Texas; with detail 
changes the program should be adaptable to most com- 
puters having magnetic tape capability and a Fortran 
compiler. 

Objectives which the code was intended to accom- 
plish include the following: 

(i) The construction of a linear programming prob- 
lem having a predetermined point as its optimal 
solution. 

(ii) The ability to provide a constraint matrix of 
any desired size (within the theoretical limitation that 
G have full column rank). If  an m by p final matrix is 
desired, then G must have r = m -- 1, and if the column 
rank of G is to be full, p _< 2 (m-- 1). 

(iii) The ability to control the density (proportion 
of nonzero entries) of the constraint matrix. 

(iv) The ability to control the range of the magni- 
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tude of the nonzero  matr ix  entries. We provide for inpu t  
of a "scaling parameter"  s which dictates that  the 
matr ix  entries generated must  fall between 10 -8 and  10" 

in absolute  value. 
(v) The abil i ty to generate problems in a format  

suitable as inpu t  to the part icular  l inear p rog ramming  
code being tested. For  our  purposes,  this mean t  provid- 
ing an a lpha-numer ic  tape acceptable to CDC'S OPTIMA 
system. We therefore decided to generate the cons t ra in t  
matr ix  one row at a t ime and  to tai lor the code's  ou tpu t  
section so that  an OPTIMA input  file could be created 
directly. For  this purpose we are grateful to have had 
the use of the ACE II edit ing and  matr ix  generator  
routine.  1 Since inpu t  sections of major  l inear  program-  
ming  codes tend to have their idiosyncrasies, it will be 
essential to tai lor the format  of the generated data  to 
fit the part icular  code being tested. Having  the matr ix  
in s tandard  cons t ra in t  form does seem, however, to be 
acceptable to a n u m b e r  of c o m m o n l y  used matr ix  
generator  routines,  and  it is certainly readily recogniz- 
able by those wishing to use the algori thm. 

We elected to provide a n u m b e r  of al ternatives in 

the code. First, if no opt imal  solut ion is specified by the 
user, then the code will const ruct  a problem having all 
x i  = 1, Sj = l, and  Uj = 2 (using the no ta t ion  of (5)). 

The matr ix  G can be either supplied by the user or 
generated by the code. In  the latter case, G is generated 
row-by-row in a pseudo r a n d o m  fashion in such a way 

as to embody  all specified characteristics al luded to 
above.  On the other hand,  no special structure is pro- 
vided for G in this case except for ensur ing that  the 

pr incipal  d iagonal  entries are nonzero.  As a final alter- 
native, an opt ion is provided for generat ing an m -- 1 
by m - 1 Hilber t  segment  for G since such an ill-condi- 
t ioned matr ix  provides numerous  possibilities for diffi- 
culties in most  matr ix  inversion routines.  

4. C o m p u t e r  L i s t i n g  wi th  C o m m e n t s  to User 

Sections of c o m m e n t  are interspersed for the pur-  
pose of explanat ion.  These are no t  part  of  the code and  
are denoted by - - - before and after each section. 

PROGRAM GLUPP ( INPUT ,OUTPUT ~TAPE1 ,TAPE2=OUTPUT ,TAPE3 ~TAPE4 jTAPE5 ,TA 

IPE6=TAPEI ,TAPET= INPUT) 

GLUPp GENERATES LP TEST PROBLEMS WITH KNOWN SOLUTIONS. 

COMMON/TOUGH/ M ~N ~RNO ,S ~AK ,NNZ ,NO ~NV ,ANR ,ANS ,PROP 

CO~ON/BALLIT/X(5000) ,U(5000) ,GI(5000) ,C(5000) 

COb~ION/G OGF/A ,BP ,CC ,RDUZ 

CALL RDN 

CALL CRE8 

CALL ACE 

END 

- - - If a matrix generator is being used, it should receive input from 
the algorithm on tape 6. Also, the call to ACE should be replaced 
by a call to the matrix generator being used (set up as a subroutine). 
All common throughout the algorithm is labeled common; thus 

1 A C E  1I was developed by William Briggs, who at the time was 
with Control Data Corporation. 

unlabeled common in a matrix generator being linked to it would 
not have to be modified. If a matrix generator is not being used, 
either the call to ACE can be eliminated or a return jump can be 
executed in a dummy subroutine; and tape 6 should be set equal to 
output. This will print out the generated matrix in standard con- 
straint form, and it can then be prepared for input to the linear 
programming code being used. - - - 

