2208.13451v1 [cs.SE] 29 Aug 2022

arxXiv

Common Patterns in Block-Based Robot Programs

Robert

Pernerstorfer
University of Passau
Passau, Germany

Florian Obermiiller
University of Passau
Passau, Germany

ABSTRACT

Programmable robots are engaging and fun to play with, inter-
act with the real world, and are therefore well suited to introduce
young learners to programming. Introductory robot programming
languages often extend existing block-based languages such as
ScrarcH. While teaching programming with such languages is well
established, the interaction with the real world in robot programs
leads to specific challenges, for which learners and educators may
require assistance and feedback. A practical approach to provide
this feedback is by identifying and pointing out patterns in the code
that are indicative of good or bad solutions. While such patterns
have been defined for regular block-based programs, robot-specific
programming aspects have not been considered so far. The aim of
this paper is therefore to identify patterns specific to robot pro-
gramming for the SCRATCH-based MBLOCK programming language,
which is used for the popular MBoT and CopEY Rocky robots. We
identify: (1) 26 bug patterns, which indicate erroneous code; (2)
three code smells, which indicate code that may work but is writ-
ten in a confusing or difficult to understand way; and (3) 18 code
perfumes, which indicate aspects of code that are likely good. We
extend the LITTERBOX analysis framework to automatically identify
these patterns in MBLock programs. Evaluated on a dataset of 3,540
MBLOCK programs, we find a total of 6,129 instances of bug patterns,
592 code smells and 14,495 code perfumes. This demonstrates the
potential of our approach to provide feedback and assistance to
learners and educators alike for their MBLock robot programs.

CCS CONCEPTS

« Social and professional topics — K-12 education; Software
engineering education; - Software and its engineering — Vi-
sual languages.

KEYWORDS
mBlock, Robot, Block-based programming, Linting, Code quality

ACM Reference Format:

Florian Obermiiller, Robert Pernerstorfer, Lisa Bailey, Ute Heuer, and Gor-
don Fraser. 2022. Common Patterns in Block-Based Robot Programs. In
Proceedings of the 17th Workshop in Primary and Secondary Computing Edu-
cation (WiPSCE °22), October 31-November 2, 2022, Morschach, Switzerland.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3556787.3556859

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WIPSCE °22, October 31-November 2, 2022, Morschach, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9853-4/22/10...$15.00
https://doi.org/10.1145/3556787.3556859

Lisa Bailey
University of Passau
Passau, Germany

Gordon Fraser
University of Passau
Passau, Germany

Ute Heuer
University of Passau
Passau, Germany

& move forward at power @ % for “ secs

&% LED all v shows color O

Bug Pattern LED Off Missing found: The LEDs on your robot
are still turned on after the program has stopped. Add an LED
Off block at the end of your program.

Figure 1: Example MBLOCK program for an MBoT robot, con-
taining a bug: The robot is moved forward twice and the
LEDs are set to red, but they are not turned off again. This
bug is identified by our LITTERBOX extension and provides
a textual hint.

1 INTRODUCTION

A common means to introduce young learners to programming is
by using robots. Programmable robots are fun to interact with and
engage learners. Their interactions with the real world through
sensors and actuators rather than simulated environments make
them well suited for cross-curricular activities. The programming
environments commonly used for controlling such robots are based
on established introductory block-based programming languages.
For example, the popular ScraTCH [13] programming environment
offers ‘extensions’ that add dedicated blocks for controlling different
types of Lego robots (e.g., MINDsSTORMS EV3, BoosT, WEDO), and the
various robots produced by MAKEBLOCK (e.g., MBoT, CODEY RoCKY)
can be programmed in MBLoCK, a modified version of SCRATCH.
These modified programming environments thus offer intuitive
first steps into entry level programming and make the transition to
purely computer-based programming easy [1].

Figure 1 shows an example MBLOCK program controlling an MBoT
robot: When the program is started on the computer, the robot is
moved forward twice for a second at half its maximum speed, and its
LEDs are set to red. Except for the two robot-specific blocks, the pro-
gram itself is indistinguishable from any other standard ScraTcH
program learners might create. However, the robot-specific blocks
have real-world implications that learners need to know and com-
prehend in order to properly control the robots. For example, while
the ‘move forward’ block turns off the motor after one second, the
‘LED’ block only turns the lights on, but not off. Consequently, the
program has a bug: Executing the code will have the side-effect
that the lights are constantly on while the program is running, and
also remain turned on even after the execution has completed. This

https://doi.org/10.1145/3556787.3556859
https://doi.org/10.1145/3556787.3556859

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

bug is based on a common misunderstanding of learners who start
to interact with robots.

To support learners in overcoming their misconceptions and
building correctly working programs, they may require assistance.
While this assistance by default is provided by educators, these
might be overwhelmed in a classroom of students, each with indi-
vidual problems in their programs. However, many challenges in
programming are repetitive and can be detected automatically in
learners’ programs. Different types of patterns can be identified:
Bug patterns are code constructs that provide evidence of miscon-
ceptions and bugs; code smells are aspects of code that may achieve
the desired output, but are ineffective or confusing in some way; and
code perfumes provide evidence of correctly applied code constructs
and idioms. For block-based programming languages like Scrarch,
tools identifying these types of patterns are available [4, 18]. How-
ever, existing tools and patterns do not cover the specific challenges
caused by robot programming.

In this paper, we therefore aim to extend the concept of these
patterns to introductory robot programming. We create a dataset of
3,540 programs written in the MBLoCK programming language for
the popular MBoT and CopEY Rocky programmable robots. Using
this dataset, we determine and evaluate a catalogue of bug pat-
terns, code smells, and code perfumes, and implement them as an
MBLOCK extension of the LITTERBox [4] analysis framework. When
instances of the negative code patterns are found, our implementa-
tion also automatically generates hints, providing feedback on why
there is a problem and what the underlying misconception may
be. Furthermore our automatically generated hints also suggest
how to fix the bug or to remove the code smell. For the program in
Figure 1, our LITTERBOX extension reports an instance of the LED
Off Missing bug pattern, stating that the LEDs are turned on after
the program ended and that the user should introduce an LED Off
block to fix this problem.

Our experiments suggest that SCRATCH projects are structurally
different from MBLoCk programs; they are smaller and have fewer
scripts, but individual scripts can be similarly complex. We found
instances for most bug patterns, code smells and code perfumes in
our dataset, suggesting that the patterns are highly applicable. A
manual classification also demonstrates that MBLock bug patterns
are a frequent cause of failures, i.e., program states where the ro-
bot observably misbehaves. The integration of these patterns into
LiTTERBOX enables educators and learners to immediately make
use of this information.

2 BACKGROUND

In order to engage young learners with the concepts of program-
ming, two important approaches are (1) to simplify the construc-
tion of programs using block-based languages and (2) to use pro-
grammable robots. Constructing such programs for robots gives
rise to specific challenges. The aim of this paper is to derive and
evaluate code patterns that can help to address these challenges.

