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Figure 1: The "Upper Mitten" cluster of 71 community maps in Michigan, and its semantic splitting into subclusters C18-1
(recreation, environment, agriculture) and C18-2 (values, identity, religion).

ABSTRACT
This paper is motivated by a practical problem: many U.S. states
have public hearings on "communities of interest" as part of their
redistricting process, but no state has as yet adopted a concrete
method of spatializing and aggregating community maps in order
to take them into account in the drawing of new boundaries for elec-
toral districts. Below, we describe a year-long project that collected
and synthesized thousands of community maps through partner-
ships with grassroots organizations and/or government offices. The
submissions were then aggregated by geographical clustering with
a modified Hausdorff distance; then, the text from the narrative
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submissions was classified with semantic labels so that short runs
of a Markov chain could be used to form semantic sub-clusters. The
resulting dataset is publicly available, including the raw data of
submitted community maps as well as post-processed community
clusters and a scoring system for measuring how well districting
plans respect the clusters. We provide a discussion of the strengths
and weaknesses of this methodology and conclude with proposed
directions for future work.
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1 INTRODUCTION
There are many settings in which a researcher might want to col-
lect a large number of crowdsourced maps and combine them into
a summarized spatial data product. One important application is
in redistricting, or the drawing of boundary lines for electoral dis-
tricts. In redistricting, communities of interest (or "COIs") is a term
of art that refers to neighborhoods or regions that should be given
weight in drawing those lines. A community of interest is a group
of individuals with both shared residential terrain and some shared
attributes that connect to policy interests or representational goals.
In the context of redistricting, whether a COI is kept together in
a single district—or how it is split up across multiple districts—is
likely to affect whether residents obtain effective representation.
State constitutions or legislative provisions refer to consideration
of communities of interest in at least two dozen states [6, 12], and
across the board the COI concept is considered as one of the tra-
ditional redistricting criteria (alongside federal requirements of
population balance and the Voting Rights Act and conventional
considerations like compactness, contiguity, and the preservation
of political subdivisions like counties and cities). See [27] for a short
COI explainer, including a review of selected COI case law from
redistricting.

Communities may be defined by commonality across a number
of dimensions, including economics or social class, geography, cul-
ture, media markets, and use of (or need for) public services. COIs
commonly feature shared ties to an industry or employment sector
that drives policy interests, such as farming, tourism, or resource
extraction. They may be grounded in a neighborhood with infras-
tructural or service needs, or in a region where pollution or natural
disasters animate environmental concerns. (Of course, this list is far
from exhaustive.) The challenge is that the concept of communities
of interest, because of its emphasis on community, does not lend
itself well to routine or off-the-shelf models or formulas applied to
standard data sources, such as the data products provided by the
Census Bureau.1

A testimony-based approach—relying on members of the public
to define their boundaries, articulate their shared interests, and
advocate for consideration in the redistricting process—has been
the main mechanism for ensuring that such voices get their due
consideration. In past redistricting cycles, there has been a major
gap between testimony and line-drawing: to our knowledge, there
were very few examples from the 2010 Census cycle or earlier where
testimony was converted to concrete maps or geographical poly-
gons that distill public input in a manner that is clearly actionable
1Law scholar Nicholas Stephanopoulos has sketched a kind of automated community
detection based on demographic and economic attributes in the American Community
Survey. As Mac Donald–Cain have argued, this would produce a very thin notion of
community, unable to capture most of the kinds of shared interest commonly associated
with COIs. [19, 32] Indeed Stephanopoulos also clearly endorses the value and interest
of self-identified communities.

for a commission or court.2 That is, incorporating communities of
interest into redistricting plans has been impeded by the absence of
agreement about how to identify the relevant communities, either
conceptually or procedurally, and how to measure compliance with
a rule that counsels respect for COIs.

Evaluating proposed communities of interest for inclusion into
a redistricting plan is ultimately an exercise of judgment by map-
makers and line-drawers that deserves transparency and clarity.
Importantly, that does not and must not mean that the process
should be fully quantitative and automated. But for the current re-
districting cycle following the 2020 Decennial Census data release,
the ability to take spatialized public testimony—a description of
community needs in a format that is accompanied by a digitized
map—was present in multiple states to a greater degree than be-
fore, partly due to a collection effort that will be described here.
Importantly, this effort produced thousands of map submissions in
each of the four states discussed in this article; the sheer volume of
maps created a need to treat them in a clustered and summarized
fashion rather than individually. The current article is dedicated
to describing one proposed process and pipeline for producing an
aggregated data product, and for measuring the alignment of a
districting plan with those community clusters.

1.1 Related Work
The work here fits into the computing literature in two main ways.
The first is the development of computational techniques, especially
clustering techniques, for regionalization, or the identification of
meaningful areas within a larger terrain—a long-standing topic in
geography and planning.3 The second is in leveraging algorithmic
methods to bring mathematics and statistics to bear on redistricting,
including in the evaluation of fairness for political redistricting
plans.

The use of computer science and mathematical techniques to
aid in fair redistricting is well established. For instance, [14] is
a much-cited ACM paper from the 1970s, and [31] traces earlier
(imagined and actual) computational approaches to redistricting
back to the 1960s. The recent survey [2] gives a comparison of the
fast-moving state of the art in algorithmic methods to build and
compare districting plans. A selection of the ACM papers from the
last five years that discuss these topics includes [4, 7–9, 18, 28, 36].

Our work uses the modified Hausdorff distance [11] as a way
to compare geographic regions, which to our knowledge has not
been previously used in redistricting or regionalization specifically.
Hausdorff-style metrics are well studied for comparison and clus-
tering of other types of GIS data, such as object location tags [22]
and trajectories [3].

