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ABSTRACT

Most Federated Learning (FL) algorithms proposed to date
obtain the global model by aggregating multiple local models
that typically share the same architecture, thus overlooking
the impact on the hardware heterogeneity of edge devices.
To address this issue, we propose a model-architecture co-
design framework for FL optimization based on the new
concept of model elasticity. More precisely, we enable local
devices to train different models belonging to the same archi-
tecture family, selected to match the resource budgets (e.g.,
latency, memory, power) of various edge devices. Our results
on EMNIST and CIFAR-10 for both IID and non-IID cases
show up to 2.44× less data transferred per communication
round and up to 100× reduction in the number of communi-
cation rounds, while providing the same or better accuracy
compared to existing approaches.
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Figure 1:We proposemodel elasticity to allow the cloud

to distribute elastic models that satisfy the heteroge-

neous hardware constraints of edge devices.

1 INTRODUCTION

Federated Learning (FL) is the de facto paradigm for Ma-
chine Learning (ML) on edge devices, where each device
uses its own local data for training to protect data privacy
[8, 16]. FL usually uses the same model architecture on the
resource-limited edge devices for training. Unfortunately,
current ML models are too complex for training or infer-
ence on heterogeneous edge devices. Therefore, we propose
a new FL approach that can flexibly handle hardware het-
erogeneity while maximizing the model performance and
communication-efficiency.
LotteryFL [13] shows that sparsity alone can reduce the

communication cost, but it cannot reduce memory and com-
putational costs of on-device inference and training, unless
the device has built-in specialized hardware for sparse ma-
trix multiplication and addition. Few edge devices in real FL
systems have such capabilities. To address these challenges,
we propose model elasticity as a solution to hardware het-
erogeneity (Figure 1); this relies on elastic transformations

that adapt the complex models from the cloud to smaller
models that satisfy specific hardware constraints when dis-
tributed on edge devices. We integrate the model elasticity
with pruning [6] to further reduce the model size, memory,
inference time, and the amount of data communicated at ev-
ery round between the cloud and the edge devices. Sparsity
can thus provide another form of elasticity (in addition to
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model architecture), as we can select different sparsity ratios
to satisfy the hardware constraints on every device.
The contributions of this work are as follows:

• A new notion of model elasticity. We propose model

elasticity to better fit the hardware constraints of hetero-
geneous devices by transforming the models into larger or
smaller versions of themselves via elastic transformations.
• Integration of model elasticity and sparsity. We in-
tegrate sparsity into model elasticity by adopting Iterative
Magnitude Pruning (IMP) to reduce both communication and
on-device training costs. This additional form of elasticity
enabes a selection of sparsity ratios produced by IMP.
• A new optimization framework. We propose a con-
strained optimization framework called eLF (elasticLearning
for Federated systems) that considers heterogeneous resource
budgets, model elasticity, andmodel sparsity for various edge
devices. To the best of our knowledge, we are the first to
unify heterogeneous hardware, model elasticity and model
sparsity to improve communication efficiency for FL on het-
erogeneous edge devices.
• Results validation. We validate the proposed framework
using Conv and ResNet model architectures on EMNIST
[2] and CIFAR-10 [11] datasets for both IID and non-IID
cases. The results show up to 2.44× less data transferred
per communication round and up to 100× reduction in the
number of communication rounds, while providing the same
or better accuracy compared to the baselines.

2 RELATED WORK

Numerous FL approaches [22, 24] focus on communication
efficiency. For instance, FedKD [24] is proposed as a com-
munication-efficient FL method, yet it trains on-device not
one, but two models (i.e., a teacher and a student) and only
shares the smaller (i.e., student) model with the cloud, thus
creating a computational overhead for the edge devices.

Sparse neural networks (NNs) have been intensively inves-
tigated in the form of pruning for efficient and low-latency
on-device inference [4, 6]. Recently, the “Lottery Ticket Hy-
pothesis” (LTH) [3] finds sparse subnetworks in randomly
initialized NNs (termed aswinning tickets) that can be trained
in isolation from scratch to match the performance of well-
trained dense networks.