2.1 Educational Robots

A popular way to introduce children to programming is using pro-
grammable robots [15]. This has multiple reasons: First, robots offer
an easy starting point as they usually can be controlled without

Obermiiller, et al.

a computer, such as the OzoBoT robots [11]. Second, interacting
with the environment rather than programming simulated environ-
ments on the computer can lead to higher learning motivation [19]:
Students have to investigate aspects of the robots’ capabilities and
can then tackle real world problems, like reading from a sensor and
letting the robot act accordingly. Third, programming robots leads
to a combination of acquiring programming skills with other abil-
ities like spatial thinking [10], and the use of robots may also lead
to further discussion about the consequences of programming and
program execution, for example as motors could be overstrained or
other parts of the robot could be damaged. Finally, robots are well
suited for cross-curricular activities (e.g., physics, art, physical edu-
cation) due to their sensors and actuators [23]. As an example, the
workings of an ultra sonic sensor can be discussed, and measured
data can be used in classic tasks like calculating the speed of the
robot from time and travelled way.

Educational robot programming environments are usually in-
tended to help transition to solely computer based programming.
For example, the MAKEBLOCK line of robots and their MBrock! pro-
gramming environment achieve this by using an extended version
of the popular block based programming language ScraTcH [13].
MBLOCK uses the exact same blocks and shapes as SCRATCH to pre-
vent syntactical errors for making programming more accessible
for novices. The SCRATCH programming environment is extended
with new blocks for controlling the robots’ actuators and reading
the sensors of the robots when connected to the computer.

Two popular types of robots compatible with MBLock are the
CopEey Rocky and the MBoT. Both robots have two motors to move
each side separately. Also, with both robots one can sense the in-
tensity of the ambient light, display information on an LED matrix,
and turn LEDs off and on. Furthermore, the MBoT has an ultra
sonic sensor for measuring distances and a line following sensor
to detect if the robot is driving over dark or bright ground. The
CopEY Rocky, on the other hand, has a gyroscope, additional lights,
a colour sensor as well as a potentiometer. Thus, both robots have
a variety of sensors and actuators that can be read and controlled
with the additional blocks of MBLock.

2.2 Patterns in Block-based Programs

Even though block-based languages are designed with the aim to
make programming more accessible and intuitive to novices, it can
nevertheless be challenging to assemble the blocks in a correct way
that implements the desired functionality. An important means to
provide feedback and support to learners, and for research or ed-
ucational purposes, is to identify common patterns of blocks in the
learners’ programs. There are three main categories of such patterns
which have been explored in the context of block-based programs.

Code smells are idioms of code that decrease the understandabil-
ity of the project and increase the likelihood of bugs occurring when
modifying the code [3]. A range of studies have investigated the
types and occurrences of code smells in block-based languages [7,
13, 16, 26]. There is evidence that the presence of code smells ham-
pers the ability of learners to modify the code [6], and that code
smells can decrease the likelihood of projects being reused [26] in

!http://mblock.makeblock.com/, last accessed 01.06.22

http://mblock.makeblock.com/

Common Patterns in Block-Based Robot Programs

remixes [1]. Code smells can be detected automatically using tools
such as QuariTy HounD [25], HAIRBALL [2], or LiTTERBOX [4].

While code smells capture attributes that are independent of
whether the affected code is correct or not, bug patterns refer to
aspects of code that are likely to lead to undesired behaviour (i.e.,
bugs or defects [8]). Similar to code smells, bug patterns can be
detected automatically on source code [12, 17]. Bug patterns have
been shown to appear frequently in SCRATCH projects [5], and there
are automated tools that can be used to find them, such as LiT-
TERBOX [4]. Note that instances of bug patterns in code are likely
candidates of bugs, but are not guaranteed to be incorrect. Deter-
mining whether a program is truly broken would require running
the program and testing whether it behaves as expected. While
there are approaches to do this automatically also for block-based
languages (e.g., WHISKER [22], ITcH [9], BASTET [21]), these ap-
proaches require task-specific tests or specifications that describe
the expected behaviour. In contrast, patterns are task-independent,
and therefore only need to be defined once in order to enable de-
tection on any program.

Code smells and bug patterns aim to find problems, but it is
also possible to identify positive aspects of code, which may for
example serve as evidence of progress or as positive feedback. Code
idioms indicating good programming practices or code showing
understanding of certain programming concepts are known as code
perfumes [18], and can be seen as the opposite of code smells. Tech-
nically, matching code perfumes on block-based programs is similar
to matching code smells and bug patterns, which means tools like
LiTTERBOX [4] can also detect code perfumes automatically.

While these concepts of code patterns are well explored in
the context of block-based programming, none of the existing ap-
proaches focus explicitly on the robot-specific aspects of code. The
aim of this paper is to fill this gap. Since MBLOCK is based on the
ScrATCH programming language and extends it by the robot func-
tionality, we expect to find new types of all statically detectable
code patterns in the programs for MBoT and CobEY Rocky robots.

3 PATTERNS IN MBLOCK

Along with the additional possibility of controlling robots, and thus
real physical hardware, new problems can occur. These problems
can arise from the physical limitations of the robots, from the way
the robot software itself is implemented, or also from peculiarities
in handling robots or physical hardware, e.g., reading out sensor val-
ues and reacting to them. Furthermore, there are also new situations
where learners can profit from positive feedback. By reflections
of students of computer science education, programming courses
with children, comparing robot behaviour with known patterns
in SCRATCH, and by our own experimentation with the robots, we
discovered 26 bug patterns, three code smells, and 18 code perfumes.

3.1 Bug Patterns

A bug pattern in SCRATCH is a composition of blocks that are typical
of buggy code, or a general buggy deviation from a correct code
idiom [5]. Following this notion, robot bug patterns in MBLock are
compositions of blocks that cause the robot to act incorrectly or
exhibit undesirable behaviour.

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

]

&6 move forward v at power @ 3

& inetolowersersor ponz vote - @)

& turn left at power @ % for m secs

&b turn right at power @ % for @ secs

= e e @ ¢
|
|

Figure 2: Example Action Not Stopped bug pattern.

Action Not Stopped: Stop commands for actuators (LED, light,
matrix, motor) only switch off the corresponding actuator, but
do not end the scripts in which the actuator is used. The scripts
themself, possibly containing loops, continue to run. If a statement
for an actuator is within a loop and this actuator is terminated by a
stop command from another script, the statement will nevertheless
be executed again by the loop. If all uses of an actuator are to be
stopped, the scripts that use this actuator have to be stopped, too.
Figure 2 shows an example of this bug pattern, where the actuators
are not correctly stopped.

Actuator Deactivation Missing: In contrast to time-limited state-
ments, some blocks only switch actuators on without switching
them back off after a while. Even after all scripts have stopped, the
actuators remain active. If the program code contains no scripts
that turn them off permanently, the only possibility to deactivate
them is by completely switching off the robot. This problem can
easily be prevented with scripts that only switch on the actuators
for a limited time, or by a separate stop script that deactivates them.
We define several versions of this bug pattern depending on the
specific actuator used:

e LED Off Missing

e Light Off Missing

e Matrix Off Missing

e Motor Off Missing

Figure 1 is an example of the LED Off Missing bug pattern.
Colour Out of Range: The defined values for colours are the
integers from 0 to 255. Setting the colour to other values is possible,
but values higher than 255 lead to an actual colour setting of 255,
and negative values to 0. Thus, the code would not match the result,
and only integers form 0 to 255 should be used.

