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Fortran programs for locating numerical instabihties in algebraic processes are given. They easily 
diagnose known instabilities in certain versions of the QR algorithm and the Gram-Schmidt 
method. 

To analyze a given numerical algorithm we proceed as follows. A number which measures the 
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1. INTRODUCTION 

Among the dangers faced by  the designer of mathemat ica l  software is the specter 
of a product  which is numerically unstable. The major  weapons currently at  the 
designer's disposal are (i) testing the product  upon sets of data  for which a solution 
can be found by alternative means and (ii) formal roundoff analysis. Each of these 
has a defect. The first is sometimes insufficient, and the second requires an expendi- 
ture of effort tha t  cannot always be afforded. 

There is convincing evidence tha t  weapons (i) and (ii) need to be augmented 
where possible. A square-root-free QR algorithm for computing the eigenvalues of 
a symmetric  tridiagonal matr ix  was published by  Ortega and Kaiser [-171 in 1963. 
The algorithm appears (in slightly modified form) in Wilkinson's treatise The 
Algebraic Eigenvalue Problem [-25, p. 5671, surely a definitive work on rounding 
errors. An Algol 60 version was published in the Communications of the ACM [-4J. 
Apparent ly  the algorithm was subjected to extensive testing. 

However,  it is numerically unstable [-9, 231. The error, once committed,  propa- 
gates persistently. The algorithm is advocated by  more than  one numerical analysis 
text  published since the announcement  of its instability. I t  is impossible to judge the 
cost of the oversight. 

Perhaps the most  unfortunate  aspect of this lapse is the ease with which it could 
have been avoided. Discovery of the instabili ty is almost automat ic  given (1) an 
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appropriate general approach to rounding errors, (2) a few simple Fortran pro- 
grams, (3) a minimal understanding of the eigenvalue problem, (4) a statement 
of the Ortega-Kaiser algorithm, and (5) a few hours of rather routine work. 

The goal of this paper is to supply ingredients (1) and (2) (all five are combined 
in Section 8). The basic idea is to use the computer to search for a set of data for 
which rounding errors cause a given numerical method to produce inaccurate 
results. First, a number p(d) is assigned to each set d of data in such a way that  
large values of p correspond to d for which the effect of rounding error is excessive. 
In addition, the function p should be "smooth" and "easy to evaluate." The second 
step is to apply a numerical "hill-climbing" routine to p. 

Proper understanding of this technique requires the realization that  a number of 
idealizations and concessions have been made. In Section 2 we will lay this ground- 
work. The basic approach is outlined in Sections 3 and 4, with actual programs 
given in Section 5. Sections 7 through 10 contain case studies designed to illustrate 
the scope of these methods. The reader interested in more rigorous justification of 
our techniques is invited to consult Miller [-13, 15]. 

2. THE GOAL; THE PRICE 

Some of the most striking successes in the field of roundoff analysis have come in 
the understanding of error propagation in algebraic processes such as Gaussian 
elimination, orthonormalization, and the QR algorithm (see Wilkinson [-24-26]). 
Such analyses are typically very tedious, though not conceptually difficult. This 
suggests that  the computer be employed to do at least part of the work. 

To delineate the current status of automatic roundoff analysis we need to draw 
the distinction between local and global techniques. We do this to make explicit a 
major difference between our approach, which is "global," and previous efforts, 
virtually all of which are "local." 

By local computer error analysis we mean use of the computer to bound (or to 
estimate) the error incurred in a single computation. The basic idea is to use special 
systems of computer arithmetic (e.g. interval arithmetic [-161 or unnormalized 
arithmetic) to monitor the error in each computed value. In general these schemes 
are designed to provide the user with information about the total error (including, 
for example, the effects of data uncertainty) in his results. 

By global roundoff analysis we mean the determination of how rounding error 
propagates in a given numerical method for many or all permissible sets of data. 
Perhaps the best known fact of this type is Wilkinson's result that,  roughly, the 
computed solution of the n X n system of linear equations Ax  = b found by Gaus- 
sian elimination with row interchanges satisfies (A + ~A)x = b, where ][ ~A Jl -< 
u.f(n) . lJ  A ]J. Here ]J. J J is a certain matrix norm, f is a specified function of n, 
and u is a bound on the local rounding error (for more details see Stewart [-21, pp. 
148-1591). These analyses are generally performed only once for a given algorithm 
and they are usually not intended to provide the user with realistic information 
about the error in his results. Furthermore, rounding errors are often treated 
separately (however, see Case Study IV, Section 10). In fact, to get meaningful 
results it may be necessary to compensate for inherent sensitivity to data error 
(see Stewart [-21, pp. 69-80]). 
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Only very recently have attempts been made to find nontrivial uses for the 
computer in global roundoff analyses. Preliminary work has been done on the use 
of theorem-proving techniques (Hull et al. [8]),  symbol-manipulation programs 
(Kahan [10], Stoutemyer [22]), and certain ad hoc methods (Miller [11, 12]). 
The motivation for these attempts resembles that for automatic program verifica- 
tion (Elspas [5]) more than it resembles the motivation for interval arithmetic. 

The goal of this paper is to explain a computer technique for global roundoff analysis 
which is of definite practical value. We have no intention of trying to automate 
analyses as precise as, say, those depending on the idiosyncrasies of a particular 
machine. Nor shall we consider numerical methods for processes from real analysis, 
like differential equations. Rather, we will take aim at roundoff analyses for "alge- 
braic processes." Our techniques can successfully analyze algorithms from areas 
other than linear algebra (see Brent [3] and Case Study IV, Section 10), but the 
exact domain must be left imprecise since we are far from a complete understanding 
of the range of applicability of these methods. 

Even the limited goal of automating roundoff analyses of algebraic processes 
seems impossible. Further concessions must be made. For this paper we make the 
following sacrifices. 
(1) Our methods are diagnostic and not prescriptive. The most they can do is to 
locate numerical instability. No hint is given for correcting the problem. 
(2) No attempt is made to deal with an arbitrary numerical algorithm complete 
with looping and branching. Instead, small dimensions are fixed to limit the program 
to approximately 100 (or fewer) arithmetic operations. Furthermore, possible 
paths through any comparisons are treated separately. 
(3) We consider only "worst case" results, never statements about (i) the 
"probable" error for a fixed set of data or (ii) about the error for an "average" set 
of data. For algorithms of the type we are considering there are important proba- 
bilistic statements of the second kind, like Wilkinson's assertion (e.g. [24, 105- 
107]) that the computed solution of triangular equations usually has small relative 
error (even given the worst possible combination of rounding errors). Wilkinson 
draws many interesting conclusions from this fact. On the other hand, probabilistic 
statements of the first type (see [24, pp. 25-26]) are of less interest when analyzing 
programs with only, say, 100 operations. 
(4) A "heuristic" approach is used instead of seeking a method which always 
produces full information. Thus the technique advocated here will sometimes yield 
misleading results (see Example 2, Section 4, and Case Study I, Section 7). 

Limited experimentation indicates that in spite of concession (4) we can get 
surprisingly accurate information at a small cost. The first three sacrifices seem to 
be more important. For example, consider the following informal statements (for 
more details see Stewart [21, pp. 148-159J). 

