
Software for Roundoff Analysis

WEBB MILLER

The Pennsylvania State University

Fortran programs for locating numerical instabihties in algebraic processes are given. They easily
diagnose known instabilities in certain versions of the QR algorithm and the Gram-Schmidt
method.

To analyze a given numerical algorithm we proceed as follows. A number which measures the
effect of roundoff error is assigned to each set of data. "Hill-climbing" procedures are then applied
to search for values large enough to signal instability.

Key Words and Phrases: automatic roundoff analysis, numerical stabihty, QR algorithm,
Gram-Schmldt orthogonalization, streamlined polynomial forms
CR Categories: 5.10, 5.11, 5.14

1. INTRODUCTION

Among the dangers faced by the designer of mathemat ica l software is the specter
of a product which is numerically unstable. The major weapons currently at the
designer's disposal are (i) testing the product upon sets of data for which a solution
can be found by alternative means and (ii) formal roundoff analysis. Each of these
has a defect. The first is sometimes insufficient, and the second requires an expendi-
ture of effort tha t cannot always be afforded.

There is convincing evidence tha t weapons (i) and (ii) need to be augmented
where possible. A square-root-free QR algorithm for computing the eigenvalues of
a symmetric tridiagonal matr ix was published by Ortega and Kaiser [-171 in 1963.
The algorithm appears (in slightly modified form) in Wilkinson's treatise The
Algebraic Eigenvalue Problem [-25, p. 5671, surely a definitive work on rounding
errors. An Algol 60 version was published in the Communications of the ACM [-4J.
Apparent ly the algorithm was subjected to extensive testing.

However, it is numerically unstable [-9, 231. The error, once committed, propa-
gates persistently. The algorithm is advocated by more than one numerical analysis
text published since the announcement of its instability. I t is impossible to judge the
cost of the oversight.

Perhaps the most unfortunate aspect of this lapse is the ease with which it could
have been avoided. Discovery of the instabili ty is almost automat ic given (1) an

Copyright (~) 1975, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
This work was supported in part by the National Science Foundation under NSF Grant GJ-42968.
Author's address: Computer Science Department, The Pennsylvania State Umversity, Uni-
versity Park, PA 16802.

ACM Transactions on Mathematical Software, Vol 1, No. 2, June 1975.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355637.355639&domain=pdf&date_stamp=1975-06-01

Software for RoundofF Analysis 109

appropriate general approach to rounding errors, (2) a few simple Fortran pro-
grams, (3) a minimal understanding of the eigenvalue problem, (4) a statement
of the Ortega-Kaiser algorithm, and (5) a few hours of rather routine work.

The goal of this paper is to supply ingredients (1) and (2) (all five are combined
in Section 8). The basic idea is to use the computer to search for a set of data for
which rounding errors cause a given numerical method to produce inaccurate
results. First, a number p(d) is assigned to each set d of data in such a way that
large values of p correspond to d for which the effect of rounding error is excessive.
In addition, the function p should be "smooth" and "easy to evaluate." The second
step is to apply a numerical "hill-climbing" routine to p.

Proper understanding of this technique requires the realization that a number of
idealizations and concessions have been made. In Section 2 we will lay this ground-
work. The basic approach is outlined in Sections 3 and 4, with actual programs
given in Section 5. Sections 7 through 10 contain case studies designed to illustrate
the scope of these methods. The reader interested in more rigorous justification of
our techniques is invited to consult Miller [-13, 15].

2. THE GOAL; THE PRICE

Some of the most striking successes in the field of roundoff analysis have come in
the understanding of error propagation in algebraic processes such as Gaussian
elimination, orthonormalization, and the QR algorithm (see Wilkinson [-24-26]).
Such analyses are typically very tedious, though not conceptually difficult. This
suggests that the computer be employed to do at least part of the work.

To delineate the current status of automatic roundoff analysis we need to draw
the distinction between local and global techniques. We do this to make explicit a
major difference between our approach, which is "global," and previous efforts,
virtually all of which are "local."

By local computer error analysis we mean use of the computer to bound (or to
estimate) the error incurred in a single computation. The basic idea is to use special
systems of computer arithmetic (e.g. interval arithmetic [-161 or unnormalized
arithmetic) to monitor the error in each computed value. In general these schemes
are designed to provide the user with information about the total error (including,
for example, the effects of data uncertainty) in his results.

By global roundoff analysis we mean the determination of how rounding error
propagates in a given numerical method for many or all permissible sets of data.
Perhaps the best known fact of this type is Wilkinson's result that, roughly, the
computed solution of the n X n system of linear equations Ax = b found by Gaus-
sian elimination with row interchanges satisfies (A + ~A)x = b, where][~A Jl -<
u.f(n) . lJ A]J. Here]J. J J is a certain matrix norm, f is a specified function of n,
and u is a bound on the local rounding error (for more details see Stewart [-21, pp.
148-1591). These analyses are generally performed only once for a given algorithm
and they are usually not intended to provide the user with realistic information
about the error in his results. Furthermore, rounding errors are often treated
separately (however, see Case Study IV, Section 10). In fact, to get meaningful
results it may be necessary to compensate for inherent sensitivity to data error
(see Stewart [-21, pp. 69-80]).

A C M Transact ions on Mathemat ica l Software, Vol. 1, No 2, June 1975

1 10 W. Miller

Only very recently have attempts been made to find nontrivial uses for the
computer in global roundoff analyses. Preliminary work has been done on the use
of theorem-proving techniques (Hull et al. [8]), symbol-manipulation programs
(Kahan [10], Stoutemyer [22]), and certain ad hoc methods (Miller [11, 12]).
The motivation for these attempts resembles that for automatic program verifica-
tion (Elspas [5]) more than it resembles the motivation for interval arithmetic.

The goal of this paper is to explain a computer technique for global roundoff analysis
which is of definite practical value. We have no intention of trying to automate
analyses as precise as, say, those depending on the idiosyncrasies of a particular
machine. Nor shall we consider numerical methods for processes from real analysis,
like differential equations. Rather, we will take aim at roundoff analyses for "alge-
braic processes." Our techniques can successfully analyze algorithms from areas
other than linear algebra (see Brent [3] and Case Study IV, Section 10), but the
exact domain must be left imprecise since we are far from a complete understanding
of the range of applicability of these methods.

Even the limited goal of automating roundoff analyses of algebraic processes
seems impossible. Further concessions must be made. For this paper we make the
following sacrifices.
(1) Our methods are diagnostic and not prescriptive. The most they can do is to
locate numerical instability. No hint is given for correcting the problem.
(2) No attempt is made to deal with an arbitrary numerical algorithm complete
with looping and branching. Instead, small dimensions are fixed to limit the program
to approximately 100 (or fewer) arithmetic operations. Furthermore, possible
paths through any comparisons are treated separately.
(3) We consider only "worst case" results, never statements about (i) the
"probable" error for a fixed set of data or (ii) about the error for an "average" set
of data. For algorithms of the type we are considering there are important proba-
bilistic statements of the second kind, like Wilkinson's assertion (e.g. [24, 105-
107]) that the computed solution of triangular equations usually has small relative
error (even given the worst possible combination of rounding errors). Wilkinson
draws many interesting conclusions from this fact. On the other hand, probabilistic
statements of the first type (see [24, pp. 25-26]) are of less interest when analyzing
programs with only, say, 100 operations.
(4) A "heuristic" approach is used instead of seeking a method which always
produces full information. Thus the technique advocated here will sometimes yield
misleading results (see Example 2, Section 4, and Case Study I, Section 7).