Interrupted Loop Sensing: A typical concept of robot program-
ming is making the robot react to specific sensor values. Using a
sensor query within a loop that contains time-limited statements
can cause a bug: When the sensor values are not read out frequently

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

&% move forward at power @ % for e secs

&% move backward at power @ % for e secs
& turn left at power % for o secs

& turn right at power % for o secs

Figure 3: Example Motor Setting Out Of Range bug pattern.

& move forward at power @ % for e secs

&% move backward at power @ % for o secs

e @ e @
P 7[j—

Figure 4: Example Parallel Actuator Use bug pattern.

enough, the robot might not react to short occurrences of the rele-
vant values. To prevent this, time-limited statements and queries
concerning sensors should be in separate loops.

Low Motor Power: The electric motors of the MBoT robot need a
minimum amount of power to move the wheels. When the power
value of a movement statement is set to less than 25%, the corre-
sponding wheels will not turn. Programs targeting low movement
speeds should be avoided or used for a Copey Rocky robot instead,
which does not have a minimum threshold for the motor power.
Missing Loop Sensing: In order to make the robot react to a spe-
cific change in the values of a sensor, one must continuously read
out the corresponding sensor values. When a query concerning
sensors is not within a loop, it will only be executed once, which
leads to the robot not reacting to later value changes. In order to
read out the sensor values continuously, the query should be inside
a forever loop or a loop with a stopping condition.

Motor Out Of Range: The motors of the robots can only be con-
trolled with a maximum of 100%. It is possible to set higher power
values, but in practice, the motor still does not run faster. When
power values above 100% are used, the result does not match the
code, since all values above 100% lead to the same speed as 100%.
Analogously, this also applies to values beneath -100%. In general,
only power values within a reasonable range (i.e., up to 100%) should
be used. Figure 3 shows an example of this bug pattern.

Parallel Actuator Use: When two scripts run in parallel and use
the same actuators, they block each other or cancel the other use. To
avoid such conflicts, different scripts should use different actuators,
or one has to make sure that other scripts have finished beforehand.
An example of this bug pattern is shown in Figure 4.

Query In Loop: Physical buttons or sensors on a robot are not only
activated for an instant when they are triggered. Instead, buttons
remain pressed and sensors return values for a period of time. When
a query is used as a condition of a fast loop (i.e., a loop without
time or wait statements), the query is repeated very frequently,
in some cases even several hundred times per second. Thus, the
code reacting to detected values is executed uncontrollably often

Obermiiller, et al.

oty e e s

change 1v hy°

(&3 Codey tilted to the left v tilted?

|

change 2 v by °
(&3 Codey ears down v tilted?

|

Figure 5: Example Query In Loop bug pattern.

&% ultrasonic sensor port3 v distance(cm) @ ‘
& turn right at powe fo cs
]
]

Figure 6: Example Sensor Equals Check bug pattern.

and can falsify other values or states that are changed according
to the query result. To prevent this, sensor queries within a loop
that change values should be avoided or at least secured by waiting
statements. Figure 5 shows an example of this bug pattern.
Sensor Equals Check: The values of the robots’ sensors are not
rounded and are therefore rarely at a single exact value. If a sensor
is compared to an exact value in the code, the probability of this
state never occurring is very high. Therefore, when querying the
sensors, one should compare to a range of values instead of exact
values. An example of this bug pattern is shown in Figure 6. The
line-following sensor is an exception, as the values for this sensor
are just integers from 0 to 3, allowing an exact comparison.
Several Launches: When used with the ‘upload mode’, the MBot
robot cannot execute scripts in parallel, but only sequentially. In
addition, the board launch event is the only event that works in
upload mode. If two board launch scripts are programmed in par-
allel, they are only executed one after the other, or — in the case
of forever loops — sometimes not at all. For parallel programming,
either the ‘live mode’ or a CODEY Rocky robot must be used.
Stuttering Action: In live mode, the calculation of all scripts is
taken over by the computer, and the corresponding commands are
sent to the robot individually. This runs noticeably slower than
when code is uploaded to the robot. If individual time-limited state-
ments are in a loop in live mode, they are not executed smoothly
one after the other. Instead, the code stops briefly between each
block. To prevent this, time-limited statements in loops should gen-
erally be avoided and replaced by constant move blocks guarded
by a query in order to have a stopping condition.

Common Patterns in Block-Based Robot Programs

(3 show image
&L turn right at power @ % for @ secs
E play note B5 v for (&) beats
&L turn right at power @ % for @ secs
& playnote D6 v for (BB beats
&L turn right at power @ % for “ secs
@ play note C6 v for 0 beats

Figure 7: Example Waiting Aborted bug pattern.

Useless Sensing: If the value range of a query involving a specific
type of sensor is out of the allowed range, then coresponding condi-
tions will either always be true, or always be false. We distinguish
several variants of this pattern depending on the sensor involved:

e Useless Battery Sensing: The value range for Battery Sens-
ing is from 0 to 100.

e Useless Colour Sensing: The value range for Colour Sens-
ing is from 0 to 255.

e Useless Distance Sensing: The value range for Distance
Sensing is from 3 to 400.

e Useless Light Sensing: The values for Light Sensing is from
0 to 100 for the CopEY Rocky and from 0 to 1020 for the
MBoT.

e Useless Line Sensing: The values for Line Sensing are the
integers from 0 to 3.

e Useless Loudness Sensing: The value range for Loudness
Sensing is from 0 to 100.

o Useless Pitch Angle Sensing: The value range for Pitch
Angle Sensing is from -180 to 180.

e Useless Potentiometer Sensing: The value range for Po-
tentiometer Sensing is from 0 to 100.

o Useless Roll Angle Sensing: The value range for Roll An-
gle Sensing is from -90 to 90.

e Useless Shaking Sensing: The value range for Shaking
Sensing is from 0 to 100.

Waiting Aborted: MBLock offers blocks with a time limit, which
activate a specific actuator for the specified time. When a program
with such blocks is uploaded to the robot, the time-limited statement
is split into three separate parts: activation, waiting, and deactiva-
tion. Executing a parallel script which cancels all scripts on a CopEY
Rocky robot can lead to the following problem: When the scripts are
cancelled during the waiting phase of the time-limited statement,
the waiting itself is cancelled, but also, the deactivation will no
longer be carried out. This can lead to motors running indefinitely
or lights not being switched off. The bug can be prevented by using a
detailed stop script that stops all affected actuators before the scripts
are terminated. Figure 7 shows an example of this bug pattern.

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

3.2 Code Smells

A code smell in MBLOCK is a code idiom that increases the probability
of errors in a program or decreases the readability of the code by
using unexpected values when addressing sensors and actuators.
Negative Motor Power: Using negative motor power values is
possible and leads to the robot changing its direction. Le., when us-
ing negative values for moving forward, the robot moves backward,
and vice versa. The same applies when turning left or right. Since us-
ing negative values reduces the code readability, one should rather
use the corresponding blocks (e.g., move backward with positive
value instead of move forward with negative value).
Non-effective Modification: Changing the settings of a robot
attribute several times in a row can lead to the robot behaving
differently than expected: Without waiting phases in between the
modifications, the attributes will be set to the next value so fast that
one cannot see any effect. Only the last setting will be visible. In
order to notice every single modification, time-limited statements
or waiting blocks in between the attribute settings have to be used.
Non-effective Time Limit: When the time value of a time-limited
block is set to 0, the execution of the block will have no effect. Writ-
ing unnecessary code is bad for readability and should be avoided.

