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Interpolation 

An efficient algorithm for storing and constructing a Neville-type divided difference table for 
general Hermite interpolatmn is described. This table contains all the information needed for 
multipoint interpolation where for better accuracy a new interpolation polynomial is desired 
such that for each given point ~ the interpolating points x,(z = 0, 1, . . . , n) are reordered to 
cluster around 5. 
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1. INTRODUCTION 

Given  a set of d is t inc t  points  (x,, f , ) ,  where f ,  = f ( x , )  and  i = 0, 1, . . . ,  n,  an  
n t h  degree po lynomia l  p ( x )  can be cons t ruc ted  so t h a t  p ( x , )  = f i ,  i = O, 1 . . . . .  n .  

The  polynomial  p ( x )  is usua l ly  expressed in o rd inary  form as 

p ( x )  = ao q-  a l x  + . . .  -ff a~x  ~ (1) 

or in  Newton ' s  form defined recursively as 

~ 0 ( x )  = 1, p 0 ( z )  = c0~0 (z )  

T,'k ( X ) X/~--I) "Jr],--1 ( X )  
I t: = 1 , 2 , . . . , n  (2) 

p~(x) p~_~(x) + c ~ ( x )  ) 

p(x) = p,~(x) 

- -  f [z0,  . ~ ' , , . . . ,  x~], where ck = fo12 ]~ = O, 1 , . . . ,  n ,  is the  divided difference 
of the  kth order usual ly  ob ta ined  reeursively t h rough  Ai tken ' s  scheme s ta ted  as: 
for /c- - -  1 , 2 , . . . , n ,  

fol . . . .  k ----- (fol ~ - -  fot  . . . .  x . k ) / ( X ,  - -  Xk), Z = O, 1 , . . . ,  ]C - -  1,  (3) 
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or through Neville's scheme stated as: for i = 1, 2 , . . . ,  n, 

fi-~.,-a+l ...... = ( f , - ~ , ~ + ,  . . . .  i-I - f,-i+x.¢-~+2 . . . .  i ) / ( x , - ~  - x , ) ,  
j = 1 , 2 , . . . , i .  (4) 

The intermediate results in eq. (3) or (4) are usually not stored to save storage 
spaces. Note also the divided differences generated in eq. (4) are those of consecu- 
tive points. 

In general Newton's form is recommended since algorithms for evaluating the 
ck (see [1, 4, 5]) require only about half (more for [1]) of the multiplicative opera- 
tions needed by algorithms for evaluating ae (see [2, 3]). Furthermore in evaluating 
p ( x )  at a given point x = o2 the recursive nature of Newton's form makes it pos- 
sible to terminate the computation of pk(o2) at  an earlier stage if the process "con- 
verges" rapidly. For this to happen it is usually advisable [5] to sort the xk so tha t  

I o 2 - x k + , l  _> I o 2 -  xkl, k = 0 , 1 , . . . , n -  1. (5) 

In other words, the set of points 

{X0, Xl ,  • • . ,  Xkl, ~ = O, 1 , . . . ,  n, 

is the closest one to O2 in the chosen order for each k. However, for multipoint in- 
terpolation, eq. (5) cannot be satisfied for each o2 unless eq. (3) or (4) is recom- 
puted, which is expensive for each ordering of xk corresponding to a given o2. We 
describe in this paper an efficient algorithm for multipoint interpolation satisfying 
eq. (5) for all possible o2 without having to recompute the coefficients ck for each 
new o2. This algorithm is a generalized Neville's form of divided difference table 
which can also be used for Hermite interpolation if functional derivative values 
are also available. 

2. MULTIPOINT INTERPOLATION 

Let us assume tha t f i  and x, are given such tha t  x0 < x~ < • • • < x,  and a divided 
difference table in Neville's form is generated using eq. (4) ~ i th  all intermediate 
results stored. Thus for n = 4 we have the following table: 

f~ 

f~ fo~ 

f4 f34 f234 f1234 f01234 
Note the subscripts are all consecutive integers. Now if we denote {0, 1 , . . . ,  k} 
as the set of all integers from 0 to k, then for a given o2 we can always find i0, i l , . . . ,  
i ,  such tha t  S~ =- {io, il, . . . ,  in} = {0, 1, 2 , . . . ,  n} and 

I ° 2 - x l k l  >_ I o 2 - x ~ k _ l l ,  k = 1 , 2 , . . . , n .  (6) 

So the desired polynomial is 

p ( x )  = L 0  + f , 0 , , ( x  - x~°)  + . . .  + L ° ~ I  . . . .  ( x  - x ~ 0 ) ( x  - x , , )  • • • ( x  - x , o _ ~ ) .  ( 7 )  
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We now asser t  t h a t  Sk ---- {i0, i ~ , . . . ,  ik} is s imply  a collection of k + 1 consecut ive  
integers.  Specifically, 

S ~ - -  { / ~ , i l , . . . , i k }  = {jk, ju - t -  1 , . . . , j ~ +  /¢}, k---- 0 , 1 , . . . , n ,  (8)  
jk = min  iz, ]¢ = 0 , 1 , . . . , n .  

