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The use of mobile devices is rising daily in this technological era. A continuous and increasing number of

mobile applications are constantly offered on mobile marketplaces to fulfil the needs of smartphone users.

Many Android applications do not address the security aspects appropriately. This is often due to a lack

of automated mechanisms to identify, test, and fix source code vulnerabilities at the early stages of design

and development. Therefore, the need to fix such issues at the initial stages rather than providing updates

and patches to the published applications is widely recognized. Researchers have proposed several methods

to improve the security of applications by detecting source code vulnerabilities and malicious codes. This

Systematic Literature Review (SLR) focuses on Android application analysis and source code vulnerability

detection methods and tools by critically evaluating 118 carefully selected technical studies published be-

tween 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques,

and potential improvements of those studies. Both Machine Learning (ML)-based methods and conventional

methods related to vulnerability detection are discussed while focusing more on ML-based methods, since

many recent studies conducted experiments with ML. Therefore, this article aims to enable researchers to ac-

quire in-depth knowledge in secure mobile application development while minimizing the vulnerabilities by

applying ML methods. Furthermore, researchers can use the discussions and findings of this SLR to identify

potential future research and development directions.
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1 INTRODUCTION

With technological enhancements and an increase in the usage of mobile devices, a growing
number of people depend on mobile phones for their daily activities, both for the personal and
professional aspects of their lives. Statista forecast that, by 2023, there will be 4.3 billion smart-
phone users [136]. 71.45% of them use Android as the Operating System (OS) (May 2022) [135].
Because of this worldwide popularity, many application developers are developing various An-
droid mobile applications with rapid development life cycles. However, most of these applications
are developed without integrating proper security mechanisms, increasing their vulnerabilities at
the development stage. Since Google Play does not extensively validate apps to detect code vulner-
abilities when publishing [36], users may experience various issues caused by the lack of security
checks [142]. Therefore, it is important to integrate appropriate Android source code vulnerability
detection methods and tools when developing the apps.

Studies such as References [20, 53, 59, 133, 134] have proposed several methods to detect vulner-
abilities in source code, including some automated mechanisms to support the developers when
designing and developing secured applications. An increasing number of these supporting meth-
ods, such as References [45, 48, 89, 93], are based on machine learning and deep learning for
automatic early detection of security issues and vulnerabilities, which can support the software
engineers to improve software security. Studies in References [10, 18, 116, 164] employ alternative
techniques, to identify vulnerabilities. A thorough understanding of these existing methods is es-
sential for developing Android applications by applying security best practices. Moreover, further
research also can be conducted to enhance those methods. Therefore, researchers and the applica-
tion development community can use this state-of-the-art SLR to fully understand the strengths
and weaknesses of existing source code vulnerability detection methods and thus identify future
research directions.

As discussed in Section 2, several limitations, including not covering recent proposals, relatively
narrow scopes, and lack of critical appraisals of suggested detection methods, have been identified
in these existing literature reviews on Android vulnerability detection and prevention methods.
The lack of a thorough analysis of ML or Deep Learning (DL)-based methods when detecting
vulnerabilities was also a limitation of existing works. This SLR addresses these limitations by crit-
ically evaluating 118 carefully selected technical studies while answering the formulated research
questions. Therefore, this work is unique, which addresses the research gap in this area.

1.1 Research Questions

This systematic review aims to answer the following research questions:

RQ1: What are the existing methods for source code and application analysis?

Many research studies considered various source code analysis methods, including applica-
tion reverse-engineering. Moreover, byte-code-based analysers are also used, since Android
apps can be easily reverse-engineered to source code. The static analysis techniques were
mainly used on a broad scale, while also applying dynamic and hybrid analysis techniques
to analyse source code. These methods are discussed in Section 4.

RQ2: What are existing Android source code vulnerability detection methods, and how

to use them to prevent vulnerabilities?
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Fig. 1. Structure of this Systematic Literature Review article.

When detecting Android source code vulnerabilities, ML methods and some conventional
methods were applied in various studies. Among them, applying ML methods has been pop-
ular in recent years among the research community. Therefore, many studies applied various
ML methods. In contrast, few studies applied conventional non-ML-based methods. Detect-
ing vulnerabilities alone is not sufficient when boosting the security of Android source code.
Ways to prevent security issues by integrating the detection techniques into software devel-
opment environments should also be studied. These detection and prevention methods are
discussed in Section 5.

RQ3: Which tools and repositories can be used to detect vulnerabilities in Android

apps?

Exploring tools, repositories, and datasets that can be used to analyse source code and detect
vulnerabilities is also essential. Identifying their characteristics and usage is beneficial for
conducting new research studies. Therefore, those facts are discussed in Section 6.

1.2 Organization of the Review

The SLR is structured as presented in Figure 1 to answer the formulated research questions in three
main sections.

The rest of this article is organised as follows: Background and related literature are discussed
in Section 2, followed by a detailed description of the review methodology in Section 3. The exper-
imental studies reviewed in this SLR are categorised into three main sections: application analysis,
code vulnerability detection, supportive tools and repositories. As the initial step of vulnerability
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detection, applications should be analysed, and three types of analysis techniques (static analysis,
dynamic analysis, and hybrid analysis) are used. Studies related to this application analysis are re-
viewed in Section 4. Code vulnerability detection-related studies are reviewed in Section 5, which
discusses the ML-based methods and conventional methods. It further discusses how the existing
prevention techniques can be integrated with the identified detection methods. Section 6 reviews
supportive tools and repositories that can be used in application analysis, vulnerability detection,
and prevention. Section 7 discusses the threats to the validity of the review. Section 8 concludes
the article.

2 BACKGROUND AND RELATED LITERATURE REVIEWS

This section discusses the background related to the security of Android applications and the vul-
nerabilities associated with them. It provides a high-level overview of the Android layered archi-
tecture, its security implications, Android application vulnerabilities, and potential mistakes made
by users and developers that can lead to security and privacy issues. It also explains the ML process,
since the article focuses more on ML-based vulnerability detection mechanisms. Then, it would
be helpful for all the readers to understand the content easily. Furthermore, the existing literature
reviews are also discussed in this section.

2.1 Background

2.1.1 Layered Architecture and Security Implication of Android. Android has a layered architec-
ture that provides a systematic way to communicate with device components, software applica-
tions, and its users. Android OS is built on top of the Linux kernel [125]. It provides drivers and
mechanisms for networking and manages virtual memory, device power, and security. On top of
the Linux kernel layer, hardware abstraction layer, native C/C++ libraries layer, and Android run-
time layer, Java Application Programming Interface (API) framework layer are stacked [12].

Each of these layers performs unique tasks while interacting with other layers. The study in
Reference [125] provided a layered approach for Android application development, which uses the
layered architecture. In this approach, a server interacts with the Hypertext Transfer Protocol

(HTTP) layer, while the API layer interacts with the HTTP layer. The API layer interacts with the
generic data layer, and that interacts with the platform-dependent data layer. The User Interface

(UI) layer interacts with the platform-dependent layer. Many of the source code vulnerabilities
can be identified in the top layer, which contains user and system apps, since the regular app
developers mainly focus on that layer. However, the understanding of the layered architecture is
beneficial to mitigating some of the vulnerabilities.

Android platform security has been defined with several rules in the Android security model
[94]. They are multi-party consent, open eco-system access, security and compatibility require-
ments, factory restores the device to a safe state, and applications’ security principles. The study in
Reference [165] identified three main security mechanisms, including (1) process sandbox, which
is the sandbox environment of Android; (2) signature mechanism, which can digitally sign appli-
cations with the private key before being released; (3) permission mechanism, which defines the
ability of an app to access protected APIs and resources. The sandbox environment of Android
does not allow the use of one application resource by the other. Sandboxes are developed using
Linux, and only they can access the core functionalities of the OS. Monitoring system calls and ac-
knowledging them is a responsibility of the Sandbox [125], and they are used to prevent malicious
applications that request access for system functionalities through vulnerable source code.

Mobile devices can easily be lost or stolen, connect with several networks on the go, and con-
tain more privacy-related data, since they are close to the users [131]. Therefore, limiting to tradi-
tional security mechanisms will not be sufficient for mobile devices. Malicious actions including
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gaining physical access to the device, connecting with untrusted networks, installing and running
untrusted applications, executing untested code blocks and contents are identified as some of the
threats [94] that can occur in an Android mobile device. Thus, security measures should be tight-
ened though mitigating vulnerabilities to safeguard the data in Android devices.

Therefore, implementing proper security measurements is a must to improve the security of
Android devices and their applications. Hence, detecting vulnerabilities of Android applications
and their source code should be performed when implementing the security best practices.

2.1.2 Vulnerabilities of Android Applications. Many of the Android applications are freely avail-
able to download from app markets. Therefore, the usage of these free applications is very high.
Hackers may try to penetrate these applications and grab user data on a massive scale or per-
form illegal activities if there are no proper security mechanisms in place in the application [130].
Therefore, the app developer should carefully check for proper security measures. Issues in Se-

cure Sockets Layer (SSL), Transport Layer Security (TLS) commands, permissions, web views,
key stores, fragments, encryptions, intents, intent filters, and leaks were identified as common
causes for vulnerabilities of Android mobile apps [47]. Attacks from the Internet and Wireless

Personal Area Networks (WPAN), and malware transmitted through personal computers can
exploit these vulnerabilities. The study related to Android vulnerability [165], identified SSL/TLS
protocol vulnerabilities, forged signature vulnerabilities, and some of the common vulnerabilities
in Input/Output (I/O) operations, intents, permissions, web views.

There are several types of vulnerabilities categorised in CyBOK [101]. They are memory manage-
ment vulnerabilities, structured output generation vulnerabilities, race condition vulnerabilities,
API vulnerabilities, and side-channel vulnerabilities. Safe languages, spatial vulnerabilities, tempo-
ral vulnerabilities, code corruption attacks, control-flow hijack attacks, information leak attacks,
data-only attacks were identified as memory management vulnerabilities. It has classified Struc-

tured Query Language (SQL) injections, command injection vulnerabilities, script injection
vulnerabilities, stored injection vulnerabilities, high-order injection vulnerabilities as structured
output generation vulnerabilities. It has listed concurrency bugs and time-of-check to time-of-use
issues as race condition vulnerabilities. Correct use and implementation were also recognised as
cases where API vulnerabilities can evolve while mentioning side-channel vulnerabilities as the
other category of vulnerabilities. Under this software-based side channel, covert channels, micro-
architectural effects, and fault injection attacks were considered. Some of these vulnerabilities are
related to Android, and they can be mapped with Common Vulnerabilities and Exposures

(CVE) [33] and Common Weakness Enumeration (CWE) [34], which is possible to use as the
starting point to categorise vulnerable source code.