3.3 Code Perfumes

Code perfumes for MBrock are aspects of code that correctly apply
concepts related to robot use, in particular correct use of sensory
data and actuators.

Colour Usage: Appropriate values for colours are integers from 0
to 255.

Correct Sensing: Queries involving a sensor should use a valid
value range. This indicates comprehension of the sensing concept,
which is frequently used in robot programming. Depending on the
sensor used, we distinguish several variants of this code perfume:

¢ Battery Sensing: The value range for Battery Sensing is
from 0 to 100.

o Colour Sensing: The value range for Colour Sensing is from
0 to 255.

¢ Distance Sensing: The value range for Distance Sensing is
from 3 to 400.

o Light Sensing: The value range for Light Sensing is from 0
to 100 on the CopEY Rocky and from 0 to 1020 on the MBoT.

e Line Sensing: The values for Line Sensing are the integers
from 0 to 3.

e Loudness Sensing: The value range for Loudness Sensing
is from 0 to 100.

¢ Pitch Angle Sensing: The value range for Pitch Angle Sens-
ing is from -180 to 180.

¢ Potentiometer Sensing: The value range for Potentiome-
ter Sensing is from 0 to 100.

¢ Roll Angle Sensing: The value range for Roll Angle Sens-
ing is from -90 to 90.

¢ Shaking Sensing: The value range for Shaking Sensing is
from 0 to 100.

Correct Actuator Deactivation: When using blocks that activate
an actuator, one must be aware of the necessity of also deactivating
them. Writing a separate script for turning the actuators off is often

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

useful and shows that this robot specific usage of actuators has
been understood. We define several versions of this code perfume
depending on the specific actuator used:

e LED Off

e Light Off
e Matrix Off
e Motor Off

Loop Sensing: In order to make the robot react to a specific change
of a sensor’s value, one must continuously read the corresponding
sensor values. Using queries concerning sensors within a loop in-
dicates the comprehension of this robot typical concept of sensing.
Motor Usage: The motors of the robots can be controlled with a
minimum of 0% and a maximum of 100%. When using the MBoTt
robot, values beneath 25% have the same effect as 0%. Therefore,
appropriate values range from 0 to 100 for the CopEY Rocky robot,
and from 25 to 100 for the MBoT robot.

Parallelisation: Writing several scripts with the same hat block
can be indicative of attempts to implement independent subtasks
at a higher readability level.

4 EXPERIMENTAL SETUP

To evaluate the different types of code patterns for MBLOCK projects,
we empirically investigated the following research questions:
e RQ1: How does MBLoCk code compare to SCRATCH code?
e RQ2: How common are robot bug patterns, code smells and
code perfumes in MBLOCK programs?
e RQ3: How severe are the bug patterns found?

4.1 Analysis Tool

In order to study the occurrence of the patterns listed in Section 3 in
MBLOCK programs, we extended the LITTERBoX [4] tool, which was
originally intended for SCRATCH projects (see Section 2). LITTER-
Box handles the analysis of SCRATCH programs by automatically
converting a project into an abstract syntax tree (AST), and then
checking for the presence of block combinations utilising a visitor
pattern. Each bug pattern, code perfume and code smell has its own
visitor looking for the block combination defining the code pattern.
Since MBLOCK is a fork of ScrarcH adding robot functionalities,
the extension of LITTERBoX required us to implement handling for
all MBrock blocks in the parser, so that programs for CopeEy Rocky
and MBoOT can be represented as ASTs (which then consist of both
standard SCRATCH nodes as well as MBLoCK-specific nodes). For
each of the finders described in Section 3 we then implemented an
AST visitor that traverses the blocks of a program and reports all
matches found. Besides this AST visitor, each pattern also consists
of a textual hint defined in multiple languages, which can be shown
to a user checking their program for patterns.

4.2 Dataset

4.2.1 MBLock dataset. As subjects of our study we created a data
set of 28,192 MBLOCK programs by mining all publicly shared projects
from the MBLock website? until the first quarter of 2021. Out of all
these projects, 329 resulted in parsing exceptions when attempting
to apply LitTERBOX. Of these, 32 were empty files without any code,

Zhttps://planet.mblock.cc/, last accessed 01.06.22

Obermiiller, et al.

while the remaining 297 projects contain robot features not sup-
ported by our extension (which focuses on CobEy Rocky and MBoT
features). This leaves a data set of 27,863 programs for analysis.

ScRATCH programs generally organise code in terms of different
actors (i.e., sprites, background). MBLock programs add dedicated
actors for robots, so we can identify which type of robot an MBLock
program is intended for by checking which actors exist. Out of the
27,863 programs, 16,569 contain a CODEY Rocky or MBoOT robot
(and sometimes more than one). The remaining 11,294 programs
either contain code for other robots, or mostly are regular SCRATCH
programs, since MBLOCK can also be used as a SCRATCH program-
ming environment. Since the MBLOCK programming environment
used to add a CoDpEY RocKy robot actor by default in the past, we
further filtered the dataset by removing all programs where the
MBoT and CoDEY RocKy actors contain no code. This leaves a final
dataset of 3,540 relevant projects with a total of 529 Copey Rocky
robots and 3,023 MBoT robots, including 27 projects utilising both
robots. For the remainder of this paper, the 3,540 MBLOCK projects
are used as the robot dataset.

4.2.2 SCRATCH dataset. In order to compare robot code with regular
ScraTcH code, we created a comparable set of SCRATCH programs
in addition to the existing robot set. We used the Scrarca REST-
API to mine a dataset of more than 1 million projects, of which we
randomly sampled 3,540 non-empty, non-remixed programs.

4.3 Methodology

4.3.1 RQI: MBLock vs. SCRATCH differences. We applied LITTER-
Box on the ScraTcH and the mBLock dataset and collected all
information about bug patterns, code smells, code perfumes, and
code metrics available in LITTERBOX, including those added by
our MBrock extension. To answer RQ1 we characterise the differ-
ences between regular SCRATCH programs and MBLOCK programs
in terms of the code metrics, compare the programs in terms of
traditional patterns found, as well as overall number of findings
reported by LiTTERBoOX. For all significance tests we used a non-
parametric test, the Mann-Whitney-U test [14], with a = 0.05, as
this test is designed for independent samples. The effect sizes are
calculated using Vargha-Delaney’s A1z [27]. In our context, the Ars
is an estimation of the probability that, if we extract a metric using
LitTERBOX on an MBLock program, we will obtain higher values
than extracting the metric on a SCRATCH program. If MBLock and
SCRATCH programs are equivalent with respect to a metric, then
A12=05. A high value A1z = 1 means that the metric is higher on
all MBLOCK programs, a low value Aj; = 0 means that the metric
is higher on all SCRATCH programs.