(i) Without any form of pivoting, Gaussian elimination is unstable. 
(ii) With partial pivoting, the effect of rounding error can grow exponentially 
with the dimension n. With complete pivoting it is bounded by a small polynomial 
p(n). 
(iii) The possible exponential growth with partial pivoting is extremely unlikely. 

Our techniques are designed to verify statements like (i). For (ii) they are of 
doubtful value, and for (iii) they are probably worthless. 
A C M  Transac t ions  on Ma thema t i ca l  Software,  Vol 1, No 2, June  1975 



Software for Roundoff Analysis 1 1 1 

There is yet another concession to be made, namely, that  we will use an idealized 
model of machine arithmetic. First we make the standard simplifications of ignoring 
overflow and underflow and of using only one of the properties of rounding error, 
i.e. a uniform bound (3.0) on the local error. Second is the (not so standard) 
idealization of considering only the first order effects of errors (i.e. we use deriva- 
tives). By considering bogus rounding errors we open the door for pessimistic 
results; by neglecting products of rounding errors we introduce a tendency for 
optimistic results and rule out the possibility of showing, for example, that  a com- 
putation "loses half of the significant digits." 

3. ROUNDING ERRORS AND OTHER PERTURBATIONS 

We now consider ways of defining a number p(d) which measures the maximum 
effect of rounding errors upon the computation by a fixed algorithm with data d. 
The specific results of this paper concern the sensitivity of a single number R (d, 3) 
to rounding errors 3. The more general case of vector-valued R (d, 3) is considered 
in Miller [,13, 151. 

The functions R(d,  ~) arise as follows. Consider a fixed sequence of m binary 
operations, + ,  - ,  × ,  or / ,  applied to a set d = ( d ~ , . . . ,  d~) of data (we will 
later allow the unary operation %/). A relative rounding error of 5~ is associated 
with the j th  operation. Hence the computed value of any intermediate result V is 
a function V(d, ~), ~ = ( ~ , . . . ,  ~m). 

For example, let d = (a, b) and consider the algorithm 

X e - - - a X b  

Y e - - X + b  

Ze---a × Y 

We have 

X(d,  3) = ab(1 + ~1) 

Y(d, 3) = ['ab(1 + ~1) + b](1 + 52) 

Z(d,  3) = {a[ab(1 + 51) + 51(1 + 53)}(1 + 5s). 

Thus the rounding errors enter in the manner of floating-point arithmetic with a 
guard digit (see Wilkinson [.24, pp. 7-11]). Other modes, for example, no guard 
digit or fixed-point arithmetic, can be handled with slight modifications. 

Often the choice R(d,  ~) = Vm(d, ~) = "the last computed value" is made 
(for example, see Case Study I, Section 7). More generally we will take R(d,  3) to 
be some function of d and of the m computed intermediate values V~ (d, 3). 

Intuitively, our only constraint upon ~ is that  the 5j are uniformly bounded by 
some miniscule constant u. Using the uniform norm I 3[ = maxl<~<m 15~ J we can 
express this requirement as 

1 5 [ - < u  w h e r e u > 0 i s f i x e d .  (3.0) 

Our interest often centers on the problem of determining the maximum sensi- 
t ivity of R (d, ~) to the errors 3. The number 

~(d) = ~ J (OR/05~) (d, 0) [ (3.1) 
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measures this sensitivity in the sense that  we have the approximate bound 

I R(d,  B) - R(d,  0) I ~ a ( d ) . u  (3.2) 

whenever I ~1 -< u. Notice that  (3.2) is merely a natural generalization of the 
single-variable approximation, I r(h) - r(O) [ ~ [ r'(O) [.u, whenever I hl  _< u. 
Intuitively, ~ is roughly the maximum factor by which the error in the computed 
value of R(d)  = R(d,  0) can exceed the roundoff level u. 

More formally we have the following easy result, whose proof we omit. 
Proposition 1. Let d be such that R(d,  B) is a differentiable function of ~ at ~ = O. 

Then a(d) = lim~_.o+ ~(d, u), where ~(d, u) = u-l.supl~j <~ J R(d,  ~) -- R(d,  0) [. 
Notice in Proposition 1 that  [ R(d,  ~) - R(d,  0) J _< z(d,  u) .u holds exactly. 

We work with z(d) instead of a(d, u) since the latter is harder to evaluate and 
has a "machine dependent" flavor. 

I t  is often the case that  for certain sets d of data  we have reason to expect ~ (d) 
to be large even for "stable" algorithms. These d which are inherently hyper- 
sensitive to small errors are called ill-conditioned (with respect to R). We can often 
determine a reasonable "condition number" K ( d )  > 0 which measures the extent 
of this ill-condition: d is ill-conditioned if K(d )  is large, well-conditioned if K(d )  
is small. 

We then define 

)/ p(d) = a ( d ) / K ( d )  = I(OR/O~) (d, 0) I K ( d ) .  (3.3) 

Then we have the approximate bound 

I R(d,  ~) - R(d,  0) I ~ p(d).g(d).u (3.4) 

whenever ] ~ I -< u. Intuitively, if p(d) is always of moderate size, then the effect of 
rounding errors is never much worse than can be explained by ill-condition. 

One "condition number" which is often useful measures the sensitivity of the 
"exact value" R (d) = R (d, 0) to rounding errors in the data  d. I t  is easily seen that  
the largest possible effect of changing d, to d, 1 = d,(1 + v,),  where J ~ [ _< u for 
i =  1 , 2 , . . . , n ,  is IR(  all, 0) - R(d,  O) J = u . ~ : = l l d , . ( O R / O d ~ ) ( d ,  0) I, a 
natural generalization of the single variable approximation [ r ix" (1 + ~) ) - r  (x) [ = 
17r ].] x .r ' (x)  [. Using g ( d )  = ~ ' -1Jd , . (OR/Od~) (d ,  0) I in (3.3) we have the 
intuitive interpretation that  for 

: : ( 3 . 5 )  

the effect of rounding error at d is at most p times worse than the possible effect of 
merely rounding the data. (For a formal interpretation see [-15, theorem 2.1]). 
Functionals p of the form (3.5) are employed in Sections 4 and 7. 

4. SOME SIMPLE EXAMPLES 

To illustrate the notation of Section 3 we will consider three elementary examples 
of functionals 

o(a) = I /  I. (4.1) 
331 ~ 1  
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In each case n = 1 (i.e. the program has a single input) and R(d, 6) = V,~(d, 6) 
(i.e. we consider the effect of rounding errors upon the final computed value). 

Example 1 (see Figure 1). For 

x+---dXd, y~---d+x,  ~ ¢ - - y - x ,  
we have 

R(d, O) --- d, 

and using (4.1), 

R(d, 6) = {I'd + # ( 1  + ~1)](1 + ~)  - d2(1 + $,)}(1 + ~3), 

p(d) = ( [ d + d  21+ ]dl)//Id[. 

When p (d) is very large we run the risk that  roundoff in R (d, 6) will yield a much 
poorer result than can be explained by the sensitivity of R to small variations in 
d. Hence we seek those values of d for which p (d) is huge. 

Clearly, hill-climbing techniques applied to p(d) anywhere except at d = - 1  or 
d = 0 will reveal tha t  the given process is numerically unstable for d of large 
magnitude. 