SUBROUTINE RDN 

CO~ON/TOUGH / M ,N, RHO, S ,AK ,NN Z ,NO ,NV ~ANR ,ANS ~PROP 

COb~MON/BALLIT/X(5000) ,U(5000) ~GI(5000) ,C(5000) 

COI~ON/GOOF/A ,BB ,CC ,KDUZ 

FORMAT (215,2F5. I ,II ,12) 

READ /4=NUMBER OF RCWS, N=NUMBER OF COLU/~S IN LP PROBLEM (IF N IS 

ODD IT WILL BE INCREASED BY 1),S = SCALING PARAMETER (S=2 IS O.K.)~ 

RHO =APPROXIMATE DENSITY IN PERCENT,NC~--I IF SOLUTION WITH XJ=I IS 

WANTED OR NO =2 IF THE DESIRED OPTIMAL SOLUTION X IS TO BE READ 

FROM CARDS. 

}~UZ IS NEGATIVE IF  

HILBERT SEGMENT IS WANTED~ ZERO 

IF MATRIX IS TO BE CREATED INTERNALLY~ 

POSITIVE IF MATRIX G IS SUPPLIED. 

- - - The minimum required parameters supplied by the user would 
be the following case. 

(i) In the first 5 columns using 1 format put the number of 
rows desired. 

(ii) In columns 5-10, using/format, put the number of columns 
desired. (Remember n(columns 5-10) must be less than or equal 
to twice m (columns 1-5) -- 1, unless the Hilbert segment is wanted; 
in which case m must equal n.) 

(iii) In columns 11-15, using F format, state density (in per- 
cent) desired. One decimal place is allowed (e.g. 10.7 or 2.1 or .2). 

(iv) In columns 16--20, using F format, put scaling factor 
desired (e.g. 2.0 will give nonzero entries between -100 and 
--1/100, and between 1/100 and 100). 

(v) In column 21 place a 1. This will give a solution vector of 
all ones. 

(vi) In columns 22-23 place a --1 if the Hilbert segment is 
wanted (remember, this requires that m = n) or a zero, if not. 

For the benefit of a user not familiar with it, a 3 X 3 Hilbert 
segment is 

1/2 1/3 1/4 
1/3 1/4 1/5 
1/4 1/5 1/6 . . . .  
It should be pointed out that this program generates a problem 

assuming that the LP code to be used is, like OPTIMA, a minimizing 

code. 

SUBROUTINE GG~(I) 

CO~0N/TOUGR/ /4, N,RHO,S,AK,NNZ,NO,NV,ANR,ANS,PROP 

EOI~ION/EALLIT/X(5000) ,U(5000) ,OI (5000) ,C(5000) 

COb~ON/O00F/A ,BB ,@C ,KDUZ 

IF(KDUZ) 3 ,I ,2 

2 READ(7,6) (GI(J),J=I,NV) 

IF(EOF,7)9,8 

6 FORMAT(SKI2.7 ) 

8 RETURN 

9 WRITE(2,1 I) 

II FORMAT(52H INSUFFICIENT DATA FOR G MATRIX. GENERATION ABORTED. 

CALL EXIT 

1 XX=O. 0 

DO 500 J=I,NV 

IF(J-l) I00,I0,I00 

I0 D=A*RANF (XX) ,BB 

IF (ABS (D) -CC) I0,20,20 

20 IT~P= (D-IFIX(D)) * 10000+SIGN (. 5 ,D) 

D= ITE/~/10000+IFIX (D) 

GI(J)=D 

GO TO 500 
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I00 AN$.ANE- 2.0 

D=RANF(XX) 

IF(D -PROP)I20,120,110 i 

II0 GI(J)=O.0 

IF (ANS) I01,102 ,I01 

I01 PROP=ANR/AN$ 

GO TO 500 

102 PROP=1.0 

GO TO 500 

120 ANR=ANE- 2 . 0 

IF (ANS) I03,104,103 

103 PROP=ANR/ANS 

GO TO I0 

104 PROP= I. 0 

GO TO I0 

500 CONTINUE 

RETURN 

3 DO 5 J=I,NV 

§ GI(J)~I/(l+J) 

R~IIJRN 

END 

2 FORMAT (6E12.7) 

3 FORMAT(IHI/IH ,19H[ROBLEM PARAMETERS=/IH/,IOX~3HM= ,20X33RN~ ~20X 3 

19RDENS ITY= ) 

4 FORMAT (IH+.,I3X, I5, J 8X j 15,24X,E20.7) 

READ I,MjN,E,IiHO,N( ,KDUZ 

NV=N/2 

IF(2*NV-N) 5., i0, i0 

5 N=N+I 

NV=NV+I 

I0 WRITE(2,3) 

