
History Oblivious Route Recovery on Road Networks
Theodoros Chondrogiannis
University of Konstanz, Germany

theodoros.chondrogiannis@uni-konstanz.de

Johann Bornholdt
University of Konstanz, Germany
johann.bornholdt@uni-konstanz.de

Panagiotis Bouros
Johannes Gutenberg University Mainz, Germany

bouros@uni-mainz.de

Michael Grossniklaus
University of Konstanz, Germany

michael.grossniklaus@uni-konstanz.de

ABSTRACT
The availability of GPS sensors in vehicles has enabled the collec-
tion of trajectory data that can be utilized to improve the quality of
location-based services. However, mostly due to privacy concerns,
many data sets are published without containing entire trajectories
but only the source location, the target location and the duration
of recorded trips. In this paper, we study the problem of route
recovery from trip data. In contrast to recent works that assume
the availability of entire trajectories for past trips, we investigate
methods for route recovery in the absence of such historical data,
and we present methods for recovering the single most likely route
that a vehicle has travelled. Furthermore, we introduce the region
recovery problem that aims at determining a small region that is
very likely to contain the traveled route. We also introduce region
recovery methods for both single trips and trip groups. In a com-
prehensive experimental evaluation, we study the efficacy of our
solutions for both the route and the region recovery problem. For
the region recovery problem in particular, we demonstrate the pros
and cons of each method along with the trade-off they offer be-
tween the size of the recovered region and the likelihood that the
region contains the actual route.

CCS CONCEPTS
• Mathematics of computing→ Paths and connectivity prob-
lems; • Information systems→ Mobile information processing
systems; • Applied computing→ Data recovery.

KEYWORDS
route recovery, trajectories, mobility analysis

ACM Reference Format:
Theodoros Chondrogiannis, Johann Bornholdt, Panagiotis Bouros, andMichael
Grossniklaus. 2022. History Oblivious Route Recovery on Road Networks.
In The 30th International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3557915.3560979

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560979

1 INTRODUCTION
The proliferation of diverse GPS-enabled devices has contributed to
the generation of large volumes of trajectory data. Towards provid-
ing better and more advanced location-based services, the analysis
of trajectory data has received significant attention both from the
academic community and industry. Many organizations, especially
taxi operators, have published large data sets of trajectories that
have been used for the development of solutions in a variety of
tasks, e.g., vehicle routing [7], road traffic forecasting [16], and
travel time estimation [1].

However, especially due to privacy concerns [32], many vehicle
fleet operators do not publish complete, accurate trajectory data.
Instead, they publish trip data, i.e., data that report only the starting
location, the destination location, the start time and the end time of
a trip [31]. Furthermore, even for published trajectory data, there
exists the problem of low sampling rate, which results in many
consecutively sampled locations being far apart from each other.
In such cases, it is unclear which route out of several possible ones
the vehicle has followed [19].

Due to the aforementioned scenarios, the problem of route re-
covery has attracted significant attention in the last decade. Given
the source location, the target location, and the duration of a trip,
the route recovery problem aims at computing the actual route
of the trip at hand, as shown in Figure 1a. Existing solutions that
tackle the route recovery problem are split into two categories: (1)
methods that have been developed in the context of map-matching
and aim at recovering routes relying solely on empirical observa-
tions [18, 28, 34] and (2) methods that utilize historical informa-
tion, i.e., past trajectories [17, 33]. On the one hand, map-matching
methods have focused on sparse trajectories and require the two
locations for which a route must be recovered to be fairly close.
As a result, these methods are not applicable for route recovery
from trip data. On the other hand, regarding methods in the second
category, historical information is not always available.

In this paper, we first revisit the route recovery problem and we
investigate solutions that operate in the absence of any historical
information. More specifically, we utilize recent route planning
methods that compute paths more likely to be selected by drivers.
For example, one may assume that a driver always chooses the
path that yields the lowest travel time under optimal conditions,
i.e., no traffic congestion, and therefore use the fastest path as the
recovered route, as shown in Figure 1b.

However, due to the limited information available, recovering a
single route that exactly matches the route of a given trip is unlikely.
As such, we introduce the region recovery problem that aims at
computing a small sub-network that potentially contains the actual

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3557915.3560979
https://doi.org/10.1145/3557915.3560979
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557915.3560979&domain=pdf&date_stamp=2022-11-22

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chondrogiannis, Bornholdt, Bouros, and Grossniklaus

𝑠

𝑡

(a) Original trajectory

𝑠

𝑡

(b) Fastest path

𝑠

𝑡

(c) Route containment region

𝑠

𝑡

(d) PenPE-sky

Figure 1: Examples of recovered routes and recovered regions.

route. We then introduce a framework that employs a number of
algorithmic solutions, including novel ones, to tackle the region
recovery problem. Our solutions aim at balancing accuracy, i.e., the
likelihood that the recovered region contains the actual route, with
the size of the recovered region. For instance, the recovered region
of Figure 1c guarantees that the actual route is contained, but it is
too large, while the recovered region of Figure 1d contains part of
the actual route but is significantly smaller.