Example 2 (see Figure 2). For 

x + - - d X d ,  y + - d + x ,  z+-- -y -d ,  
we find 

p(d) = (242 + I d + d ~ I) /2d 2. 

Hill-climbing started at d < -- 1 gives the mistaken appearance that  p is bounded 
by ~. From d > -- 1, d # 0, one finds the numerical instability around d = 0. 

~(d) 

( - I ,  I1 

-"-d 

p(d) 

1-1,11 

L d  

Fig. 1 Fig. 2 

>(d) 

1-1,5/41 

~ d  

Fig. 3 
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Example 3 (see Figure 3). For 

v(-- . -dXd,  w*--.d-{-v, x ( - - . d X v ,  y ( - - w - { - x ,  z ~ - - - y - v ,  
we find 

p(d) = (2 I d31 --b [d-l- d~ [ ~- J d + d2 -t - d~ I -t- I d + d31) /J d -t - 3d3[. 

From d > - 1, d ~ 0, one converges to the actual bound of just under 3.2 for p. 
Beginning at d < -- 1, hiU-climbing does not pass ~. 

5. THE PROGRAMS 

Listing 1 shows the following three Fortran routines to aid roundoff analyses of the 
type described above: 
(1) a calling program which performs input and output duties; 
(2) a primitive numerical maximizer called UP; 
(3) a subroutine ROUND which generates each value computed by a given 
straight-line program and which simultaneously computes the partial derivatives 
of the value with respect to the given set of data and to the rounding errors. 

These programs are to be used in conjunction with a user-supplied subroutine 
called USER, which performs the actual evaluation of p(d). In the case studies we 
give examples of USER subroutines and of typical sets of data. 

6. SOME COMMENTS ON THE PROGRAMS 

Our experience with these programs suggests that computer costs are often negli- 
gible (see Sections 7 through 10). The programs reflect the decision to consider 
portability, modifiability, and simplicity over efficiency. In cases where efficiency 
is a dominant criterion, for instance, if a straight-line program with hundreds of 
instructions is to be tested, two changes immediately suggest themselves. 
(1) A machine language subroutine could replace ROUND for the evaluation of 
partial derivatives. In fact, one can easily imagine a "precompiler" which accepts, 
say, a Fortran-like specification of the algorithm (perhaps written with DO-loops) 
and which produces such a subroutine. 
(2) More sophisticated maximization techniques could be employed. However, 
this modification is not as natural as it may seem. For our purposes the performance 
near finite local maxima is relatively unimportant. It  is the ability to locate singu- 
larities that really counts. The usual efficient maximization routines often perform 
very poorly in this respect. 

Modifiability of the maximization routine is especially important. For instance, 
one might want to test an algorithm which uses conditional branching. It  is quite 
easy to modify our subroutine UP so that the search is limited to d for which, say, 
the tenth computed value is positive. In extreme cases stability of the algorithm is 
needed only on a domain so restricted that the maximizer can be removed and a 
few representative samples of p taken (see Case Study IV, Section 10). 

Other modifications are also useful. Perhaps most natural are changes which 
allow analysis of straight-line programs involving operations other than -1-, - ,  
X , / ,  and %/. It  is easy to accommodate unary minus, unary inverse, trigonometric 
ACM Transact ions  on  M a t h e m a t i c a l  Software, Vol. 1, No. 2, June 1975. 
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L I S T I N G  1 

COMMON VALUE(IOO),OELTAX(IOO,20),DELTAE(IOO~IO0),Ci20) 
ItRHO~STOPX,NLOP(IOO)~NOPER(IOO)tNRCP(IOO)tkDP~NDIM 

DOUBLE PRECISION VALUE,DELTAX,DELTAE~D~RHCtSTOPXt~IG 
C THIS MAIN PROGRAM PERFORMS INPUT/OUTPUT FbNCTIChS (ERROR 
C MESSAGES MAY ALSO BE GENERATED BY THE SUBROUTINE RCUkC).- 
C THE FOLLOWING ARE REAC. 
C NOP - THE NUMBER OF OPERATIONS IN THE STRAICFT-LIKE 
C PROGRA~ TO BE ANALYZED. I.LE.NCP.LE.IOO. 
C NLOP(I) - THE LEFT OPERAND IM THE I-TH IkSTRUCTICN. THE 
C CONSTANT I IS ENCODED AS O, THE K-TH EhTRY CF THE ~AT~ 
C AS K, AND THE J-TH COMPUTED VALUE ~S J+IO0. 
C NOPER(1) - THE OPERATOR IN THE I-TH I~STRUCTICK. + , -~ * ,  
C / AND SORT ARE ENCODED AS It2,3~4 ANC 5, RESPECTIVELY. 
C NROP(I} - THE RIGHT OPERAND IN THE I-TH IhSTEUCTIOh, 
C ENCODED LIKE NLOP. FOR SORT USE KRCP(I) = O. 
C NDIM - THE NUMBER OF DATA ENTRIES. I.LE.~DIV.LE.20. 
C O( l )  - THE I-TH ENTRY IN THE INITIAL SET CF DATA. 
C STOPX - EXECUTION STOPS IF RHC ATTAIKS THIS VALUE. 
C ITMAX - THE NUMBER CF TIMES THE MAX(PlIER IS TC BE 
C APPLIED.  TYPICAL VALUES ARE 5-10. 
C THE SUBROUTINE UP IS CALLED TO ALTER D SC AS TC INCREASE 
C RHO. RHO IS EVALUATED BY THE SUBR~UTIhE RCUhD. FOR EACH K, 
C I.LF.K.LE.NOP, ROUND COMPUTES THE FCLLCWIhG. 
C VALUE(K) - THE RESULT OF THE K-TH OPERATICh GIVEN TEE 
C CURRENT D. 
C DELTAX(K,I) - THE VALUE AT (0~0) OF THE R~RTIAL 
C ~ERIVATIVE OF THE K-TH COMPUTED VALUE WITH RESPECT TC 
C D I I I ,  I .LE.I .LE.NDIM. 
C DELTAEIKtJ) - THE VALUE AT (D,O) CF THE P~RTI~L 
C DERIVATIVE OF THE K-TH  COMPUTED VALUE WITH RESPECT TO 
C THE J-TH ROUNDING ERROR. I.LE.JoLE.kCP. 
C ROUND THEN CALLS THE USER-SUPPLIED SUBROUTIhE USER TO 
C COMPLETE THE EVALUATION OF RHO. NORMAL CUTPUT ENDS WITH 
C A LIST OF INCREASING VALUES OF RHC AND THE FInal  VALUE CF 
CD. 