The study in Reference [49] identified 563 Android-related vulnerabilities, including gain privi-
leges and information, memory corruption, Denial of Services (DoS), malicious code execution,
overflow, and bypass security measures. Further, it has analysed trends of those vulnerabilities
from 2009 to 2019, and the peak period of vulnerabilities was started in 2016. The empirical study
conducted in Reference [82] discussed the types of Android-related vulnerabilities, the layers and
subsystems of Android that could be affected by vulnerabilities, and the survivability of vulnerabil-
ities. This study consists of 660 vulnerabilities from the CVE Details [33] and the official Android
Security Bulletins [11]. It was identified that most of the vulnerabilities could happen from data
processing issues, access controls, memory buffers, and improper input validation, primarily due
to vulnerable code lines. Most of them can be reduced by following secure coding practices.

2.1.3 User and Developer Mistakes. Mistakes can happen when using an application by the
users or when developing applications by the developers. Sometimes users allow permissions
when installing or running an application without knowing the exact need, leading to some
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vulnerabilities. Hackers and malicious app developers also try to steal data from users by forcing
them to allow specific permissions. Authors in Reference [92] identified that most security issues
in mobile applications occurred due to the actions of the users. These issues can be minimised if
the applications are developed with less vulnerable source code.

Developers also make mistakes by not following an extensive testing and validation process
from the initial stage of the app development life cycle. When developing mobile applications,
many mobile app developers are still not focusing on writing secure codes even though there
are mechanisms in place [100]. Due to these developer mistakes, some of the vulnerabilities have
occurred. Instances such as mentioning unwanted permissions in the AndroidManifest.xml file
can also lead to arise vulnerabilities of the mobile applications. If these permissions are dangerous
level permissions, then users will have to grant those also, which can cause rejections of the app
by some users [25]. These vulnerabilities may not be detected when publishing apps to Google
Play, since Google Play itself could not thoroughly analyse the code of the mobile applications
when publishing it, such as in Apple App-Store [51]. Therefore, proper source code vulnerability
detection mechanisms should be integrated with coding.

2.1.4 Machine Learning Processes. The use of ML methods for vulnerability detection has been
increased in recent years [53]. Therefore, comprehending the ML processes is beneficial to under-
standing ML-based source code vulnerability detection studies.

The ML lifecycle includes data extraction, preprocessing, feature selection, model training, eval-
uation, and deployment steps [8] and ML consists of supervised learning, unsupervised learning,
semi-supervised learning, reinforcement learning, and deep learning. A labelled dataset is used to
train the model in supervised learning to solve classification and regression problems. Algorithms
such as Naive Bayes (NB), Logistic Regression (LR), Linear Regression, Support Vector Ma-

chine (SVM), Decision Tree (DT), Random Forest (RF), and k-Nearest Neighbors (kNN) can
be applied for supervised learning. Unsupervised learning identifies hidden patterns in data using
clustering, association and dimensionality reduction. A labelled dataset is not required to train
the model. K-means clustering, Principal Component Analysis (PCA), and autoencoders are
some methods that can be applied for unsupervised learning. A mix of supervised and unsuper-
vised learning techniques is applied in semi-supervised learning and used in the case of limited
labelled data in the used dataset. The model parameters are updated with the feedback from the
environment in reinforcement learning where no training data is involved. This ML method pro-
ceeds as prediction and evaluation cycles. DL is defined as learning and improving by analysing
algorithms independently, which consists of a higher or deeper number of processing layers. Con-

volutional Neural Network (CNN), Long Short Term Memory Network (LSTM), Recurrent

Neural Network (RNN), Generative Adversarial Network (GAN), and Multilayer Percep-

tron (MLP) are some of the popular DL algorithms [21].

2.2 Related Literature Reviews

Previous reviews [1, 2, 38, 50, 72, 80, 86, 127, 132] discussed various security-related studies, in-
cluding vulnerability detection methods for Android applications and the ways to prevent them.
With the rapid focus on software security, most of these studies and experiments were conducted
after 2015.

The security in the Android platform was studied in Reference [1]. It reviewed the studies on
several threats to Android, such as information leakage, privilege escalation, repackaging apps, de-
nial of service attacks, and colluding. It has also reviewed Crowdroid [24], Kirin [40], AndroSimilar
[42], RiskRanker [55], RiskMon [67], FireDroid [123], Aurasium [161], DroidScope [162], RecDroid
[166], and DroidRanger [168] methods. Those studies were reviewed with objectives such as the
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assessment, the source code analysis method (i.e., static or dynamic analysis), and detection mecha-
nisms. However, there are limitations in this review, such as following an informal review approach
and not covering comprehensive details on vulnerability detection and prevention mechanisms.

It is crucial to identify the duplicate codes in several places in a program. When identifying bugs
in a program, code repetition places also should be identified as all the places should be revised. The
study in Reference [2] reviewed various studies related to code clone detection. This study has sys-
tematically reviewed 54 studies under six categories: textual approaches, lexical approaches, tree-
based approaches, metric-based approaches, semantic approaches, and hybrid approaches. Twenty-
six clone detection tools were also identified in this review, and found that many of the tools and
models can be applied in Java/C++ codes. However, since this review contained papers from 2013
to 2018, it is better to review the latest code clone detection methods proposed after 2018.

Authors in Reference [38] analysed 55 studies from 2015 to 2021 related to software vulnerability
detection. The selected articles were grouped into several categories across various vulnerability
detection evaluation criteria such as neural network, machine learning, static and dynamic analy-
sis, code clone, classification models and frameworks. Based on the analysis, it has been identified
that many researchers used machine learning strategies to detect vulnerability in software, since a
large volume of data can be analysed easily with machine learning. Though some of the reviewed
studies have overlaps with vulnerability detection of source code written in C and Java, a further
review should be conducted specifically for Android source code vulnerability detection.

The study in Reference [50] reviewed Android security assessments, including trends and pat-
terns of different analysis approaches, analysis techniques, code representation tools, and applica-
ble frameworks by analysing about 200 studies from 2013 to 2020. It has also focused on privacy
leaks, cryptographic issues, app cloning, permission misuse, code verification, malware detection,
test case generation, and energy consumption. It discussed sensitivity analysis, data structures,
and code representations in the reviewed literature under the static analysis techniques. Kernel
level, application level, and emulator level inspections were also considered under taint analysis
and anomaly-based approaches in dynamic analysis techniques. The review highlighted that many
research studies were conducted related to Android vulnerabilities and leaks. Moreover, this study
systematically reviewed several android assessments techniques and identified call graphs, control
flow graphs, and inter-procedural control flow graphs as the used data structures. However, the
studies related to preventing vulnerabilities were not discussed. Moreover, reviewing studies on
non-ML-based methods to detect and prevent vulnerabilities is possible, since this review consid-
ered only ML methods.

Related studies on automated testing mechanisms of Android applications were systematically
reviewed in Reference [72] from 2010 to 2016. This article discussed three functional testing types:
black-box, white-box, and grey-box by analysing Android-related studies, including test-related ob-
jectives, targets, levels, and techniques, along with their validation depths. The considered test ob-
jectives were bugs, defects, compatibility, energy, performance, security, and concurrency. Under
test targets, it considered inter-component communication, inter-application component, graph-
ical user interface, and events. System, integration, and regression were considered for the test
levels while testing types, testing environment, and testing methods were listed as used test tech-
niques. Further, executing tests using emulators and real devices was also discussed. It examined
testing methods including mutation, concolic, A/B, fuzzing, random, search-based, and model-
based. This review considered frequently used essential tools such as AndroidRipper [9], Monkey
[14], Silkuli [61], Robotium [119], EMMA [121], and Roboelectric [158]. Though it has reviewed
Android app testing comprehensively till 2016, the recent studies are not considered.

The review in Reference [80] analysed 124 research studies from 2011 to 2015 intending to iden-
tify static analysis mechanisms for Android applications. It identified that static analysis was used
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in many research studies related to privacy and security, and taint analysis was the widely applied
technique in those studies. According to that, Soot (a framework for analyzing, instrumenting, op-
timizing, transforming and visualizing Java and Android applications) [76], and Jimple (an interme-
diate representation that can simplify analysis and transformation of Java bytecode) [151] were the
widely used tools and formats, and a few studies considered path-sensitivity. After analysing, this
review identified that leaks and vulnerabilities are the primary concerns addressed by the other
research studies. Moreover, this review found permission misuse, energy consumption, clone de-
tection, test case generation, code verification, and cryptographic implementation issues. Some of
the novel techniques, including ML-related studies, were not reviewed, since this review focused
on research from 2011 to 2015.

The work in Reference [86] systematically reviewed DL-based Android malware defence by an-
swering three primary research questions: (1) aspects of Android malware defences applied when
using DL, (2) approaches developed for malware defences, and (3) emerging and potential research
trends for DL-based Android malware defences. The review considered the technical studies from
2014 to November 2021. The review identified that while many of the reviewed studies mainly
consider DL-based on Android malware detection, some defence approaches were based on non-
DL-based methods. It has also been identified that static program analysis is widely used to collect
features, and semantic features are frequently occurring. Moreover, it concluded that most of the
approaches were performed as a supervised classification task. This review identified that many
studies were conducted to detect malware, and other types of more detailed analyses on malicious
apps are receiving increasing attention. Nevertheless, it was not comprehensively reviewed
how the other types, such as malicious code detection and code vulnerability detection, can be
performed.

The systematic review conducted in Reference [127] discussed ML and DL-based Android mal-
ware detection methods, along with a comparison of methods and their accuracies. This review
analysed many studies from 2017 to 2021 and identified that static, dynamic, and hybrid analysis
could be used with ML/DL models to detect malware. Furthermore, it identified that static analysis
is the widely used technique in the reviewed studies. It has been found out that RF, SVM, NB, kNN,
LSTM, and AdaBoost (AB) were the widely used ML/DL models in this context. Further to the mal-
ware detection method, this review briefly discussed Android software vulnerability identification.
It reviewed the methods and techniques to identify source code vulnerabilities. The critiqued stud-
ies have identified that hybrid analysis techniques were widely used to identify Android source
code vulnerabilities. The main focus of this review was Android malware detection using ML/DL.
Therefore, it is still essential to review code vulnerability detection methods to a great extent.