Our contributions in this paper are as follows:
• We study the route recovery problem proposing two solu-
tions; the first based on existing work [25] on near-fastest
routing and a novel second that considers the changes be-
tween roads of different types (Section 4).
• We introduce the region recovery problem that is to compute
a sub-network instead of a single route, and we present a
framework for region recovery that first enumerates a set
of candidate routes and then selects a meaningful subset of
them to form the recovered region (Section 5).
• To improve the accuracy of the region recovery computation,
we also devise an approach that receives groups of trips as
input. This approach allows information sharing between the
route recovery processes for all trips in a group (Section 6).
• Our comprehensive experimental evaluation on real-world
data shows that: (1) taking into account changes between
roads of different types can benefit route recovery, and (2) our
region recovery methods offer different trade-offs between
recovery accuracy and recovered region size (Section 7).

We begin in the next section by providing the necessary back-
ground and definitions for terms used throughout this paper. Sec-
tion 3 provides an overview of the related work, while Section 8
gives our concluding remarks alongwith directions for future work.

2 BACKGROUND & PROBLEM DEFINITIONS
A road network 𝐺 = (𝑁, 𝐸) is a directed weighted graph with a
set of nodes 𝑁 representing road intersections, and a set of edges
𝐸 ⊆ 𝑁 × 𝑁 representing road segments. Every edge (𝑛𝑖 , 𝑛 𝑗) ∈ 𝐸 of
a road network 𝐺 is assigned a positive weight that captures the
cost of moving from node 𝑛𝑖 to node 𝑛 𝑗 . While, this weight can
represent any non-negative cost, throughout this paper, we consider
the travel time𝑤𝜏 (𝑛𝑖 , 𝑛 𝑗) as the default edge weight. Given a set of
edges 𝐸 ′ ⊆ 𝐸 the sum of the weights of the edges in 𝐸 ′ is denoted

by ℓ𝜏 (𝐸 ′). Furthermore, each edge is assigned a label that indicates
the type of the road the edge represents, e.g., highway, primary,
residential, etc., a speed limit that indicates the maximum speed
with which a vehicle is allowed to travel through the edge, and a
list of (𝑥,𝑦) coordinates that represent the geometry of the edge.
As we consider no traffic information, the travel time of an edge is
given by its length divided by its speed limit.

A route in a road network is a (simple) path 𝑝 (𝑠 → 𝑡) from a
source node 𝑠 to a target node 𝑡 that is a connected and cycle-free
sequence of edges ⟨(𝑠, 𝑛𝑖), . . . , (𝑛 𝑗 , 𝑡)⟩. The travel time ℓ𝜏 (𝑝) of a
path 𝑝 is the sum of the weights (travel times) of all its contained
edges. We refer to the path(s) 𝑝fp (𝑠 → 𝑡) that yields the minimum
travel time between 𝑠 and 𝑡 as the fastest path(s). Furthermore, the
term near-fastest path has been used in the bibliography [6, 25, 26]
to refer to paths that have a bounded travel time of 𝛼 ·ℓ (𝑝fp (𝑠 → 𝑡))
where 𝛼 > 1.

A (GPS) trajectory T of a moving object is a sequence of sample
points ⟨{𝜋1, 𝜏1} . . . {𝜋𝑚, 𝜏𝑚}⟩ where 𝜋𝑖 is a location (𝑥𝑖 , 𝑦𝑖) with
longitude-latitude coordinates, and every 𝜏 is a timestamp. Each
sample point in the sequence indicates the location 𝜋𝑖 of the moving
object at timestamp 𝜏𝑖 . Given a trajectory T and a road network
𝐺 = (𝑁, 𝐸), the map-matching process aims at finding a route 𝑝T
in 𝐺 that matches with the actual route that the moving object
has followed. A trip 𝑇 is a sequence of only two sample points
⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩ indicating only the source location and time and
the target location and time of the moving object. The duration of
a trip 𝑇 is 𝑑𝑢𝑟 (𝑇) = 𝜏𝑡 − 𝜏𝑠 .

Problem Definitions. In this paper, we first study the route re-
covery problem, which given a query trip 𝑇 aims at retrieving a
single route that matches the actual route for𝑇 . The route recovery
problem is formally captured by Definition 2.1.

Definition 2.1 (Route Recovery Problem). Given a road network
𝐺 = (𝑁, 𝐸) and a past trip𝑇 = ⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩ of a moving object
𝑜 , the route recovery problem aims at recovering the route 𝑝 that 𝑜
has traveled.