NIN = 5 

C NIN = STANDARD INPUT UNIT 
NOUT = 6 

C NOUT = STANDARD OUTPUT UEIT 
READ(NIN~I) NOP 

I FORMATiI2) 
IF((NOP.LE.O|.OR.(NOP.GT.IO0)} GC TO g9 
DO 4 I = I,NOP 

READ(NINe2) MLCP,MOPERtMRCP 
2 FORMAT(13,11,13) 

WRITE(NOUT,3} I,MLCP, MOPER,MRCP 
3 FORMAT(214,I2,16) 

! I  = I + I 0 0  
I~((MLOP.LT.O).OR.(MLOP.GE.II}) GD TC 99 
IF((MROP.LT.O).OR.(MROP.GE.II)) GC TC 9g 
IF((MOPER.LE.O).OR.(MOPER.GT°5)) GC TC g9 
NLOPII) = PLOP 
NOPER(1) = MOPER 
NROP(1) = PROP 

4 CONTINUE 
READININ~II NDIM 
IF((NDIM.LE.O).OR.(NDIM.GT.20}) GC TC gg 
DO 7 I = I~NDIM 

READ(NIN,5) D(1) 
5 F O R M A T ( D 2 B . 1 6 )  

WRITE(NOUT~6| l~O( I }  
6 FDRMAT(3H D(,12,4H) = ,G16.8) 
7 CONTINUE 

READ(NIN,5) STOPX 
WRITEINOUT~8) STOPX 

B FORMAT(IgH STOPPING VALUE IS ,GIO.4} 
READ(NIN,I) ITMAX 
WRITE(NOUT.9I ITMAX 
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LISTING 1 (continued) 

9 FORMAT(23H USE MAXIMIZER AT MOST ,12,6H TI~ES) 
CALL ROUND 
WRITE(NOUT~IO) RHO 

lO  FORMATI4X,GIO.4) 
IF(IRHO.GE.STOPX).OR.(ITMAX.LE.O)) GC TC 14 
BIG = RHO 
DO I I  ITIMES = I,ITMAX 

CALL UP 
WRITEINCUTvlO) RHO 
IF(IRHO.GE.STCPX).CR.(RHO.LE.BIG)) GC TC 12 
BIG = RHO 

l l  CONTINUE 
12 O0 13 I = I,NDIM 

WRITE(NOUT,6) I tD(1)  
13 CONTINUE 
14 STOP 
99 W R I T E I N O U T , I O 0 )  

[00 FORMATIISH INCORRECT DATA| 
GO TO 14 
END 

SUBROUTINE UP 
COMMDN VALUE(IOOI~DELTAX(IOOt2OI,DELTAE(IOO,IOO),D(20) 

ltRHO, STOPX,NLOP(IOO),NOPER(IOO)~NROP(IOO),~CP,NDIM 
DOUBLE PRECISION VALUE,DELTAX,DELTAE,O,RhC,STOPX,CI,H 

[,BEST 
C TO FIND A LARGER VALUE OF RHO THIS SUBROUTINE SEARCHES eY 
C SUCCESSIVELY CHANGING EACH ENTRY OF Do INITIALLY THE 
C I-TH ENTRY IS MODIFIED BY [ / [ 0 0  PER CENT. THIS AMOUNT IS 
C DOUBLED AT MOST 13 TIMES. SINCE 0.000[$(2**13) IS ABCUT 
C O.Bv THE ENTRY WILL NFITHER CHANGE SIGN NOR CCU~LE I~ 
C MAGNITUDE. AS SOON AS RHC DECREASES THE NEXT CCCRDIRATE 
C OF O IS SEARCHED. CONTROL IS RETURNED AFTER ALL NCIM 
C ENTRIES ARE TRIED. 

BEST = RHO 
DO 5 I = [,NDIM 

DI = O i l )  
IFIDI.EQ.O.ODO) GO TO 5 
H = OI*I.OD-4 
DI I )  = D[ + H 
CALL ROUND 

C WE CAN NOW TELL WHICH DIRECTICN TD SEARCH. 
IF(RHO.GE.STOPX) GC TO 6 
IFIRHO.LE.BEST) GO TO 1 
BEST = RHO 
H : H + H 
LIM = 13 
GO TO 2 

l H = - H  
tIM = 14 

C SEARCH. SUCCESSIVELY DOUBLE THE INCRE~EhT H IN D(1).  
2 O0 3 ITIMES = I ,LIM 

O l I ) =  OI + H 
CALL ROUND 
IF(RHC.GE.STOPX) GO TO 6 
IF(RHO.LE.BEST} GO TO 4 
BEST = RHO 

3 H = H + H 
C GO BACK ONE STEP 

4 O(I I  = OI + O.5DO*H 
C PERHAPS RHO COULD NOT BE INCREASED 

IF(ILIM.EQ.14).AND.(ITIMES.EQ.1)) C [ I )  = D[ 
RHO = BEST 

5 CONTINUE 
6 RETURN 

END 
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LISTING 1 (continued) 

SUBROUTINE ROUND 
COMMON VALUE(IOO),DELTAX(IOO,20),DELTAE(IOO,IOO),D(20) 

I,RHO,STOPX,NLOR|IOO),NOPER(IOO),NR~P|IOO),~CP,~DIW 
DOUBLE PRECISION VALUE,OELTAX,DELTAE,C,RHC,STOFX,ARGL 

1,ARGR,DERIVL,DERIVR,DSQRT 
C GIVFN DATA D THIS SUBROUTINE EVALUATES ALL INTERMECIATE 
C VALUES OF THE STRAIGHT-LINE PROGRAM AkD THEIR PARTIAL 
£ DERIVATIVES WITH RESPECT TO THE DATA AED lC THE ROUNDING 
C ERRORS. RHO = 0 IS RETURNED IF SCME VALUE IS UKCEFI~EC, 
C THEREBY CAUSING THE MAXIMIZER TC AVCIC D. CTHERWISE, TEE 
C USER-SUPPLIED SUBROUTINE USER IS CALLEC TC EVALUATE REG. 

NOUT = 6 
C NOUT = STANOARC OLTPUT UNIT 
C BEGIN THE LOOP TREATING THE K-TH INSTRUCTIC~. 

DO 400 K = I,NOP 
C GET THE OPERANDS AND THE OPERATOR 

ILOP = NLOP(K) 
lOPER = NOPER(K) 
IROP = NROP(K) 

C IF(ILOP.EQ.O), THEN THE LEFT ARGLMENT IS THE CONSTANT 1. 
C IF NOT, BUT (ILOP.LF.IOO), THEN IT IS THE ILCP ENTRY CF C. 
C OTHERWISE, IT IS THE ILOP-IO0 CCMPUTED VALUE. 

IF(ILOP.LF.IO0) GO TO I 
ARGL = VALUE(ILOP-IO0) 
GO TO 3 

I IF(ILOP.EQ.O) GO TO 2 
ARGL = D(ILOP) 
GO TO 3 

2 ARGL = I.ODO 
3 IF(IRDP.LE.IO0) GO TO 4 

ARGR = VALUE(IROP-IO0) 
GO TO 6 

4 I~(IROP.FQ.O) GO TO 5 
ARGR = D(IROP) 
GO TO 6 

5 ARGR = I.OCO 
£ BRANCH ACCORDING TO THE OPERATOR. EXFCUTE THE ~PERATION. 

6 GO TO (7,8,9,IO,11), IOPER 
7 VALUE(K) = ARGL + ARGR 

GO TO I00 
B V A L U E ( K )  = ARGL - ARGR 

GO TO lOO 
9 VALUE(K) = ARGL*ARGR 

GO TO 100 
I0 IF(ARGR.EO.O.ODO) GC TO 12 

VALUE(K) = ARGL/ARGR 
GO TO I00 

11 IF(ARGL.LT.O.ODO) GO TO 14 
VALUE(K) = DSQRT(ARGL)  
GO TO 100 

C IF THE OPERATION IS IMPOSSIBLE, THEN PRINT J PESSAGE, SET 
C RHO = 0 AND RETURN. 