Studies related to the Android security framework, its security mechanisms assessments, and
mitigation strategies were reviewed in Reference [132]. Under the security mechanisms, user
interfaces, file access, memory management, type safety, mobile carrier, application permissions,
component encapsulation, and application signing were reviewed. It has reviewed the security
analysis studies related to Android framework cornerstone layers, application-level permissions,
installing applications, mobile web browsers, SQL injections, connectivity and communication,
hardware, software updates, malware in Linux environment, and malware related to Java. Under
mechanisms, studies related to anti-malware tools, firewalls, intrusion detection and prevention
methods, access controls, permission management applications, encryption methods, and spam
filters were reviewed. Though this review discussed the studies conducted under Android security
by following an informal and non-systematic approach, it does not consider security issues such
as API vulnerabilities, concurrency bugs, and the latest OS-related bugs due to the considered
period in the review.
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Table 1. Summary of Related Reviews

Paper Focus of the Review Period Review
Approach

Number
of Re-

viewed
Studies

Android
Specific

Static
Analysis

Dynamic
Analysis

Hybrid
Analysis

ML-based
code vul-
nerability
detection

Non-ML-
based

code vul-
nerability
detection

Code vul-
nerability

prevention

Supportive
tools and

repositories

Ahmed
et al. [1]

Security in Android
platform, associated
threats, and
malicious
application growth

2010–
2017

Informal 14 � � � � x x x x

Ain et al.
[2]

Code clone detection
for vulnerabilities

2013–
2018

Systematic
search (Budgen
[23] and
Kitchenham [71]
guidelines)

54 x � � � x � x x

Eberendu
et al. [38]

Various methods for
detecting software
vulnerabilities

2015–
2021

Systematic
search - (PRISMA
model [109])

55 x � � � � x x x

Grag et al.
[50]

Android security
assessments and
application analysis
methods

2013–
2020

Systematic
search
(Kitchenham
guidelines [71])

200 � � � � � x x �

Kong et al.
[72]

Automated testing
mechanisms for
Android

2010–
2016

Systematic
search
(Kitchenham
guidelines [71])

103 � � � x x x x �

Li et al. [80] Static analysis for
Android apps

2011–
2015

Systematic
search
(Kitchenham
guidelines [71])

124 � � x x x � x x

Liu et al.
[86]

Malware and
malicious code
detection with DL

2014–
2021

Systematic
search
(Kitchenham
guidelines [71])

132 � � � � � x x x

Senanayake
et al. [127]

Malware detection
and malicious code
detection with ML

2017–
2021

Systematic
search (PRISMA
model [109])

106 � � � � � x x x

Shabtai
et al. [132]

Android security
framework and
security assessment

2007–
2009

Informal 42 � x x x x � x x

This work Android code

vulnerability

detection and

prevention

2016–

2022

Systematic

search -

(PRISMA

model) [109])

118 � � � � � � � �

Though the existing reviews provide in-depth details of the related studies, reviews such
as References [72, 80] did not cover the recent works conducted in this area. Reviews such as
References [2, 132] did not thoroughly review the studies on Android-specific vulnerability
detection using various experiments performed in source code analysis. Therefore, it is required
to conduct a comprehensive review of recent studies related to Android source code vulnerability
detection and prevention mechanisms. Table 1 summarises and compares the related reviews
with this work’s contribution.

3 METHODOLOGY

The Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) model
[109] was used in this review to report and analyse the research studies conducted in this domain.
Based on the objective of this study, initially, the search strategy was defined to identify the con-
ducted studies that can be used to answer the research questions. The database usage and the
inclusion and exclusion criteria were also defined. The study selection, data extraction and synthe-
sis were conducted as the next stage to identify studies aiming to answer the formulated research
questions. Threats to the validity of this SLR, and the mechanism to reduce the bias and other
factors that could have influenced the outcomes of this study, were also identified.

3.1 Search Strategy

As the initial step of the review process, existing literature reviews on Android malicious code
detection and vulnerability detection were analysed to identify the research gap. Once the research
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Table 2. Search Results Distribution across Primary Sources for Each Search Term

Search Term ACM IEEEXplore Science Direct Web of Science Springer Total Count

vulnerability detection 428 377 264 557 496 2,122

source code vulnerability 10 13 17 11 36 87

code vulnerability detection 9 10 8 12 20 59

vulnerability analysis 381 331 2,456 1,632 740 5,540

vulnerable code 282 99 88 103 201 773

static analysis 5,596 2,210 2,609 3,390 4,729 18,534

dynamic analysis 2,652 1,947 3,048 2,197 2,695 12,539

hybrid analysis 175 88 150 132 257 802

vulnerability dataset 22 10 24 10 41 107

android 12,482 8,942 5,331 9,942 12,618 49,315

machine learning 54,996 88,735 146,255 215,080 85,194 590,260

deep learning 24,316 72,742 66,147 127,016 48,450 338,671

formal methods 3,488 1,335 1,686 3,859 5,844 16,212

heuristic methods 760 1,271 3,261 1,635 3,445 10,372

Complete Search String 688 146 582 255 855 2,526

gap was identified, the search string was used to extract and identify the technical studies related
to the review’s focus.

The search strategy involves outlining the most relevant bibliographic sources and terms of
search. This review used several top research repositories, including ACM Digital Library, IEE-
EXplore Digital Library, Science Direct, Web of Science, and Springer Link as primary sources
to identify studies. The search string to browse through research repositories is (((“vulnerability
detection”) OR (“source code vulnerability”) OR (“vulnerable code”) OR (“code vulnerability de-
tection”) OR (“vulnerability analysis”) OR (“static analysis”) OR (“dynamic analysis”) OR (“hybrid
analysis”) OR (“vulnerability dataset”)) AND (“android”) AND ((“machine learning”) OR (“deep
learning”) OR (“formal methods”) OR (“heuristic methods”))).

A few years after the initial release of Android in 2008, security concerns were discussed with
the increasing popularity of Android applications [135]. Methods to detect and prevent vulnerabil-
ities by improving software security using ML and non-ML-based methods were also proposed in
several studies. There was a boost in applying various techniques to improve application security
in the past five years [85], and vulnerability detection in mobile applications using ML techniques-
related trends increased from 2016 [53]. Hence, many researchers are involved in identifying novel
ML-based methods to enhance software security. Considering these reasons, technical studies from
2016 to June 2022 were reviewed. The search results distribution across primary sources for each
search term is listed in Table 2.

Google Scholar was also used as another source to identify research studies published in qual-
ity venues, since it can be used to identify research studies not published in primary repositories.
“Android source code vulnerability detection” was used as the search query. The range of publica-
tion years was set to 2016–2022. Though the search results included about 17,500 records, only the
top 200 (sorted by relevance) results for each year were considered, resulting in 1,400 studies.

3.2 Study Selection, Data Extraction, and Synthesis

Initially, through the research database search in the top research repositories, 2,526 research pa-
pers and from Google Scholar, 1,400 were identified. 3,112 were excluded from these 3,926 papers
because of duplicate entries, and another 127 were excluded because they were not publicly avail-
able. 687 studies remained after the initial screening. Research repository search engines often list
irrelevant results presence articles [23]. Therefore, the collected list of relevant studies was consol-
idate by manually going through all the papers and examining the title and abstract to ensure that
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Fig. 2. PRISMA method: collection of papers for the review.

they align with the focus of this review. After these steps, 119 studies were eligible, but 3 more arti-
cles were excluded due to data analysis and experiment issues in the given context, which remains
116 studies. The snowballing process [159] was also performed, considering all the references pre-
sented in the retrieved papers and evaluating all the papers referencing the retrieved ones, which
resulted in 2 additional relevant papers. The same process was applied as for the retrieved papers.
Once all these steps were performed, the remaining 118 articles were reviewed in this study. The
results were cross-validated by performing peer-verification process by all the authors. Figure 2
shows a summary of the paper selection method for this systematic review.

4 APPLICATION ANALYSIS

Applications or source code should be analysed as the first step in detecting vulnerabilities [63].
There are two analysis approaches: analysing the reverse-engineered source code of Android
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Application Packages (APKs) and analysing the source code simultaneously when writing the
code. Most of the research studies have been conducted related to the reverse-engineering ap-
proach. However, the second approach has more advantages for the developers to detect code
vulnerabilities at the early stages of development life cycle. Reviewing studies on both approaches
is vital, since their methodologies have many overlaps.

It is required to extract features as the initial step of analysing the source code of a given applica-
tion. These features can be extracted through three analysis techniques named as static, dynamic,
and hybrid analysis [6, 32, 87]. Reverse-engineered APKs, application’s source code, or byte code
can be analysed using static analysis. However, it is impossible to identify all the bugs and fail-
ures using static analysis only, since it does not cover the vulnerabilities that can occur during the
execution time of the app. Features can be generated by executing applications in runtime when
performing the dynamic analysis. The runtime behaviour is monitored while using specific input
parameters. However, it is possible to crash the run-time environment due to severe vulnerabilities,
and there are possibilities that some vulnerabilities remain undetected [115]. The hybrid analysis
technique contains characteristics of both static and dynamic analysis techniques. Therefore, this
approach can analyse the source code as well as run-time behaviour of the application [10].

4.1 Static Analysis

Native Android applications can be developed using Java or Kotlin, and Java is the widely used
programming language for this purpose. Frameworks such as React Native and Xamarin can also be
used to develop Android mobile applications [15]. However, these mobile applications also contain
Extensible Markup Language (XML) files such as the Android Manifest, User Interface (UI)

layouts, and resources among the application files. Therefore, it is required to identify the issues
in both source code files and XML files. Static analysis can analyse both of these files without
executing them. There are two static analysis methods: manifest analysis and code analysis. These
two methods differ based on feature extraction. Some studies use either manifest analysis or code
analysis, while a few use both [73].

The manifest analysis is a widely used static analysis method. It can extract package names,
permissions, activities, services, intents, and providers from the AndroidManifest.xml file. The
AndroidManifest file contains all the permissions used in a particular application, categorised as
dangerous, signature, and normal. Twenty-two permissions have been identified as significant
permissions in SigPID in Reference [78], and they were identified by developing a three-level data
purring method. Those three levels were support-based permission ranking, permission mining
with association rules, and permission ranking with a negative rate. The second method of the
static analysis is code analysis, which considers about the source code files. Features such as API
calls, information flow, taint tracking, native code, clear-text analysis, and opcodes can be extracted
with code analysis. The MaMaDroid [107] method provides an example for API calls analysis. It
abstracted apps’ API call executions to create regular classes or packages using static code analysis
techniques and then determined the call graph using the Markov chain.