Limited experimentation indicates that in spite of concession (4) we can get
surprisingly accurate information at a small cost. The first three sacrifices seem to
be more important. For example, consider the following informal statements (for
more details see Stewart [21, pp. 148-159J).

(i) Without any form of pivoting, Gaussian elimination is unstable.
(ii) With partial pivoting, the effect of rounding error can grow exponentially
with the dimension n. With complete pivoting it is bounded by a small polynomial
p(n).
(iii) The possible exponential growth with partial pivoting is extremely unlikely.

Our techniques are designed to verify statements like (i). For (ii) they are of
doubtful value, and for (iii) they are probably worthless.
A C M Transac t ions on Ma thema t i ca l Software, Vol 1, No 2, June 1975

Software for Roundoff Analysis 1 1 1

There is yet another concession to be made, namely, that we will use an idealized
model of machine arithmetic. First we make the standard simplifications of ignoring
overflow and underflow and of using only one of the properties of rounding error,
i.e. a uniform bound (3.0) on the local error. Second is the (not so standard)
idealization of considering only the first order effects of errors (i.e. we use deriva-
tives). By considering bogus rounding errors we open the door for pessimistic
results; by neglecting products of rounding errors we introduce a tendency for
optimistic results and rule out the possibility of showing, for example, that a com-
putation "loses half of the significant digits."

3. ROUNDING ERRORS AND OTHER PERTURBATIONS

We now consider ways of defining a number p(d) which measures the maximum
effect of rounding errors upon the computation by a fixed algorithm with data d.
The specific results of this paper concern the sensitivity of a single number R (d, 3)
to rounding errors 3. The more general case of vector-valued R (d, 3) is considered
in Miller [,13, 151.

The functions R(d, ~) arise as follows. Consider a fixed sequence of m binary
operations, + , - , × , or / , applied to a set d = (d ~ , . . . , d~) of data (we will
later allow the unary operation %/). A relative rounding error of 5~ is associated
with the j th operation. Hence the computed value of any intermediate result V is
a function V(d, ~), ~ = (~ , . . . , ~m).

For example, let d = (a, b) and consider the algorithm

X e - - - a X b

Y e - - X + b

Ze---a × Y

We have

X(d, 3) = ab(1 + ~1)

Y(d, 3) = ['ab(1 + ~1) + b](1 + 52)

Z(d, 3) = {a[ab(1 + 51) + 51(1 + 53)}(1 + 5s).

Thus the rounding errors enter in the manner of floating-point arithmetic with a
guard digit (see Wilkinson [.24, pp. 7-11]). Other modes, for example, no guard
digit or fixed-point arithmetic, can be handled with slight modifications.

Often the choice R(d, ~) = Vm(d, ~) = "the last computed value" is made
(for example, see Case Study I, Section 7). More generally we will take R(d, 3) to
be some function of d and of the m computed intermediate values V~ (d, 3).

Intuitively, our only constraint upon ~ is that the 5j are uniformly bounded by
some miniscule constant u. Using the uniform norm I 3[= maxl<~<m 15~ J we can
express this requirement as

1 5 [- < u w h e r e u > 0 i s f i x e d . (3.0)

Our interest often centers on the problem of determining the maximum sensi-
t ivity of R (d, ~) to the errors 3. The number

~(d) = ~ J (OR/05~) (d, 0) [(3.1)

ACM Transact ions on Mathemat ica l Software, ¥ol . 1, No 2, June 1975.

112 W. Miller

measures this sensitivity in the sense that we have the approximate bound

I R(d, B) - R(d, 0) I ~ a (d) . u (3.2)

whenever I ~1 -< u. Notice that (3.2) is merely a natural generalization of the
single-variable approximation, I r(h) - r(O) [~ [r'(O) [.u, whenever I hl _< u.
Intuitively, ~ is roughly the maximum factor by which the error in the computed
value of R(d) = R(d, 0) can exceed the roundoff level u.

More formally we have the following easy result, whose proof we omit.
Proposition 1. Let d be such that R(d, B) is a differentiable function of ~ at ~ = O.

Then a(d) = lim~_.o+ ~(d, u), where ~(d, u) = u-l.supl~j <~ J R(d, ~) -- R(d, 0) [.
Notice in Proposition 1 that [R(d, ~) - R(d, 0) J _< z(d, u) .u holds exactly.

We work with z(d) instead of a(d, u) since the latter is harder to evaluate and
has a "machine dependent" flavor.

I t is often the case that for certain sets d of data we have reason to expect ~ (d)
to be large even for "stable" algorithms. These d which are inherently hyper-
sensitive to small errors are called ill-conditioned (with respect to R). We can often
determine a reasonable "condition number" K (d) > 0 which measures the extent
of this ill-condition: d is ill-conditioned if K(d) is large, well-conditioned if K(d)
is small.

We then define

)/ p(d) = a (d) / K (d) = I(OR/O~) (d, 0) I K (d) . (3.3)

Then we have the approximate bound

I R(d, ~) - R(d, 0) I ~ p(d).g(d).u (3.4)

whenever] ~ I -< u. Intuitively, if p(d) is always of moderate size, then the effect of
rounding errors is never much worse than can be explained by ill-condition.

One "condition number" which is often useful measures the sensitivity of the
"exact value" R (d) = R (d, 0) to rounding errors in the data d. I t is easily seen that
the largest possible effect of changing d, to d, 1 = d,(1 + v,), where J ~ [_< u for
i = 1 , 2 , . . . , n , is IR(all, 0) - R(d, O) J = u . ~ : = l l d , . (O R / O d ~) (d , 0) I, a
natural generalization of the single variable approximation [r ix" (1 + ~)) - r (x) [=
17r].] x .r ' (x) [. Using g (d) = ~ ' -1Jd , . (OR/Od~) (d , 0) I in (3.3) we have the
intuitive interpretation that for

: : (3 . 5)

the effect of rounding error at d is at most p times worse than the possible effect of
merely rounding the data. (For a formal interpretation see [-15, theorem 2.1]).
Functionals p of the form (3.5) are employed in Sections 4 and 7.

4. SOME SIMPLE EXAMPLES

To illustrate the notation of Section 3 we will consider three elementary examples
of functionals

o(a) = I / I. (4.1)
331 ~ 1

A C M Transac t ions on Ma thema t i ca l Software, Vol. 1, No. 2, June 1975.

Software for Roundo~ Analysis 1 13

In each case n = 1 (i.e. the program has a single input) and R(d, 6) = V,~(d, 6)
(i.e. we consider the effect of rounding errors upon the final computed value).

Example 1 (see Figure 1). For

x+---dXd, y~---d+x, ~ ¢ - - y - x ,
we have

R(d, O) --- d,

and using (4.1),

R(d, 6) = {I'd + # (1 + ~1)](1 + ~) - d2(1 + $,)}(1 + ~3),

p(d) = ([d + d 21+]dl)//Id[.

When p (d) is very large we run the risk that roundoff in R (d, 6) will yield a much
poorer result than can be explained by the sensitivity of R to small variations in
d. Hence we seek those values of d for which p (d) is huge.

Clearly, hill-climbing techniques applied to p(d) anywhere except at d = - 1 or
d = 0 will reveal tha t the given process is numerically unstable for d of large
magnitude.

Example 2 (see Figure 2). For

x + - - d X d , y + - d + x , z+-- -y -d ,
we find

p(d) = (242 + I d + d ~ I) /2d 2.

Hill-climbing started at d < -- 1 gives the mistaken appearance that p is bounded
by ~. From d > -- 1, d # 0, one finds the numerical instability around d = 0.

~(d)

(- I , I1

-"-d

p(d)

1-1,11

L d

Fig. 1 Fig. 2

>(d)

1-1,5/41

~ d

Fig. 3
A C M Transactions on Mathematical Software, Vol 1, No 2, June 1975.