WRITE(2,4)M ,N ,RHO 

IF(N-10000) I01,101,999 

I01 IF(NV-M)9,9,999 

999 WRITE (2,6) 

GO TO 9999 

6 FORMAT(72HPROBLEM GENERATION ABORTED; MUST HAVE N .LT. 10000 AND M 

I.GT. ONE-HALF N) 

998 WRITE ( 2,7 ) 

GO TO 9999 

7 FORMAT(43HPROBLEM GENERATION ABORTED; DENSITY TOO LOW) 

9 IF (NO- I ) 200,200,100 

i00 READ 2, (X(J) ,J=1 ,NV) 

GO TO 210 

200 DO 201 J=I,NV 

201 X(J)=1,0 

210 NNZ= ,0 I*REO*M*N-NV 

IF(KDUZ) 2i1,212,212 

211 M=NV+I 

WRITE(2,213)M 

213 FORMAT(67H HILBERT SKGMIR~T GENERATION REQUIRES SQUARE G MATRIX, M 

CHANGED TO , I5)  

212 ANR=NNZ-N 

AN$= M*(M-I) -N 

PROP=RNR/ABE 

BB=IO ~O**S 

A= 2.0*BB 

CC:lO.O**(-S) 

IF (NNE-NV) 998,998,220 

220 AK=0.0 

DO 221 J=I,NV 

AK=AK+X (J) 

IF(X(,) ) 997,300,400 

400 U(J)=X(J) 

C(J)=-I.O 

GO TO 221 

300 U(J)=999999.9999 

C(J)=-IO.0 

221 CONTINUE 

222 DO 223 J:,I,NV 

IF(X(J) ) 224 ~ 224,225 

224 GO TO 223 

225 C(J )=-5 .0  

U(J)=2.0* X(J) 

GO TO 900 

223 CONTINUE 

900 RETURN 

997 WRITE(2,8)J,X(J) 

8 FORMAT(23HYOU DUM-DDM, YOU SET X(,15,1IH) EQUAL TO ,E20.7,21H; GEN 

IERATION ABORTED. ) 

9999 RETURN 

END 

SUBROUTINE CRE8 

CO~ON/TOUGH/ M,N,RRO,S,AK,NNZ,NO,NV,ANR,ANS,PROP 

CO~D4ON/BALLIT X(5000),U(5OO0),GI(5000),C(5000) 

CO~40N/UOOF/A,BB~CCjKDUE 

DIMENSION CH(2) 

DATA EH(1),CH(2)/IHX,IHS/ 

2 FORMAT (13H FILE PHD ~ 67X) 

WRITE (6,. 2) 

I FORMAT(4X,10HSUBMATRIX:~66X) 

WRITE(6~I) 

KI=NV+IO000 

DO I00 L=I,2 

I01 FOKMAT(4X ,10(A 1315,1X ) ,6X) 

100WRITE(6,101) (G~(I,),J,J=IOOO1,Ki) 

105 FORIdAT(4X,6H~IS..I,FOX) 

WRITE(6,105) 

106 FOP~MAT(4X,4HR000,72X) 

WRITE(6,106) 

107 FORMAT(4X,6(FII.4,1X),4X) 

WRITE(6,107)(C(J),J~I,NV) 

B=O.0 

WI~ITE(6,107)(B,J=I,NV)) 

K]=M+9999 

DO 500 I=IOOOI~KI 

I08 FORMAT(4X,IHR,15,70X) 

WRITE (6,108)1 

CALL GGEN(I-I0000) 

WRITE(6,107) ((;I (J) ,J=l ~NV) ~ (GI (J) ,J=l ,NV) 

B=0.0 

DO 230 J=I,NV 

230 B=B+GI(J)*U(J) 

112 FORMAT(4Xj2N= ,FII~4~61X) 

500 WRITE(6,112)B 

510 KITEMP=KI+I 

WRITE(6~I08)KIT~P 

B=I.0 

WRITE(6~I07) (B,J=I,NV) 

B=0.0 

WRITE(6~I07 (B~J=I~NV) 

WRITE(6,512)AK 

512 FORMAT(4X,2H= ,FII.4,10X~IR;,S2X) 

WRITE(6,601) 

601 FORMAT(4H END,76X/4H EOF,76X) 

ENDFILE 6 

aEWIND 6 

RETURN 

END 

- - - If the matrix is being printed out of  rather than read into a 
matrix generator the " R EWI N D  6" should be removed . . . .  
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