Several recent works discuss the combination of pruning
with FL [9, 10, 12–14, 23]. The authors in [23] exploit the
downlink broadcast to enhance communication efficiency of
LotteryFL, yet overlook the hardware heterogeneity of de-
vices. The authors of [12] extend the LotteryFL idea to learn
device-personalized and structured sparse masks, while ag-
gregating only their overlapping nonzero elements. However,
these methods start from dense models and run on-device
pruning based on local validation performance metrics, thus
increasing the memory and computational overhead on the

(a) Model elasticity (b) Model elasticity with sparsity

Figure 2: (a) We elastically transform the complex

global model to fit the hardware constraints of het-

erogeneous edge devices. (b) Sparsity integrated with

the elastic transformation (dotted nodes/links).

edge devices. PruneFL [10] uses unstructured pruning to add
and remove weights every communication round eventually
obtaining a lottery ticket, but not necessarily the smallest.

Heterogeneity in FL has been addressedmostly from a data
heterogeneity point of view [16, 18, 25]. Very few FL papers
dive deep into the effects of heterogeneous hardware and the
corresponding needs for design elasticity [8]. FedMD [15]
proposes a framework that enables each device to design its
own model locally, while enabling global aggregation with
transfer learning and knowledge distillation.
Works like [5, 19] take different perspectives over the

term “elasticity”. In [19], the authors propose an elastic term
in the local objective function to improve the optimization
with non-IID data and low participation rate of devices. The
“elasticity” mentioned in [5] is related to the weights assigned
to each layer from the local models that adjust the layer-wise
contributions to the global model.
In contrast, we propose a new dimension of “elasticity”

that enables elastic models to fit the hardware constraints
of each device. Our proposed model elasticity is orthogonal
to other existing elasticity ideas and hence they can work
synergistically [5, 19, 21]. We also move the extra computa-
tion for model selection from the resource constrained edge
devices to the cloud, thus differentiating our approach from
previous work such as [9, 13, 15].

3 PROPOSED METHODOLOGY

Model Elasticity for Hardware Heterogeneity Currently,
most FL methods force all devices to learn the same model
architecture and thus cannot directly learn using different
model architectures collaboratively. Therefore, we propose
the concept of model elasticity to enable heterogeneous edge
devices learn using different model architectures.
Direct and inverse elastic transformation In FL, the
goal is to learn a complex global model 𝜔 , which is usu-
ally stored in the cloud (see Figure 1). To distribute 𝜔 to
resource-constrained edge devices that cannot store 𝜔 as is,
we shrink 𝜔 into a smaller version of itself by selectively
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Algorithm 1 elastic Learning for Federated systems (eLF)

𝐾 devices; local epochs 𝐸; communication round 𝑅
𝑆 devices selected in each communication round
Pre-processing in the cloud

1: Initialize per-device resource budget 𝐵0
𝑖 , 𝑖 ∈ [𝐾]

2: Initialize global model 𝜔0

3: Φ ← {𝜙1 (𝜔
0), . . . , 𝜙𝑃 (𝜔

0)} � Initialize model set
4: 𝑀𝑝 = {𝑚𝑙

𝑝 }
𝐿
𝑙=1 ← IMP(𝜙𝑝 (𝜔

0), 𝐷proxy, 𝐿), 𝑝 ∈ [𝑃]

5: 𝜌 ← 𝜌 (𝐵0
𝑖 ) ↦→ (𝜙∗

𝑖 ,𝑚
∗
𝑖 ) � Set up look-up table

Elastic federated learning

6: for each round 𝑟 = 1, . . . , 𝑅; do
7: U ← {𝑖1, . . . , 𝑖𝑆 } � Sample available devices
8: for each selected device 𝑢 ∈ U do in parallel

9: (𝜙∗
𝑢,𝑚

∗
𝑢) ← 𝜌 (𝐵𝑟−1𝑢 ) � Refer to look-up table

10: 𝜔𝑟−1
𝑢 ← 𝜙∗

𝑢 (𝜔
𝑟−1 �𝑚∗

𝑢) � Elastic transformation
11: 𝜔𝑟

𝑢, 𝐵
𝑟
𝑢 ← LocalUpdate

(
𝜔𝑟−1
𝑢 , 𝐷𝑢, 𝐸

)
12: end for

13: 𝜔𝑟 ← Aggregate({𝜙∗
𝑢
−1 (𝜔𝑟

𝑢)}𝑢∈U)