1 14 W. Miller

Example 3 (see Figure 3). For

v(-- . -dXd, w*--.d-{-v, x (- - . d X v , y (- - w - { - x , z ~ - - - y - v ,
we find

p(d) = (2 I d31 --b [d-l- d~ [~- J d + d2 -t - d~ I -t- I d + d31) /J d -t - 3d3[.

From d > - 1, d ~ 0, one converges to the actual bound of just under 3.2 for p.
Beginning at d < -- 1, hiU-climbing does not pass ~.

5. THE PROGRAMS

Listing 1 shows the following three Fortran routines to aid roundoff analyses of the
type described above:
(1) a calling program which performs input and output duties;
(2) a primitive numerical maximizer called UP;
(3) a subroutine ROUND which generates each value computed by a given
straight-line program and which simultaneously computes the partial derivatives
of the value with respect to the given set of data and to the rounding errors.

These programs are to be used in conjunction with a user-supplied subroutine
called USER, which performs the actual evaluation of p(d). In the case studies we
give examples of USER subroutines and of typical sets of data.

6. SOME COMMENTS ON THE PROGRAMS

Our experience with these programs suggests that computer costs are often negli-
gible (see Sections 7 through 10). The programs reflect the decision to consider
portability, modifiability, and simplicity over efficiency. In cases where efficiency
is a dominant criterion, for instance, if a straight-line program with hundreds of
instructions is to be tested, two changes immediately suggest themselves.
(1) A machine language subroutine could replace ROUND for the evaluation of
partial derivatives. In fact, one can easily imagine a "precompiler" which accepts,
say, a Fortran-like specification of the algorithm (perhaps written with DO-loops)
and which produces such a subroutine.
(2) More sophisticated maximization techniques could be employed. However,
this modification is not as natural as it may seem. For our purposes the performance
near finite local maxima is relatively unimportant. It is the ability to locate singu-
larities that really counts. The usual efficient maximization routines often perform
very poorly in this respect.

Modifiability of the maximization routine is especially important. For instance,
one might want to test an algorithm which uses conditional branching. It is quite
easy to modify our subroutine UP so that the search is limited to d for which, say,
the tenth computed value is positive. In extreme cases stability of the algorithm is
needed only on a domain so restricted that the maximizer can be removed and a
few representative samples of p taken (see Case Study IV, Section 10).

Other modifications are also useful. Perhaps most natural are changes which
allow analysis of straight-line programs involving operations other than -1-, - ,
X , / , and %/. It is easy to accommodate unary minus, unary inverse, trigonometric
ACM Transact ions on M a t h e m a t i c a l Software, Vol. 1, No. 2, June 1975.

Software for Roundoff Analysis 1 15

L I S T I N G 1

COMMON VALUE(IOO),OELTAX(IOO,20),DELTAE(IOO~IO0),Ci20)
ItRHO~STOPX,NLOP(IOO)~NOPER(IOO)tNRCP(IOO)tkDP~NDIM

DOUBLE PRECISION VALUE,DELTAX,DELTAE~D~RHCtSTOPXt~IG
C THIS MAIN PROGRAM PERFORMS INPUT/OUTPUT FbNCTIChS (ERROR
C MESSAGES MAY ALSO BE GENERATED BY THE SUBROUTINE RCUkC).-
C THE FOLLOWING ARE REAC.
C NOP - THE NUMBER OF OPERATIONS IN THE STRAICFT-LIKE
C PROGRA~ TO BE ANALYZED. I.LE.NCP.LE.IOO.
C NLOP(I) - THE LEFT OPERAND IM THE I-TH IkSTRUCTICN. THE
C CONSTANT I IS ENCODED AS O, THE K-TH EhTRY CF THE ~AT~
C AS K, AND THE J-TH COMPUTED VALUE ~S J+IO0.
C NOPER(1) - THE OPERATOR IN THE I-TH I~STRUCTICK. + , -~ * ,
C / AND SORT ARE ENCODED AS It2,3~4 ANC 5, RESPECTIVELY.
C NROP(I} - THE RIGHT OPERAND IN THE I-TH IhSTEUCTIOh,
C ENCODED LIKE NLOP. FOR SORT USE KRCP(I) = O.
C NDIM - THE NUMBER OF DATA ENTRIES. I.LE.~DIV.LE.20.
C O(l) - THE I-TH ENTRY IN THE INITIAL SET CF DATA.
C STOPX - EXECUTION STOPS IF RHC ATTAIKS THIS VALUE.
C ITMAX - THE NUMBER CF TIMES THE MAX(PlIER IS TC BE
C APPLIED. TYPICAL VALUES ARE 5-10.
C THE SUBROUTINE UP IS CALLED TO ALTER D SC AS TC INCREASE
C RHO. RHO IS EVALUATED BY THE SUBR~UTIhE RCUhD. FOR EACH K,
C I.LF.K.LE.NOP, ROUND COMPUTES THE FCLLCWIhG.
C VALUE(K) - THE RESULT OF THE K-TH OPERATICh GIVEN TEE
C CURRENT D.
C DELTAX(K,I) - THE VALUE AT (0~0) OF THE R~RTIAL
C ~ERIVATIVE OF THE K-TH COMPUTED VALUE WITH RESPECT TC
C D I I I , I .LE.I .LE.NDIM.
C DELTAEIKtJ) - THE VALUE AT (D,O) CF THE P~RTI~L
C DERIVATIVE OF THE K-TH COMPUTED VALUE WITH RESPECT TO
C THE J-TH ROUNDING ERROR. I.LE.JoLE.kCP.
C ROUND THEN CALLS THE USER-SUPPLIED SUBROUTIhE USER TO
C COMPLETE THE EVALUATION OF RHO. NORMAL CUTPUT ENDS WITH
C A LIST OF INCREASING VALUES OF RHC AND THE FInal VALUE CF
CD.

NIN = 5

C NIN = STANDARD INPUT UNIT
NOUT = 6

C NOUT = STANDARD OUTPUT UEIT
READ(NIN~I) NOP

I FORMATiI2)
IF((NOP.LE.O|.OR.(NOP.GT.IO0)} GC TO g9
DO 4 I = I,NOP

READ(NINe2) MLCP,MOPERtMRCP
2 FORMAT(13,11,13)

WRITE(NOUT,3} I,MLCP, MOPER,MRCP
3 FORMAT(214,I2,16)

! I = I + I 0 0
I~((MLOP.LT.O).OR.(MLOP.GE.II}) GD TC 99
IF((MROP.LT.O).OR.(MROP.GE.II)) GC TC 9g
IF((MOPER.LE.O).OR.(MOPER.GT°5)) GC TC g9
NLOPII) = PLOP
NOPER(1) = MOPER
NROP(1) = PROP

4 CONTINUE
READININ~II NDIM
IF((NDIM.LE.O).OR.(NDIM.GT.20}) GC TC gg
DO 7 I = I~NDIM

READ(NIN,5) D(1)
5 F O R M A T (D 2 B . 1 6)

WRITE(NOUT~6| l~O(I }
6 FDRMAT(3H D(,12,4H) = ,G16.8)
7 CONTINUE

READ(NIN,5) STOPX
WRITEINOUT~8) STOPX

B FORMAT(IgH STOPPING VALUE IS ,GIO.4}
READ(NIN,I) ITMAX
WRITE(NOUT.9I ITMAX

ACM Transactions on Mathematical Software, Vol. 1, No. 2, June 1975.