4.3.2 RQ2: MBLocK pattern occurrences. To answer this research
question, we consider the findings reported for all the MBLoCK-
specific patterns on the MBrock dataset. For each pattern, we in-
spect the total number of instances found, how many programs
are affected, and how the patterns relate to program complexity, as
measured by different metrics such as the weighted method count
(i-e., sum of cyclomatic complexities of all scripts).

4.3.3 RQ3: MBLock bug pattern severity. To answer RQ3, we specif-
ically consider the MBLock bug patterns. For each bug pattern, we
randomly selected 10 projects that contain at least one such bug,

https://planet.mblock.cc/

Common Patterns in Block-Based Robot Programs

or all bugs if there are less than 10 projects with that bug pattern
overall. Then, two authors manually classified the projects into the
three categories failures (the bug pattern causes incorrect program
behaviour), not executed (the bug pattern may represent incorrect
code, but this code cannot be executed), and false positives (the bug
pattern does not affect the execution). The classification requires
executing the programs using a robot. In case of disagreement be-
tween the two raters, the cases were discussed among the authors
until a consensus was found.

4.4 Threats to Validity

External validity: Although we used a large dataset of MBLock pro-
grams, and an equally large set of SCRATCH programs, results may
not generalise to other programs. In particular, our data mining ap-
proach can only download publicly shared projects, and incomplete
programs may not be shared.

Internal validity: We thoroughly tested our implementation to avoid
bugs in the implementation. To reduce the threat of misclassifica-
tion for RQ3, two authors independently classified findings.
Construct validity: While we measured the frequency of all patterns,
we only evaluated severity for bug patterns, and generally did not
evaluate their effects on learners.

5 RESULTS

5.1 RQ1: How Does MmBrLock Code Compare to
ScrarcH Code?

5.1.1 Size and Complexity. Table 1 compares the programs in our
MBLock and ScrATCH datasets in terms of size and complexity met-
rics: On average, SCRATCH projects have substantially and signifi-
cantly more blocks than MBLock programs. This is also confirmed
by the distribution of sizes shown in Fig. 8, with SCRATCH programs
having up to 6,790 blocks, while no MBLock program is larger than
2,923 blocks. The overall larger complexity is also confirmed by
the mean weighted method count (WMC), which again is signifi-
cantly higher for SCRATCH programs (average of 29.88) compared
to MBrock (8.97 on average). This may be attributed to the limited
scope of robot programs: There is only so much you can do with
the same set of sensors and actuators, while the boundary of possi-
bilities in ScraTcH will not be reached so soon and students may
create more complex programs.

One factor leading to fewer scripts in robot programs may be
that MBoT only allows one script when working in upload mode
as described in the Several Launches bug pattern. This is confirmed
by the statistically significant difference in the number of scripts
in Table 1 and when comparing to MBOT programs only. While we
also observe a statistically significant difference in the length of
the longest script (Table 1), the cyclomatic complexity of the most
complex script per project is not significantly different (p = 0.4).
Consequently, it seems that the more complex nature of SCRATCH
projects lies in the use of more parallelism, while individual scripts
can be just as complex in MBLoCK.

5.1.2 Bug Patterns. An alternative way to understand the differ-
ences between the programs is by considering how many general
ScrATCH patterns (i.e., excluding the new MBLOCK-patterns) are

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

found in the different types of programs. In the total of 3,540 pro-
grams each, 4,942 bug patterns were found for the MBLock projects
and 18,698 for the ScraTcH dataset, which is a large and statisti-
cally significant difference (p < 0.001, Aj3 = 0.33). Since SCRATCH
programs contain more blocks, there naturally are more possibili-
ties for bug patterns, but this difference remains significant even
when normalising by the number of blocks in a program (p < 0.001,
Aiy = 0.32). On the one hand, this suggests that MBLOCK programs
only use a subset of the functionalities of ScraTcH: For example,
some SCRATCH bug patterns (e.g., Message Never Received, Forever
Inside If) [4] occur also in MBLoCK programs, while aspects like
cloning of sprites generally are not contained in MBLOCK programs.
On the other hand, MBrock programs add new functionality that
may not be captured by the existing bug patterns. When consider-
ing the total number of bug patterns, including the MBLock-specific
ones introduced in this paper, the difference between the datasets
is no longer significant (p=0.126). The total numbers are shown in
Table 2. This confirms the need for robot-specific bug patterns, and
demonstrates that our patterns capture the robot functionality well.

5.1.3 Code Smells. The comparison in terms of SCRATCH code
smells paints a similar picture: There are 23,933 in the MBLock
projects and 43,996 for ScraTcH, which is a significant difference
(p < 0.001, Aj; = 0.43) even when normalising for block count
(p = 0.003, Ay = 0.48). Unlike for bug patterns, however, even
when considering also the MBLock-specific code smells, the differ-
ence remains significant (p < 0.001, A, = 0.43). This is because
code smells tend to be more concerned with the general structure
of programs than with specific functionality. While code smells
like Code Clones, Duplicated Script and Long Script [4] also occur
in MBLoCK programs, the simpler structure of MBLOCK programs
provides less opportunities for such smells. A noteworthy excep-
tion for MBLoCK is Empty Sprite, since MBLOCK initialises an empty
graphical sprite by default, even though it is not needed for robots.

5.1.4 Code Perfumes. Code perfumes are similarly imbalanced,
with a total of 30,296 ScraTcH perfumes for MBLock programs,
and 135,494 for SCRATCH programs (p < 0.001, Ajs = 0.34, and
p < 0.001, Aj = 0.29 when normalising by number of blocks). Like
code smells, many code perfumes are concerned with control flow
aspects that seem to occur less frequently in MBLock programs,
as also suggested by the higher complexity of SCRATCH programs
(Table 1). The imbalance remains even when including all new code
perfumes (p < 0.001, Aj; = 0.45). This is because the MBLOCK
specific perfumes like the four Off variants are only needed once
per project and thus do not increase the count of perfumes by
much. Furthermore, a SCRATCH project with multiple sprites may
need multiple collision checks, whereas CopEYy Rocky and MBoT
programs usually just need a single check for obstacles ahead.

Summary (RQT) ScraTcH and MBLOCK programs are signif-
icantly different regarding their size and complexity. Robot-
specific patterns are needed to analyse MBLOCK programs as
thoroughly as ScRATCH projects.

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

Table 1: Mean values of metrics for ScrRaTcH and MBLock
datasets compared.

MBLOCK SCRATCH p-value Ajp

#Blocks 51.25 127.48 <0.001 0.47
WMC 8.97 29.88 <0.001 0.38
#Scripts 3.89 13.84 <0.001 0.32
Longest Script 15.52 16.38 <0.001 0.53
Most Complex Script ~ 3.54 4.18 0.4 051

Table 2: Number of pattern instances found using only the
ScratcH finders or all incl. MBLock on both the ScraTcu
and MBLOCK datasets.

SCRATCH All
Patterns MBLOCK SCRATCH MBLOCK SCRATCH
Bug patterns 4,942 18,698 11,071 18,698
Code smells 23,933 43,996 24,525 43,996
Code perfumes 30,296 135,494 44,791 135,494
0.025 1 —— mblock
scratch
0.020 1
0.015 4
2z
G
[a}
0.010
0.005
0.000 1 x
0 160 260 360 460 560 660 760 860

#Blocks

Figure 8: Density of the block count compared in ScCRATCH
and MBLOCK programs.