There are numerous papers developing techniques that are appli-
cable to geography aggregation, including for example [33], which
formulates what they call the cluster ensemble problem, where they
take a group of many different partitions of objects and attempt
to build a new set of clusters via various "combiners," also called

2There are a few notable instances of precise COI maps proposed by grassroots
groups, including for example a set of "Asian American Neighborhood Bound-
aries" produced for New York redistricting by the non-profit AALDEF, available at
aaldef.org/uploads/pdf/intervenor-lee-attachment a.pdf.
3For an enlightening discussion of regionalization and community in the context of
redistricting, see Garret Dash Nelson, The Elusive Geography of Communities [24].
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"consensus functions." Another is [17], clustering polygons via 𝑘-
means on both geographic closeness and similarity in other quan-
titative aspects. That paper also employs Hausdorff distance, and
defines a "boundary-adjusted Hausdorff distance" that rewards pairs
of shapes for having shared boundary. One of the most relevant
might be [1], which gives an algorithm to partition spatial data in
a consensus-based approach by building a similarity graph, where
spatial objects are vertices and edges are weighted by how often
objects are put in the same region. They test on a synthetic dataset
as well as a ecological marine units dataset.

There is a wealth of text-and-geography projects in the CS/GIS
literature, including [29] (identifying language with geography in
public datasets such as Twitter, Flickr, and OpenStreetMap); [23]
(ML approach to flagging which features are frequently tagged in
which locations); [25] (clustering by geography and group text data,
then using the text to find and correct errors in the corpus); and
[35] (deep learning on human mobility datasets to assess areas as
well or poorly planned).

We know of no previous work that we can directly compare
to the methods introduced here, which center on synthesizing a
dataset consisting of thousands of personal maps drawn in a self-
directed fashion. Several authors have outlined ideas for automated
community detection through free-standing geospatial data sources
(such as Stephanopoulos and Spielman–Singleton, drawing from
Census Bureau data products [30, 32], or Makse, drawing from the
results of statewide initiative votes [21]). Phillips–Montello [26]
describe a hybrid method for combining census outputs with 107 re-
gions drawn freehand in interviews with residents of Santa Barbara,
California. Their method separates responses out by their current
city council district and seeks to identify "cores" for re-drawing
those districts, and does not readily generalize to a large volume of
publicly submitted maps. Finally, the recent paper of Chen et al. [6]
proposes a scoring system for measuring the alignment of a plan
with a set of spatial polygons, but it does not contend with large
numbers of overlapping maps drawn on many different scales.4

2 COI COLLECTION
The authors of this paper are the key contributors to the techni-
cal side of the collection and aggregation process described here.
The effort produced many thousands of user-submitted maps, and
we processed them into data products described in the following
section, suitable for use with a score that is also described below.
However, we emphasize at the outset that the intent of the current
paper is to present the methodology in a scientific venue, rather
than to offer the curated data product itself as the primary object
of interest. On the contrary, the lessons learned from implemen-
tation suggest a suite of robustness checks, tweaks, and outright
improvements, some ideas for which will be described below. The
time window before the 2030 U.S. Census presents quite a long
period for refinement and debate.

In the 2020-21 project described here, we partnered with both
academic and non-academic collaborators in order to carry out com-
munity mapping in a way that responded to the needs of different
4In particular, Phillips–Montello instruct respondents to draw their communities at or
below the scale of city council districts. Chen et al. actually discard maps drawn larger
than a district, leaving 16 non-overlapping COI maps from their collected dataset and
therefore having no need for aggregation.

organizations and was sensitive to local knowledge of geography
and sociology. Our collaboration was initiated through an inter-
disciplinary project team we dubbed OPEN Maps (Ohio Public
Engagement in Neighborhood Maps). After launching the effort
in Ohio, we extended the collection project to Michigan, Wiscon-
sin, Missouri, and to smaller-scale efforts in New Mexico, Texas,
Indiana, Pennsylvania, Florida and numerous counties and cities.

2.1 The Collection Process
2.1.1 Mapping app. Our collection process leveraged a mapping
application launched in 2018 by the MGGG Redistricting Lab, a
data and democracy research group based at the Tisch College
of Civic Life of Tufts University. Districtr (districtr.org) is an
open-source webapp built on the Mapbox platform that functions as
a purpose-engineered GIS. Users encounter familiar-looking paint
tools and a mapping interface that closely resembles smartphone
apps. Districtr has two modes: districting and community mapping.
In districting mode, the dashboard and functions are designed to
create painted regions that have balanced population, that combine
for full coverage, and that are disjoint from one another. Community
mapping mode provides users with a more detailed base map with
neighborhood names, highways, and buildings visible. In this mode,
the user can paint community areas of any size, which are allowed
to overlap. They can name and describe these communities in text
fields.5 Importantly, both modes use geographic tiles as the base
units, where depending on location the choices may range from
fine units (census blocks) to coarse units (counties or community
areas). That is, instead of drawing free-form on a map, users are
selecting and assigning geographic units to their maps.

