On Multipoint Numerical Interpolation
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An efficient algorithm for storing and constructing a Neville-type divided difference table for
general Hermite interpolation is deseribed. This table contains all the information needed for
multipoint interpolation where for better accuracy a new interpolation polynomial is desired
such that for each given point Z the interpolating pomts 2,(: = 0,1, ..., n) are reordered to
cluster around Z.
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1. INTRODUCTION

Given a set of distinet points (a,, f,), where f, = f(2,) and ¢ = 0, 1,..., n, an
nth degree polynomial p(z) can be constructed so that p(a,) = f;, 1 =0,1,...,n.
The polynomial p(z) is usually expressed in ordinary form as

p<7/) = qy+ aqyr + - +an$n (1)
or in Newton’s form defined recursively as

m(x) =1, po(x) = com(x)

m(T) (2 = m)ma(w)

E=1,2,...,n (2)

I

() pea() + am ()
p(x) = pal2)

where ¢c = far &+ = flog, a1, ..., @), £ =0, 1,..., n, is the divided difference
of the kth order usually obtained recursively through Aitken’s scheme stated as:
fork =1,2,...,n,

Sor. ok = (f(n T f01. ,1—1,k>/(-’b‘z - -Tk), 1= 0, 1,..., I~ 1, (3)
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or through Neville’s scheme stated as: fori =1,2,...,n,

fz—a,z—;+l,....z = (fv.—J,i—,1+1, i1 ™ Ji—i41,i—342, ..,i)/(xi—g - :vi),
j=12,...,4 (4)

The intermediate results in eq. (3) or (4) are usually not stored to save storage
spaces. Note also the divided differences generated in eq. (4) are those of consecu-
tive points.

In general Newton’s form is recommended since algorithms for evaluating the
¢, (see [1, 4, 5]) require only about half (more for [1]) of the multiplicative opera-
tions needed by algorithms for evaluating . (see [2, 3]). Furthermore in evaluating
p(2) at a given point = Z the recursive nature of Newton’s form makes it pos-
sible to terminate the computation of p,(£) at an earlier stage if the process “con-
verges” rapidly. For this to happen it is usually advisable [5] to sort the z; so that

|8 — e | 28— 2], E=0,1,...,n — 1 (5)

In other words, the set of points
{xo,xl,...,xk}, E= 0,1,...,n,

is the closest one to £ in the chosen order for each k. However, for multipoint in-
terpolation, eq. (5) cannot be satisfied for each £ unless eq. (3) or (4) is recom-
puted, which is expensive for each ordering of x; corresponding to a given &. We
describe in this paper an efficient algorithm for multipoint interpolation satisfying
eq. (5) for all possible & without having to recompute the coefficients ¢, for each
new Z. This algorithm is a generalized Neville’s form of divided difference table
which can also be used for Hermite interpolation if functional derivative values
are also available.

2. MULTIPOINT INTERPOLATION

Let us assume that f, and x, are given such that 2o < 23 < --- < 2, and a divided
difference table in Neville’s form is generated using eq. (4) with all intermediate
results stored. Thus for n = 4 we have the following table:

fe

fi Ja

fo fro fo

fo S fuz fan

fi fau foar frma fors

Note the subscripts are all consecutive integers. Now if we denote {0, 1, ..., k}
as the set of all integers from 0 to £, then for a given & we can always find 4o, 4, . . .,
i, suchthat S, = {4, %, ...,%} ={0,1,2,...,n} and

Ij_xikIZI',’E—xik-1'7 k=172)-"’n' (6)
So the desired polynomial is

P(2) = fuo F fron(@ = @) + -0+ Hfign. (@ — o) (@ —20y) - (@ —2,,). (7)
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We now assert that S, = {4, %, . . ., %] is simply a collection of k -+ 1 consecutive
integers. Specifically,

SkE{iOyily---,.}={.7k,.7k+1 .+ k, k=0,1,...,n,
Je =min 7, k=20,1,.