116 • W. Miller

LISTING 1 (continued)

9 FORMAT(23H USE MAXIMIZER AT MOST ,12,6H TI~ES)
CALL ROUND
WRITE(NOUT~IO) RHO

lO FORMATI4X,GIO.4)
IF(IRHO.GE.STOPX).OR.(ITMAX.LE.O)) GC TC 14
BIG = RHO
DO I I ITIMES = I,ITMAX

CALL UP
WRITEINCUTvlO) RHO
IF(IRHO.GE.STCPX).CR.(RHO.LE.BIG)) GC TC 12
BIG = RHO

l l CONTINUE
12 O0 13 I = I,NDIM

WRITE(NOUT,6) I tD(1)
13 CONTINUE
14 STOP
99 W R I T E I N O U T , I O 0)

[00 FORMATIISH INCORRECT DATA|
GO TO 14
END

SUBROUTINE UP
COMMDN VALUE(IOOI~DELTAX(IOOt2OI,DELTAE(IOO,IOO),D(20)

ltRHO, STOPX,NLOP(IOO),NOPER(IOO)~NROP(IOO),~CP,NDIM
DOUBLE PRECISION VALUE,DELTAX,DELTAE,O,RhC,STOPX,CI,H

[,BEST
C TO FIND A LARGER VALUE OF RHO THIS SUBROUTINE SEARCHES eY
C SUCCESSIVELY CHANGING EACH ENTRY OF Do INITIALLY THE
C I-TH ENTRY IS MODIFIED BY [/ [0 0 PER CENT. THIS AMOUNT IS
C DOUBLED AT MOST 13 TIMES. SINCE 0.000[$(2**13) IS ABCUT
C O.Bv THE ENTRY WILL NFITHER CHANGE SIGN NOR CCU~LE I~
C MAGNITUDE. AS SOON AS RHC DECREASES THE NEXT CCCRDIRATE
C OF O IS SEARCHED. CONTROL IS RETURNED AFTER ALL NCIM
C ENTRIES ARE TRIED.

BEST = RHO
DO 5 I = [,NDIM

DI = O i l)
IFIDI.EQ.O.ODO) GO TO 5
H = OI*I.OD-4
DI I) = D[+ H
CALL ROUND

C WE CAN NOW TELL WHICH DIRECTICN TD SEARCH.
IF(RHO.GE.STOPX) GC TO 6
IFIRHO.LE.BEST) GO TO 1
BEST = RHO
H : H + H
LIM = 13
GO TO 2

l H = - H
tIM = 14

C SEARCH. SUCCESSIVELY DOUBLE THE INCRE~EhT H IN D(1).
2 O0 3 ITIMES = I ,LIM

O l I) = OI + H
CALL ROUND
IF(RHC.GE.STOPX) GO TO 6
IF(RHO.LE.BEST} GO TO 4
BEST = RHO

3 H = H + H
C GO BACK ONE STEP

4 O(I I = OI + O.5DO*H
C PERHAPS RHO COULD NOT BE INCREASED

IF(ILIM.EQ.14).AND.(ITIMES.EQ.1)) C [I) = D[
RHO = BEST

5 CONTINUE
6 RETURN

END

A C M Transac t ions on Mathematncal Software, Yol 1, No. 2, June 1975.

Software for RoundofF Analysis 1 17

LISTING 1 (continued)

SUBROUTINE ROUND
COMMON VALUE(IOO),DELTAX(IOO,20),DELTAE(IOO,IOO),D(20)

I,RHO,STOPX,NLOR|IOO),NOPER(IOO),NR~P|IOO),~CP,~DIW
DOUBLE PRECISION VALUE,OELTAX,DELTAE,C,RHC,STOFX,ARGL

1,ARGR,DERIVL,DERIVR,DSQRT
C GIVFN DATA D THIS SUBROUTINE EVALUATES ALL INTERMECIATE
C VALUES OF THE STRAIGHT-LINE PROGRAM AkD THEIR PARTIAL
£ DERIVATIVES WITH RESPECT TO THE DATA AED lC THE ROUNDING
C ERRORS. RHO = 0 IS RETURNED IF SCME VALUE IS UKCEFI~EC,
C THEREBY CAUSING THE MAXIMIZER TC AVCIC D. CTHERWISE, TEE
C USER-SUPPLIED SUBROUTINE USER IS CALLEC TC EVALUATE REG.

NOUT = 6
C NOUT = STANOARC OLTPUT UNIT
C BEGIN THE LOOP TREATING THE K-TH INSTRUCTIC~.

DO 400 K = I,NOP
C GET THE OPERANDS AND THE OPERATOR

ILOP = NLOP(K)
lOPER = NOPER(K)
IROP = NROP(K)

C IF(ILOP.EQ.O), THEN THE LEFT ARGLMENT IS THE CONSTANT 1.
C IF NOT, BUT (ILOP.LF.IOO), THEN IT IS THE ILCP ENTRY CF C.
C OTHERWISE, IT IS THE ILOP-IO0 CCMPUTED VALUE.

IF(ILOP.LF.IO0) GO TO I
ARGL = VALUE(ILOP-IO0)
GO TO 3

I IF(ILOP.EQ.O) GO TO 2
ARGL = D(ILOP)
GO TO 3

2 ARGL = I.ODO
3 IF(IRDP.LE.IO0) GO TO 4

ARGR = VALUE(IROP-IO0)
GO TO 6

4 I~(IROP.FQ.O) GO TO 5
ARGR = D(IROP)
GO TO 6

5 ARGR = I.OCO
£ BRANCH ACCORDING TO THE OPERATOR. EXFCUTE THE ~PERATION.

6 GO TO (7,8,9,IO,11), IOPER
7 VALUE(K) = ARGL + ARGR

GO TO I00
B V A L U E (K) = ARGL - ARGR

GO TO lOO
9 VALUE(K) = ARGL*ARGR

GO TO 100
I0 IF(ARGR.EO.O.ODO) GC TO 12

VALUE(K) = ARGL/ARGR
GO TO I00

11 IF(ARGL.LT.O.ODO) GO TO 14
VALUE(K) = DSQRT(ARGL)
GO TO 100

C IF THE OPERATION IS IMPOSSIBLE, THEN PRINT J PESSAGE, SET
C RHO = 0 AND RETURN.

12 WRITE(NOUT,13)
13 FORMAT(25H GIVEN PROCEDURE TRIEC I0)

RHO = O.ODO
GO TO 1000

14 WRITE(NOUT,15)
15 FORMAT(~SH GIVEN PROCEDURE TRIED SCRT(~), V.LT.O)

RHO = O.ODO
GO TO I000

C EVALUATE THE PARTIAL DERIVATIVE OF THE K-TH V~RIABLE
C WITH RESPECT TO THE I-TH DATA ENTRY. IF(ILCP.LE.IO0),
C THEN THE DERIVATIVE OF THE LEFT ARGU~EKT IS EITHER 1CR O.
C OTHERWISE, IT HAS ALREADY BEEN CCMPUTED

100 DO 200 1 = I,NDIW
IF(ILOP.LE.IOO) GO TO 101
DERIVL = DELTAX(ILOP-IO0,1)
GO TO 102

ACM Transactions on Mathematical Software, Yol 1, No 2, June 1975

118 • W . Miller

LISTING 1 (continued)
101 DERIVL = £ ,ODC

I F (I L O P . E O . I) DERIVL = l ° 0 O O
102 IF(IROP.LE.IO0) GO TC 103

DERIVR = D E L T A X (I R D P - I O 0 , 1)
GO TO 104

103 DERIVR = G.ODO
IF(IROP.EQ.I) DERIVR = I.ODO

104 GO TO (I 0 9 , 1 0 6 , 1 0 7 , I 0 8 , I 0 9) , ICPFR
105 DELTAX(K,I| = DERIVL + DERIVR

GO TO 200
TO6 DELTAX(Ktl) = DERIVL - DERIVR

GO TO 2OO
I07 DELTAXiK,I) = (ARGL*DERIVR) + (ARGRtDERIVL)