12 WRITE(NOUT,13) 
13 FORMAT(25H GIVEN PROCEDURE TRIEC I0)  

RHO = O.ODO 
GO TO 1000 

14 WRITE(NOUT,15) 
15 FORMAT(~SH GIVEN PROCEDURE TRIED SCRT(~), V.LT.O) 

RHO = O.ODO 
GO TO I000 

C EVALUATE THE PARTIAL DERIVATIVE OF THE K-TH V~RIABLE 
C WITH RESPECT TO THE I-TH DATA ENTRY. IF(ILCP.LE.IO0), 
C THEN THE DERIVATIVE OF THE LEFT ARGU~EKT IS EITHER 1CR O. 
C OTHERWISE, IT HAS ALREADY BEEN CCMPUTED 

100 DO 200 1 = I,NDIW 
IF(ILOP.LE.IOO) GO TO 101 
DERIVL = DELTAX(ILOP-IO0,1) 
GO TO 102 
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LISTING 1 (continued) 
101 DERIVL = £ ,ODC 

I F ( I L O P . E O . I )  DERIVL = l ° 0 O O  
102 IF(IROP.LE.IO0) GO TC 103  

DERIVR = D E L T A X ( I R D P - I O 0 , 1 )  
GO TO 104 

103 DERIVR = G.ODO 
IF(IROP.EQ.I) DERIVR = I.ODO 

104 GO TO ( I 0 9 , 1 0 6 , 1 0 7 , I 0 8 , I 0 9 ) ,  ICPFR 
105 DELTAX(K,I| = DERIVL + DERIVR 

GO TO 200 
TO6 DELTAX(Ktl) = DERIVL - DERIVR 

GO TO 2OO 
I07 DELTAXiK,I) = (ARGL*DERIVR) + (ARGRtDERIVL) 

GO TO 200 
108 DELTAX(K,I) = ((ARGR*DERIVL) - (ARGL*CERIVR))/ 

1 (ARGR*ARGR) 
GO TO 200  

l O g  DELTAX(Kvl) = O. SDO*(DERIVL/VALUEiK)) 
200 CONTINUE 

C EVALUATE THE PARTIAL DERIVATIVE OF THE K-TH VARIABLE WITF 
C RESPECT TO THE J-TH ROUNDING ERRCR. IFqJ.GT.K) IT IS O. 
C IF(J.EQ.K) IT IS VALUE(K). OTHERWISE IT MEST BE COMPUTEC° 

IF(K.EQ. I )  GO TO 301 
KK = K - I  
DO 300 J = I,KK 

IF(ILOP.LE.IO0) GO TO 201 
DERIVL = DELTAE(ILOP-IOO,J) 
GO TO 202 

201 DERIVL = 0.000 
202 IF(IROP.LE°IO0) GO TO 203 

DERIVR = DELTAE(IROP-IOO,J) 
GO TO 204  

203 DERIVR = C.ODO 
204 GO TO (205,206,207,208,209)~ ICPER 
205 D E L T A E ( K , J )  = DERIVL + DERIVR 

GO TO 300 
206 DELTAF(K,J) = DERIVL - DERIVR 

GO TO 300  
207 DELTAE(K~J) = (ARGL*DERIVR) + (ARGR~CERIVL) 

GO TO 300 
208 DFLTAE(K,J) = ((ARGR*DERIVL) - (ARGLtCERIVR))/ 

1 (ARGR*ARGR) 
GO TO 300 

209  O E L T A E ( K ~ J )  = O . 5 0 0 * ( D E R I V L / V A L U E ( K ) )  
300  CONTINUE 
301  D E L T A E ( K v K )  = V A L U E ( K )  

I F ( K . E Q . N O P )  GO TO 400  
KP = K + 1 
O0 3 0 2  J = KPtNOP 

302  D E L T A E ( K ~ J )  = O°ODO 
4 0 0  CONTINUE 

CALL USER 
t O 0 0  RETURN 

END 

functions, etc. With more extensive modifications one can locate instabilities which 
essentially have nothing to do with rounding errors F14]. 

In cases where p assumes values of Do it often happens that numerical instability 
is diagnosed very quickly by even the most primitive maximization routine. This 
can happen if the singularity of p(d) occurs on an (n - 1)-dimensional manifold, 
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where n is the dimension of d. Convergence by the maximizer is very rapid, since 
the situation is not appreciably more complicated than a one-dimensional search. 
This phenomenon occurs in Case Study II, Section 8. 

7. CASE STUDY I. TRIDIAGONAL LINEAR SYSTEMS 

Consider this problem: Givena 10-tupled = (a~ , a s ,  a3 , bl  , bs , Cl , c2 , f ~ , f s  , f s )  

with nonsingular "left-hand side" a~, . . . ,  cs, solve 

a l x  ~ b ly  = f l  

ClX ~ a~y ~ bsz = f2 

c~y + a3z  = :)'3. 

Algorithm A computes y by Gaussian elimination. Algorithm B uses "two-sided" 
elimination from Babuska [1]. 

Algorithm A Algorithm B 

ml (--" c l / a l  m l  * -  c l / a l  

s l  ~ m l  X bl s l  ¢--- m l  X b~ 

d2 ~-- as - s~ ds (---- as - s l  

t l  ( - - -ml  X f l  t i c - - m 1  X f l  
gs ¢ - f 2  - t l  g :  ~-'-fs - t l  

m s  (-- cs/d2 m s  ~-- b~/aa 

ss ¢--- m2 X bs s8 (--  ms  X c2 

ds ~ -  as - -  ss ds* ¢-- as - s3 

t s e - m 2  X gs t3¢--m3 X f3 
gs (-- f3  --  t2 gs* ~-- f2 - -  ts 

z ("- g3/d3 u ~-- g2 + gs* 
u ~--bs  X z v c - - u  - -  f2 

v c " g s  - u w~- - -d s  + ds* 

y (-- v / d s  r (--  w - as 

y ¢-- v / r  

For each method of computatioa we ask: How much more is y changed by 
rounding errors than is it changed by merely rounding the data? The appropriate 
functional p is (3.5) 

p -- p(d) = ~ I ( O R / O ~ )  (d, O) I / ~  I d , . ( O R / O d , )  (d, 0) I 
J~l I $=i 

where m equals 14 for algorithm A and 15 for algorithm B and where R = Vm, the 
c o m p u t e d  value of y. Theorem 5.1 of Babuska F1] implies that p is unbounded for 
algorithm A, but bounded by 9 for algorithm B. 

We tested our program by verifying Babuska's results. For d = (1, 1, 1, 1 , . . . ,  1) 
or d = (1, 2, 1, 1, . . . ,  1), algorithm A calls for division by zero. This does not 
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LISTING 2 

SUBROUTINE USER 
COMMON VALUE(100),DELTAX(IOO,2O),OELTAE(IOO,IOO),E(20) 

I,RHO~ STOPX,NLOP(lO0) ,NOPER(lO0) ,NROP (lOB) , l~P,  NDI~ 
DOUBLE PRECISION VALUE,OELTAX,OELTAE,D,RHC,STOFX,~A~S 

I , T O P ,  BOTTOM 
C THIS SUBROUTINE EVALUATES THE FUNCTIONAL RHC USED IN CASE 
C STUDY I .  