11€5k
To see this we assume that eq. (8) is true for £ = k and so
{xio: Ligy oo vy xik} = {xlk) Tigtly oo o) xfk-l-k}

is the set of k + 1 points closest to £. Now £ can either be inside the interval
[xs,, %, 4] or outside it. In the latter case Z satisfies either

xfk—1<a-;<xik! Ii_a;Jklslj-xik—ll
or

Tigtk < T < Tppaety, | F— S| S E = Gpaaen |-
In all cases the next point ,,,, must be either z, _; or x . and so Sk satisfies
eq. (8). By induction, eq. (8) is true for all k.
From eq. (8) it follows immediately that
Frouewr = Finttonth k=0,1,...,n

jk=min 1:1, k= 0,1,...,n.
1168k

(9)

Thus the coefficients of p(x) in eq. (7) for many ., ., . . . , &, satisfying eq. (6)
can be obtained from the computed Neville’s table of divided differences. For multi-
point interpolation the table can be generated only once and used over and over
again. The only expense is the (n 4+ 1)(n + 2)/2 storage spaces for the table
which is more than the usual (n 4+ 1) storage spaces for ¢.

3. THE ALGORITHMS

For programming convenience, let us consider the case where (24, f.) are given for
©=1,2 ...,n. 1f the derivative values of f(x) are also available at xy, a2, . . ., 4,
then a generalized Neville’s table of divided differences can also be constructed
for Hermite interpolation. For this purpose we denote £ = f'(x,) and assume that

fof o finT Y are given for 1 = 1,2,...,n. Forn=3withn =3, . =1,
= 2 the table is constructed as follows (see [4]):
Nt
fi-block (r; rows) @ fu
@ fll!
fa-block (r2 rows) { f~ Jn S fun (10)
~
~ S~
fa S ~<J b} f
fa_block (,,.3 rows) 3 ~ & - ~ \1‘23\ 1123 11123
@ fa =~ ~\ Jass ,\ ~ ‘fxzn fxﬁ fmmJ
fs-group Jfa-group fi-group
(r; diagonals) (r2 diagonals) (r, diagonals)

where f,,(¢ = 1, 3) and f...,(¢ = 1) are generalized divided differences defined as
F8/11 and 712 /21, respectively. We see from this table there are three distinct
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groups of rows and diagonals. Let us call them f;-block (or group) as each row (or
diagonal) within the block (or group) is headed by f.(¢ = 1, 2, 3) in the table.
We observe that if the encircled redundant items are deleted, then there are equal
numbers of items .V, in each row of the f,-block. In fact,

1—1

M=1, N,=1+4 > n, ©=238.

K1
Furthermore, those items belonging to both f,-block and f,-group are divided dif-
ferences formed by using x, — ®, as divisor. Based on these observations we have
the following algorithm where a one-dimensional array T is used to store row-wise
the essential items of a Neville table. (Here we assume that the array f contains

tEle f)unctional values in the order of fy, f1”, .. ., S fay oo IS o e s
)

Algorithm TABLE

1. Fori=1,2,...,r, T, = f,/(e — 1)!

2.end <0, Ny =1, mer1, 8 &1
3.Fork=23,...,0n(n>2)
31. Forj=1,2,...,n
31l.me—m+ 1, Tu = foro/, G — 1)
312 Fort=k—-1,k—-2,...,1
3121 A«1
3122 . If gy =1and ¢ = k — 1, then A « N,
3123.Forl=1,2,...,7r,
31.23.1. m <« m+ 1, end « end 4 A,
d— 22— o
31232. T = (Tm-1 — Tena)/d
3.13. end «—end + 1
3.2. Ny = Niw1 + 7r-1, end «— end — 74%xN;, 8 = 8 + 12

Once the table is constructed, then for a given & there exist unique 1, 42, . . ., 2,
such that eq. (6) is satisfied. The desired polynomial p(z) is also unique if only
f.G =1,2,...,n) are given. This is not so if, in addition, derivative values are
also given. For example, if n = 3,4, = 3,4 = 2, ¢ = 1, then p(x) can be con-
structed by those coefficients one encounters when traveling from s to ¢ along one
of the five possible routes in the directed graph shown by Figure 1. However,
since the generalized divided differences formed in step 3.1.1 are less likely to be
affected by rounded-off errors, one should choose the set of coefficients f;, fis, foss,
J1233, fi1233, fi12ss for p(x). Thus in the setup of (10) if k coefficients dy, ds, . . ., di,
where d,( = 1, 2,..., k) is the ( — 1)th divided difference, have been chosen
and there are two possible choices (at most two!) for dy,,, then choose the one

s £ £ £

3 23 123 £1123 f11123

f £ £ £ £ t

33 233
Fig. 1
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along the same diagonal as d;. Thus if n = 3,4, = 2,4, = 3, and 7; = 1, then the
coefficients for p(x) are f,, fos, f233 (not fl‘n), f1233, Suaos, and f111233. In the following

algorithm the desired ordering ¢, %, ..., ¢» are generated from a given # by a
bisection-like strategy and then the subscript of the appropriate (; — 1)th divided
difference is stored ind,(3 = 1, 2,..., 1 + r + - - - 4 r,) using the output ar-

rays N, r, and T from the algorithm TABLE.