5.2 RQ2: How Common are Robot Bug
Patterns, Code Smells and Code Perfumes
in MBLOCK Programs?

5.2.1 Bug Patterns. We found instances for 19 of the 26 robot bug
patterns in the dataset of random MBLOCK projects. In total, there
are 6,129 bug pattern instances, and 1,903 projects contain at least
one bug pattern. Table 3 summarises the number of bug pattern
instances found for each type, the number of projects containing
at least one instance of the respective pattern, and the average
weighted method count of these projects. Note that one project
may contain more than one type of bug pattern.

The bug patterns that were not found in the dataset are all related
to sensors that are only found on the Copey Rocky, for which the
dataset only contains 529 projects. Even within these projects, these

Obermiiller, et al.

Table 3: Number of bug pattern instances found in total and
number of projects containing the bug pattern.

Bug Pattern # Patterns # Projects Avg. WMC
Action Not Stopped 117 77 34.34
Colour Out Of Range 9 7 4.86
Interrupted Loop Sensing 1,287 319 14.34
LED Off Missing 1,516 675 11.37
Light Off Missing 12 9 5.56
Low Motor Power 348 90 11.38
Matrix Off Missing 694 478 13.34
Missing Loop Sensing 278 126 12.20
Motor Off Missing 491 364 11.55
Motor Out Of Range 230 68 9.53
Parallel Actuator Use 887 473 16.21
Query In Loop 26 8 49.88
Sensor Equals Check 70 34 17.71
Several Launches 52 52 18.85
Stuttering Action 89 52 13.02
Useless Battery Sensing 0 0

Useless Colour Sensing 0 0

Useless Distance Sensing 10 7 8.29
Useless Light Sensing 1 1 12.00
Useless Line Sensing 3 3 12.00
Useless Loudness Sensing 0 0

Useless Pitch Angle Sensing 0 0

Useless Potentiometer Sensing 0 0

Useless Roll Angle Sensing 0 0

Useless Shaking Sensing 0 0

Waiting Aborted 9 9 10.11
Total 6,129 1,903 11.39

Table 4: Number of projects using a specific sensor.

Sensor # Projects
Battery Level 11
Colour Detection 3
Gyro 4
Light Intensity 292
Line Following 225
Loudness 11
Potentiometer 20
Shaking 5
Ultra Sonic 736

sensors are only rarely used, as shown in Table 4: These sensors
were mostly used for calculations or to show the value on the LED
Matrix, but not in a way that the finders would check. However,
since we found similar bug patterns for other sensors like Useless
Distance Sensing, we expect that a growing community of CoDEY
Rocky users will lead to all sensors being used in the future.

The most frequent bug pattern is LED Off Missing with 1,516
instances. Combined with the frequent other Off Missing bug pat-
terns, it appears that beginners do not pay attention to returning
the robot to a neutral state when the program has finished execu-
tion. Note that Light Off Missing is an exception here with only 12
instances found, but again this may be caused by the low number of

Common Patterns in Block-Based Robot Programs

Table 5: Number of code smell instances found in total and
number of projects containing the code smell.

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

Table 6: Number of code perfume instances found in total
and number of projects containing the code perfume.

Code Smell # Patterns # Projects Avg. WMC Code Perfume # Patterns # Projects Avg. WMC
Negative Motor Power 257 71 11.42 Battery Sensing 1 1 9.00
Non-effective Modification 323 86 14.22 Colour Sensing 0
Non-effective Time Limit 12 8 5.38 Colour Usage 829 291 12.63
Total 502 157 11.34 Distance Sensing 1,204 548 11.90
LED Off 9 9 7.56
Light Off 0 0
Light Sensing 259 178 12.89
CopEY Rocky projects. This conjecture is further supported when Line Sens1pg >84 138 25.72
o . . Loop Sensing 573 272 9.36
considering the number of projects containing these bug patterns Loud Sensi 12 s 1375
(Column 3 in Table 3): Here LED Off Missing is also ranked first N;)u .nesosﬁ ensing)) 9'50
(675) followed by Matrix Off Missing (478) and Parallel Actuator Use atrix ’
. . Motor Off 43 43 9.19
(473). Furthermore, the remaining non CobEY RocKY exclusive bug M U 81 .
pattern concerning the switching off of actuators (i.e., Motor Off otor sage 10,896 815 26
. . . . e Parallelisation 72 40 14.65
Missing) come in at fourth place with 364 projects exhibiting it. Pitch Ancle Sensi . . 10,00
The second and third most frequent bug patterns are Interrupted Pl ch Angle egsmg 11'
Loop Sensing (1,287) and Parallel Actuator Use (887). Both of these otentiometer cnsing > 3 67
. . . Roll Angle Sensing 2 1 102.00
can come from a wide range of blocks, and the causes — either using Shaking Sensi 5 5 99,00
a timed block that interrupts a sensing process or an accidental use aKing >ensing .
of the same actuator at the same time — are easy to create. Total 14,495 2,284 9.44

The least common bug patterns (except for those not occurring
at all) are Useless Light Sensing (1) and Useless Line Sensing (3). The
Light Intensity and Line Following sensors are rather easy to use,
as Light Intensity has the biggest range of all sensors and Line
Following uses just four integers instead of a range. Consequently,
it is more difficult to make mistake here.

The average complexity of the projects containing bug patterns
(column WMC in Table 3) reveals that the least complex projects
are found for Colour Out of Range (4.86), Light Off Missing (5.56),
Useless Distance Sensing (8.29) and Motor Out of Range (9.53). Out
of these, Colour Out of Range, Light Off Missing and Motor Out of
Range relate to very basic behaviour that can be implemented even
in very small projects at early stages of programming.

The bug patterns appearing in the most complex projects are
Query in Loop (49.88) and Action Not Stopped (34.34). Query in Loop
requires variables, which are a rather advanced concept and are not
as frequently used in MBLoOCK as they are in text-based program-
ming languages. The same holds true for Action Not Stopped, as
this pattern needs multiple scripts and control structures, which
themselves increase the WMC.

5.22 Code Smells. We found instances for all code smells in the
dataset. In total, there are 592 code smell instances, and 157 pro-
grams contained at least one code smell. Table 5 shows the numbers
of code smell instances found for each type, the number of projects
containing at least one instance of the respective code smell, and
the average weighted method count of these projects. Again one
project may contain more than one type of code smell.

For all three aspects (i.e., number of pattern instances, number of
projects showing the pattern and average WMC) the ranking is the
same, with Non-effective Modification followed by Negative Motor
Power and Non-effective Time Limit. Non-effective Modification has a
wide range of blocks that can cause the smelly situation. The large
number of Negative Motor Power code smells may be caused by

copy&paste, as it may be quicker to copy a forward block and enter
a negative number, rather than looking for the backward block.
The small number of Non-effective Time Limit code smells is
likely explained by useless blocks quickly cluttering the program,
so that they are frequently removed. The low average WMC for
this code smell also suggests that the projects using blocks without
effect are rather simple and may be from beginners in their first
projects trying different values and experimenting with blocks.