2.1.2 Partners. We worked with grassroots organizations to cus-
tomize our collection effort in each state. In Ohio, redistricting is
currently carried out by a politician commission which is in no
way independent of the legislature. Outside community groups
conducted public map collection in order to support what some
would call a "shadow commission," intended to model best practices.
In Michigan, by contrast, Districtr was contracted by the Michigan
Department of State to support the Michigan Independent Citizens
Redistricting Commission, which is fully empowered by law to
draw the district lines. In Wisconsin, we contracted with the state
Department of Administration to support the People’s Maps Com-
mission, a shadow commission created by Governor Tony Evers.
And in Missouri, our partner was a non-governmental organiza-
tion called the Fair Maps Missouri Coalition, which sponsored a
mapping contest open to the public.6

One key benefit of collaborating with diverse partners in each
state was to incorporate local knowledge into the participatory
mapping design. For example, our Ohio team solicited input from
geographers and organizers to suggest a zoning of the state into six
regional areas that broadly made sense from the point of view of
commuting and cultural exchange. They also advised us of which
sizes of geographical unit to use for each level of mapping; that
5Users can also mark, name, and describe landmarks or points of interest, but the
process described here does not make use of point data.
6For the other state-level portals, the partners were the New Mexico Citizen Redistrict-
ing Committee (supported by the Thornburg Foundation), the office of Pennsylvania
Governor TomWolf, Florida Rising, the Texas Civil Rights Project, and Common Cause
Indiana. See mggg.org/cois for more information.

https://districtr.org
https://mggg.org/cois
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municipal boundaries would be an important and informative layer
for users; that a Cleveland module should really include the key
suburb of Euclid because important neighborhoods were likely to
cross that municipal boundary; and so on. This tailoring increased
the usability of the mapping tool.

2.1.3 Training and instructions to participants. In contrast to other
COI collection efforts, we did not present participants with a script
or formal checklist to walk through the mapping process.7 Instead,
we used a train-the-trainers model to teach community organizers
how to collect maps, and how to train others to collect maps, and
how to train others to train others, and so on. Thiswas accomplished
through dozens of videoconference meetings conducted in English,
with a handful in Spanish, throughout the Spring and Summer of
2021. The user-friendly app and the remote trainings were crucial
elements for operating in an extraordinary historical moment when
COVID-19 contributed to a late Census and a compressed timeline
for redistricting, in addition to creating unprecedented challenges
in organizing in-person meetings.

The bottom-up, less-directed model means that participants had
great latitude to interpret the instructions, and we received a wide
range of disparate types of maps. Some were neighborhood-level;
some were regional; some were pairs of counties that the author felt
should or should not be kept together for political representation.
Some respondents interpreted their task as one of displaying and
narrating a named neighborhood, like the traditionally middle-
class Black neighborhood of West Dayton. Others made much more
personal maps, marking locations in their daily and weekly orbit
from their church to their workplace to their favorite fast food
restaurants and laundromats.

2.1.4 Submission portals. A final element in the collection process
was to design an interface for submission of completed maps.8
These were simple public portal websites that included background
information on redistricting and the role of communitymaps through
short YouTube videos and links to the relevant mapping modules in
Districtr. Upon completion of a map in Districtr, a "Save" or "Share"
button would send the user back to the portal with a submission
form partly pre-filled. The user would then be prompted to add
basic information like their name, to add their email address for
verification purposes, to title their submission and comment on its
relevance to the process. The portals also enabled submitters to tag
their maps with keywords. We worked with partners in each state
on translations where appropriate, developing content in Spanish,
Haitian Creole, and Navajo.

Each portal featured a real-time gallery of public submissions,
searchable by date, keyword, tag, or submission type. Users were
also able to submit comments on other content, and each partner
had their own approach to content moderation.

7For instance, a COI collection project based at Princeton (representable.org) used
a highly guided intake form.
8In fact, most of the portals allowed for users to submit any of several forms of feedback:
districting plans, community maps, and written testimony about any aspect of the
process. In most states, written testimony remained the most popular mode of public
submission by far.

2.2 Sample COI Submissions
Here are two verbatim examples to start to give a flavor of the
submissions we received through our portals.

• Avant’s map 7/21/21: "Very racially diverse, police officers,
bus drivers, teachers, blue collar workers, entrepreneurs live
in the area. Some important places are the Milwaukee High
School of the Arts, Milwaukee Academy of Science, Sinai
Samaritan Hospital, u.s. Bank and New Life Center drug deal-
ing. The neighborhood is great just a few things that needs to
be addressed like housing upgrades, potholes in the streets,
sex working, Develope a system to Form a block watch."
(portal.wisconsin-mapping.org/submission/c1896)

• Tittabawassee River Community: "This community is
closely linked by a shared waterway, the Tittabawassee River.
The area has also experienced extreme flooding due to dam
failures last year. The area is still working together to re-
cover." (michigan-mapping.org/submission/c373)

Much more information on the COI collection from the four pri-
mary states in this project are linked from a post at mggg.org/cois.

2.3 Concerns about Data Quality and Gaming
Quality of COI data is inextricably tied to the outreach effort that
supports data collection and depends heavily on any curation that
takes place. (There is a significant geography literature on partic-
ipatory mapping: see, for instance, [5] and its references.) Each
line-drawing body must also decide on a level of moderation for the
content, ensuring that COI testimony complies with state rules. For

https://representable.org
https://portal.wisconsin-mapping.org/submission/c1896
https://www.michigan-mapping.org/submission/c373
https://mggg.org/cois
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instance, some states bar the use of communities of interest based
on partisan identity, but members of the public may nonetheless
submit maps with highly partisan descriptions.