Authors in Reference [50] proposed five aspects for static analysis: analysis techniques, sensi-
tivity analysis, code representation, data structures, and inspection level. The analysis techniques
are symbolic execution, taint analysis, program slicing, abstract interpretation, type checking, and
code instrumentation. Objects, contexts, fields, paths, and flows are considered for sensitivity anal-
ysis. Smali [57], Dex-Assembler [111], Jimple [151], Wala-IR [153], and Java Byte code/Java class
are used for code representation while Call Graph, Control Flow Graph, Inter-Procedural Con-
trol Flow Graph are data structures. Kernels, applications, and emulators are considered for the
inspection levels.
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4.2 Dynamic Analysis

The second technique is dynamic analysis, which is used to analyse the application by executing
it in a sandbox runtime environment. A completed product (i.e., APK) is required to apply this
method. Therefore, it is widely used to detect vulnerabilities and malware in developed applica-
tions.

Five feature extraction techniques were identified for the dynamic analysis in Reference [50],
and they were network traffic analysis, code instrumentation, system call analysis, system re-
sources analysis, and user interaction analysis. Network-related features, process-related features,
usage-related details, and component interactions were extracted using those five methods. Under
the network-related features, uniform resource locators, internet protocols, network protocols, net-
work certificates, and network traffic were considered while considering non-encrypted data, Java
classes, intents, and system call for process-related features. Usage-related features such as pro-
cessor, memory, battery, network, and process reports were also considered. Additionally, buttons,
icons, actions, and events were considered for user interaction analysis features.

Authors in Reference [52] used dynamic analysis techniques to identify Android vulnerabilities.
It contained three modules: network traces collection, network feature extraction, and network fea-
ture detection. Network activities of running apps were periodically recorded and monitored in
the traces collection module. Feature extraction module extracted network features used in applica-
tions such as origin-destination-based features, domain-name system-based features, transmission
control protocol-based features, and hypertext transfer protocol-based features and performed the
vulnerability detection process.

4.3 Hybrid Analysis

The hybrid analysis uses both static and dynamic features to analyse a given application. The study
in Reference [99] used static features, including permissions and intents and dynamic features, in-
cluding IPs, emails, and URLs, to extract various information related to applications. The APKTool
[150] was used to decompile the APK as the initial step. After extracting the data, it used disassem-
bled dex files to create the feature vector for further analysis. The APK files were executed in an
emulator to extract the behaviours of the dynamic features.

The model proposed in Reference [143] used a hybrid analysis to identify Android security
vulnerabilities. It can analyse metadata and data flow using static analysis and API hooks and
executable scripts using dynamic analysis. The static analysis technique of this work was able to
identify eight vulnerable categories: unrestricted component, insecure JavaScript in WebView, sen-
sitive data processed in plaintext, privacy leak by log, dynamically loading a file, insecure password,
intent exposure, and Structured Query Language (SQL) inject. The dynamic analysis technique
was able to identify the unverified inputs vulnerability category. However, it may fail if the app
uses specific security measures such as signature verification. Hence, false-positive results can be
expected sometimes. Nevertheless, the overall analysis can perform within 93 seconds on average
with approximately 95% accuracy. Issues in SSL/TLS are also essential to identify, and they can
be analysed using hybrid analysis. The DCDroid framework in Reference [154] used hybrid anal-
ysis techniques to identify them, and the study found that 360 out of 2,213 applications contained
security issues related to SSL certificates/TLS.

5 CODE VULNERABILITY DETECTION

Mobile applications can be misused to breach the security mechanisms [53] due to the source code
vulnerabilities. However, developing applications with zero defects or vulnerabilities is impossible
but can be achieved to a certain extent, and vulnerabilities of the source code must be detected
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to accomplish that. Several methods including machine learning, deep learning, heuristic-based
methods, and formal methods can be applied to detect source code vulnerabilities with the use of
static analysis, dynamic analysis, and hybrid analysis.

5.1 Machine Learning Methods

ML and DL methods such as NB, LR, DT, RF, GB, LSTM, RNN, and MLP were applied in the studies
related to vulnerability detection. To train such ML or DL methods, features should be identified
in the Android application by following a suitable analysis technique: static, dynamic, or hybrid.

5.1.1 Machine Learning with Static Analysis. ML methods can be applied with static analysis
techniques when detecting code vulnerabilities if the source code is formulated into a generalised
form. Abstract Syntax Tree (AST) is a popular way of generalising the code [110]. The rate of
false alarms on vulnerabilities depends on the accuracy of formulating the AST and its generali-
sation mechanism, in addition to the quality of features, selected dataset, and trained algorithms.
Studies such as Reference [53] proved the possibility of employing ML and DL-based methods on a
generalised architecture of source code such as AST to detect Android code vulnerabilities. There-
fore, improvements to feature generation methods like AST building are identified as a research
gap in this area to employ ML techniques to the problem.

Some studies applied static analysis techniques in various ways with ML methods to detect
malicious code and vulnerabilities. The WaffleDetector [138] is a static analysis approach to de-
tect malicious code and vulnerabilities in Android applications by using sensitive permissions,
program features, and API calls. Extreme Learning Machine (ELM) was used in this for fur-
ther analysis. In Reference [45], vulnerability detection and patching framework was proposed
named as Vulvet. This framework used static analysis approaches to detect vulnerabilities in An-
droid applications along with a multi-tier multi-pronged analysis technique. Further, this frame-
work proposed an automated patch generation process for vulnerabilities. Augmented control-flow
analysis and Android-specific component validation approaches were also proposed to avoid false
positives. The Vulvet framework used some features in the Soot framework, such as data-flow
analysis, call-graph analysis, intermediate code scanning, taint analysis, parameter analysis, API
analysis, and return value analysis. It used vulnerability resolution, control-flow instrumentation,
methods/parameters reconstruction, secure method call augmentation, manifest modification, and
code elimination. This model can detect vulnerabilities with 95.23% precision and 0.975 F-Measure
on 3,700 apps from the benchmark and other Android market places. It has also been identified
that 10.46% of evaluated apps were vulnerable to various exploits. Though this is a comprehensive
model, there are some limitations, such as not analysing and patching vulnerabilities in native
code, not supporting Java reflecting and dynamic code loading, and marking all the files read from
external storage as malicious, that need to be overcome with further studies.

Analysing data flow is also important to detect malicious code and applications. The study in
Reference [163] proposed a mining method for topic-specific data flow signatures to characterise
malicious Android apps. It identified that the topic-specific data flow signatures are much better
than the overall data flow signatures to characterise malicious and vulnerable apps. Descriptions
and sensitive data flow patterns were obtained from 3,691 benign and 1,612 malicious apps for
analysis. Once the features were extracted, a topic model was built using adaptive Latent Dirich-

let Allocation (LDA) with Genetic Algorithms (GA). An optimal number of topics was deter-
mined with GA. After that, a topic-specific data flow signature was generated by computing the
information gain ratio of each piece of data flow information. Then the information gain ratio of
the piece of data flow information was generated, and it was used to characterise the apps. Though
this study considered a high number of apps, their representative is not considered, which might
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decrease the process accuracy. That limitation could be overcome by analysing more representa-
tive apps and ensuring the sample sizes of each topic.

Source code can be retrieved from the APK file or Portable Executable (PE) file to perform
the static analysis. In Reference [70], an automated method to classify malicious codes and secure
codes using PE structure. It used static analysis with RF, GB, DT, and CNN models and achieved
98.77% detection accuracy. The model built in Reference [20] was able to predict software code
vulnerabilities before the release of the application. The code was represented using an AST to
analyse it, and ML models were applied. It used Python, C, and C++ source codes taken from well-
known datasets such as NIST [103], SAMATE [104], SATE IV Juliet Test Suites [105], and Draper
VDISC [122] for the training purpose. One main drawback of this approach was the inability to
locate the specific place of the vulnerable code segment.

The developed mechanism in Reference [31] classifies the C language functions into vulnera-
ble or non-vulnerable using ML methods. The first step was to prepare the AST. After that, data
pre-processing, feature extraction, feature selection, and classification tasks were performed by ap-
plying ML algorithms. This study used National Vulnerability Dataset (NVD) [103] to collect
code blocks written in C language and their known vulnerabilities. Another automated vulnerabil-
ity detection system was proposed in Reference [122], which uses C and C++ source codes. It used
ML with deep feature representation learning and compared the findings with Bag of Words, RF,
RNN, and CNN. It used existing datasets and the Drapper dataset [122], compiled using GitHub
[124] and Drebin [16] repositories, which contain open source functions and carefully selected
labels. Though these studies [20, 31, 70, 122] considered Python C or C++ codes, with methodi-
cally proven the possibilities of using these proposed approaches, to detect code vulnerabilities in
Android source code written in Java, should be further studied by proving methodically.

5.1.2 Machine Learning with Dynamic Analysis. Dynamic analysis techniques also can be
applied to generated features to train ML models to detect vulnerabilities at the execution time.
The study [91] discussed a dynamic analysis approach that used NB, K-Star, RF, DT, and Simple
Logistic ML models to detect vulnerabilities and malicious applications. Features were extracted
while executing the APKs in an emulator. Simple Logistic performed well with 0.997 precision
and 0.996 recall in this model. However, some applications crashed when running in an emulator
due to their dynamic behaviour. The used dataset requires fine-tuning to increase accuracy, since
some shared permissions exist between malicious and benign applications, which might get
incorrectly classified.

A dynamic analysis technique was used in Reference [160], and it discussed a code vulnerability
detection mechanism by applying DL. It compared CNN, LSTM, CNN-LSTM and identified that
CNN-LSTM has a detection accuracy of 83.6%. It has been identified that Deep Neural Networks

(DNN) also can predict vulnerable source code. To classify the vulnerable classes with high pre-
cision, recall, and accuracy, the model proposed in Reference [112] can be used. This model was
evaluated using Android apps written in Java. N-gram analysis and statistical feature selection to
construct feature vector were performed in this model. Another study in Reference [59] discussed
an ML-based vulnerability detection rules extraction method with dynamic analysis. The J48 ML
algorithm performed with 96% accuracy compared with another 32 supervised ML algorithms con-
sidered in this study. A context-aware intrusion detection system was proposed in 6th Sense [134],
and it used NB, Markov chain, and Logistic Model Tree (LMT) to detect vulnerabilities. This
study observed changes in sensor-related data in the mobile device by integrating dynamic analy-
sis methods. The model still requires some fine-tuning to the followed dynamic analysis approach
to widen vulnerability detection:

The dynamic analysis-based method proposed in Reference [93] detect anomalies of system
calls with ML by considering type, sequence, and frequency. It can detect Android security
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vulnerabilities by identifying benign and malicious apps. Further, this work has created system call
time-series datasets used in vulnerable and regular applications. The Zygote process of Android,
which handles the forking of new processes, was used together with Android Debug Bridge

(ADB) to trace every new activity and its processes. Dynamic Register Broadcast Receiver, Elec-

tronic Code Book (ECB) block cypher, fragment injection, weak permissions, and privilege esca-
lation were the common vulnerabilities in the selected application dataset. Finally, a consolidated
dataset was created after transforming unstructured time-series data. It was used to perform the
machine learning operations while computing precision, recall, and F-Score using kNN, LSTM,
and the Genetic Algorithm LSTM. All three ML algorithms performed well with over 85% F-Score,
while Genetic Algorithm LSTM performed slightly better than the others. Currently, this model
can detect only nine vulnerabilities. Therefore, more vulnerabilities should be considered and ver-
ified by keeping the same level of accuracy by enhancing the model in subsequent studies.