GO TO 200
108 DELTAX(K,I) = ((ARGR*DERIVL) - (ARGL*CERIVR))/

1 (ARGR*ARGR)
GO TO 200

l O g DELTAX(Kvl) = O. SDO*(DERIVL/VALUEiK))
200 CONTINUE

C EVALUATE THE PARTIAL DERIVATIVE OF THE K-TH VARIABLE WITF
C RESPECT TO THE J-TH ROUNDING ERRCR. IFqJ.GT.K) IT IS O.
C IF(J.EQ.K) IT IS VALUE(K). OTHERWISE IT MEST BE COMPUTEC°

IF(K.EQ. I) GO TO 301
KK = K - I
DO 300 J = I,KK

IF(ILOP.LE.IO0) GO TO 201
DERIVL = DELTAE(ILOP-IOO,J)
GO TO 202

201 DERIVL = 0.000
202 IF(IROP.LE°IO0) GO TO 203

DERIVR = DELTAE(IROP-IOO,J)
GO TO 204

203 DERIVR = C.ODO
204 GO TO (205,206,207,208,209)~ ICPER
205 D E L T A E (K , J) = DERIVL + DERIVR

GO TO 300
206 DELTAF(K,J) = DERIVL - DERIVR

GO TO 300
207 DELTAE(K~J) = (ARGL*DERIVR) + (ARGR~CERIVL)

GO TO 300
208 DFLTAE(K,J) = ((ARGR*DERIVL) - (ARGLtCERIVR))/

1 (ARGR*ARGR)
GO TO 300

209 O E L T A E (K ~ J) = O . 5 0 0 * (D E R I V L / V A L U E (K))
300 CONTINUE
301 D E L T A E (K v K) = V A L U E (K)

I F (K . E Q . N O P) GO TO 400
KP = K + 1
O0 3 0 2 J = KPtNOP

302 D E L T A E (K ~ J) = O°ODO
4 0 0 CONTINUE

CALL USER
t O 0 0 RETURN

END

functions, etc. With more extensive modifications one can locate instabilities which
essentially have nothing to do with rounding errors F14].

In cases where p assumes values of Do it often happens that numerical instability
is diagnosed very quickly by even the most primitive maximization routine. This
can happen if the singularity of p(d) occurs on an (n - 1)-dimensional manifold,

ACI~I Transactions on Mathematical Software, Vol. 1, No. 2, June 1975.

Software for RoundofF Analysis • 1 19

where n is the dimension of d. Convergence by the maximizer is very rapid, since
the situation is not appreciably more complicated than a one-dimensional search.
This phenomenon occurs in Case Study II, Section 8.

7. CASE STUDY I. TRIDIAGONAL LINEAR SYSTEMS

Consider this problem: Givena 10-tupled = (a~ , a s , a3 , bl , bs , Cl , c2 , f ~ , f s , f s)

with nonsingular "left-hand side" a~, . . . , cs, solve

a l x ~ b ly = f l

ClX ~ a~y ~ bsz = f2

c~y + a3z = :)'3.

Algorithm A computes y by Gaussian elimination. Algorithm B uses "two-sided"
elimination from Babuska [1].

Algorithm A Algorithm B

ml (--" c l / a l m l * - c l / a l

s l ~ m l X bl s l ¢--- m l X b~

d2 ~-- as - s~ ds (---- as - s l

t l (- - -ml X f l t i c - - m 1 X f l
gs ¢ - f 2 - t l g : ~-'-fs - t l

m s (-- cs/d2 m s ~-- b~/aa

ss ¢--- m2 X bs s8 (-- ms X c2

ds ~ - as - - ss ds* ¢-- as - s3

t s e - m 2 X gs t3¢--m3 X f3
gs (-- f3 -- t2 gs* ~-- f2 - - ts

z ("- g3/d3 u ~-- g2 + gs*
u ~--bs X z v c - - u - - f2

v c " g s - u w~- - -d s + ds*

y (-- v / d s r (-- w - as

y ¢-- v / r

For each method of computatioa we ask: How much more is y changed by
rounding errors than is it changed by merely rounding the data? The appropriate
functional p is (3.5)

p -- p(d) = ~ I (O R / O ~) (d, O) I / ~ I d , . (O R / O d ,) (d, 0) I
J~l I $=i

where m equals 14 for algorithm A and 15 for algorithm B and where R = Vm, the
c o m p u t e d value of y. Theorem 5.1 of Babuska F1] implies that p is unbounded for
algorithm A, but bounded by 9 for algorithm B.

We tested our program by verifying Babuska's results. For d = (1, 1, 1, 1 , . . . , 1)
or d = (1, 2, 1, 1, . . . , 1), algorithm A calls for division by zero. This does not

ACM Transactions on Mathematical Software, Vol. 1, No 2, June 1975.

120 W. Miller

LISTING 2

SUBROUTINE USER
COMMON VALUE(100),DELTAX(IOO,2O),OELTAE(IOO,IOO),E(20)

I,RHO~ STOPX,NLOP(lO0) ,NOPER(lO0) ,NROP (lOB) , l~P, NDI~
DOUBLE PRECISION VALUE,OELTAX,OELTAE,D,RHC,STOFX,~A~S

I , T O P , BOTTOM
C THIS SUBROUTINE EVALUATES THE FUNCTIONAL RHC USED IN CASE
C STUDY I .

NOUT = 5
TOP = O.ODO
DO I J = I,NOR

1 TOP = TOP + CABS(OELTAE(NOR,J})
BOTTOM = O.ODO
DO 2 I = I,NDIM

2 BOTTOM = BOTTOM + DABS(D(1)*DELTAX(NCP,I))
IF(BOTTOM.EQ.O.ODO) GO TO 4
RHO = TOP/BOTTOM

B RETURN
4 ~HO = 0.000

WRITE(NOUT, 5) TOP
5 FORMAT(7H RHO = ~,GIO.4,4H / O)

GO TO B

END

cause our program any difficulty, but we chose to avoid these sets of data. Both
algorithms A and B were tested using the initial values

dl = (1, 1.1, 1, 1 , . . . , 1),

d~ = (1, 2.1, 1, 1 , . . . , 1),

d s = (--1, 1, 1, 1 , . . . , 1),

d~ = (1, --1, 1,1,...,1).

As in Case Studies II and III, Sections 8 and 9, we set the parameter STOPX to
104 and ITMAX to 10 compiled under Fortran G and executed on the IBM 370/168
at Penn State.

First we analyzed algorithm A. Starting at dl or da the maximizer quickly pushed
p past STOPX. But from d2 or d3 it did not get past 1.75 or 3.0, respectively, re-
minding us that unstable algorithms may appear stable to our heuristic techniques
(this problem did not arise in the other case studies). The largest p (d) found for
algorithm B (from any initial d~) was about 5.5. Execution times ranged from 2
to 6 seconds (at 10 cents per second).

Listing 2 shows the USER subroutine employed in this case study. Listing 3
shows the set of data read by our program when it tested algorithm A beginning
at d l . We have added annotations.