~lESk 

T o  see this we assume t h a t  eq. (8)  is t rue  for k = k and  so 

{x~., z~, . . . .  , x~ k} = {x~ k, X j k + ~ , . . . ,  XJk+k} 

is the  set  of k + 1 points  closest to ~. N o w  ~ can ei ther  be  inside the  in te rva l  
Ix&, X~k+k] or outside it. I n  the  la t te r  case ~ satisfies ei ther  

X;k-~ < ~ < X~k, I ~  --  X,k I < 1~ - -  XJk--I I 
o r  

XJkTk < X < X3kTk+l, l ~ - -  X3k+k ] <~ IX - -  X~kTk.t. 1 [. 

I n  all cases the  next  poin t  X~k+ ~ m u s t  be ei ther  XJk_l or XJk+k+~ and so Sk+l satisfies 
eq. (8) .  B y  induct ion,  eq. (8) is t rue  for all ]~. 

F r o m  eq. (8)  it  follows immed ia t e ly  t h a t  

f '0'l . . . 'k ---- f~'k.~k+l ..... ~+~, k = 0, 1, . . . , n,  
(9) 

j~ = min  i~, k = 0 , 1 , . . . , n .  

Thus  the  coefficients of p(x)  in eq. (7) for m a n y  X~o, x,~, . . . ,  a,~ sat isfying eq. (6)  
can be ob ta ined  f rom the c o m p u t e d  Nevil le 's  tab le  of d iv ided differences. For  mul t i -  
po in t  in te rpola t ion  the  table  can be genera ted  only once and  used over  and  over  
again.  T h e  only expense is the  (n + 1 ) ( n  -t- 2 ) / 2  s torage spaces for the  tab le  
which is more  t h a n  the  usual  (n  + 1 ) s torage spaces for c~. 

3. THE ALGORITHMS 

For  p r o g r a m m i n g  convenience,  let us consider the  case where  (xi, f , )  are  g iven for 
i = 1, 2, . . . ,  n. I f  the der iva t ive  values ot f ( x )  are also avai lable  a t  xl, x 2 , . . . ,  x~, 
then  a general ized Ncvit le 's  table  of divided differences can also be  cons t ruc ted  
for H e r m i t e  in terpolat ion.  For  this purpose  we denote  f~)  - f3(x,) and  assume t h a t  
f , , f j l ) ,  . . .  ,f~r,-1) are given for ~ = 1, 2 , . . . ,  n. For  n = 3 with rl = 3, r2 -- 1, 
r3 = 2 the  table  is cons t ruc ted  as follows (see [4]) : 

$1-block (rl rows) ~ @ fli 

@ @ fm 

f2-block (r2 rows) { f ~  ~ ~ 1  L ~ f112 flll~ (10) 

fa-block (ra rows) fa, "" --- j m ,  f n~  fmm~ 

J w ~r 
f3-group f2-group fl-group 

(r3 diagonals) (r~ diagonals) (rl diagonals) 

w h e r e f , , ( i  = 1, 3) a n d f , , , ( i  = 1) are general ized divided differences defined as 
f(,~)/ll and f~) /2! ,  respect ively.  W e  see f rom this table  there  are  th ree  dis t inct  

ACM Transactions on Mathematical Soft.are, Vol. 4, No. 1, March 1978. 



54 • N.K. Tsao and R. M. Prior 

S 

C 

groups  of rows and  diagonals. Le t  us call t h e m  fl-bloek (or group)  as each row (or  
diagonal)  within the  block (or  group)  is headed by  f , ( i  = 1, 2, 3) in the  table.  
We  observe t h a t  if the  encircled r edundan t  i tems are deleted, then  there are equal 
numbers  of i tems X,  in each row of the  f ,-block. I n  fact,  

N 1 = 1 ,  N , = I +  ~ r k ,  i = 2 , 3 .  
k--1 

Fur thermore ,  those i tems belonging to  b o t h f , - b l o c k  andre -g roup  are divided dif- 
ferences formed by  using x~ - x, as divisor. Based on these observat ions  we have  
the  fol lo~ing a lgor i thm where a one-dimensional  a r r ay  T is used to  store row-wise 
the  essential i tems of a Neville table.  (Here  we assume t h a t  the  a r ray  f contains  
the  funct ional  values in the  order  of f l ,  f ~ l ) , . . .  , f~r l -1) , f2 , . .  " , f ( ( 2 - 1 ) , . . .  , f , , . . . ,  