5.2.3 Code Perfumes. We found instances for 16 of the 18 code
perfumes defined in Section 3. In total there are 14,495 code perfume
instances, and 2,284 projects containing at least one code perfume.
Analogous to the other code patterns, Table 6 shows the number of
code perfume instances found for each type, the number of projects
containing at least one instance of the respective code perfume,
and the average weighted method count of these programs. Once
again, a project may contain more than one type of code perfume.

Two code perfumes were not found in the dataset: The Colour
Sensing code perfume depends on the Colour Detection sensor,
which is rarely used (see Table 4). For Light Off the corresponding
bug pattern was also rare, and the likely reason is that there are
only 529 CopEY ROCKY projects.

The most frequent code perfume is Motor Usage with 10,896
instances. It is followed by Distance Sensing (1,204) and Colour Usage
(829). Both perfumes concerning the correct usage of actuators in
the top three represent the easiest and most basic way of working
with robots. Distance Sensing is also to be expected as it relates to
the most used sensor. The ranking is the same when considering
the number of projects in Table 4.

Battery Sensing and Pitch Angle Sensing occurred only once each.
These two perfumes, as well as other related code perfumes such
as Roll Angle Sensing (2), Shaking Sensing (3) and Potentiometer

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

Unreachable Code
Hm Not Observable

EEm Failure
False Positive

101
| |
8

T ¢ © 2 2 5y 2 2 D U QO o X v c o D DT
9 © £ £ ¢ € £ € ©® o Y O o c c c QO
S S G % wm 2 wmow ow £ 2 9 2 5 B @ @ @ t
Qa © c »w uw O wu c uw © 4 <4 £ L 9 £ £ c o
g € ¢ 5 5 &5 05 & ¢ c© 5 < g @0 o g
H = 0 5 wn v 5 7 v 3 o v v u g
2 0 ot & 2 £ o O 3 238 3 € o 2 0 o
S 5 g © o g © ¢ 90 5 2 g 3 5 5§ ¢ 5 £ £
2 3 S o % x 9 50 ¢ 340 g £ s 32 E
c w z T = o (9 i n o©
S s o 94 (=} =i o B = = > = %]] I
= 2 9 3 99 & ¢ S S v B 5 v 0
s o 2 = s s £ 0 @ w o ¢ <
S 5 °] o = c v 2
< ° 5 o s T @ PR
O E s o n o 4 o

(7] o K}

e n

[=4

= o

Figure 9: Results of the manual classification.

Sensing (5), all are based on sensors which are not used frequently
in our dataset (see Table 4). Matrix Off (2) and and LED Off (9)
are also relatively rare; the bug patterns which are the counter
pieces to these two code perfumes are among the most frequent
bug patterns, demonstrating that returning the robot to a neutral
state after program execution is not frequently done.

Considering project complexity (Table 6), Roll Angle Sensing
(102.00) and Pitch Angle Sensing (40.00) are contained in only one
project each, which happen to be more complex projects. The fact
that Line Sensing is used in more complex projects (25.72) seems
surprising at first, as it is a common and easy task. However, line
following tasks tend to require several control structures, i.e., at
least one loop and then one if block for each of the four states of
the sensor; this explains the higher complexity.

The average complexity of projects containing Loop Sensing (9.36)
is low because most robot programs require some sensing loop in
order to react to influences from the real world. The low complexity
of projects containing LED Off, Motor Off, and Matrix Off shows
that it is not difficult to correctly turn off actuators. We conjecture
that actuators are rarely turned off not because it is difficult, but
because users mostly are not aware it should be done.

Summary (RQ2) Bug patterns, code smells and code perfumes
for robot projects appear frequently in MBLOCK programs regard-
less their complexity.

5.3 RQ3: How Severe are the Bug Patterns
Found?

Figure 9 shows the results of the manual classification for each
of the 19 bug patterns with at least one occurrence in the dataset.
Out of the 164 inspected projects, 137 instances of bug patterns
manifested into failures, 5 did not result in failures because the
defective code was never executed, 10 were defects without visible
impact, and 12 bugs were classified as false positives.

Noticeably, LED Off Missing, Light Off Missing, Matrix Off Missing,
an Motor Off Missing, which are amongst the most frequent bug

Obermiiller, et al.

patterns (cf. RQ2), always lead to failures. The only fix to stop a
robot in upload mode is to forcefully turn off the robot completely.

Several other bug patterns also always lead to failures (Colour Out
of Range, Low Motor Power, Motor Out of Range, Several Launches,
Useless Light Sensing and Useless Line Sensing). The Stuttering Action
and Useless Distance Sensing bug patterns each have one case where
the relevant code cannot be reached. More generally, these bug
patterns demonstrate that not knowing the valid value ranges of
sensors and actuators will very likely result in a defect.

The Sensor Equals Check bug pattern has the most cases of bugs
that had no observable effects. As the language does not provide a
<= operator, users try to work around this using a disjunction of
two comparisons < and =. While the equality is unlikely to be true,
this will usually show no effects thanks to the less-than comparison.
Interrupted Loop Sensing produced defects where the interruptions
are so short that they are difficult to observe.

As anticipated, we also found some cases of false positives, where
the programmer used the mechanism we consider as a bug on
purpose. Missing Loop Sensing has the highest false positive count
(4), here the sensor value at program start is intentionally used
only once to branch off into different behaviour. In principle, false
positives could be avoided by refining the implementations of the
bug patterns to accommodate for these exceptions.

Summary (RQ3) When bug patterns are executed, they fre-
quently result in failures, but dead code and safety measures
may prevent observable failures.

6 CONCLUSIONS

Patterns provide a common vocabulary for communicating about
code. In this paper we demonstrated that MBLOCK projects are
structurally different from ScrAaTCH programs, and need their own
patterns that can deal with the challenges and possibilities sensors
and actuators of robots provide. To this end we introduced and
empirically evaluated a new catalogue of 26 bug patterns, three
code smells and 18 code perfumes in MBLock. Our evaluation found
occurrences for all code smells and almost all bug patterns and
perfumes, which shows that the concept of bug patterns can be suc-
cessfully transferred to MBLock. Furthermore, while some patterns
like Several Launches are bound to the MBLOCK environment, pat-
terns based on sensor values and motor power may also be relevant
for other block based robot programming languages.