Any data collection effort that relies on voluntary submissions or
testimony comeswith data quality challenges in the post-processing
stage, and in particular carries the potential for bad actors to at-
tempt to game the system. Relatedly, an important question for the
aggregation protocol is whether importance is keyed to volume
of submissions. For example, in our dataset, well over a hundred
submissions painted an area that is nearly coextensive with an ex-
isting Congressional district in southern Michigan, using extremely
similar language. It is highly possible that this was a coordinated
’astroturfing’ effort on behalf of the sitting Congressman.9 Coordi-
nation alone does not make the submissions invalid, of course, but
we regard it to be a positive feature of our methodology that such
a case does not receive 150× as much weight as more spontaneous
testimony in other parts of the state.

There are other reasons to be wary of emphasizing COI sub-
missions that support status quo districts. For example, sociologist
Robert Vargas of the University of Chicago has argued that some
Chicago neighborhoods have enjoyed political stability while oth-
ers have been consistently fragmented—not only split, but split
differently each time new lines are drawn. Vargas finds that "ap-
proximately 15% of city blocks have remained in the same political
districts since the 19th century, and that these spaces are spatially
clustered in neighborhoods home to local political, economic, and
administrative elites." [34] This reminds us that mechanisms that
favor the preservation of historical districts, though they may in
some cases promote community interests, can easily reproduce
inequality of representation.

Finally, public input processes that are aspirationally open to
all will necessarily draw from a self-selected and partial tranche
of the public, skewed toward the advantaged, well-resourced, and
well-organized. Prioritizing the interests of the most vocal groups
in the redistricting process may come at the expense of less well-
connected groups. Therefore, we emphasize that COI aggregation
is only as good as the outreach effort that supports COI collection:
in this case, pointing members of the public to the hearings or
collection portal and providing the resources and training to use
them effectively. Effective outreach must proactively engage a wide
range of stakeholders, so that the resulting maps do not over-weight
the interests of the most vocal or connected groups.

3 THE AGGREGATION PIPELINE
3.1 Goals of Aggregation and Scoring
The main aim of synthesizing individual maps is to make the data
surveyable, informative, and actionable for line-drawers. An impor-
tant secondary aim is to give the districts themselves amulti-layered
community character that has the potential to alert candidates (and
the representatives ultimately elected) to salient identities and needs
in their constituencies.10

9Per Wikipedia: "Astroturfing is the practice of masking the sponsors of a message
or organization (e.g., political, advertising, religious or public relations) to make it
appear as though it originates from and is supported by grassroots participants."
en.wikipedia.org/wiki/Astroturfing. Retrieved on August 15, 2021.
10Some authors have gone so far as to argue that electoral districts should only unite
similar communities, and that fusing unlike communities is as harmful as splitting

The key to usability is therefore to reduce the number of objects
and to provide the synthesized objects with simple descriptions. For
instance, the Michigan dataset included 1225 individual polygons,
far too many for the Citizens Redistricting Commission to weigh
individually as they drew the lines for 13 Congressional districts.
Since the submissions varied widely in their physical scope as well
as their narrative content and valence, informal aggregation was
extremely challenging. We sought to create a number of clusters
in the dozens rather than the hundreds. We chose to allow their
sizes to vary, but to design scores of COI preservation that handle
large clusters differently from small clusters, and that are equally
sensible for large districts and small districts.

Aggregating textual content poses its own difficulties. Some in-
dividual submissions had extremely sparse text while others ran to
thousands of words; style ranged from matter-of-fact to extremely
abstract and diffuse. In addition, proximal geography is no guar-
antee of harmonizing narratives or preferences. Conflicts between
similarly situated communities—or between community preserva-
tion and other redistricting criteria—are surely unavoidable.

For an example of the tension between expressed desires and
other good governance principles, some scholars have argued that
respecting the boundaries of large and politically homogeneous
communities of interest may come at the expense of drawing more
competitive districts [13]. More generally, preferences themselves
are often inconsistent within individuals as well as among collec-
tives: many members of the public simultaneously hold the abstract
desire for competitive districts and the particular desire to live in a
district made up mainly of others who share their own views and
outlook.

To illustrate conflicting content, consider an exurban area where
one major share of the submissions cites reasons to be districted
together with the nearby city, where residents go for employment
and services. At the same time, another large portion counsels
the reverse: that values and resource needs should keep the area
together with rural counties and distinct from the urban core. It is
impossible to follow both sets of preferences.

We have designed a two-tier aggregation process—first geo-
graphic, then semantic—in an effort to make trends visible and
legible without submerging thematic conflicts. Clustering decisions
were based on both supervised and unsupervised computational
methods. In this section we outline the methods.

3.2 Geoclusters
Each mapped area can be regarded as a collection of smaller geo-
graphic units. In the discussion to follow, we will generally denote
individual geographic units by lowercase letters 𝑎, 𝑏, . . .; mapped
areas (which are sets of geographic units) by uppercase letters
𝐴, 𝐵, . . .; and clusters by script letters A,B, . . . (which, in a slight
abuse of notation, are either sets of mapped areas or unions of
mapped areas). The main units for geoclustering are block groups,
which are defined and published by the U.S. Census Bureau every
ten years. The block groups partition each state and are specified in
shapefiles (as polygons, each with thousands of vertices). Clusters

coherent ones. Though there is some language in legal decisions to support this view,
there is also a slippery slope from this homogeneity principle to polarization and
"packing." We do not think that respect for communities in redistricting needs to, or
should, be read this way.

https://en.wikipedia.org/wiki/Astroturfing
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are meant to identify submissions that are overlapping or geograph-
ically proximal.11

We primarily work combinatorially, building a dual graph to the
selected geographic tiling (in this case, block groups) by defining
a node for every tile and connecting two nodes with an edge if
the tiles are rook-adjacent (i.e., if they have a shared boundary of
positive length). The rest of the pipeline can now be described in
terms of this graph, although the methods are mainly quite general
and can be applied in the continuous as well as the discrete setting.