5.1.3 Machine Learning with Hybrid Analysis. The use of hybrid analysis with ML methods
is also widespread, since the detection approach can be enhanced with both static and dynamic
features. The study conducted in Reference [169] proposed an ML-based vulnerability detection
mechanism, using hybrid analysis techniques and studied Android Intent mechanisms, along with
the composition of Intents. Further, Android-Intent-related security detection was discussed by
applying several ML algorithms such as DT, ID3, C4.5, NB, and AB. One hundred fifty applica-
tions were collected to test the model with Android Intent mechanism security vulnerabilities and
another 150 applications without them and performed the training and testing. The average ac-
curacy was 77% of the proposed model. Limitations such as fewer samples and low performance
were identified as points to be further improved.

The study in Reference [48] proposed a parallel-classifier scheme for Android vulnerability de-
tection. This study explained the possibilities of using distinctive parallel classifiers to detect zero-
day malware and highly elusive vulnerabilities in Android with an accuracy of 98.27%. It has also
identified some issues in static and dynamic analysis approaches such as inefficiency, code obfus-
cation, and similarity score issue of signature-based detection. This model extracts static features
such as permissions, API calls, version, services, used libraries, broadcast receivers while extract-
ing dynamic features such as system calls, network calls of the mobile applications. It proposed the
best combination of most efficient ML algorithms, such as SVM, Pruning Rule-based Classifica-

tion Tree (PART), MLP, and Ripple Down Rule Learner (RIDOR). While employing parallel
classifiers, this method also considered upgrading the precision and recall when detecting malware
or vulnerabilities. Based on the results of the initial part of the research, it was identified that the
MLP performed better than the other classifiers with a 96.11% detection rate. The next part of the
study was conducted using a composite model where the results from the initial part are executed
in parallel to estimate the efficiency of the cumulative approach. Average probabilities, Product of
probabilities, Maximum probabilities, and Majority vote, were considered ensemble techniques. As
per the final results, MaxProb was the best parallel classifier. It is better to consider and create more
parallel classifiers to increase the model’s accuracy while employing deep learning techniques.

Models such as Reference [66] studied the possibilities of employing ML algorithms with both
static analysis and dynamic analysis to analyse the source code in a hybrid manner. Identifying
malware and benign applications was the main focus of this by considering their vulnerabilities.
After extracting from APK files using Androguard [44] tool, it converted Manifest data to a JSON
file in static analysis approach. Then datasets from Kaggle [68] and MalGenome [167] were used
to train the ML models such as LR, SVM, and kNN. Finally, another JSON file was prepared and
identified the code vulnerabilities. After that, the APKs were dynamically analysed by executing
them to find the vulnerabilities.
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The model described in Reference [77] used a hybrid analysis mechanism to identify malware
and vulnerabilities using ML models. This model had an accuracy of 80% in the static analysis ap-
proach and 60% accuracy in the dynamic analysis approach. According to the findings, combining
both of these methods will increase detection accuracy. However, it is better to provide a method-
ical approach to prove the increase in accuracy when using the hybrid analysis. Another model
in Reference [139] used a hybrid analysis mechanism to detect vulnerabilities and malware. It has
proposed a Tree-Augmented Naive Bayesian Network (TAN)-based mechanism for this using
features such as permissions, system and API calls. The output relationships were modelled as a
TAN, and it used datasets such as AZ [7], Drebin [16], Android Malware Dataset (AMD) [74],
and GitHub [124]. The model performed well with an accuracy of 97%. The main limitation of
the study is considering only two features. It could be expanded with more features and train the
dataset to get a more reliable outcome. The possibility of combining into one model rather than
training separately can also be checked.

Though there are several proposed ML/DL-based methods, many of them lack the code vulner-
ability detection capability at the app development time. A summary of some useful ML/DL-based
models used in Android code vulnerability detection is compared in Table 3. It summarises the
methodology, analysis technique, used ML/DL methods or framework, used tools and dataset, and
the overall model’s accuracy.

5.2 Conventional Methods

Conventional methods, including heuristic-based methods, formal methods, and other non-ML-
based methods, also can be applied to detect code vulnerabilities with analysis techniques. These
studies are discussed in this section.

5.2.1 Conventional Methods with Static Analysis. Several studies have used static analysis
with conventional methods to detect code vulnerabilities. A formal model to detect security
issues in Android permission protocol in Alloy (a language based on first-order relational logic)
was introduced in Reference [18] that automatically analysed and identified potential flows in
the protocol with static analysis techniques. It identified three types of vulnerabilities in the
protocol: URI permission vulnerability, improper delegation vulnerability, and custom permission
vulnerability. This model can also cater to the dynamic permission process and identifies that
widely used permission is signature-based. It has been identified that out of four content types
in Android, the receiver has the highest frequency. An experimental study was also conducted
to confirm the relationship between potential flaws and security vulnerability. It also assessed
the scalability of the formal analysis approach. It is possible to apply this model to other mobile
operating systems by conducting fewer configurations. By fine-tuning, the model can overcome
the limitation of detecting a few vulnerabilities.

Another static analysis approach to identify vulnerabilities in an Android application was pro-
posed as a vulnerability parser model proposed in Reference [28]. This architecture consists of APK
decompressor, Manifest.xml parser, vulnerability vector, and DexParser sub components. APK de-
compression was carried out as the first step using a Python script. The Manifest file was parsed
to decompress and decompile the APK file using the Manifest parser. This Manifest parser could
parse the Manifest to an understandable format with security aspects. DEX parser is used to parse
the decompressed source files. Under the vulnerability vector, file access and exported component
vulnerabilities were identified. The detection results were categorised as critical, warning, notice,
and advice. It is better if this model can be increased further by considering more vulnerable cate-
gories, since, at the moment, it is limited.

Vulnerabilities in third-party libraries also cause problems to the application. Therefore, it is
essential to identify them, too. ATVHunter was proposed in Reference [164] for reliable version
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Table 3. ML/DL-based Android Vulnerability Detection Mechanisms

Study Summary of the Methodology Analysis
Technique

Used ML/DL
Methods/
Frameworks

Used Datasets/
Tools/Methods

Accuracy of
the Model

Pang, et al.,
ICDLT Conf.,
2017 [112]

Deep neural network algorithm is employed on features
based on mining source code, which is generated with
N-gram. The algorithm is based on rectified linear units
trained with the stochastic gradient descent method and
batch normalization.

Static
Analysis

DNN Dataset is generated by
downloading APKs from
F-Droid [58].

92.87%

Wu, et al.,
ICCC Conf.,
2017 [160]

Function call collection of 9,872 sequences is collected
as features to represent the patterns of binary programs
during their execution. Then DL models are applied
to predict the vulnerabilities of these binary programs
based on the collected data.

Dynamic
Analysis

CNN, LSTM,
and
CNN-LSTM

Dataset is generated from
9,872 sequence of function
calls. VDiscover tool [56] is
also used.

83.6%

Zhuo et al.,
ICISCE Conf.,
2017 [169]

APKs are decompiled, and static analysis is performed on
the manifest file to obtain the components/permissions.
Then system status is obtained, and fuzzy testing is per-
formed with dynamic analysis. Then ML algorithms are
executed to detect intent-based security issues.

Hybrid
Analysis

AB and DT Dataset is generated by
downloading 300 APKs
from major app stores.

77%

Grag et al.,
Computers &
Electrical
Engineering,
2019 [48]

APKs are decompiled, and features are selected for static
analysis. Then the APKs are executed in an emulator, and
log files are generated from system calls for the dynamic
analysis. Then the vector space is generated, and ML al-
gorithms are executed as parallel classifiers.

Hybrid
Analysis

MLP, SVM,
PART, and
RIDOR

Dataset is generated by
downloading APKs from
Google Play [64],
Wandoujia [147], AMD
[74], and Androzoo [4].

98.37%

Bulgin et al.,
IEEE Access,
2020 [20]

ML-based analysis is performed to differentiate vulnera-
ble and non-vulnerable source code by extracting and
then converting the AST of a given source code frag-
ment into a numerical array representation while pre-
serving structural and semantic information contained
in the source code.

Hybrid
Analysis

MLP and a
customised
model

The public Draper VDISC
Dataset [122] is used.
Proposed model is
compared with code2vec
[5] method.

70.1%

Gupta et al.,
System
Assurance
Eng. and
Manag., 2021
[59]

The most efficient human-readable vulnerability detec-
tion rules are generated after selecting the best ML algo-
rithm to detect Lawofdemeter, BeanMemberShouldSeri-
alize, and LocalVariablecouldBeFinal vulnerabilities. The
10-fold cross-validation was performed, and analyzed
the result with performance metrics.

Static
Analysis

J48 and JRip Dataset is generated from
Android Universal Image
Loader project [144] and
JHotDraw project [46].
PMD tool is used to analyse
the source code.

96%

Kim et al.,
MDPI
Symmetry,
2021 [70]

PE data extraction module and the image generation
module are used to generate input data for each module.
Then each model individually judges whether it is mali-
cious with ML algorithms by receiving images generated
from the image generation module as input data.

Static
Analysis

CNN Dateset is generated from
Windows portable program
files and using Microsoft
Malware Classification
Challenge dataset [96].

98.77%

detection of third-party libraries. This model provided detailed information on vulnerabilities and
libraries by pinpointing the vulnerability in library versions and extracting the control flow graphs
and opcodes. A dataset contained 189,545 unique third-party libraries with 3,006,676 versions, and
it contained 1180 common-vulnerable enumerations. Further, it created additional 224 security
bugs to analyse this model. The steps included in the detection process were pre-processing, mod-
ule decoupling, feature generation, library identification, and vulnerable libraries version identifi-
cation. The ATVHunter model detects the vulnerabilities with 98.58% precision, 88.79% recall at the
library level, 90.55% precision, and 87.16% recall at version level. Focusing only on Java libraries,
using only static analysis, detecting only the known vulnerabilities, and using only free apps for
the study are identified as limitations of this study that can be further improved.