An important next step will be to study the effects of these
positive and negative code patterns and the corresponding hints on
the learning success of novice programmers, as well as guidelines
for instructors on how to teach students about these patterns. In the
future it would be interesting to see if the bug patterns result from
misconceptions in programming as some seem to be a symptom of
those [20, 24]. Our extended version of LITTERBOX is available at:

https://github.com/se2p/LitterBox

ACKNOWLEDGMENTS

This work is supported by the Federal Ministry of Education and
Research through the projects 01JA2021 (primary::programming)
and 01JA1924 (SKILL.de) as part of the “Qualitatsoffensive Lehrerbil-
dung”, a joint initiative of the Federal Government and the Lander.
The authors are responsible for the content of this publication.

https://github.com/se2p/LitterBox

Common Patterns in Block-Based Robot Programs W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

REFERENCES of Mathematical Statistics 18, 1 (1947), 50 — 60. https://doi.org/10.1214/aoms/

[1] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017. 1177?30491 i . .
Learnable Programming: Blocks and Beyond. Commun. ACM 60, 6 (May 2017), [15] Monica M. McGill and Adrienne Decker. 2020. Tools, Languages, and Environ-
72-80. https://doi.org/10.1145/3015455 ments Used in Primary and Secondary Computing Education. In Proceedings of

[2] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and the‘2020 ACM Conference on Inn?vati?n and Technology in Computer Science Edu-
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects. cation (Trondheim, Norway) (ITiCSE "20). Association for Computing Machinery,
SIGCSE 2013 - Proceedings of the 44th ACM Technical Symposium on Computer New York, NY, US,A’ 103-109. thps://d01.org/10.1145/3341?2533873}65
Science Education, 215-220. https://doi.org/10.1145/2445196.2445265 [16] Jests Morgno—Legn 'and Gregorio pr}es. 2014. Automatic detection of bad

[3] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison- programming habits in scratch: A preliminary study. In IEEE Frontiers in Education
Wesley, Boston, MA, USA. Conference (FIE) Proceedings. 1-4. https://doi.org/10.1109/FIE.2014.7044055

[4] Gordon Fraser, Ute Heuer, Nina Kérber, Florian Obermiiller, and Ewald Was- [17] J. Novak, A. Krajnc, fmd R. Zontarj 2010. Taxonomy of static code analysis tools.
meier. 2021. LitterBox: A Linter for Scratch Programs. In 2021 IEEE/ACM In The 33rd Intfmattonal Convention MIPRO. 418-422.
43rd International Conference on Software Engineering: Software Engineering [18] Florian Obermiiller, Lena quch, Luisa Greifenstein, Ute Heuer, and Gordf)n.Fraser.
Education and Training (ICSE-SEET). 183-188. https://doi.org/10.1109/ICSE- 2021. Code Perfumes: Reporting Good Code to Encourage Learners. Association for
SEET52601.2021.00028 Computing Machinery. https://doi.org/10.1145/3481312.3481346

[5] Christoph Fradrich, Florian Obermiiller, Nina Kérber, Ute Heuer, and Gordon [19] LH Peng, MH Bai, and‘I Siswanto. 2020. A study of]eaming motivation of senior
Fraser. 2020. Common Bugs in Scratch Programs. In Proceedings of the 2020 ACM high schools by applymg unity and mblock on programming languages courses.
Conference on Innovation and Technology in Computer Science Education (Trond- In Journal ofPhyszcsi Cnnfereace Series, Vol. 1456. 10P Publishing, 012037.
heim, Norway) (ITiCSE 20). 89-95. https://doi.org/10.1145/3341525.3387389 [20] Juha Sorva. 2018. Misconceptions and the Beginner Programmer.

[6] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice [21] Andreas Stahlbauer, ChrlftOPh Fradrlch’, and Gordon Fraser. 202(?‘ Verified from
programming? A controlled experiment on Scratch programs. In IEEE Interna- Scrétch: Program Analysis for Learners Progra{n& Ir} In Proceedings of the Inter-
tional Conference on Program Comprehension (ICPC). 1-10. https://doi.org/10. national Conference on Autqmated Software Engineering (ASE). IEEE..
1109/ICPC.2016.7503706 [22] Andreas Stahlbauer, Marvin Kreis, and Gordon Fraser. 2019. Testing scratch

[7] Felienne Hermans, Kathryn T. Stolee, and David Hoepelman. 2016. Smells in programs automaticall_y. In.Proceedings of the 2019 27’?}‘ ACM Joint Meeting on
Block-Based Programming Languages. In 2016 IEEE Symposium on Visual Lan- European Saft.warel Engineering Conference and Symposium on the Foundations of
guages and Human-Centric Computing (VL/HCC) (Cambridge, United Kingdom, Software Engineering. 165-175.) o .
2016-09). IEEE, 68-72. https://doi.org/10.1109/VLHCC.2016.7739666 [23] Amanda Sullivan and Marina Umaschi Bers. 2016. Robotics in the early child-

[8] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not. hpod classroom: learning outcomes from an S—Week robotics curriculum in pre-
39, 12 (Dec. 2004), 92-106. https://doi.org/10.1145/1052883.1052895 km(jlergarten Fhrough second grade. International Journal of Technology and

[9] David E Johnson. 2016. ITCH: Individual Testing of Computer Homework for Design Education 26, 1 (2016), 3-20.

[24

Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming
Misconceptions for School Students. In Proceedings of the 2018 ACM Confer-
ence on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery, New York, NY, USA, 151-159.
https://doi.org/10.1145/3230977.3230995

Peeratham Techapalokul and Eli Tilevich. 2017. Quality Hound — An online code
smell analyzer for scratch programs. In IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 337-338.

Peeratham Techapalokul and Eli Tilevich. 2017. Understanding Recurring Quality
Problems and Their Impact on Code Sharing in Block-Based Software. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
43-51.

Andras Vargha and Harold Delaney. 2000. A Critique and Improvement of the
"CL" Common Language Effect Size Statistics of McGraw and Wong. Journal
of Educational and Behavioral Statistics - § EDUC BEHAV STAT 25 (06 2000).
https://doi.org/10.2307/1165329

Scratch Assignments. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 223-227.

[10] Sung Eun Jung and Eun-sok Won. 2018. Systematic Review of Research Trends
in Robotics Education for Young Children. Sustainability 10, 4 (2018).

[11] Nina Kérber, Lisa Bailey, Luisa Greifenstein, Gordon Fraser, Barbara Sabitzer, and
Marina Rottenhofer. 2021. An Experience of Introducing Primary School Children
to Programming Using Ozobots (Practical Report). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3481312.3481347

[12] P. Louridas. 2006. Static code analysis. IEEE Software 23, 4 (2006), 58—61. https:

//doi.org/10.1109/MS.2006.114

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. 2010. The Scratch Programming Language and Environment. ACM

Transactions on Computing Education (TOCE) 10 (11 2010), 16.

[14] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether one of
Two Random Variables is Stochastically Larger than the Other. The Annals

[25

I
2

[13

[27

https://doi.org/10.1145/3015455
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1109/ICSE-SEET52601.2021.00028
https://doi.org/10.1109/ICSE-SEET52601.2021.00028
https://doi.org/10.1145/3341525.3387389
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/VLHCC.2016.7739666
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/3481312.3481347
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/3341525.3387365
https://doi.org/10.1109/FIE.2014.7044055
https://doi.org/10.1145/3481312.3481346
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.2307/1165329

	Abstract
	1 Introduction
	2 Background
	2.1 Educational Robots
	2.2 Patterns in Block-based Programs

	3 Patterns in mBlock
	3.1 Bug Patterns
	3.2 Code Smells
	3.3 Code Perfumes

	4 Experimental Setup
	4.1 Analysis Tool
	4.2 Dataset
	4.3 Methodology
	4.4 Threats to Validity

	5 Results
	5.1 RQ1: How Does mBlock Code Compare to Scratch Code?
	5.2 RQ2: How Common are Robot Bug Patterns, Code Smells and Code Perfumes in mBlock Programs?
	5.3 RQ3: How Severe are the Bug Patterns Found?

	6 Conclusions
	Acknowledgments
	References