We can now define the distance𝑑 (𝑎, 𝑏) between geographic units
to be the usual graph distance—the minimum length of an edge-
path from 𝑎 to 𝑏 in the graph. Since block groups are constructed
to have a generally similar population size, this notion of distance
accounts for the effects of population density in a way that ordinary
spatial distance (e.g., in miles) does not.12

We measured geographical dissimilarity between mapped areas
using the modified Hausdorff distance introduced by Dubuisson
and Jain [11], which is widely used to compare spatial regions (for
instance, in medical imaging). Given two areas 𝐴 and 𝐵, each of
which is a set of nodes in the geography dual graph (i.e., a collection
of block groups), the modified Hausdorff distance 𝑀𝐻𝐷 (𝐴, 𝐵) is
defined by

𝑑 (𝑎, 𝐵) = min
𝑏∈𝐵

𝑑 (𝑎, 𝑏), 𝑑 (𝐴, 𝐵) = 1
|𝐴|

∑︁
𝑎∈𝐴

𝑑 (𝑎, 𝐵),

𝑀𝐻𝐷 (𝐴, 𝐵) = max
(
𝑑 (𝐴, 𝐵), 𝑑 (𝐵,𝐴)

)
.

That is, the modified Hausdorff distance between two areas is the
average of the distances from each unit in one area to the closest unit
in the other. If𝐴 and 𝐵 overlap substantially or contain units that are
mostly close together, then𝑀𝐻𝐷 (𝐴, 𝐵) will be small. In comparison
with conventional Hausdorff distance, which uses maximum rather
than average to define 𝑑 (𝐴, 𝐵), modified Hausdorff distance is said
to better capture the similarity of overlapping regions and to be
more robust to outliers [11].13

Finally, the mapped areas were organized into geography-based
clusters using complete-linkage agglomerative hierarchical clus-
tering. The complete linkage defines modified Hausdorff distance
between two clusters A and B, regarded as sets of mapped areas,
to be

𝑀𝐻𝐷 (A,B) = max
𝐴∈A,𝐵∈B

𝑀𝐻𝐷 (𝐴, 𝐵) .

The agglomerative clustering algorithm begins by placing each area
in a cluster by itself, then repeatedly merges the twomost geograph-
ically similar clusters, according to modified Hausdorff distance.
The user decides where to stop the process (or, equivalently, where
to cut the associated dendrogram). In our case, we aimed for a final
set of 24-36 clusters, heuristically preferring to stop at a clustering
in which clusters supported by very few submissions were rare.
11There was a non-trivial technical hurdle to clear in converting all submissions to
2020 block groups, because the portals allowed for mapping in many different units,
including blocks, precincts, and block groups from 2010. Where necessary we relied
on the spatial transfer package called MAUP (github.com/mggg/maup).
12In terms of the scale of communities, a mile can be a long distance in a dense city
but a short distance in a sparse rural area.
13Though this distance does reward overlaps, it can nonetheless produce the following
effect: suppose area 𝐴 is very large, containing small area 𝐵 inside it, near its edge.
Small area𝐶 is close to 𝐵 but disjoint from𝐴. Then 𝐵 is regarded as closer to𝐶 despite
being a proper subset of 𝐴. We deem this feature of 𝑀𝐻𝐷 to be reasonable in this
application.

Figure 8 in Supplement C displays the dendrogram and cut height
for the Michigan dataset. A visual inspection shows that our choice
of 36 geoclusters for Michigan is robust in that it largely cuts long
line segments.

It is natural to ask about the stability and robustness of the
geoclusters obtained by this technique more generally, i.e.: Do the
geoclusters change substantially when we add or remove a small
number of submissions?14 To test this, we ran the geoclustering
procedure on 50 random subsamples of the Michigan dataset, each
containing 90% of the submissions, and compared the resulting
geoclusters to those obtained using all of the submissions.

For each subsample, let A1, . . . ,A𝑛 denote the restriction of the
original clusters to the subsample and B1, . . . ,B𝑛 be the newly-
computed clusters using only the subsampled data. For each 𝑖 =

1, . . . , 𝑛, the best match between A𝑖 and one of the B𝑗 was com-
puted two ways:

(1) Following Hennig [15], compute the maximum Jaccard simi-
larity 𝐽𝑖 = max𝑛

𝑗=1 𝐽 (A𝑖 ,B𝑗 ), where

𝐽 (A,B) = |A ∩ B|
|A ∪ B| .

(2) Compute MHD𝑖 = min𝑛
𝑗=1MHD(A𝑖 ,B𝑗 ), where

D(𝐴,B) = min
𝐵∈B

𝑀𝐻𝐷 (𝐴, 𝐵),

D(A,B) = 1
|A|

∑︁
𝐴∈A

D(𝐴,B),

MHD(A,B) = max
(
D(A,B),D(B,A)

)
.

This MHD is a second iteration of the modified Haus-
dorff distance construction, this time applied to the space of
mapped areas equipped with𝑀𝐻𝐷 .

Figures 2-3 show box-and-whiskers plots of 𝐽𝑖 andMHD𝑖 for
each of the 𝑛 = 36 geoclusters in Michigan, taken over the 50 sub-
sampling runs. We remark that Jaccard similarity may be somewhat
pessimistic: A may differ from B only by areas that are nearby
geographically—or even overlapping. In the figures we can observe
thatMHD𝑖 is generally on the order of 1 block group. For com-
parison, the diameter of the Michigan 2010 block group dual graph
is 86. We find this to be a highly satisfactory level of robustness.