8. CASE STUDY II. THE ORTEGA-KAISER METHOD

Ortega and Kaiser [17] give a rational (i.e. square-root-free) QR method for sym-
metric tridiagonal matrices. In the 3 X 3 case this process works with 5-tuples
d = (a l , a2, a s , bl 2, b2 ~) representing matrices

A(d) = 1 as b2 . (S.1)
b2 as

A CM Transactions on Mathemat ical Software, Vol. 1, No 2, June 1975

Software for RoundofF Analysis 121

LISTING 3

14
0 0 6 4 0 0 1
1 0 1 3 0 0 4
0 0 2 2 1 0 2
1 0 1 3 0 0 8
0 0 9 2 1 0 4
0 0 7 4 1 0 3
1 0 6 3 0 0 5
003?107
1063105
0 1 0 2 1 0 ' ~
1 1 0 4 1 0 8
0 0 5 3 1 1 1
1 0 5 2 1 1 2
1 1 3 4 1 0 3
10
1 . 0
1 . 1
1 . 0
1 . 0
1 . 0
1 . 0
1 . 0
1 . 0
1 . 0
1 . 0
1 0 0 0 0 o
10

NOP = number of operations in the following program
01 sixth data entry, 4 = /, 1 = first data entry

= first computed value~ 3 = ×, 4 = fourth data entry

. an encoding of algorithm A

NDIM = number of data entries
a l = l
a2 = 1.1
a 3 = l
bl = 1

dl

S T O P X = s t o p p i n g v a l u e f o r t h e m a x i m i z e r
I T M A X = m a x i m u m n u m b e r of i t e r a t i o n s of t h e m a x i m i z e r .

The algorithm (neglecting special cases which avoid division by zero)

p ~ (-- al X a~ ss 2 (-- bsS/(pe S -~ b2 2)

sl ! ¢---blS/(pl S + bl S) u2 ~ ssS(gs -~- a~)

ul ¢--- siS(a1 + a s) d2 e-- g2 + u s

d l ~-- a l -~ u l d3 ~-- a3 - - u2
g s (- a s - - Ul p3 2 + c ~ 3 s / (1 - - s s S)

p s S + - g 2 S / (1 - - siS) bs S (- s2 2 >(p3 S

~ s , siS(p2 S + bsS)

produces Q(d, ~) = (51, d2, d3,612 , bs2), where A(d) and A(Q(d, 0)) have the
same eigenvalues (the eigenvalues can be easily located after several iterations).

For any Q = Q (d, 6), let EIG (Q) be the absolute value of the largest eigenvalue
of A (Q). We wish to analyze the behavior of R (d, 6) = EIG (Q (d, ~)), so we want
to evaluate the derivatives (ORlOn3) (d, 0). Notice that the subroutine ROUND
evaluates the 5 X 21 matrix (OQ/O~)(d, 0). Thus we need only evaluate the
derivative of EIG with respect to Q at Q(d, 0) and then apply the chain rule.

I t is possible to compute the derivative of EIG with respect to Q using standard
perturbation results for eigenvalues ([-24, pp. 137-138J or [-25, ch. 2J). However, we
prefer to use divided difference approximations, an approach which is both simpler
and more general. For instance, given Q = Q(d, 0) = (dl , ds, da, ~s, ~2s) we can
use an eigenvalue routine to compute EIG = EIG(Q) , change dl to d~ ~ - H
(getting Q~), compute BIG = EIG(Q~), and then use the approximation
0EIG/0d~ = (BIG - E I G) / H .

If d has large entries, then Q = Q(d, 0) also has large entries so that just round-
ing the entries of Q will produce large absolute (though small relative) errors.

ACM T r a n s a c t i o n s o n Mathematical Software, Vol 1, No 2, June 1975

122 • W. Miller

This, in turn, generally produces large absolute errors in EIG (Q). Let us compensate
for this fact by working with p (d) = (~2~1 I(OR/O~)(d, O)I)/Idl, where
l d [= J(al, a2, a3,512, 522)J ---- max{ I el], J a2 I, J a3 [, 512, 522}. Thus [d [plays the
role of K (d) in (3.3).

With a USER subroutine based upon these ideas we chose the parameters
d o = (.9, .8, .7, .6, .5), STOPX = 104 , and I M A X = 10 (for d = (1, 1, 1, 1, 1)
the Ortega-Kaiser method performs a rare branch to avoid division by zero).
Almost immediately (i.e. after three seconds of CPU time) a d near (.73, .82, .7,
.6, .5) was located for which p(d) > 104, indicating instability. We tried all eight
possible combinations of signs for the first three entries of do (the last two must be
A-). Instability was diagnosed each time, though not always so quickly as for the
original do. However, the cost was always under two dollars.

We also applied our program to a rational QR algorithm of Reinsch [-183 (for
other references see Stewart [21, p. 3813). Only minor changes in U S E R were
required, e.g. this method uses 23 instructions in the 3 X 3 case and it produces
the values in a different order. With the same eight starting values we could not
locate a value of p exceeding 12.

The Ortega-Kaiser algorithm provides a clear illustration of the power of our
techniques for locating numerical instability. I t is not hard to see that the entries of
the computed matrix A (Q (d, ~)) can be extremely sensitive to rounding errors ~.
However, the same can be said of many stable algorithms for eigenvalues (for
example, see Wilkinson [-25, p. 2883). To determine analytically the dependence
of the eigenvalues upon the rounding errors seems to be a formidable problem. On
the other hand, as we have just seen, it yields readily to numerical sampling.

Listing 4 shows the USER routine and Listing 5 a set of data for the analysis of
the Ortega-Kaiser method.

9. CASE STUDY III. THE GRAM-SCHMIDT METHOD

Given linearly independent n-vectors a, b, and c, either of the following versions of
the Gram-Schmidt (GS) method produces orthonormal x, y, and z (assuming
exact arithmetic).

GS*

x -a/If a [I
u ~---b -- (bTx)x

y ' - - /11 u I]

v c - (c T x) x

W (- " V - - (c T y) y

 w/ll w]1

The modified Gram-Schmidt (1VIGS) is the same as GS* except that w is defined by

W <--" V - - (v W y) y .

ACIV~ Transactions on Mathematical Software, Vol I, No 2, June 1975.

Software for Roundoff Analysis 123

LISTING 4

SUBROUTINE USER
COMMON VALUF(IOO)tDELTAX(IOO,20],DELTAE(IOOtlOO),D[20}

I,RHO, STOPX,NLOP(IOOI,NOPER(IOO)yNP~P(IOO),~EP,NDIM
DOUBLE PRECISION VALUE,DELTAX,EELTAE,D,RHO,STOFX,SAVE

I,H,AQ(3,3},DSQRT,DUMMY,RCOT(3I,BIG,A~,DABS,EIG
I,DEIGDQ(5),S~SUM,DNORM

C THIS SUBROUTINE EVALUATES THE FCNCTIONAL RHC USED IN CaSE
C STUDY I I .
C THE I-TH ENTRY OF THE OUTPUT Q IS THE IOUT(1)-TH COMPUTED
C VALUE.

INTEGER lOUT(5)
DATA IOUT16,16,17,12,21/

C THIS LOOP COMPUTES DIVIDED DIFFERFNCE APPROXImaTIOnS TC
C THE VECTOR DEIGDQ OF DERIVATIVE~ OF THE LARGEST EIGE~VALUE
C WITH RESPECT TO THE OUTPUT q.

DO 4 IT = I ,~
I = I I - I

C THE FIRST TIME THROUGH GET THE EXACT LARGEST EIGENVALUE.
IF(I .EO.O} GO TO I

C OTHERWISE PERTURB THE I-TH OUTPUT.
SAVE = VALUE(lOUT[I})
H = SAVE*I.0D-7
VALUE(IOUT(1)! = SAVE + H

C COMPUTE THE LARGEST EIGENVALUE CF A(O), WHERE THF OUTPUT
C O IS POSSIBLY PERTURBED.