14: end for �Inverse elastic transformation

removing some layers. We call this operation (direct) elas-

tic transformation, denoted as 𝜙 with 𝜙 (𝜔) being the trans-
formed (smaller) model. Before FL training starts, we define
a set of 𝑃 elastic transformations Φ = {𝜙𝑝 }

𝑃
𝑝=1 that transform

𝜔 into smaller models with different depths to satisfy the
hardware constraints of various resources. For each device

involved in one communication round, we select one 𝜙 ∈ Φ
and only transfer 𝜙 (𝜔) to the target device.

The use of elastic transformations results in differentmodel
architectures for each edge device. To enable model aggre-
gation in the cloud, we use inverse elastic transformations
𝜙−1 to transform the local models back into the architecture
of the global model. By adding extra layers, 𝜙−1 stretches a
model to its deeper version. The weight values in the newly
added layers can be set in different ways, such as replicating
previous layers, filling with random distributions or con-
stants (e.g., zeros). We empirically find that filling with zeros
provides stability to the model training process and thus,
better results compared to the other methods. The direct and
inverse elastic transformations are illustrated in Figure 2a.
Integrating Elasticity and Sparsity As illustrated in Fig-
ure 2b, applying the proposed elastic transformations to a
sparse network will result in a sparse subnetwork. We adopt
IMP to identify highly trainable sparse subnetworks starting
from the random initialization of their dense versions [3].
This enables us to prune the global model in the cloud, before
deploying the models to the edge devices. Thus, we save
considerable amounts of computation and communication
from the very beginning.

IMP is an iterative scheme that generates a series of sparse
masks {𝑚𝑙 }𝐿

𝑙=0 with increasing sparsity by incrementally

pruning a ratio of remaining parameters in each iteration.
IMP is performed in the cloud on a proxy dataset 𝐷proxy. We
made the dependency on a proxy dataset insignificant by
using only 5% of each dataset with IID data for IMP. After
IMP finishes, we select one of the generated subnetworks
𝜔�𝑚𝑙 as the global model, � being the operation that applies
the sparse mask𝑚𝑙 to the model weights 𝜔 .
eLF: A Constrained Optimization FrameworkWe pro-
pose a new unified optimization framework that optimizes
both model elasticity and sparsity under heterogeneous hard-
ware constraints. Let 𝐾 denote the total number of devices in
a FL system, each of them having a budget 𝐵𝑖 , 𝑖 ∈ {1, . . . , 𝐾}

which describes the hardware constraints, e.g., latency, mem-
ory, bandwidth, power (or some combinations thereof).
Following [20], we consider a non-convex optimization

problem with a finite-sum objective over all devices:

minimize
𝜔

𝑓 (𝜔) =
∑𝐾

𝑖=1
𝑝𝑖𝐹𝑖 (𝜔, 𝐷𝑖 ), (1)

where 𝜔 denotes the parameters in the global model; (1)
is evaluated on the local datasets 𝐷𝑖 to calculate the local
objective function values 𝐹𝑖 , i.e., the cross-entropy loss func-
tion. Here, 𝑖 is the index of each device and the re-weighting
coefficients in the finite sum are conventionally taken by
𝑝𝑖 = |𝐷𝑖 |/

∑
𝑗 |𝐷 𝑗 |, with |𝐷𝑖 | being the size of 𝐷𝑖 .

Formally, our proposed framework extends the standard
FL formulation (1) with resource constraints for heteroge-
neous edge devices and formulates the extended problem as
a constrained optimization over the global model:

minimize
𝜔,{𝜙𝑖 ,𝑚𝑖 }

𝐾
𝑖=1

∑𝐾

𝑖=1
𝑝𝑖𝐹𝑖 (𝜙𝑖 (𝜔 �𝑚𝑖 )︸�������︷︷�������︸

Integration of model elasticity and sparsity

, 𝐷𝑖 ) (2)

subject to 𝐶 (𝜙𝑖 (𝜔 �𝑚𝑖 )) ≤ 𝐵𝑖 , for 𝑖 = 1, . . . , 𝐾︸��������������������������������������������︷︷��������������������������������������������︸
Heterogeneous hardware constraints

.