Android web view objects can also lead to vulnerabilities. A way to detect them by following a
static analysis approach named WebVSec framework was proposed in Reference [39]. This study
mainly considered four types of vulnerabilities: Interface to Interface vulnerabilities, Interface
to WebViewClient vulnerabilities, WebViewClient to WebViewClient vulnerabilities, and Reverse
vulnerabilities. This framework was implemented on top of the Androguard tool. AndroZoo
was used as the dataset to perform analysis. The WebVSec framework contains five main steps:
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decompilation, interface and WebWiewClient class identification, methods identification, method
abstraction, and path analysis to identify the above four vulnerabilities. The experiments analysed
2,000 Android apps and detected 48 applications with the above four types of vulnerabilities. On
average, this can analyse an application in 49 seconds. The framework still requires improvements,
such as analysing the WebView vulnerabilities generated through Java codes, since it considers
only JavaScript.

The DroidRA model proposed in Reference [79] designed and implemented an approach that
aims at boosting existing static analysis for Android by taming reflection in apps. It can resolve
the targets of reflective calls through a constraint solving mechanism by instrumenting Android
apps to augment reflective calls with their explicit standard Java calls. The analysis was supported
by three modules: Jimple pre-processing module, reflection analysis module, and booster module.
The model considered a random set of 100 real-world apps that contain reflective calls and at least
one sensitive data leak to validate the static analysis results. The main advantage of this model is
the possibility of uncovering dangerous code such as sensitive data leaks and sensitive API calls,
which is not visible in other static analysis-based analysis mechanisms. However, the single entry-
point method may not cover all the reflective calls as identified as a limitation that should be
further explored. Applying these boosting mechanisms to other static analysis techniques used in
Android vulnerability detection approaches would be interesting for further studies.

5.2.2 Conventional Methods with Dynamic Analysis. Few studies considered dynamic analysis
also with the conventional methods. The study in Reference [116] discussed Android app vulner-
ability detection, and it was inspired by a case study of web functions’ vulnerabilities. Android
app categories including browsers, shopping, and finance were investigated for security by down-
loading and examining 6,177 apps. It analysed four vulnerabilities: Alibaba Cloud OSS credential
disclosure vulnerability, improper certificate validation, Web-View remote code execution vulner-
ability, Web-View bypass certificate validation vulnerability (from China National Vulnerability
Database [27], CVE list [33], and CWE list [34]). A heuristic vulnerability search algorithm was
used in a proposed method named VulArcher to verify the accuracy of the analysis. All sensitive
APIs and methods that may cause vulnerabilities in the app, a collection of rules for vulnerability
fixes, and a set of rules that the vulnerability triggers were the inputs for this algorithm, and it
provides detailed code snippets of the vulnerability and the path where vulnerabilities are located
as the output. The possibility of detecting vulnerabilities on both packed and unpacked apps was
an essential feature of the proposed model, which contains decompilation, packer identification,
unpacking (if packed), building taint path, and detection steps. This model can perform with high
average accuracy with a detection rate of 91% with high efficiency, low computing cost, and high
scalability. Some limitations identified in this were the usage of an old dataset and integrating third-
party tools, which can be revised to get higher accuracy when detecting newer vulnerabilities.

Another dynamic analysis-based Android vulnerability detection tool was proposed in Ref-
erence [165] named VScanner, which can detect all known system-level vulnerabilities. The
framework of this tool was based on a scalable Lua script engine, a lightweight scripting lan-
guage. Exploiting was used for dynamic detection and feature matching for static detection in the
VScanner. It can detect vulnerabilities with a high efficiency and a low false alarm rate (nearly
100% detection accuracy) using 18 implemented plugins. Due to the high scalability of the pro-
posed system, it was easy to add new vulnerability triggers. Once a vulnerability is triggered via
an API call, code execution, or database exploit, a feature matching database will be used with
scan components (information collection and feedback) in the Lua engine and provide reports and
logs. This research has proposed a vulnerability taxonomy by Proof of Concept and Attack

Surface (POCAS), since existing taxonomies are still immature, specific to Android. In POCAS,
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vulnerabilities were divided into native layer vulnerabilities (i.e., memory corruption, permission
management, kernel escalation, input validation) and Java layer vulnerabilities (i.e., component
exposure, file management, information disclosure, logic error). The model was applied for two
case studies, which were FakeSMS and CVE-2014-1484 in National Vulnerability Database [103].
VScanner was tested in 15 Google simulators, 5 Android smartphones, 8 Genymotion emulators,
and 7 third-party customised Android systems and provided high accuracy and efficient results.
Increasing the number of plugins used for vulnerability detection and optimising the structures to
enhance efficiency can improve the quality of the proposed framework.

5.2.3 Conventional Methods with Hybrid Analysis. Several conventional methods used hybrid
analysis techniques to detect vulnerabilities. The empirical study conducted in Reference [133]
detected eight common vulnerabilities in Android with hybrid analysis from randomly selected
29 apps in the EATL app store [37] and 6 apps from the Google Play store. Those eight common
vulnerabilities were related to storage access, web views, SQLite database encryption, intents, ad-
vertisement module, outdated or sensitive APIs, short messages, phone calls, and Android debug
mode. The study chose three quality tools: AndroBugs [81], SandDroid [106], and Qark [84] to
test and uncover those vulnerabilities. This study further discussed the countermeasures for those
vulnerabilities, such as using web views more securely, keeping essential files and backups in the
internal storage instead of external storage, and turning the debug mode off when releasing the
apps. This study could consider further analysis on apps and more vulnerabilities by increasing
the sample size.

The application vulnerability mining method proposed in Reference [29] uses a hybrid approach,
first performing static analysis and then following it up with dynamic analysis. This model im-
proved the mining accuracy by using fuzzy dynamic testing technology with static analysis while
performing reverse analysis on the application. In the static analysis, APK files were de-compiled
to get the source files using Dex2Jar and JD-GUI tools and libraries [111]. Then the feature vector
of API functions, privileges, components, and library files was created by the feature extraction
process. The scan engine consisted of data flow analysis, regular expressions matching, and file de-
tection using a vulnerability rule base to get the analysis results. Fuzzy testing was used to perform
dynamic analysis in a natural machine environment with taint analysis. It was conducted after the
static analysis by executing the application with test cases, semi-effective data, execution data,
taint tracking, and monitoring the exceptions. This model was able to detect vulnerabilities with
an over 95% detection rate that can be optimised further by expanding the number of detectable
vulnerabilities by enhancing the analysis techniques.

Another hybrid analysis-based approach was proposed in AndroSheild [10], which focused on
building a hybrid analysis approach to detect vulnerabilities in Android applications. This model
was evaluated against various applications for various security flaws. It can also detect informa-
tion leaks, insecure network requests, and commonly detectable flaws that can harm users, such as
intent crashes and exported Android components. The proposed model contains three-layer archi-
tecture (application, presentation, data) with a methodology of APK reverse-engineering, manifest
file decoding, meta-data extracting, static analysis performing, dynamic analysis performing, and
report generating. It also can generate a detailed report with the overall application risk level and
the identified vulnerabilities in it. Some limitations identified in this publicly available framework
are not detecting deprecated and vulnerable libraries, not analysing native libraries, and not ap-
plying the model to apps written in other programming languages such as Kotlin.

A summary of studies related to the conventional models used in vulnerability detection meth-
ods is compared in Table 4. It summarises the considered vulnerabilities, findings/capabilities, lim-
itations, used datasets, used tools, and used methods of these works.
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Table 4. Conventional Methods of Android Vulnerability Detection

Study Considered Vulnerabilities Findings/Capabilities Limitations Used Datasets/
Tools/Methods

DroidRA,
ISSTA Conf.,
2016 [79]

Vulnerabilities from sensitive data
leaks and API calls

A large portion of Android apps
rely on reflective calls, and they
are usually used with some com-
mon patterns.

May not be possible to
uncover all reflective calls
due to the used single
entry-point method.

Google Play [64],
AndroZoo [4]

Shezan, et al.,
NSysS Conf.,
2017 [133]

Vulnerabilities in storage access,
web views, SQLite database encryp-
tion, intents, advertisement module
analysis, outdated or sensitive APIs,
short messages and phone calls, An-
droid debug mode.

It discusses the countermeasures
for the detected vulnerabilities.

Sample size is limited. AndroBugs [81],
SandDroid [106],
Qark [84]

VScanner,
NSS Conf.,
2017 [165]

Vulnerabilities in native layer and
Java layer

It can detect all known system-
level vulnerabilities. It also pro-
poses a vulnerability taxonomy by
Proof of Concept and Attack Sur-
face.

Using a limited number of plu-
gins for vulnerability detec-
tion.

Lua Scripts Engine

Bagheri,
et al., Formal
Aspects of
Computing,
2018 [18]

URI permissions,
Improper delegations,
Custom permissions

It identifies signature-based
permission as the widely used
permission, and the receiver has
the highest frequency out of four
content types of Android.

Only a few vulnerabilities can
be detected.

Alloy [65]

AndroShield,
MDPI
Information,
2019 [10]

Information leaks,
Insecure network requests,
Intent crashes

It generates a detailed report with
the overall application risk level
and the identified vulnerabilities.

Unable to detect vulnerable
libraries, and unable to
analyse native libraries.

ApkAnalyzer [13],
FlowDroid [17]

Qin, et al.,
IEEE Access,
2020 [116]

Alibaba Cloud OSS credential disclo-
sure,
Improper certificate validation,
Web-View remote code execution,
Web-View bypass certificate
validation

It can detect vulnerabilities in
packed and unpacked apps with a
low computing cost. The average
accuracy, detection rate,
efficiency, and scalability are also
high.

Using an old APK set and
integrating third-party tools.

APK dataset
downloaded from
Wandoujia [147],
Qihoo 360app [126],
and Huawei [62] App
Stores

DCDroid,
Journal of
Systems and
Software,
2020 [154]

SSL/TLS Certificate vulnerabilities It identifies the potential security
risks of apps in implementing
SSL/TLS with static analysis and
identifies the vulnerability status
of apps to man-in-the-middle
attacks and phishing attacks.

Unable to verify the apps
with complex method
implementations, leading to
false-negative results.

APK dataset
downloaded from
Qihoo 360app [126]
app market and
Google Play [64]

WebVSec,
Computers
& Security,
2021 [39]

Interface-Interface,
Interface-WebViewClient,
WebViewClient-WebViewClient,
Reverse vulnerability

It can analyse an application
within 49 seconds.

Unable to analyse the
WebView vulnerabilities
generated other than through
JavaScript.