I AO(I , I) = VALUE(IOUTII))
AQ(2,2) : VALUF(IOUT(2))
AQ(3,3] : VALUE(lOUT(3})
AQ(I ,2) : DSQRT(VALUE(IOUT(4)}}
A0(2,3) = CSQRT(VALUE(IOUT(5)))
AQ(I,3) = 0.000

C USE A LOCAL SYMMETRIC EIGENVALUE RQUTINE. TEE THREE
C EIGENVALUES ARE RETURNED IN ROOT.

CALL DMXDGI(3,-3,1tAQ,3,DUW~Y,RCCT)
C GET THE LARGEST E I G E N V A L U E .

BIG = O.ODO
DO 2 K = 1 , 3

AB = DABS(ROOT[K})
IF(AB.GT.BIG) BIG = AB

2 CONTINUE
IF(I .GT.O) GO TO 3

C THE FIRST TIME THROUGH GET THE EXACT LARGEST EIGENVALUE.
EIG = BIG
GO TO 4

C FIND TEE DIVIDED DIFFERENCES.
OEIGDO(I) = (BIG - EIG)/H
VALUE(IOUTII}) = SAVE

4 CONTINUE
C MULTIPLY DEIGDO BY THE DERIVATIVE 0 = THE OUTPUT C WITH
C RESPECT TO THE ROUNDING ERRORS. THIS YIELDS THE DERIVATIVE
C OF THE LARGEST EIGENVALUE WITH RESPECT T£ THE RCUNCING
C ERRORS. ADO THE ABSOLUTE VALUES CF THE RESLLTS.

S = O.ODO
DO 6 J = I,NOP

SUM = O.OO0
DO 5 I = 1,5

5 SUM = SUM + DEIGDQ(I|*DELTAF(IOUT(I},J)
6 S = S + DABS[SUM)

C DIVIDE BY THE NORM OF THE DATA.
DNOPM = O . O D O

DO 7 I = I,NDIM
AB = DABS(C(III
IF(AB.GT.DNORM) DNORM = AB

7 CONTINUE
RHO = S/DNORM
RETURN
END

ACM Transactions on 1VIathematlcal Software, Vol. 1, No 2, June 1975.

124 W. Miller

L I S T I N G 5

21
0013001
1011004
0 0 4 4 1 0 2
0 0 1 1 0 0 2
1 0 3 3 1 0 4
0 0 1 1 1 0 5
0022105
1 0 7 3 1 0 7
0 0 0 2 1 0 3
1 0 8 4 1 0 9
1 1 0 1 0 0 5
1 0 3 3 1 1 1
0 0 5 4 1 1 1
1 0 7 1 0 0 3
1 1 3 3 1 1 4
1 0 7 1 1 1 5
0032115
117311"/
0002113
118411g
1133120
05
0 . 9
0 . 8
0 .7
0 .6
0 .5
10000 °
10

0 ~(b x)x

Fig. 4

9

II d I IF 2 = d, 2. (9 . 2)
$=1

A large value of K(d) means that a, b, e are nearly linearly dependent (see Stewart
[-21, ch. 4-1; also see ['21, p. 221] for a definition of K(d) which can be used when
n > 3) .

Define R(d, g) = yTz and p(d) = (~'9~°1 [(OR/O~) (d, 0)]) /K(d) . Notice tha t

ACM Transactions on Mathematical Software, Vol 1, No 2, June 1975

where, e.g.

The procedure GS* is intermediate between the standard GS method and the
MGS procedure (see Stewart [-21, pp. 216-217"]). For the case n = 3 either pro-
cedure requires 60 arithmetic operations, including three square roots. The only
difference between them lies in one operand of each of n multiplications.

In either case the x, y, z computed with rounding errors can be sharply non-
orthogonal (though it is not hard to show tha t they must have nearly unit length).
To see how this can happen suppose that the only rounding error in the computation
of y occurs in the evaluation of bTx. If a and b are nearly linearly dependent in the
sense that u is small compared with b, then xTy may be large (see Figure 4).

Can the departure from orthogonality of the computed x, y, z be large without
a, b, e being nearly linearly dependent? To make this question precise we need a
measurement of dependence among a, b, e. Let d be the 3 × 3 matrix with columns
a, b, e and define

K(d) = [[d [[y.[[d -11[F (9.1)

Software for Roundoff Analysis 125

LISTING 6

SUBROUTINE USeR
COMMON VALUE(IOO),OELT&X(IOO,20),DELTAE(IOO,[OO},~(20)

I~RHO, STOPXtNLOP(IOO),NOPFR(IOO)~NRCP(IOOI,KCP,~OI~
DOUBLE PRECISION VALUE,DELTAX,CELTAE,C,RHC,STOPX,~(3,3)

I,SIGMA,PARTJtDAeS~T,FNORM~FNDRMI,KtDS~RT
C THIS SUBROUTINE EVALUATES THE ~U~CTICkAL RHC USEC IN CASE
C STUDY I I I .
C EVALUATE THE NUMERATOR OF (9 - 3) . THE EhTRIES CF Y ARE
C COMPUTED VALUES 2 7 , 2 8 , 2 9 . THE ENTRIES OF Z AR~ COPPUTE~
C VALUES 58 tSgt60 .

SIGMA = O.ODO
EO 2 J = 1,60

PARTJ = O.ODO
O0 I I = I ~ 3

I PARTJ = PARTJ + VALUE(26+I)*DELTAE(57+IyJ)
1 + VALUE(57+I)*DELTAF(26+I,J)

2 SIGMA = SIGMA + DABS(PARTJ)
C EVALUAT~ (9-2J AND PREPARE FOR MATRIX INVERSION.

FNORM = O.ODO
DO 3 I = 1,3

DO 3 J = 1,3
T = D (3 * I J - l) + l }
FNOPM = FNORM + T*T

3 A I I , J) = T
C USE A LOCAL MATRIX INVERSION RObTINE

CALL DMXINV{A,3~3)
C EVALUATE (9 - i) .

FNORMI = O.ODO
DO 4 I = 1,3

DC 4 J = I,~
T = A (I , J)

~NORMI = FNOPMI + T*T
K = DSQRTIFNORM*FNORMI)

C EVALUATE (g - 3) .
RHO = SIGMA/K
RETURN
END

since yWz = ~E]3~=1 (y , .z ,) . All components for the evaluation of p are available to
the subroutine USER.

If p is uniformly bounded by some number B, then by (3.4) we can (approxi-
mately) guarantee that the computed y and z satisfy J yWz I <_ Bu .K(d) , since
Rid , G) = yTz and Rid , 0) = 0. For MGS such a bound is known to exist (see
[2, p. 15]; for a less formal discussion of the numerical properties of GS procedures
see Rice F20]).

To test GS* we chose the initial value

do= 1
1

and set STOPX = 104 and I T M A X = 10. After a few iterations of the maximizer,
p exceeded 104. Similarly, p appeared unbound in each of several more tests where
we began with some altered signs in do. The largest value of p found for MGS was
about 5.5. Thus, unlike MGS, GS* is unstable in the sense that the departure from
orthogonality of the computed vectors is not merely proportional to the product of
the unit rounding error and the condition number of the data.

These computations were somewhat more expensive than those in the other case

A C M Transact ions on Mathematxeal Software, Vol 1, No 2, June 1975

126 • W. Miller

studies (though each run cost under five dollars). I t is not hard to see why. The
cost of evaluating the partial derivative is 0 (m2), where m is the number of opera-
tions in the straight-line program being analyzed. For reasons of economy we list
only the USER routine, as shown in Listing 6.