Here, we optimize the global parameters 𝜔 , the direct elas-
tic transformation 𝜙𝑖 and the sparse mask𝑚𝑖 to account for
hardware heterogeneity when distributing the global model
to local devices. Moreover, 𝜙𝑖 and𝑚𝑖 are strictly capped by
the heterogeneous hardware budgets 𝐵𝑖 , therefore both 𝜙𝑖
and𝑚𝑖 need to satisfy hard constraints for the hardware cost
𝐶 (𝜙𝑖 (𝜔 � 𝑚𝑖 )). For simplicity, we consider the 𝐶 (·) func-
tion as the hardware performance measured in FLOPs, but
in real FL systems, the device budget can be much more
complex (e.g., include available memory or communication
speed). The algorithm to solve the constrained optimization
problem (2) is outlined in Algorithm 1.
How to optimize 𝜙𝑖 and𝑚𝑖 Given the non-convex nature
of (1) and the complexity of integer programming over binary
sparse masks, the joint optimization of 𝜙𝑖 and𝑚𝑖 with 𝜔 is
challenging. Both 𝜙𝑖 and 𝑚𝑖 are discrete by design: (i) 𝜙𝑖
is defined using network rolling/unrolling transformation
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Model
EMNIST IID EMNIST Non-IID

Model
CIFAR10 IID CIFAR10 Non-IID

1 5 10 1 5 10 1 5 10 1 5 10

Conv3 77.62% 83.52% 84.80% 76.64% 81.97% 82.94% ResNet14 66.53% 82.47% 84.38% 58.08% 74.28% 75.57%
Conv5 78.60% 84.05% 85.33% 77.59% 82.42% 83.29% ResNet20 70.76% 84.39% 86.39% 63.45% 71.41% 71.46%
Conv7 79.84% 84.58% 85.60% 78.63% 82.86% 83.51% ResNet32 71.79% 85.5% 86.56% 64.59% 74.61% 77.46%

eLF 79.74% 83.47% 84.38% 78.53% 81.82% 82.48% eLF 73.56% 83.77% 86.11% 69.92% 78.05% 77.3%

Table 1: Test accuracy for 1, 5 and 10 local training epochs for EMNIST and CIFAR10 datasets. Compared to the IID

case, in the non-IID case for both datasets eLF shows a smaller accuracy decrease compared to the baselines.

Model
EMNIST

Model
CIFAR10

Data
Transferred

eLF

Improv.

Data
Transferred

eLF

Improv.

Conv3 4.55 MB 1.16× ResNet14 1.34 MB 0.93×
Conv5 5.09 MB 1.30× ResNet20 2.07 MB 1.44×
Conv7 5.64 MB 1.44× ResNet32 3.52 MB 2.44×

eLF 3.92 MB - eLF 1.44 MB -

Table 2: Average data transferred per communication

round. eLF results in significant communication reduc-

tion for both Conv and ResNet.

over the unit of building blocks (i.e., add or reduce only a
fixed number of blocks each time); (ii)𝑚𝑖 is solved by IMP to
ensure the “lottery ticket” property. Therefore, we implement
a look-up table as an indicator of the performance that can be
achieved for a given configuration of elastic transformation
and sparse mask.