NOUT = 5 
TOP = O.ODO 
DO I J = I,NOR 

1 TOP = TOP + CABS(OELTAE(NOR,J}) 
BOTTOM = O.ODO 
DO 2 I = I,NDIM 

2 BOTTOM = BOTTOM + DABS(D(1)*DELTAX(NCP,I)) 
IF(BOTTOM.EQ.O.ODO) GO TO 4 
RHO = TOP/BOTTOM 

B RETURN 
4 ~HO = 0.000 

WRITE(NOUT, 5) TOP 
5 FORMAT(7H RHO = ~,GIO.4,4H / O) 

GO TO B 

END 

cause our program any difficulty, but we chose to avoid these sets of data. Both 
algorithms A and B were tested using the initial values 

dl = (1, 1.1, 1, 1 , . . . ,  1), 

d~ = (1, 2.1, 1, 1 , . . . ,  1), 

d s =  (--1, 1, 1, 1 , . . . ,  1), 

d~ = (1, --1, 1,1,...,1). 

As in Case Studies II and III, Sections 8 and 9, we set the parameter STOPX to 
104 and ITMAX to 10 compiled under Fortran G and executed on the IBM 370/168 
at Penn State. 

First we analyzed algorithm A. Starting at dl  or da the maximizer quickly pushed 
p past STOPX. But  from d2 or d3 it did not get past 1.75 or 3.0, respectively, re- 
minding us that  unstable algorithms may appear stable to our heuristic techniques 
(this problem did not arise in the other case studies). The largest p (d) found for 
algorithm B (from any initial d~) was about 5.5. Execution times ranged from 2 
to 6 seconds (at 10 cents per second). 

Listing 2 shows the USER subroutine employed in this case study. Listing 3 
shows the set of data read by our program when it tested algorithm A beginning 
at d l .  We have added annotations. 

8. CASE STUDY II. THE ORTEGA-KAISER METHOD 

Ortega and Kaiser [17] give a rational (i.e. square-root-free) QR method for sym- 
metric tridiagonal matrices. In the 3 X 3 case this process works with 5-tuples 
d = ( a l ,  a2,  a s ,  bl 2, b2 ~) representing matrices 

A(d)  = 1 as b2 . (S.1) 
b2 as 
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LISTING 3 

14  
0 0 6 4 0 0 1  
1 0 1 3 0 0 4  
0 0 2 2 1 0 2  
1 0 1 3 0 0 8  
0 0 9 2 1 0 4  
0 0 7 4 1 0 3  
1 0 6 3 0 0 5  
003?107  
1063105 
0 1 0 2 1 0 ' ~  
1 1 0 4 1 0 8  
0 0 5 3 1 1 1  
1 0 5 2 1 1 2  
1 1 3 4 1 0 3  
10 
1 . 0  
1 . 1  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 . 0  
1 0 0 0 0 o  
10 

NOP = number of operations in the following program 
01 sixth data entry, 4 = /, 1 = first data entry 

= first computed value~ 3 = ×, 4 = fourth data entry 

. an encoding of algorithm A 

NDIM = number of data entries 
a l = l  
a2 = 1.1 
a 3 = l  
bl = 1 

dl 

S T O P X  = s t o p p i n g  v a l u e  f o r  t h e  m a x i m i z e r  
I T M A X  = m a x i m u m  n u m b e r  of  i t e r a t i o n s  of  t h e  m a x i m i z e r .  

The algorithm (neglecting special cases which avoid division by  zero) 

p ~  (-- al X a~ ss 2 (-- bsS/(pe S -~ b2 2) 

sl ! ¢---blS/(pl S + bl S) u2 ~ ssS(gs -~- a~) 

ul  ¢--- siS(a1 + a s )  d2 e--  g2 + u s  

d l  ~-- a l  -~  u l  d3 ~-- a3 - -  u2 
g s ( - a s - -  Ul  p3 2 +  c ~ 3 s / ( 1 - - s s  S) 

p s  S + -  g 2 S / ( 1  - -  siS) bs S ( -  s2 2 >( p3 S 

~ s ,  siS(p2 S + bsS) 

produces Q(d, ~) = (51, d2, d3,612 , bs2), where A(d)  and A(Q(d,  0)) have the 
same eigenvalues (the eigenvalues can be easily located after several iterations). 

For any Q = Q (d, 6), let EIG (Q) be the absolute value of the largest eigenvalue 
of A (Q). We wish to analyze the behavior of R (d, 6) = EIG (Q (d, ~) ), so we want 
to evaluate the derivatives (ORlOn3) (d, 0). Notice that  the subroutine ROUND 
evaluates the 5 X 21 matrix (OQ/O~)(d, 0). Thus we need only evaluate the 
derivative of EIG with respect to Q at Q(d, 0) and then apply the chain rule. 

I t  is possible to compute the derivative of EIG with respect to Q using standard 
perturbation results for eigenvalues ([-24, pp. 137-138J or [-25, ch. 2J). However, we 
prefer to use divided difference approximations, an approach which is both simpler 
and more general. For instance, given Q = Q(d, 0) = (dl ,  ds, da, ~s, ~2s) we can 
use an eigenvalue routine to compute EIG = EIG(Q) ,  change dl to d~ ~ - H  
(getting Q~), compute BIG = EIG(Q~), and then use the approximation 
0EIG/0d~ = (BIG - E I G ) / H .  

If d has large entries, then Q = Q(d, 0) also has large entries so that  just round- 
ing the entries of Q will produce large absolute (though small relative) errors. 
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This, in turn, generally produces large absolute errors in EIG (Q). Let us compensate 
for this fact by working with p ( d ) =  (~2~1 I(OR/O~)(d, O)I)/Idl, where 
l d [  = J(al,  a2, a3,512, 522)J ---- max{ I el ], J a2 I, J a3 [, 512, 522}. Thus [ d [ plays the 
role of K ( d )  in (3.3). 

With a USER subroutine based upon these ideas we chose the parameters 
d o  = (.9, .8, .7, .6, .5), STOPX = 104 , and I M A X  = 10 (for d = (1, 1, 1, 1, 1) 
the Ortega-Kaiser method performs a rare branch to avoid division by zero). 
Almost immediately (i.e. after three seconds of CPU time) a d near (.73, .82, .7, 
.6, .5) was located for which p(d) > 104, indicating instability. We tried all eight 
possible combinations of signs for the first three entries of do (the last two must be 
A-). Instability was diagnosed each time, though not always so quickly as for the 
original do. However, the cost was always under two dollars. 

We also applied our program to a rational QR algorithm of Reinsch [-183 (for 
other references see Stewart [21, p. 3813). Only minor changes in U S E R  were 
required, e.g. this method uses 23 instructions in the 3 X 3 case and it produces 
the values in a different order. With the same eight starting values we could not 
locate a value of p exceeding 12. 