Algorithm TABLE 

1. F o r i  = 1, 2 , . . . , r 1 ,  T, = y~/(z - 1)! 
2. end ~-- 0, N~ = 1, m ~-- rl, s ~-- rl 
3. Fo rk  = 2, 3 , . . . , n  (n>__2) 

3.1. F o r j  = 1, 2 , . . . , r ~  
3.1.1. m ~-- m + 1, T~ = f,+,/(j  -- 1)! 
3.1.2 F o r i  = k -  1, k - -  2 , . . . , 1  

3.1.2.1. h ~-- 1 
3.1.2.2. If 3 = 1 and i = k -- 1, then h ~- Nk-~ 
3.1.2.3. For l = 1, 2, . . . ,  r, 

3.1.2.3.1. m *-- m + 1, end ~- end -[- 5, 
d ¢--  x k  - -  x~ 

3.1.2.3.2. T,,, = (T , , , - z -  T~nd)/d 
3.1.3. end *-- end -4- 1 

3.2. N~ = N~_~ -t- rk-1, end *-- end - r~*Nk, s (--- s + rk 

Once the  table is constructed,  then  for a given ~ there exist unique z~, i ~ , . . . ,  i,~ 
such t h a t  eq. (6) is satisfied. The  desired polynomial  p(x )  is also unique  if only 
f i ( i  = 1, 2, . . . ,  n) are given. This is no t  so if, in addit ion,  der ivat ive values are 
also given. For  example, if n = 3, i~ = 3, i2 = 2, i3 = 1, then  p(x)  can be con- 
s t ructed  by  those coefficients one encounters  when t ravel ing f rom s to t a long one 
of the  five possible routes  in the  directed graph  shown by  Figure  1. However ,  
since the generalized divided differences formed in step 3.1.1 are less likely to  be 
affected by  rounded-off  errors, one should choose the  set of coefficients f a, f33, f~3a, 
f12a3, fl12a3, fll12a3 for p(x ) .  Thus  in the  setup of (10) if k coefficients d~, d 2 ,  . . • , ~ l k ,  

where d,( i  = 1, 2 , . . . ,  k) is the  (i --  1)th divided difference, have  been chosen 
and there  are two possible choices (at mos t  two!)  for dk+~, then  choose the  one 

f3 f23 f123 fu23 f11123 

f33 f233 f1233 f11233 f111233 c 

Fig. 1 
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a long  t he  s ame  d i a g o n a l  as d~. T h u s  if n = 3, i l  = 2, is = 3, a n d  i3 = 1, t h e n  t he  

coefficients for p(x)  are  f2, f23, f233 (no t  f ro) ,  f1233, f i re3 ,  a n d  fm23~. I n  t he  fo l lowing 
a l g o r i t h m  t h e  des i r ed  o rde r ing  z~, is, . . . ,  i,~ are  g e n e r a t e d  f rom a g i v e n  ~ b y  a 
b i sec t ion- l ike  s t r a t e g y  a n d  t h e n  t h e  subsc r i p t  of t he  a p p r o p r i a t e  ( j  - -  1 ) th  d iv ided  
di f ference is s to red  in  d j (  3 = 1, 2 , . . . ,  r l  + r2 + • • • + r=) u s i n g t h e  o u t p u t  ar-  
r a y s  N ,  r, a n d  T f rom the  a l g o r i t h m  T A B L E .  

Algorithm RETRIEVE 

Par t  A. (Finding ii, i2, • • • , i ,  for a given 5) 

1. If  5 < xl, then set ik = k (k = 1, 2 . . . .  , n) ;  go to step 8; 
2. I f ~  > x . ; t h e n s e t i k  = n - -  k +  1 (k = 1, 2, . . . , n);  go to step 8; 
3. a (-- l ,  b ~ - - n ;  
4. If a + b is even then set m *-- (a + b)/2; 

else set m (-- (a -4- b + 1)/2; go to step 6 if m = b; 
5. If x~ g y~ < x ~ ,  then set b *- m, go to step 4; 

else set a ~-- m, go to step 4; 
6. F o r k  = 1 , 2 , . . . , n -  1; 

if [ y~ - a I < [ ~2 - b ], t h e n  s e t  i~ ~-  a, a ~-  a - 1, 
else s e t i L ~ b ,  b e - b +  1; 