We use the lookup table to implement a fast mapping func-
tion 𝜌 (·) from the resource budget 𝐵𝑖 of a given device to the
(approximately) optimal configuration (𝜙∗

𝑖 ,𝑚
∗
𝑖 ) for that de-

vice that accommodates the budget constraints. As described
in Line 4, Algorithm 1, we apply IMP with 𝐿 iterations to
each elastic model𝜙𝑝 (𝜔

0) with the initial global model𝜔0, to
generate a series of winning tickets with increasing sparsity
ratios 𝑀𝑝 = IMP(𝜙𝑝 (𝜔

0), 𝐷proxy, 𝐿) = {𝑚1
𝑝 , . . . ,𝑚

𝐿
𝑝 }. This

forms a pool of 𝑃 × 𝐿 winning tickets {𝜙𝑝 (𝜔
0 �𝑚𝑙

𝑝 )}𝑝,𝑙 . For

each entry in the pool, we also record its accuracy 𝜃𝑝,𝑙 on
the proxy dataset 𝐷proxy. For every communication round 𝑟 ,
when we distribute an elastic model to the 𝑖-th device with
a resource budget 𝐵𝑟𝑖 during eLF, we use the look-up table to
select the elastic transformation 𝜙∗

𝑖 and sparse mask𝑚∗
𝑖 with

the highest accuracy 𝜃𝑝,𝑙 on the proxy dataset among all fea-

sible configurations (𝜙𝑝∗ ,𝑚𝑙∗

𝑝∗ ). Formally, the fast mapping

function 𝜌 (𝐵𝑟𝑖 ) = (𝜙∗
𝑖 ,𝑚

∗
𝑖 )

def
= (𝜙𝑝∗ ,𝑚𝑙∗

𝑝∗ ) where:

𝑝∗, 𝑙∗ = argmax
𝑝∈[𝑃 ],𝑙 ∈[𝐿]

𝜃𝑝,𝑙 , s.t. 𝐶
(
𝜙𝑝 (𝜔

0 �𝑚𝑙
𝑝 )
)
≤ 𝐵𝑟𝑖 (3)

Our approach uses a “warm-up” initialization for 𝜙𝑖 and𝑚𝑖

and allows them, during the FL training process, to adapt to

the budget changes of resource constrained edge devices (see
Line 11, Algorithm 1). We follow the standard LocalUpdate
and Aggregation (FedAvg) functions in Algorithm 1 Line

11 and Line 13, respectively. eLF is compatible with more ad-
vanced techniques for global aggregation and local training.

4 EMPIRICAL ANALYSIS

Experimental Setup We validate eLF on EMNIST (with
62 classes, having lower and upper case letters and digit
classes) and CIFAR10, under both IID and non-IID settings.
For the IID case, samples of each dataset are distributed
evenly class-wise across all devices. For the non-IID case, we
use 5 classes per device on CIFAR10 and 20 classes per device
on EMNIST. We use the non-IID sampling function from
[13] that creates data distributions using class and quantity
skewness. By default, we split data between 100 devices. In
the experiments,we use as baselines the Conv and ResNet
model architectures for EMNIST and CIFAR10, respectively.
For the baselines, we randomly sample 10 devices ev-

ery communication round using the same model for all
devices. For eLF we sample a total of 9 devices: 3 devices
with ResNet14/Conv3, 3 devices with ResNet20/Conv5 and
3 devices with ResNet32/Conv7. Conv models are selected
for EMNIST and ResNet models are selected for CIFAR10,
all models using a sparsity of 50%. Each eLF scenario uses
only 5% of the datasets as the proxy dataset to perform
IMP. For eLF aggregation we use the largest model (i.e.,
ResNet32/Conv7) as the global model. For the baselines, the
same model is used by every device and as a global model as
well. By default, we use FedAvg [20] optimization for FL.

To better emulate resource-constrained edge devices, we
use convolutional (Conv) models with 500-750K parameters
and ResNet models with 175-500K parameters. The Conv
models have an initial convolution layer followed by two
groups of convolutional layers that increase in depth as we
go fromConv3 to Conv5 and Conv7models. Finally, the Conv
models have two fully connected layers for classification. We
use the ResNet model architecture from [7]. All experiments
are done via simulation on GPU servers.
Experiments on Conv and ResNet models In Table 1, we
observe that the drop in accuracy between IID and non-IID
cases for eLF is lower compared to the baselines for CIFAR10.
As we can see in Table 2, eLF obtains up to 1.44× data com-
munication reduction for Conv models and up to 2.44× data
communication reduction for ResNet models, while having
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(a) (b) (c) (d)

Figure 3: Results for one local epoch on EMNIST using Conv models (a-b) and on CIFAR10 using ResNet models

(c-d) for IID and non-IID cases. In (d), eLF with ResNet models obtains 50% accuracy on CIFAR10 using non-IID

data in just one communication round, while the baselines take at least 100 rounds to reach the same accuracy.