After the initial geoclusters were formed, we conducted light
manual processing to (a) remove a very small number of anomalous
submissions, such as ones that paint the entire state or that are
highly disconnected; (b) merge clusters that contained an especially
small number of submissions into similar neighboring clusters; and
(c) designate clusters that contained a large number of submissions
as candidates for splitting into sub-clusters.

3.3 Semantic Subclusters
The next step in the methodology calls for using the textual content
of the submissions to summarize each cluster and as a means to
split the large clusters.

We first attempted to use off-the-shelf natural language pro-
cessing tools (described in Supplement A), but found the results
unsatisfying. We then designated a team to read many submissions
14One may equally well ask whether the final product is very sensitive to the choice
of the number of clusters, which would be an interesting question for future work.

http://github.com/mggg/maup
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Figure 2: Maximizing J: How different are the Michigan clus-
terings built froma random90% of the dataset, whenmatched
to original clusters by Jaccard similarity, as in (1)? 𝑥 axis is
the cluster number from the original clustering; 𝑦 axis shows
1 − 𝐽 , providing a measure of dissimilarity.
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Figure 3: Minimizing MHD: Same as above, but for MHD
matching, as in (2). 𝑦 axis is now in units of graph distance.

and develop a list of a few dozen thematic labels to use for manual
classification.15 Examples include urban, K-12, affordability, etc.
(see Supplement B).

These labels then served as a foundation to build a metric for
semantic similarity between submissions. We used the intersection-
over-union score for the binary indicators, which wewill again refer
to as Jaccard similarity, to measure the semantic similarity across
submissions. Namely, the score 𝐽 (𝐴, 𝐵) of similarity for two submis-
sions 𝐴, 𝐵 is the number of labels possessed by both submissions
divided by the number of labels possessed by either.

Within a larger geocluster, we looked for a splitting into two or
three sub-clusters that would possess greater within-group simi-
larity than between-group similarity. We used a standard style of
local-search Markov chain to start with arbitrary groupings and
improve them over a short run. The goal was to simultaneously
drive down the intra-cluster geographic distances and drive up the
intra-cluster semantic similarity. (See Figure 4.)

15Our team consisted of about a dozen human labelers working together with light
training and some conversation. This team reviewed the submissions with the help of
an annotation tool that would highlight keywords from a long list of about 100 and
offer the user push-button access to the short list of labels, which could be selected in
any combination.

Figure 4: Trace plots of geographic and semantic similarity
scores over time with 𝛽 = 10 in the Grand Rapids geocluster
in Michigan.

Consider a fixed set A of submissions that define a particu-
lar geocluster. A candidate grouping can be denoted (𝐶1, . . . ,𝐶𝑘 ),
where 𝐶1 ⊔ · · · ⊔ 𝐶𝑘 = A. For each cluster that was selected for
subclustering, we fixed a choice of 𝑘 = 2 or 𝑘 = 3 subclusters (or
bins) based on the volume and diversity of submissions. We defined
geographic and semantic scores 𝑔(C), 𝜎 (C) (to assess the degree
to which entries in the same bin were similar) via

𝑔(𝐶1, . . . ,𝐶𝑘 ) =
𝑘∑︁
𝑖=1

∑︁
𝐴,𝐵∈𝐶𝑖

𝑀𝐻𝐷 (𝐴, 𝐵)

and 𝜎 (𝐶1, . . . ,𝐶𝑘 ) =
𝑘∑︁
𝑖=1

∑︁
𝐴,𝐵∈𝐶𝑖

𝐽 (𝐴, 𝐵),

where 𝑀𝐻𝐷 is the modified Hausdorff distance described above
and 𝐽 is the Jaccard similarity score. Therefore, a good grouping
has a low 𝑔 and high 𝜎 .
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At each step of the Markov chain, a new partition is proposed by
flipping the sub-cluster assignment of a single submission at ran-
dom. If the new proposed sub-clustering (𝐶 ′

1, . . . ,𝐶
′
𝑘
) is at least as

good as the current state (𝐶1, . . . ,𝐶𝑘 ) in both scores, it is definitely
accepted; otherwise it is accepted with probability

exp
(
−𝛽
𝑀

)
, for 𝑀 = min

(
𝑔(𝐶)
𝑔(𝐶 ′) ,

𝜎 (𝐶 ′)
𝜎 (𝐶)

)
.

Here, 𝛽 is a temperature parameter for the chain that can be tuned
to improve performance.16

Figure 4 compares the behavior of this multi-objective chain
to alternatives that optimize solely with respect to geographic or
semantic similarity. The comparison is favorable for the method.

4 CLUSTERS AND SCORING
4.1 Basic Statistics on the Clusterings
One simple way to survey the outputs of the clustering and sub-
clustering process is to examine the population, the land area, and
the number of supporting submissions by cluster. This is shown
for Michigan in Figures 5; corresponding figures for Ohio and Wis-
consin can be found in Supplement C. The figures show that most
clusters in Missouri contain 0-10% of the population of the state,
while the range in Michigan for most clusters is 0-25%. The land
area also varies widely.
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Figure 5: Population share of each cluster in Michigan (plot-
ted on log scale) compared to its share of the statewide area.
Circles are sized according to the number of total submis-
sions in each cluster.