7. If a = 0, then set , .  = b; 
else set i ,  = a; 

Par t  B. (Finding d~(j = 1, 2, . . . , rl  + r~ + • • • + r , ) )  

8. d i * - l ,  m e - l ;  
9. F o r k  = 2, 3 , . . . , i 1 ( i l  >__2) 

9.1. dl ~ -  dl + rk-l*Nt-i; 
10. For k = 2, 3, • . . , r,~(r,~ > 2) 

10.1. m (-- m "4- 1, d~ = d,~_l + N,~; 
11. F o r k  = 2, 3 , . . . , n ( n  > 2) 

11.1. A *- 1 
11.2. If i~ > ik_~, then set A ¢- N,t. 
11.3. F o r j  = 1, 2 , . . . , r , k  

m e - m +  1, d,~ = d~-t + A, 

F i n a l l y ,  t h e  p o l y n o m i a l  p ( x )  can  be  e v a l u a t e d  a t  x = .~ in  ful l  u s i n g  al l  t h e  coeffi- 
c ien t s  o b t a i n e d  f r o m  the  a l g o r i t h m  R E T R I E V E  b y  t h e  fo l lowing a lgo r i thm"  

Algorithm VALUE 

1. p~-O, 7r ~-- 1, m~-O 
2. F o r k  = 1 , 2 , . . . , n  

2.1. F o r j  = 1 , 2 , . . . , r , k  
2.1.1. m ~-- m -{- 1, p *- p W Ta,~*~r, v *-- ~r*(~ - x,~); 

4. CONCLUDING REMARKS 

T o  see how our  a p p r o a c h  compare s  w i t h  o thers  i n  t h e  l i t e r a tu re ,  l e t  us  cons ide r  t h e  
fo l lowing  p r o b l e m :  g i v e n  t h e  va lues  of a f u n c t i o n  f ( x )  a n d  i t s  f irst  d e r i v a t i v e  a t  
n + 1 d i s t i n c t  p o i n t s  x , ( i  = 0, 1 , . . . ,  n ) ,  a p o l y n o m i a l  p ( x )  of degree  2 n  + 1 is 
des i red  to  a p p r o x i m a t e  f ( x )  a t  a g i v e n  p o i n t  ~. F o r  th i s  case T a b l e  I g ives  t h e  
n u m b e r  of a r i t h m e t i c  o p e r a t i o n s  r e q u i r e d  b y  t h e  v a r i o u s  a p p r o a c h e s  to  f ind  t h e  
coefficients of p ( x ) .  F o r  s imp l i c i t y  o n l y  t he  d o m i n a n t  t e r m s  for la rge  n a re  g iven .  

F r o m  T a b l e  I we see t h a t  ou r  a p p r o a c h  is c o m p a r a b l e  to  t h e  m o s t  eff icient  one  
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Table I. Number of Arithmetic Operations Required for Constructing p(x) 

Multiplicative 
Operations 

Addit£ve 
Operations 

Our 
Approach 

Krogh's 
Approach 

Barrels & 
Stelngart's 

Approach 

BJ~rck & 
Elfvlng's 
Approach 

2.5n 2 

2n 2 2n 2 3n 2 4n 2 

2.5n 2 4n 2 6n 2 

by Krogh where an Aitkin-type divided difference table is computed row by row. 
Note the polynomial p(x) is in Newton's form of eq. (2) for both  our approach 
and tha t  of Krogh, which accounts for their more favorable arithmetic counts over 
the one by Bj6rck and Elfving where p(x) is in its ordinary form of eq. (1). 

Now if p(x)  is needed for many  points ~,, say j = 1, 2 , . . . ,  k, and it is also 
desired that  the set ofx , (z  = 0, 1 , . . . ,  n)  be ordered for each ~ so that  eq. (5) is 
satisfied for "be t te r"  accuracy, then our approach is far more efficient than the 
others as our table generated by using (x,, f , ) ,  i = 0, 1 , . . . ,  n, for x0 < x~ < • • • 
< x,  contains sufficient information to construct a new p(x) for any ordering of 
xl satisfying eq. (5).  This is not  t rue in the other approaches where the coefficients 
of a new p(x) have to be recomputed for each ordering of x,. This is certainly not 
economical for multipoint interpolation. 

However, we should also emphasize that  in our approach extra storage spaces 
are needed to store the final table. This number is essentially ~,~=o r,N, for the 
general case and is approximately 2(n -t- 1 )2 for the above problem. Once the table 
is constructed, it  also requires approximately log~ n divisions and n multiplications 
to retrieve the proper subscripts in the array T for the coefficients of p(x).  To 
evaluate p(x) is rather inexpensive as it requires only a multiple of n aritt~metic 
operations in all approaches. 
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