Figure 4: Results on CIFAR10 for one local epoch us-

ing ResNet models showing eLF with different elastic

model combinations. We observe clear improvements

when eLF uses a larger global model (i.e., ResNet 32).

Figure 5: Results on CIFAR10 for one local epoch using

eLF with ResNet models combined with FedMax [1]

and FedProx [17]; this shows that eLF can easily work

with other FL optimizations.

similar or even better accuracy performance compared to
the baselines (Table 1). On the CIFAR10 dataset, our method
achieves the highest accuracy using one local epoch.
Communication-efficiencyWe reduce the total number of
communication rounds required to reach a certain accuracy
threshold and improve the average communication efficiency
per communication round as shown in Table 2. The results
in Table 1 and Table 2 show that eLF obtains a good balance
between accuracy performance and communication costs
(i.e., amount of data communicated and the number of com-
munication rounds needed to achieve a certain accuracy).
In Figure 3 we also observe how fast eLF can learn in a FL
setting compared to the baselines. For instance, on CIFAR10

using non-IID data, eLF obtains 50% accuracy in just one
communication round, while the baselines reach the same
accuracy after 100 more communication rounds (Figure 3d).
Moreover, eLF trains faster at the device level since models
are optimized for specific hardware constraints.
Ablation on choices of elastic models In Figure 4 we
show how the choice of different elastic model combinations
in the FL system impacts the overall performance. For all
combinations of elastic models, the largest model used is also
the global model. Therefore, when eLF uses ResNet14 and
ResNet20models with ResNet20 as the global model, the over-
all performance is also lower. Every communication round,
eLF 14+20 selects 5 devices with ResNet14 and 5 devices with
ResNet20; eLF 14+20+32 selects 3 devices with ResNet14, 3
devices with ResNet20 and 3 devices with ResNet32. eLF does
not dramatically decrease the performance when using more
elastic models as shown in Figure 4.
eLF compatibility with existing FL methods Finally, we
conduct experiments using the same three ResNet elastic
models from previous experiments for FL optimization based
on FedProx [17] and FedMax [1] (see Figure 5). For FedProx
we use 𝜇 = 200 and for FedMax 𝛽 = 10. These results show
that eLF is orthogonal to state-of-the-art FL optimization
methods and can synergistically work with them.

5 CONCLUSION

In this paper, we have introduced model elasticity, a new
approach that addresses hardware heterogeneity in FL sys-
tems. We have also implemented an optimization framework
that considers model elasticity, sparsity, and heterogeneous
hardware to create a communication-efficient, hardware-
aware FL system. Results show up to 2.44× improvement in
communication efficiency and up to 100× reduction in com-
munication rounds, with similar or better accuracy compared
to the baselines.

6 ACKNOWLEDGMENTS

This research was supported in part by NSF Grant CCF-
2107085 and in part by Cisco Corp.

23



FedEdge’22, October 17, 2022, Sydney, NSW, Australia Farcas et al.

REFERENCES
[1] Wei Chen, Kartikeya Bhardwaj, and Radu Marculescu. 2020. Fedmax:

mitigating activation divergence for accurate and communication-

efficient federated learning. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases. Springer, 348–363.

[2] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik.

2017. EMNIST: Extending MNIST to handwritten letters. In 2017

International Joint Conference on Neural Networks (IJCNN). IEEE, 2921–

2926.

[3] Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635 (2018).

[4] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity

in deep neural networks. arXiv preprint arXiv:1902.09574 (2019).

[5] Yujia Gao, Liang Liu, Xiaolong Zheng, Chi Zhang, and Huadong Ma.

2021. Federated sensing: Edge-cloud elastic collaborative learning for

intelligent sensing. IEEE Internet Things J. 8, 14 (July 2021), 11100–

11111.