Certain features of the underlying collected data are visible. In
Michigan, cluster C9 has half of the state’s population, while be-
ing supported by under 20 submissions. This reflects the fact that
several members of the public painted all of Detroit (and some
16Temperature is a parameter in a very well-studied family of optimization techniques
known as simulated annealing. Broadly speaking, optimization algorithms can alternate
between periods of running hot (unconstrained) and periods of cooling (tightening the
constraints) to facilitate an explore-and-exploit regime. See [10] for an introduction in
the context of redistricting.

surrounding terrain) as a single community of interest—possibly
not in keeping with the more granular needs of the redistricting
commission, but not in any way against the rules.17 Likewise, C33
(Calhoun-Jackson) is extremely large in all dimensions; we chose
to split it into three subclusters to create a more manageable final
product. However, the unmistakable overlaps in the supporting
areas made it hard for the geoclustering step to find a finer splitting.
The text can be seen to have many overlaps as well, suggesting that
this is likely the result of a coordinated campaign to influence the
COI process of the commission.

The supplemental material contains a set of plots (Figure 11)
showing an unexpected feature of the clusterings: there is a strik-
ingly clear log-linear pattern in all four states when the clusters are
reordered by population rank. In future work, it would be very in-
teresting to explore whether this is more attributable to the method
or to the input data.

4.2 Scoring Plans Against COI Clusters
Next we briefly discuss the creation of a score to measure the degree
to which a districting plan (a partition of a state) might be said to
"respect" a set of COI clusters.18

The most naive approach would be simply to count how many
clusters are intact (that is, not split between districts; equivalently,
having nodes which all have the same district assignment). How-
ever, this will clearly fail to be informative when clusters are larger
in population than districts are mandated to be—as they often were
in our datasets—which rules out the possibility of intactness.

Instead, we begin by flattening each cluster or sub-cluster to
a polygon that is the union of the involved geo-units. Next, set a
threshold value 0 < 𝑇 < 1 for intactness and say that one region𝐴 is
𝑇 -contained in another region 𝐵 if at least𝑇 share of the population
of 𝐴 is within 𝐵. We might consider a small cluster to be respected
if enough of its population is assigned to a single district—that is,
if it is 𝑇 -contained in a single district. For a large cluster, on the
other hand, respect for its meaningful community status might
entail having a large number of districts be 𝑇 -contained within the
cluster. For example, consider a large-area cluster that runs along a
lakefront border of the state and discusses interests in tourism and
environmental issues. It would be desirable to have several state
House districts be drawn totally within such a region.

For a given (plan,clustering) pair, wewill award clusterCwhichever
score is higher: the binary indicator of whether the cluster is 𝑇 -
contained in a district, or the number of districts𝑇 -contained in the
cluster (divided by the maximum number of districts that could the-
oretically fit in the cluster). This is then summed over the clusters
to get an overall score for how well the plan respects the clustering.

This creates a score of concordance between a districting plan
and a COI clustering that depends on the threshold parameter 𝑇 ,
rising to a maximum of 𝑘 (the number of clusters) as 𝑇 → 0 and
dropping to a more modest maximum achievable value (which de-
pends on the data) as 𝑇 → 1. In this way, a user does not need to

17It is also notable that Michigan C9, the Western Wayne County cluster, contains
several large-area maps devoted to describing the urban-rural differences to the West
of Detroit. The situation is similar with Missouri C1 (Greater St. Louis) and C13 (Greater
Kansas City).
18For a hands-on look at such a score, we have provided an interactive tool available
at desmos.com/calculator/gp5y3lflt2.

https://www.desmos.com/calculator/gp5y3lflt2
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Figure 6: Trace plots for varying values of the threshold pa-
rameter 𝑇 to score three competing Congressional plans in
Wisconsin: the legislative proposal SB622, its predecessor
from ten years prior, and amapproposed by an outside group.

hard-code an arbitrary threshold but can survey the comparison as
a COI profile, with 𝑇 varying. To illustrate this, Figure 6 shows the
COI profiles for three different Congressional plans scored against
the 36 clusters in Wisconsin.19 We see that the "MathSci" con-
gressional plan generally respects the COI clusters better than the
benchmark plan "Previous" or the legislature’s proposed replace-
ment plan "SB622." This would be obscured if a fixed threshold like
𝑇 = .8 or 𝑇 = .94 had been chosen.

5 ACCESSIBILITY OF DATA
To ensure the accessibility of our processed dataset by varied stake-
holders including mapmakers, researchers, and all members of the
public, we have published data for Michigan, Missouri, Ohio, and
Wisconsin in three primary formats. For each state in our dataset,
the repos contain (1) a summary shapefile which flattens each
geocluster into a polygon and (2) a shapefile containing individ-
ual polygons for each COI. We also have provided (3) complete
databases of geographic and text submissions for each state.20

Those sources are suitable for further technical analysis via GIS
and/or Python tools. We have also developed a visual interface
within Districtr to make our analysis accessible to the general
public and policymakers.21 This Communities tool integrates COI
exploration with redistricting, allowing users to simultaneously
draw districts and visualize the geographic boundaries and support-
ing information for each COI (sub)cluster. An example in Michigan
is shown in Figure 7.
19The figure is reproduced from the expert report of Moon Duchin in Johnson v. Wis.
Elections Comm’n, No. 2021AP1450-OA, 2022 WL 621082 (Wis. Mar. 3, 2022).
20The Python pipeline used for our analysis, including raw data, can be found at
github.com/mggg/coi-states. The processed dataset described here is available at
github.com/mggg/coi-products.
21To access the Districtr visualizations, visit one of the state landing pages

• districtr.org/michigan
• districtr.org/missouri

• districtr.org/ohio
• districtr.org/wisconsin

and select a mapping module. Then navigate to the "Communities" tab.