The Ortega-Kaiser algorithm provides a clear illustration of the power of our 
techniques for locating numerical instability. I t  is not hard to see that  the entries of 
the computed matrix A (Q (d, ~)) can be extremely sensitive to rounding errors ~. 
However, the same can be said of many stable algorithms for eigenvalues (for 
example, see Wilkinson [-25, p. 2883). To determine analytically the dependence 
of the eigenvalues upon the rounding errors seems to be a formidable problem. On 
the other hand, as we have just seen, it yields readily to numerical sampling. 

Listing 4 shows the USER routine and Listing 5 a set of data for the analysis of 
the Ortega-Kaiser method. 

9. CASE STUDY III. THE GRAM-SCHMIDT METHOD 

Given linearly independent n-vectors a, b, and c, either of the following versions of 
the Gram-Schmidt (GS) method produces orthonormal x, y, and z (assuming 
exact arithmetic). 

GS* 

x  -a/If a [I 
u ~---b -- (bTx)x 

y ' - - /11 u I] 

v c - ( c T x )  x 

W ( - "  V - -  ( c T y ) y  

 w/ll w ]1 

The modified Gram-Schmidt (1VIGS) is the same as GS* except that  w is defined by  

W <--" V - -  ( v W y ) y .  
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LISTING 4 

SUBROUTINE USER 
COMMON VALUF(IOO)tDELTAX(IOO,20],DELTAE(IOOtlOO),D[20} 

I,RHO, STOPX,NLOP(IOOI,NOPER(IOO)yNP~P(IOO),~EP,NDIM 
DOUBLE PRECISION VALUE,DELTAX,EELTAE,D,RHO,STOFX,SAVE 

I,H,AQ(3,3},DSQRT,DUMMY,RCOT(3I,BIG,A~,DABS,EIG 
I,DEIGDQ(5),S~SUM,DNORM 

C THIS SUBROUTINE EVALUATES THE FCNCTIONAL RHC USED IN CaSE 
C STUDY I I .  
C THE I-TH ENTRY OF THE OUTPUT Q IS THE IOUT(1)-TH COMPUTED 
C VALUE. 

INTEGER lOUT(5) 
DATA IOUT16,16,17,12,21/ 

C THIS LOOP COMPUTES DIVIDED DIFFERFNCE APPROXImaTIOnS TC 
C THE VECTOR DEIGDQ OF DERIVATIVE~ OF THE LARGEST EIGE~VALUE 
C WITH RESPECT TO THE OUTPUT q. 

DO 4 IT = I ,~  
I = I I - I  

C THE FIRST TIME THROUGH GET THE EXACT LARGEST EIGENVALUE. 
IF(I .EO.O} GO TO I 

C OTHERWISE PERTURB THE I-TH OUTPUT. 
SAVE = VALUE(lOUT[I}) 
H = SAVE*I.0D-7 
VALUE(IOUT(1)! = SAVE + H 

C COMPUTE THE LARGEST EIGENVALUE CF A(O), WHERE THF OUTPUT 
C O IS POSSIBLY PERTURBED. 

I AO( I , I )  = VALUE(IOUTII)) 
AQ(2,2) : VALUF(IOUT(2)) 
AQ(3,3] : VALUE(lOUT(3}) 
AQ(I ,2)  : DSQRT(VALUE(IOUT(4)}} 
A0(2,3) = CSQRT(VALUE(IOUT(5))) 
AQ(I,3) = 0.000 

C USE A LOCAL SYMMETRIC EIGENVALUE RQUTINE. TEE THREE 
C EIGENVALUES ARE RETURNED IN ROOT. 

CALL DMXDGI(3,-3,1tAQ,3,DUW~Y,RCCT) 
C GET THE LARGEST E I G E N V A L U E .  

BIG = O.ODO 
DO 2 K = 1 , 3  

AB = DABS(ROOT[K}) 
IF(AB.GT.BIG) BIG = AB 

2 CONTINUE 
IF(I .GT.O) GO TO 3 

C THE FIRST TIME THROUGH GET THE EXACT LARGEST EIGENVALUE. 
EIG = BIG 
GO TO 4 

C FIND TEE DIVIDED DIFFERENCES. 
OEIGDO(I) = (BIG - EIG)/H 
VALUE(IOUTII}) = SAVE 

4 CONTINUE 
C MULTIPLY DEIGDO BY THE DERIVATIVE 0 = THE OUTPUT C WITH 
C RESPECT TO THE ROUNDING ERRORS. THIS  YIELDS THE DERIVATIVE 
C OF THE LARGEST EIGENVALUE WITH RESPECT T£ THE RCUNCING 
C ERRORS. ADO THE ABSOLUTE VALUES CF THE RESLLTS. 

S = O.ODO 
DO 6 J = I,NOP 

SUM = O.OO0 
DO 5 I = 1,5 

5 SUM = SUM + DEIGDQ(I|*DELTAF(IOUT(I},J) 
6 S = S + DABS[SUM) 

C DIVIDE BY THE NORM OF THE DATA. 
DNOPM = O . O D O  

DO 7 I = I,NDIM 
AB = DABS(C(III 
IF(AB.GT.DNORM) DNORM = AB 

7 CONTINUE 
RHO = S/DNORM 
RETURN 
END 
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L I S T I N G  5 

21 
0013001 
1011004 
0 0 4 4 1 0 2  
0 0 1 1 0 0 2  
1 0 3 3 1 0 4  
0 0 1 1 1 0 5  
0022105 
1 0 7 3 1 0 7  
0 0 0 2 1 0 3  
1 0 8 4 1 0 9  
1 1 0 1 0 0 5  
1 0 3 3 1 1 1  
0 0 5 4 1 1 1  
1 0 7 1 0 0 3  
1 1 3 3 1 1 4  
1 0 7 1 1 1 5  
0032115 
117311"/ 
0002113 
118411g 
1133120 
05 
0 . 9  
0 . 8  
0 .7  
0 .6  
0 .5  
10000 ° 
10 

0 ~(b x)x 

Fig. 4 

9 

II d I IF 2 = d, 2. ( 9 . 2 )  
$=1 

A large value of K(d)  means that  a, b, e are nearly linearly dependent (see Stewart 
[-21, ch. 4-1; also see ['21, p. 221] for a definition of K(d )  which can be used when 
n > 3 ) .  

Define R(d,  g) = yTz and p(d) = ( ~'9~°1 [ (OR/O~) (d, 0) ] ) /K(d ) .  Notice tha t  
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where, e.g. 

The procedure GS* is intermediate between the standard GS method and the 
MGS procedure (see Stewart [-21, pp. 216-217"]). For the case n = 3 either pro- 
cedure requires 60 arithmetic operations, including three square roots. The only 
difference between them lies in one operand of each of n multiplications. 

In either case the x, y, z computed with rounding errors can be sharply non- 
orthogonal (though it is not hard to show tha t  they must have nearly unit  length). 
To see how this can happen suppose that  the only rounding error in the computation 
of y occurs in the evaluation of bTx. If a and b are nearly linearly dependent in the 
sense that  u is small compared with b, then xTy may be large (see Figure 4). 