BabelView [120]

5.3 Prevention Techniques

Preventing code vulnerabilities at the early stages of app development is more advantageous than
detecting them once the app has been developed. Therefore, prevention techniques can be inte-
grated as frameworks, tools, and plugins to the development environments as additional support
to the app developers with automated vulnerability detection methods. The analysis of experimen-
tal results in Reference [141] identified the need for automated code vulnerability detection support
when developing secure applications to perform well. Android developers had to play the role of
participants, and they had to propose an appropriate fix to given vulnerable code samples, such as
SQL injections, encryption issues, and hard-coded credentials. Moreover, the stitch-in-time mech-
anism proposed in Reference [100] described vulnerability detection methods in Android apps at
the development time. Developers can enter source code and continue the development process
while the model checks for known security-oriented issues. If there are such issues, then develop-
ers are informed accordingly. Therefore, developers get the benefit of developing less-vulnerable
source code. However, this method uses only known vulnerabilities. Therefore, the ML/DL-based
method could be applied to adapt to the changing nature of source code-related issues. The model
could be modified further to learn from user mistakes and bugs.
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It is always better to inform the app developer about the severity level of identified vulnerabil-
ities in addition to raising an alert. Android Lint is a valuable method to discover vulnerabilities
using static analysis in given Android source code [54]. It can detect 339 security, performance, cor-
rectness, usability, internationalisation, and accessibility issues. Android Lint uses either an AST
or an Universal AST generated through source code. There are other Linters also available such as
Infer, PMD, FindBugs, CheckStyle, Detekt, and Ktlint, as discussed in Reference [60]. The OASSIS
study introduced a method to prioritise warnings generated from Android Lint with static analysis.
This method used app user reviews and sentiment analysis to identify app issues. Because of the
prioritised warnings, developers can take action accordingly to fix the vulnerability issues. A way
to indicate this to the developer is using a similar approach like in Reference [156].

The model in Reference [88] proposed a mechanism to integrate static analysis with develop-
ment environments named as MagpieBridge. Though it is possible to integrate this plugin with
code editors such as Eclipse, IntelliJ, PyCharm, Jupyter, and Submile text, integrating with Android
studio was not discussed. Meanwhile, the DevKnox plugin [75] for Android Studio can detect and
resolve security issues while writing codes to develop Android applications. FixDroid [100] can be
used to get security-oriented suggestions and fixes to overcome vulnerabilities when developing
Android applications. It also can be integrated with Android studio, and it can be improved further
by integrating ML to provide suggestions.

Another framework proposed in Reference [117] guided the app developers to detect, prioritise
and mitigate vulnerabilities using secure development guidelines, and named as SOURCERER, and
it used static analysis techniques. When the framework is applied, developers can get to know a
concise list of vulnerabilities. It has a three-phase process: asset identification, vulnerability to as-
set mapping, and mitigation. The authors tested this framework with 36 Android financial apps,
and there were three developers involved in this experiment. Based on the findings, when using
this framework, developers spent an average of 15, 30, and 20 minutes for asset identification, vul-
nerability detection and prioritisation, and finding mitigations, respectively. This framework did
not complicate the security testing process of Android apps. Issues such as the limited number of
sample apps, limited developer involvement in the experiments, and developers’ prior knowledge
could affect the performance of this framework. Some of these limitations could be overcome by
proposing an automated process.

The VuRLE tool [89] can be used to detect and repair vulnerabilities in source code automatically.
It assists developers in dealing with various vulnerabilities. Initially, the model was trained and
clustered similar edit blocks into groups using a training set of repair examples. Repair templates
were generated for each group and used to identify vulnerable groups by applying transformative
edits. Traversal of a generated AST was used in this together with 10-fold cross-validation. This
model repaired 101 out of 183 detected vulnerabilities from 48 real-world apps (Android, web,
word-processing, and multimedia apps) written in Java. However, some of the vulnerabilities were
unable to repair due to unsuccessful placeholder resolution, lack of repair examples, and partial
repairs. The low repair rate of this, which was 65.69%, can be increased by having a well-trained
model with more vulnerable code samples.

5.4 Discussion on Vulnerability Detection Methods

Based on the reviewed studies, it is identified that 51% of studies used static analysis as the appli-
cation analysis method, and 35% of studies used hybrid analysis. The rest of 14% used the dynamic
analysis method. This is illustrated in Figure 3. The increased usage of static analysis may be due
to its advantages for code-level analysis approaches, since they focus more on code features. Apart
from that, the cost involved in static analysis is lower when compared with the other two methods.
Dynamic analysis requires additional resources such as emulators or real devices to run the source
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Fig. 3. Application/source code analysis techniques used in the reviewed studies.

Fig. 4. Vulnerability detection methods.

code, and it will not be possible to uncover many vulnerabilities as in static analysis. Moreover, the
need for APKs or compilable packages could be another reason for having fewer studies conducted
for vulnerability detection with dynamic analysis. In terms of percentage, hybrid analysis is in the
middle, since it has the characteristics of the other two analysis types.

Based on the reviewed studies, applying machine learning-based methods were higher than
conventional methods. This is illustrated in Figure 4. Before 2016, conventional methods were
popular among the research community compared to ML methods. However, with the boost in
ML techniques, researchers tried to apply ML methods to solve problems [53]. Therefore, due to
this popularity, the ability to provide high accuracy results, ease of handling complex problems,
and scalability are suspected as the reasons for the high usage of these ML/DL methods in studies
on Android vulnerabilities detection in the considered period of the review.

Many code vulnerability detection studies used the code analysis method as the feature extrac-
tion method. The Manifest analysis and the system call analysis methods are the other widely used
methods. Figure 5 illustrates those feature extraction methods used in the reviewed studies. It is
possible to detect many vulnerabilities by analysing source codes rather than analysing permis-
sions or other features. That may be the reason for the highest usage of code analysis. Using man-
ifest analysis can also identify vulnerabilities to a certain extent, such as the type of permissions
used in applications. The vulnerabilities can be detected based on the required permissions of the
application, such as the requirement of the dangerous level permissions. That may be the reason
for having a somewhat high number of studies conducted. A considerable number of studies use
system call analysis, since it is possible to detect vulnerabilities to a certain level by analysing the
system calls. Code instrumentation, system resources analysis, and network analysis were used in
a limited number of studies, since it is not easy to detect vulnerabilities by analysing them.
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Fig. 5. Feature extraction methods used in the reviewed studies.

API calls were the most widely extracted feature for vulnerability analysis and detection in
Android source code. Figure 6 illustrates that and the other extracted features in the reviewed
studies. Many static and hybrid analysis methods extracted API calls as the feature to perform the
analysis. A thorough understanding of vulnerabilities can be received by analysing API calls, which
could explain the high usage of this as the extracted feature. Permission is the second prominent
feature that was extracted in the reviewed studies. When conducting manifest analysis, permission
is the main feature to be extracted. Since the manifest analysis was also widely used, it could be
the reason for this high extraction rate. System calls are also a highly extracted feature in those
studies, since they can detect many vulnerabilities by analysing them. Native code or opcodes,
intents, network traffic, activities, and services were also extracted as features, but their usage is
not highly visible.

It is identified that very few studies considered prevention mechanisms which are supported
by the detection techniques as tools and plugins for Android source code vulnerability mitigation.
Many of the studies considered only the detection as illustrated in Figure 7. It is valuable for the
Android application developers if proper mechanisms are available that use various advanced tech-
niques to prevent vulnerabilities. Therefore, as a finding of this review, the need to build such a
prevention mechanism is recognised.

6 SUPPORTIVE TOOLS AND REPOSITORIES

Application and source code analysis tools and frameworks are beneficial to perform several anal-
ysis processes. Once the analysis is completed, vulnerability detection tools can be applied to
identify the vulnerable source code. Furthermore, it is essential to identify existing datasets and
repositories to build ML models.

6.1 Tools

The surveys and interviews conducted related to intervention for long-term software security in
Reference [157] have identified the importance of having an automated code analysis tool to recog-
nise vulnerabilities. Reference [118] considered six main characteristics to compare these security
analysis tools. They are (1) tools vs. framework, (2) free vs. commercial, (3) maintained vs. unmain-
tained, (4) vulnerability detection vs. malicious behaviour detection, (5) static analysis vs. dynamic
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Fig. 6. Extracted features in the reviewed studies.

Fig. 7. Availability of detection and prevention methods.

analysis, and (6) local vs. remote. This study compared 64 solutions and considered supported
Android versions, multiple operational modes, supported API levels, only applicable categories
of vulnerabilities, the existence of vulnerabilities, and provided inputs as required by the tools.
Another study in Reference [118] reviewed 64 tools and empirically evaluated 14 vulnerability
detection tools for 42 known vulnerabilities identified in Reference [97] and found out that only
30 vulnerabilities from those 42 can be detected. These 42 known vulnerabilities were categorised
into seven, which are, (1) Crypt - 4 vulnerabilities, (2) Inter-Component Communication (ICC) -
16 vulnerabilities, (3) networking - 2 vulnerabilities, (4) permission - 1 vulnerability, (5) storage
- 6 vulnerabilities, (6) system - 4 vulnerabilities, and (7) web - 9 vulnerabilities. This study used
AndroZoo [4] as the source of real-world Android apps, which contains around 5.8 million APKs.

The empirical analysis conducted in Reference [3] identified the static software metrics’ correla-
tion and the most informative metrics that can be used to find code vulnerability related to Android
source codes. The AndRev tool proposed in Reference [113] extracted the permissions using static
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Table 5. Tools and Frameworks for Android Application Analysis and Vulnerability Detection

Framework
Name/Tool

Year Capabilities Limitations Analysis
Technique

Usage

FlowDroid [17] 2014 Ability to statically compute data flows. Assumes that the entire contents remain
tainted, even if an untainted value
overwrites the single array element.

Static Analysis Academic

COVERT [19] 2015 Ability to perform compositional analysis of
inter-app vulnerabilities.

Unable to identify native code-related
vulnerabilities and Permission leakages.

Static Analysis Academic

DIALDroid
[22]

2017 Ability to identify privilege escalations and
inter-app collusion [69].

Unable to resolve reflective calls if their
arguments do not contain string constants
and may fail to compute some ICC links
due to ignoring over-approximated regular
expressions.

Static Analysis Academic

HornDroid
[26]

2016 Ability to perform static analysis of
information flows and ability to soundly
abstract the semantic of Android apps to
compose security properties.

Over-approximates the life-cycle of
fragments by executing all the fragments
along with the containing activity in a
flow-insensitive way, which might lead to
precision problems in real apps.

Static Analysis Academic

MalloDroid
[41]

2012 Ability to identify broken SSL certification
validation using Androguard framework
[44].

The analysis might fail if the app is
obfuscated and cannot test the entire
workflow.

Static Analysis Academic

JAADAS [43] 2016 Ability to analyse API misuse,
inter-procedure style taint flows,
local-denial-of-services, and intent crashes.