10. CASE STUDY iV. STREAMLINED POLYNOMIAL FORMS

According to Fike [-6, ex. 4~ the following polynomial of degree 6 has been used in
an IBM System/360 library routine as an approximation to 2 * for - ~ < x < 0.

P(x) = 1 ~- .6931471805599346x A- .2402265069563678x 2

A- .05550410840231345x 3 A- .009618117095313700x 4

-4- .001333073417706260x 5 ~- .0001507368551403575x 6.

In this form evaluation requires six multiplications and six additions. However,
P (x) can be evaluated in four multiplications and seven additions using the stream-
lined form

ql "~- alx

q2 6-- (q l 3 t" a2) 2

q~ ~- (q2 + as) (ql + a~)

P(x) ~-- (q, A- qa -4- at) (q3 + as) + a7

where

al = .23069414645549892

a2 = .20629788601177007

a3 = 1.00939719129704594

a4 = .10750058720428135 a6 = 1.67018802067794794

a5 = .13060869898889258 a7 = .48953177059399256.

We would like to assess the total relative error in the result caused by both the
rounding errors and the fact tha t the a~ cannot be represented exactly. Let d =
(d l , • . . , ds) = (a l , . . . , aT, x) and let P (d , =, 3) be the value computed by the
streamlined scheme with rounding errors $ = (31,. • •, ~n) given data d ~, where
d, ~ -- d,(1 -b ~r,) for 1 < i < 8. Thus P (d , 0, 0) = P(x) . Define

)/ p(x) = (OP/cOrr,) (d, 0, 0) [-{- ~ [(OP/c9~#) (d, 0, 0) (P (x) (
j -1

(think of the a, as fixed, and - ~ < x < 0). By the obvious variation on the
theme of Section 3 we see that if] = [< u and I $] g u, then we have the approxi-
mate bound

(I P(d, ~, 3) - P(x) I/[P(x) [) < p(x) .u .

Thus the computed value of P(x) has a maximum relative error of at most p(x) .u.
We modified the programs of Section 5 to evaluate p(x) at 100 evenly spaced

points between - ~ and 0. The maximum value of p was about 5.6 (a complete
listing shows p (- ~) = 5.5, p (0) ~ 5.6, and p monotone increasing for
- ~ g x g 0). The maximum for the corresponding p gotten by applying nested

ACM Transactions on Mathematical Software, Vol. 1, No. 2, June 1975

Software for Roundoff Analysis 127

multiplication (i e. Homer's rule) to the original form of P(x) is about 2.2. If we
take into account the fact that the constant coefficient 1.0 can be represented
exactly (this can be done by removing the term OP/Orrl from p), then o decreases
to nearly 1. (Actually, we may also want to consider x as exact for both methods)
Thus nested multiplication nearly produces a correctly rounded value of P(x),
while the error in the streamlined form may be about five times larger.

While we do not propose that methods like ours be used as the only experimental
technique for certifying function evaluation routines, they may be useful for studies
like that conducted by Rice [-19~ on the conditioning of polynomial and rational
forms These techniques have the advantage of testing, for example, double pre-
cision routines using only double precision arithmetic instead of troublesome
nmltiple precision. (Of course it is possible to compute what are essentially upper
bounds for p by using interval arithmetic or simple inequalities like Hart et al.
[-7, p. 68, eq. 4.5.4~. However, such methods which use only O(m) operations,
corresponding to the m operations being analyzed, often yield pessimistic results)

The interested reader will have no problem seeing how to modify the first program
of Section 5 to perform the above computation. The proper USER routine is only
slightly different from that of Case Study I.

ACKNOWLEDGMENTS

Some preliminary work for this paper was done at the IBM Watson Research
Center It could not have been written without support from H. R. Strong and
help from W. Kahan, who, among other things, suggested the use of numerical
maximization methods in computer-aided roundoff analysis. David Stoutemyer
and the referee made helpful suggestions.

REFERENCES

1 BABUSKA, I. Numerical stability m problems of hnear algebra. S I A M J. N~mer. Anal.
9 (1972), 53-77

2. BJoacK, A. Solving hnear least square problems by Gram-Schmidt orthogonahzation.
B I T ? (1967), 1-21.

3 BRENT. R . P . The parallel evaluation of general arithmetic expressions. J. A C M 21, 2 (April
1974), 201-206.

4 B~:SINC, VR, P A Elgenvalues of a real symmetric matrix by the QR method, Algorithm 253.
Comm A C M 8, 4 (April 1965), 217-218.

5 ELSPAS, B, et al An assessment of techniques for proving program correctness. Compulzng
Sur~,eys ~, 2 (June 1972), 97-147.

6 FIKF., C Methods of evaluating polvnomml approximations m function evaluation routines.
Comm AC3[10, 3 (March 1967), 175-178.

7. HAI~T. J., et al. Computer Approz,matwns. Wiley, New York, 1968.
8 HL'nL, T , et al The correctness of numenc.d algorithms. Proc ACM Conf on Prowng

A,~ertmn~ Ab(mt Program~. New Mexmo State U., Umverslty Park, N Mex, Jan 6-7, 1972
9 K~.It~.N, W, AND V~,RZtH, J Two ~orkmg algorithms for the elgenvalues of symmetric

trlthag(m'd matllees Stanford Tech Rep CS43, 1966
10 K~,HAN W One numerical analyst's experience ~lth one symbol mampulator S I A M Rev

1(; (1974). 129
II. MIL1.LI~, W Automatw ,~ pnon roundoff analv.~ls Computing 10 (1972), 213-219.
12 5II1J I ~¢ W Rema~ k~ on the eomplexzty to zotm(loff anal', ~s Computing 12 (1974), 149-161.
13 Mll,l,i:lt, W Numellcal heurl,tlcs 1tl comlmtel-aided loundoff :mal3ms IBM Tech. Rep.

RC4332, May 2. 1973

ACM Tran~aetlon~ on Mathemat ica l Softy, are, Vol 1, No 2, June lq75

128 W. Miller

14 ~IILLEI¢, W Numerical search for ill-condition IBM Tech Rep RC4516, 1973.
15 MILI.ER. W Computer search for numerical mstabihty J ACM, to appear
16 MOOICE. R lnterz,al Anal~/szs. Prentice-Hall, Englewood Cliffs, N J , 1966
17 ORTEGA, J , AND KAISER, H The LL T and QR methods for symmetric trldmgonal matrices

Comp~¢ter J. 6 (1963), 99-101
18 REINSCH, C .~ stable, ratmnal QR algorithm for the computation of the elgenvalues of an

Hermitian, trldlagonal matrix Math Compulatwn 25 (1971), 59t-597
19 RICE. J On the conditioning of polynomml and rational forms N~lmer. Math 7 (1965),

426-435
20 RICE. J Expermaents on Gram-Schmldt orthogonahzatmn Math Computatwn 20 (1966),

325-328
21 STEWART, G Introductwn to Matrix Computatwns. Academic Press, New York, 1973
22 STOUTEMYER, D Automatic error analysis using the computer symbolic manipulation

language, REDUCE. Submitted to a technical journal
23 WELSCH, J. Certification of Algorithm 253. Comm. A C M 10 (1967), 367
24. WILKINSON, J Rounding Errors ~n Algebraic Processes. Prentice-Hall, Englewood Cliffs,

N. J., 1963.
2 5 WILKINSON, J The Algebrazc E~genvalue Problem Clarendon Press, Oxford, England, 1965
26 WILKINSON, J Modern error analysis S I A M Rev 13 (1971), 548-568

Received July 1974

ACM Tranqaetlon~ on .~lathetnatlea| Soft~are, Vol 1, No 2, June 1075