Can the departure from orthogonality of the computed x, y, z be large without 
a, b, e being nearly linearly dependent? To make this question precise we need a 
measurement of dependence among a, b, e. Let d be the 3 × 3 matrix with columns 
a, b, e and define 

K(d )  = [[ d [[y.[[ d -11[F (9.1) 
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LISTING 6 

SUBROUTINE USeR 
COMMON VALUE(IOO),OELT&X(IOO,20),DELTAE(IOO,[OO},~(20) 

I~RHO, STOPXtNLOP(IOO),NOPFR(IOO)~NRCP(IOOI,KCP,~OI~ 
DOUBLE PRECISION VALUE,DELTAX,CELTAE,C,RHC,STOPX,~(3,3) 

I,SIGMA,PARTJtDAeS~T,FNORM~FNDRMI,KtDS~RT 
C THIS SUBROUTINE EVALUATES THE ~U~CTICkAL RHC USEC IN CASE 
C STUDY I I I .  
C EVALUATE THE NUMERATOR OF ( 9 - 3 ) .  THE EhTRIES CF Y ARE 
C COMPUTED VALUES 2 7 , 2 8 , 2 9 .  THE ENTRIES OF Z AR~ COPPUTE~ 
C VALUES 58 tSgt60 .  

SIGMA = O.ODO 
EO 2 J = 1,60 

PARTJ = O.ODO 
O0 I I = I ~ 3  

I PARTJ = PARTJ + VALUE(26+I)*DELTAE(57+IyJ) 
1 + VALUE(57+I)*DELTAF(26+I,J) 

2 SIGMA = SIGMA + DABS(PARTJ) 
C EVALUAT~ (9-2J AND PREPARE FOR MATRIX INVERSION. 

FNORM = O.ODO 
DO 3 I = 1,3 

DO 3 J = 1,3 
T = D ( 3 * I J - l )  + l }  
FNOPM = FNORM + T*T 

3 A I I , J )  = T 
C USE A LOCAL MATRIX INVERSION RObTINE 

CALL DMXINV{A,3~3) 
C EVALUATE ( 9 - i ) .  

FNORMI = O.ODO 
DO 4 I = 1,3 

DC 4 J = I,~ 
T = A ( I , J )  

~NORMI = FNOPMI + T*T 
K = DSQRTIFNORM*FNORMI) 

C EVALUATE ( g - 3 ) .  
RHO = SIGMA/K 
RETURN 
END 

since yWz = ~E]3~=1 (y , .z , ) .  All components for the evaluation of p are available to 
the subroutine USER. 

If p is uniformly bounded by some number B, then by (3.4) we can (approxi- 
mately) guarantee that  the computed y and z satisfy J yWz I <_ Bu .K(d ) ,  since 
Rid ,  G) = yTz and Rid ,  0) = 0. For MGS such a bound is known to exist (see 
[2, p. 15]; for a less formal discussion of the numerical properties of GS procedures 
see Rice F20]). 

To test GS* we chose the initial value 

do= 1 
1 

and set STOPX = 104 and I T M A X  = 10. After a few iterations of the maximizer, 
p exceeded 104. Similarly, p appeared unbound in each of several more tests where 
we began with some altered signs in do. The largest value of p found for MGS was 
about 5.5. Thus, unlike MGS, GS* is unstable in the sense that  the departure from 
orthogonality of the computed vectors is not merely proportional to the product of 
the unit rounding error and the condition number of the data. 

These computations were somewhat more expensive than those in the other case 
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studies (though each run cost under five dollars). I t  is not hard to see why. The 
cost of evaluating the partial derivative is 0 (m2), where m is the number of opera- 
tions in the straight-line program being analyzed. For reasons of economy we list 
only the USER routine, as shown in Listing 6. 

10. CASE STUDY iV. STREAMLINED POLYNOMIAL FORMS 

According to Fike [-6, ex. 4~ the following polynomial of degree 6 has been used in 
an IBM System/360 library routine as an approximation to 2 * for - ~  < x < 0. 

P(x)  = 1 ~- .6931471805599346x A- .2402265069563678x 2 

A- .05550410840231345x 3 A- .009618117095313700x 4 

-4- .001333073417706260x 5 ~- .0001507368551403575x 6. 

In this form evaluation requires six multiplications and six additions. However, 
P (x) can be evaluated in four multiplications and seven additions using the stream- 
lined form 

ql "~- alx 

q2 6-- ( q l  3 t" a2)  2 

q~ ~-  (q2 + as) (ql + a~) 

P(x)  ~-- (q, A- qa -4- at) (q3 + as) + a7 

where 

al = .23069414645549892 

a2 = .20629788601177007 

a3 = 1.00939719129704594 

a4 = .10750058720428135 a6 = 1.67018802067794794 

a5 = .13060869898889258 a7 = .48953177059399256. 

We would like to assess the total  relative error in the result caused by  both the 
rounding errors and the fact tha t  the a~ cannot be represented exactly. Let  d = 
(d l ,  • . . ,  ds) = (a l ,  . . . ,  aT, x) and let P ( d ,  =, 3) be the value computed by the 
streamlined scheme with rounding errors $ = (31,.  • •, ~n) given data d ~, where 
d, ~ -- d,(1 -b ~r,) for 1 < i < 8. Thus P (d ,  0, 0) = P(x) .  Define 

)/ p(x) = (OP/cOrr,) (d, 0, 0) [ -{- ~ [ (OP/c9~#) (d, 0, 0) (P (x )  ( 
j -1  

(think of the a, as fixed, and - ~  < x < 0). By  the obvious variation on the 
theme of Section 3 we see that  if ] = [ < u and I $ ] g u, then we have the approxi- 
mate bound 

(I P(d,  ~, 3) - P(x)  I/[ P(x)  [) < p(x) .u .  

Thus the computed value of P(x)  has a maximum relative error of at most p(x) .u. 
We modified the programs of Section 5 to evaluate p(x) at 100 evenly spaced 

points between - ~  and 0. The maximum value of p was about 5.6 (a complete 
listing shows p ( - ~ ) =  5.5, p ( 0 ) ~  5.6, and p monotone increasing for 
- ~  g x g 0). The maximum for the corresponding p gotten by  applying nested 
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multiplication (i e. Homer's rule) to the original form of P(x) is about 2.2. If we 
take into account the fact that the constant coefficient 1.0 can be represented 
exactly (this can be done by removing the term OP/Orrl from p), then o decreases 
to nearly 1. (Actually, we may also want to consider x as exact for both methods ) 
Thus nested multiplication nearly produces a correctly rounded value of P(x), 
while the error in the streamlined form may be about five times larger. 

While we do not propose that methods like ours be used as the only experimental 
technique for certifying function evaluation routines, they may be useful for studies 
like that conducted by Rice [-19~ on the conditioning of polynomial and rational 
forms These techniques have the advantage of testing, for example, double pre- 
cision routines using only double precision arithmetic instead of troublesome 
nmltiple precision. (Of course it is possible to compute what are essentially upper 
bounds for p by using interval arithmetic or simple inequalities like Hart et al. 
[-7, p. 68, eq. 4.5.4~. However, such methods which use only O(m) operations, 
corresponding to the m operations being analyzed, often yield pessimistic results ) 

The interested reader will have no problem seeing how to modify the first program 
of Section 5 to perform the above computation. The proper USER routine is only 
slightly different from that of Case Study I. 
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