Figure 7: Subclusters C18-1 and C18-2 in Michigan, over-
lapping in the textured area . Though the subclusters cover
near-identical regions, they are semantically distinct.

6 CONCLUSIONS AND FUTURE DIRECTIONS
This paper represents one systematic effort at collection and ag-
gregation, but there are many directions for future scientific explo-
ration. Here we highlight ideas related to both the collection and
aggregation process of community of interest data.

The protocol described here could clearly benefit from further
stability testing (for instance, to see whether the semantic splits
are robust) and from experimenting with variations in the post-
processing steps.

Another promising direction of inquiry would be, rather than
geographic clustering followed by semantic sub-clustering, to seek
to handle spatial and text data simultaneously under the broad
umbrella of biclustering. Here is one sketch of an approach. We
can represent our data as a matrix, with one geographic unit per
row and one topic tag per column, with a score representing how
closely the dataset relates each geographic unit with a particular
tag. Patterns in this matrix carry information about what interests
matter where. Techniques for biclustering are well studied in the
biological literature as a way to understand which groups of genes
are correlated with biological conditions in the organism; see [20]
for a survey of this topic. However, biclustering for geographic and
textual data is a new application.

Finally, no amount of cleverness in clustering and processing can
fully control for data quality shortfalls. One potentially valuable
model would be for states to recruit and train a small interview staff
to manage map intake over a key period of public input. Perhaps
the strongest lesson learned from this experiment in synthesizing
highly self-directed mapping is that a small imposition of struc-
ture on the front end would enormously reduce the challenges in
meaningful aggregation on the back end.
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A ATTEMPTED NATURAL LANGUAGE
PROCESSING APPROACHES

We attempted to apply several popular methods for text classifi-
cation and topic modeling—including, but not limited to, latent
Dirichlet allocation and bespoke keyword-based analysis—to text
accompanying COI submissions. However, we found that these
methods did not produce particularly meaningful clusterings. We
hypothesize that this is attributable to several properties of the COI
datasets:

(1) Size.At the time of aggregation, our largest state-level dataset
contained over 1200 submissions, many of which included
minimal text; high-quality natural language processing (NLP)
models are typically trained or tuned on datasets that are
orders of magnitude larger.

(2) Semantic blurriness. Broadly speaking, state-of-the-art
text classification and topic modeling methods perform best
when applied to datasets that can be carved at obvious cat-
egorical joints. In contrast, all text in the COI datasets es-
sentially pertains to redistricting. Picking out subtle cate-
gorical differences between COI submissions—which often
span multiple redistricting subtopics and use idiosyncratic or
ironic phrasing to complain about perceived political slights
and advocate for regionally specific policies—is a subtle and
ambiguous task for expert human labelers and therefore
a near-impossible task for a simple keyword-based model.
This holds even in a regime where topics are seeded with
carefully selected keywords.

(3) Named entities.We hoped that applying basic NLP tech-
niques to COI submissions would produce clusters with dis-
tinct themes corresponding to varying community concerns:
for instance, one cluster might primarily contain submis-
sions related to education, while another might contain sub-
missions related to industry. However, we found that naive
clustering algorithms tended to find commonalities along ge-
ographical lines, rendering the NLP-based clusters somewhat
redundant with respect to our geographic clusters. This is
likely because of the overpowering appearance of regionally
specific named entities (for instance, city, town, and school
names) in the COI submissions.

These problems are somewhat tractable. We found that existing
named recognition algorithms in spaCy [16] are reasonably ef-
fective at identifying (and therefore filtering out) the names of
municipalities. We anticipate that by the next decennial Census,
improved COI collection processes will yield larger datasets, and
off-the-shelf algorithms for topic modeling and text classification
will be more accurate and easy to use for non-experts. Nonetheless,
we caution against the naive application of NLP-based clustering
and interpretation—setting aside data quality issues, we found that
constructing lists of seed words for topics or otherwise guiding a
topic modeling algorithm towards actionable and interpretable top-
ics required normative judgments that were less direct, auditable,
and transparent than those required for manual semantic clustering.

B SEMANTIC LABELS
After surveying a large sample of submissions, our labeling team
came up with the following coarse content labels for what public
mappers indicated as being important about their neighborhood or
region. Each had several dozen related keywords that triggered the
suggestion of that label in our annotation tool, which could then be
confirmed by the team member reviewing the submission. These
labels were the basis of semantic similarity scoring.

• Agriculture
• Cities
• Community engagement
• Cost of living – Services – Healthcare
• Culture
• Diversity
• Economy – Commerce – Industry
• Environment
• Ideology
• Infrastructure
• Elderly
• Environment
• Family – Children
• K12
• Named neighborhood
• NIMBY
• Policing
• Poverty
• Recreation – Tourism
• Religion
• Suburbs
• Technology
• University
• Violence
• Vulnerable populations



SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chambers and Duchin, et al.

C FURTHER VISUALIZATIONS
Michigan andMissouri population-versus-area plots were presented
above; the other two aggregation states, Ohio and Wisconsin, are
shown here. In addition, we show that rank-ordered population
statistics consistently exhibit a log-linear pattern.

Figure 8: Dendrogram of geoclusters from Michigan submis-
sions. Colors and dashed line show where it was cut. The 𝑦
axis is compressed above 25.
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Figure 9: Population, area, and # of Ohio submissions.
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Figure 10: Population, area, and # of Wisconsin submissions.
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Figure 11: A surprising log-linearity trend in the total popu-
lations of the raw geoclusters (MI, MO, OH,WI, respectively).
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