Algorithm RETRIEVE

Part A. (Finding 4, s, . . . , 7, for a given 7)

1.IfZ < 2y, thensetd, =k (kb =1,2,...,n); go to step 8;

2.If% > gn;thenset iy =n —k+1( =1,2,...,n); go to step 8;
3.ae1,b«mn;

4. If a + b is even then set m «— (a + b)/2;

else set m < (a -+ b 4 1)/2; go to step 6 if m = b;
5. If o < & < Tm, then set b « m, go to step 4;
else set a « m, go to step 4;
6. Fork=1,2,...,n—1;
f|Z—a|<|Z— Db, thensetiy—a,a—a—1,
else set 4, «— b, b — b + 1;
7. If @ = 0, then set 2, = b;
else set 7, = a;

Part B. (Finding d,(j = 1,2, ..., 71+ 12+ «+ + + 7))

8. die1,me1;
9. For k =2,3,...,'l:1(’l:1 22)
9.1. d; ~ d1 + Tk_l*NL_l;
10. Fork =2,3,...,r,0., >2)
1Vl me—m-4+1, dn = du1 + Ny

11. Fork =2,3,...,n(n > 2)
111. A1
11.2. If 4 > %r., then set A « N,;
113. Forj=1,2,..., 1y

mem—+ 1, dn = dny + 4,

Finally, the polynomial p(x) can be evaluated at + = & in full using all the coeffi-
cients obtained from the algorithm RETRIEVE by the following algorithm-

Algorithm VALUE
l.Lpe—0, 71, me0
2.Fork=1,2,...,n
21. Forj=1,2,...,74
211l mem-+ 1, pe—p+ Tapim, 7w wx(F — 2,);

4. CONCLUDING REMARKS

To see how our approach compares with others in the literature, let us consider the
following problem: given the values of a function f(z) and its first derivative at
n + 1 distinet points z,(¢ = 0, 1, ..., n), a polynomial p(z) of degree 2n + 1 is
desired to approximate f(z) at a given point Z. For this case Table I gives the
number of arithmetic operations required by the various approaches to find the
coefficients of p(x). For simplicity only the dominant terms for large n are given.

From Table I we see that our approach is comparable to the most efficient one
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Table I. Number of Arithmetic Operations Required for Constructing p(z)

Our Krogh's Bartels & Bjorek &
Approach Approach Steingart's Elfving's
Approach Approach
Multiplicative 2 2 2 2
Operations 2n 2n 3n 4n
Additive
Operations 2.51‘12 lmz 2.5112 6n2

by Krogh where an Aitkin-type divided difference table is computed row by row.
Note the polynomial p(x) is in Newton’s form of eq. (2) for both our approach
and that of Krogh, which accounts for their more favorable arithmetic counts over
the one by Bjorck and Elfving where p(2) is in its ordinary form of eq. (1).

Now if p(x) is needed for many points Z,, say 7 = 1, 2,..., k, and it is also
desired that the set of 2.(z = 0,1, ..., n) be ordered for each &, so that eq. (5) is
satisfied for “better” accuracy, then our approach is far more efficient than the
others as our table generated by using (2., f.), 2= 0,1, ..., n,fora < z; < - --
< 2, contains sufficient information to construct a new p(z) for any ordering of
x; satisfying eq. (5). This is not true in the other approaches where the coefficients
of a new p(z) have to be recomputed for each ordering of z,. This is certainly not
economical for multipoint interpolation.

However, we should also emphasize that in our approach extra storage spaces
are needed to store the final table. This number is essentially D17, N, for the
general case and is approximately 2(n 4 1)* for the above problem. Once the table
is constructed, it also requires approximately logs n divisions and » multiplications
to retrieve the proper subscripts in the array T for the coefficients of p(2). To
evaluate p(z) is rather inexpensive as it requires only a multiple of n arithmetic
operations in all approaches.
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