[6] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:

Compressing deep neural networks with pruning, trained quantization

and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[8] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M

Hadi Amini. 2020. Federated Learning for Resource-Constrained

IoT Devices: Panoramas and State-of-the-art. (Feb. 2020).

arXiv:2002.10610 [cs.LG]

[9] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han

Lee, Kin K Leung, and Leandros Tassiulas. 2019. Model pruning en-

ables efficient federated learning on edge devices. arXiv preprint

arXiv:1909.12326 (2019).

[10] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee,

Kin K Leung, and Leandros Tassiulas. 2022. Model pruning enables

efficient federated learning on edge devices. IEEE Transactions on

Neural Networks and Learning Systems (2022).

[11] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers

of features from tiny images. (2009).

[12] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen.

2021. Hermes: an efficient federated learning framework for heteroge-

neous mobile clients. In Proceedings of the 27th Annual International

Conference on Mobile Computing and Networking. 420–437.

[13] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen,

and Hai Li. 2020. Lotteryfl: Personalized and communication-efficient

federated learning with lottery ticket hypothesis on non-iid datasets.

arXiv preprint arXiv:2008.03371 (2020).

[14] Ang Li, Jingwei Sun, Xiao Zeng,Mi Zhang, Hai Li, and Yiran Chen. 2021.

FedMask: Joint Computation and Communication-Efficient Personal-

ized Federated Learning via Heterogeneous Masking. In Proceedings

of the 19th ACM Conference on Embedded Networked Sensor Systems.

42–55.

[15] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated

Learning via Model Distillation. (Oct. 2019). arXiv:1910.03581 [cs.LG]

[16] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.

Federated Learning: Challenges, Methods, and Future Directions. IEEE

Signal Process. Mag. 37, 3 (May 2020), 50–60.

[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet

Talwalkar, and Virginia Smith. 2018. Federated optimization in hetero-

geneous networks. arXiv preprint arXiv:1812.06127 (2018).

[18] Yi Liu, Xingliang Yuan, Zehui Xiong, Jiawen Kang, Xiaofei Wang,

and Dusit Niyato. 2020. Federated learning for 6G communications:

Challenges, methods, and future directions. , 105–118 pages.

[19] Zichen Ma, Yu Lu, Zihan Lu, Wenye Li, Jinfeng Yi, and Shuguang Cui.

2021. Towards Heterogeneous Clients with Elastic Federated Learning.

(June 2021). arXiv:2106.09433 [cs.LG]

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of

deep networks from decentralized data. In Artificial intelligence and

statistics. PMLR, 1273–1282.

[21] Vladimir Podolskiy. 2020. Rubberband: Enabling Elastic Federated

Learning with the Temporary State Management. In Proceedings of the

21st International Middleware Conference Doctoral Symposium (Delft,

Netherlands) (Middleware’20 Doctoral Symposium). Association for

Computing Machinery, New York, NY, USA, 9–14.

[22] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jad-

babaie, and Ramtin Pedarsani. 2020. FedPAQ: A Communication-

Efficient Federated Learning Method with Periodic Averaging and

Quantization. In Proceedings of the Twenty Third International Con-

ference on Artificial Intelligence and Statistics (Proceedings of Machine

Learning Research, Vol. 108), Silvia Chiappa and Roberto Calandra

(Eds.). PMLR, 2021–2031.

[23] Sejin Seo, Seung-Woo Ko, Jihong Park, Seong-Lyun Kim, and Mehdi

Bennis. 2021. Communication-Efficient and Personalized Federated

Lottery Ticket Learning. (April 2021). arXiv:2104.12501 [cs.LG]

[24] Chuhan Wu, Fangzhao Wu, Ruixuan Liu, Lingjuan Lyu, Yongfeng

Huang, and Xing Xie. 2021. FedKD: Communication Efficient

Federated Learning via Knowledge Distillation. (Aug. 2021).

arXiv:2108.13323 [cs.LG]

[25] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A Comprehensive

Survey of Privacy-preserving Federated Learning: A Taxonomy, Re-

view, and Future Directions. ACM Comput. Surv. 54, 6 (July 2021),

1–36.

24