May crash when analysing obfuscated
apps and JSON output file is not
visualising the scale of potential problems.

Static Analysis Industrial

DevKnox [75] 2016 Ability to detect and resolve security issues
while writing codes.

Unable to detect novel vulnerabilities and
does not support for latest Android
environments.

Static Analysis Industrial

AndroBugs
[81]

2015 Ability to find potential Android security
vulnerabilities and check the code for
security best practices and dangerous shell
commands.

Unable to provide a complete and detailed
description to help solve any potential
security issues.

Static Analysis Industrial

MARVIN [83] 2015 Ability to assess the maliciousness of
previously unknown apps with ML
techniques and creates an accurate snapshot
of malware behaviour that it can leverage to
assess the risk associated with apps.

Unable to intercept apps when
downloading from marketplaces; the apps
need to be submitted to the MARVIN
manually.

Static Analysis Industrial

QARK [84] 2015 Ability to find security-related
vulnerabilities in Android applications
either in APKs or source code.

Unable to analyse heavily obfuscated apps
and requires high CPU consumption when
decompiling.

Static Analysis Industrial

FixDroid [100] 2017 Ability to provide security-oriented
suggestions and fixes to overcome
vulnerabilities.

Relying on a relatively small sample set
and not focusing on improving data flow
analysis except leveraging the existing
features of IntelliJ IDEA.

Static Analysis Academic

MobSF [108] 2015 Ability to perform static analysis, hybrid
analysis, penetration testing, and provides a
REST API for integration with development
environments.

Unable to perform API testing and some
issues occur in the emulator when
executing apps in hybrid analysis.

Hybrid Analysis Industrial

APKTool [150] 2010 Ability to decompile the APK with the
support of a static analyser [95] and ability
to reverse-engineer Android apps by
decoding to nearly original form and rebuild
the app after performing modifications.

Fails to decompile and analyse heavily
obfuscated APKs.

Static Analysis Industrial

Amandroid
[155]

2014 Ability to analyse the inter-component data
flow for security vetting.

Unable to detect security issues where
exceptions can occur and unable to handle
reflections and concurrency.

Static Analysis Academic

analysis by reverse-engineering APKs with a batch-scripted tool. Extracted features are stored in
a feature vector, and it was analysed to identify patterns of the permission by considering the app
category. This tool tried to remove unwanted permissions for the app by reverse-engineering and
rebuilding. Security analysis was also performed to identify the vulnerabilities by integrating a
tool named Quixxi. According to this study, there are more medium-risk vulnerabilities than low
and high-risk vulnerabilities. The tool’s accuracy can be further validated using a large dataset, as
this study has used a limited dataset of 50 apps to perform the initial analysis.

Some of the tools and frameworks that can be executed in local machines to analyse applications
to analyse source code and to detect vulnerabilities in Android are compared in Table 5. It compares
the tool’s capabilities, limitations, analysis method, and usage.
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6.2 Repositories and Datasets

Datasets and Repositories are useful to perform various ML or conventional vulnerability detec-
tion methods. There are several datasets, such as Drebin [16], Google Play [64], AndroZoo [4],
AppChina [146], Tencent [148], YingYongBao [140], Contagio [149], Genome/MalGenome [167],
VirusShare [152], IntelSecurity/MacAfee [137], MassVet [30], AMD [74], APKPure [145], Android
Permission Dataset [35], Andrototal [90], Wandoujia [147], Kaggle [68], CICMaldroid [102], AZ
[7], and Github [124], that can be used to perform these experiments.

In Reference [97], an open-source repository of benchmarks called as Ghera was introduced.
It captured 25 known vulnerabilities in Android apps. Further, this has also presented some
common characteristics of vulnerability benchmarks and repositories. The main reason for this
research is to find Android-specific vulnerability benchmarks to evaluate available tools that
can help the app developers. It identified that there were neither test suites nor benchmarks
to evaluate the vulnerability detection techniques reasonably. Many of them used the regular
data and apps available in Google Play. During the retrospection stage, 11 characteristics
were identified as vulnerability benchmark characteristics. They were (1) tool and technique
agnostic, (2) authentic, (3) feature specific, (4) contextual, (5) ready to use, (6) easy to use,
(7) version-specific, (8) well documented, (9) contain both vulnerability and a corresponding
exploit, (10) open to the community, and (11) comprehensive. This repository contains infor-
mation on the Android Framework’s inter-component communication, storage, system, and
web vulnerabilities. However, in Ghera, vulnerabilities related to networking, sensors in the
Android Framework were not covered. Nevertheless, none of them provided a benchmark dataset
specifically for Android source code vulnerability detection. Therefore, it is better to cover more
areas while expanding the repositories with more real-world apps.

The work in Reference [49] identified the CVE details [33] as one of the sources for data analy-
sis that provides details on vulnerability statistics on products, versions, and vendors. CVE details
were prepared using the National Vulnerability Database (NVD) [103]. Mean impact scores
of vulnerabilities and the number of instances were considered when assessing vulnerabilities. A
dataset to fix open-source software code vulnerabilities by identifying security-related commits
in a given source code was introduced in Reference [114]. This dataset was prepared by manually
curating. The study in Reference [98] created a repository named AndroVul, which contains An-
droid security vulnerabilities. It includes high-risk shell command vulnerabilities, security code
smells, and dangerous permissions. An Android code vulnerability dataset was proposed in Refer-
ence [128], named LVDAndro [129], which contains vulnerable and non-vulnerable source code
with their CWE [34] details. The proof-of-concept of this work identified the applicability of the
dataset to train ML models to detect Android code vulnerabilities.

For the source code analysis purpose, 15 tools and 5 tools that can detect vulnerabilities in
Android were identified. The review also identified that 19 datasets and repositories are available
for source code analysis and vulnerability detection. However, the majority of these datasets and
repositories are not purely based on Android source code vulnerabilities. Therefore, the need to
have a proper dataset is one key finding in this SLR. Furthermore, using such datasets, it is also
important to consider developing new source code vulnerability detection tools for Android, since
very few comprehensive tools are available to detect vulnerabilities.

7 THREATS TO VALIDITY OF THE REVIEW

Even though this systematic review was conducted by following a well-established methodology
[109], results are not guaranteed to cover all relevant studies due to some limitations during the
review process. Thus, this section discusses possible threats to the validity and measures taken to
minimise them under construct, internal, external, and conclusion validity.
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7.1 Construct Validity

Threats to construct validity can arise because of search term-based queries performed on repos-
itories. There can still be good papers that were not reviewed in this study, since they were not
available in the research repositories, including ACM Digital Library, IEEEXplore Digital Library,
Science Direct, Web of Science, and Springer Link. Google Scholar was used as another source to
capture such missing studies to minimise this. However, some relevant publications may still be
missing in the collected studies. The additional aspect of the construct validity is the possibility of
having a few errors in the process, filtering out the studies by inclusion or exclusion criteria. The
list of publications was analysed by cross-checking the primary studies to avoid these errors.

7.2 Internal Validity

Internal validity is related to data extraction and analysis, primarily related to the soundness of
the proposed review process. There was a heavy workload in data extraction and data analysis.
Hence, data was also collected by cross-checking and obtained after all the authors agreed on the
comparison results. However, it is still possible to make a few mistakes in extracting and analysing
data. If possible, original authors could be involved in verifying to reduce mistakes.

7.3 External Validity

External validity is about the summary of the results obtained from the primary studies. The anal-
ysis based on this review was performed on the research publications collected from 2016 to June
2022 to cover Android code vulnerability detection methods to date. ML techniques for vulnera-
bility detection have increased significantly during this period due to recent advances in software
security and artificial intelligence. The trends may also vary for different time period. Therefore,
this work may not capture some comprehensive studies conducted before the period.

7.4 Conclusion Validity

The bias and the other factors affecting the review study were tried to minimise when searching
for the papers. Research papers written only in English were considered. Because of this limitation,
this work may have overlooked some crucial works written in other languages such as Chinese,
German, and Spanish. Moreover, the threat may also occur due to consideration of studies with in-
dividual reviewers’ bias. It may lead to flaws and biases in this study. Furthermore, positive results
are more likely to be reported than negative results [71]. However, many papers that reported neg-
ative effects were also captured in this study, since a peer-verified systematic review process was
followed. Cross-checking mechanism was also applied to maintain the focus of the SLR, where
a thorough examination was done when reviewing the papers. All the authors were constantly
involved in the study selection and reviewing process to ensure this.

8 CONCLUSION AND FUTURE WORKS

Mobile app developers continuously develop Android applications to fulfil the need of the rapid
demand. When developing these applications, the security concepts also should be adequately ad-
dressed. Several vulnerability detection methods could be applied to do that. Based on the available
literature, this systematic review of the state-of-the-art Android source code vulnerability detec-
tion techniques covered the latest research from 2016 to June 2022. It discussed three steps to
increase the security of an Android application by considering analysing, detecting, and prevent-
ing vulnerabilities. Applications and code analysis techniques, static analysis, dynamic analysis,
and hybrid analysis and the tools used were reviewed in this, along with ML/DL and conventional
methods applied to detect vulnerabilities. Possible prevention mechanisms were also discussed.
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The work identified the potential gaps in previous research and possible future research directions
to enhance the security of Android OS.

After conducting the review, static analysis was identified as the widely used technique to de-
tect Android vulnerabilities, and the code analysis technique is more useful when performing it.
Another critical finding is that API calls, permissions, and system calls were the widely extracted
features in feature extraction. It was also identified ML/DL-based techniques are widely used to
detect vulnerabilities. Though a couple of malware-related datasets were identified, a properly
labelled dataset on Android source code vulnerability is also required. Once such a dataset is in-
troduced, it can be used for further experiments to train ML models to detect and predict code
vulnerabilities with high accuracy. A comprehensive code analysis mechanism that can identify
security issues at the development time can be introduced. Furthermore, just having detection
mechanisms will not be sufficient for the app development community. Further research should
also be conducted to identify the possible ways of integrating the detection methods into Android
app development environments as tools or plugins. By utilizing them, developers can validate the
security throughout the application without waiting for the complete application. Moreover, the
lack of an automated mechanism for identifying the reasons for the vulnerabilities was also iden-
tified. Further research can be conducted to integrate the explainable AI techniques with Android
source code vulnerability detection mechanisms to overcome this.

Both Android vulnerabilities and their detection techniques are evolving. Therefore, similar fu-
ture reviews are also necessary to cover the studies on these emerging threats and their detection
methods. As per the understanding through the review, novel ML methods, DL methods, and re-
inforcement learning methods are also emerging to detect and prevent vulnerabilities. Therefore,
further reviews also can be carried out.
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