While our aim is to find a single route that matches the given
trip, with only such limited information available, it is very difficult
to perform such a task with high accuracy. As such, we introduce a
variant of the route recovery problem namely the region recovery
problem, formally captured by Definition 2.2.

History Oblivious Route Recovery on Road Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Definition 2.2 (Region Recovery Problem). Given a road network
𝐺 = (𝑁, 𝐸) and a past trip𝑇 = ⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩ of a moving object
𝑜 , the region recovery problem aims at recovering a region, i.e., a
sub-network 𝐺 ′ of 𝐺 , that contains the route 𝑝 that 𝑜 has traveled.

3 RELATED WORK
The route recovery problem has recently attracted significant at-
tention. However, existing works consider a different setup to ours.
Furthermore, all these works focus on recovering a single route
per trip. To the best of our knowledge, our work is the first one
that investigates the recovery of a region instead of a single route.
Following from the work of Wu et al. [33], we categorize existing
works on the route recovery problem in two groups: (1) methods
that are tailored to map-matching and aim at recovering routes
without utilizing historical information, and (2) methods that uti-
lize historical information, i.e., entire past trajectories, and use it
to infer the most probable taken route using statistical methods or
machine-learning.

Route Recovery for Map-matching. Most existing methods for
map-matching focus on the spatial similarity of a trajectory with
the edges of the road network [8]. However, when the input tra-
jectory is sparse, i.e., consecutive coordinates are far apart, most
map-matching methods fail to find a matching route. To address
this problem, many map-matching algorithms simply compute the
fastest path between coordinates that are far apart [21, 30, 35].
However, since one cannot expect drivers to always choose the
fastest path [10], other approaches compute paths that minimize
costs determined based on empirical observations. Zheng et al. [37]
use geometric and topological information of the road network to
determine edge weights. Rahmani and Koutsopoulos [24] infer edge
weights using a heuristic function that considers delays at traffic
lights and left turns.

Route Recovery using Historical Data. Methods that utilize
historical trajectories usually train a machine-learning model to
learn spatial transition probabilities. Jagadeesh and Srikanthan [14]
employ a hidden Markov model that learns transition patterns.
Zheng et al. [36] model the spatial transition probability between
adjacent edges in a road network with one-order Markov model.
Banerjee et al. [4] use Gibbs sampling, inwhich the spatial transition
probabilities are modeled using high-order Markov chains. Wu
et al. [33] employ inverse reinforcement learning to capture the
spatial transition patterns. Due to the fact that we do not assume
the availability of historical trajectory data, the aforementioned
works are not applicable on our problem setting.

4 SINGLE ROUTE RECOVERY
The most straightforward way to assign a route to a given query
trip is to compute the fastest path. Assuming that drivers abide by
the legal speed limits, the fastest path is the path that yields the
lowest travel time between two locations in a road network under
optimal conditions, i.e., no traffic. As the fastest path has been used
by many map-matching methods for route recovery [21, 30, 35], we
include it in our evaluation as a baseline.

Simplest Near-fastest Path. Our first approach to select a route
other than the fastest path is based on the work of Sacharidis and

0 20 40 60 80 100
length %

residential
tertiary

secondary
primary

trunk
motorway

Figure 2: Road type changes of two sample routes.

Bouros [25] on the computation of paths that are easy for drivers to
follow. In particular, one of the presented problems deals with the
computation of a route that is not much slower than the fastest path,
but has low complexity, i.e., involves a small amount of turns. More
specifically, given a source 𝑠 and a target 𝑡 , the simplest near-fastest
route is the route that has the lowest number of turns among all near-
fastest routes from 𝑠 to 𝑡 . Following from the work of Sacharidis
and Bouros, we consider the near-fastest route with minimum turns
(Min-Turns) as a potential solution for the route recovery problem.
During the route recovery process, the travel time of the near-
fastest path computed by Min-Turns is bounded by the ground
truth duration of the given query trip.

Minimum Road Hierarchy Peaks. We now introduce our sec-
ond approach to choose a path other than the fastest path for the
route recovery process. Our approach is based on the observation
that road networks are usually characterized by an inherent hi-
erarchical/highway structure [27]. During route planning, roads
such as motorways that are multi-lane and with high speed limits
are usually given priority over, e.g., residential roads. This is be-
cause they allow faster traveling and are less likely to be affected
by traffic [23]. However, to ensure optimality, the fastest path may
contain switches from roads of higher priority to roads of lower
priority. Hence, even though the fastest path yields the lowest travel
time under optimal conditions, human drivers may prefer a slightly
sub-optimal route. We make the assumption that drivers choose a
path that (1) is not much longer than the fastest path, (2) uses roads
of high priority as much as possible, and (3) switches to roads with
low priority only when it is necessary to reach their destination.

Consider the example in Figure 2, which displays the distribution
of the lengths of two routes between the same two locations in the
city of Porto over the road types ranked by priority, from highest to
lowest. Red indicates the distribution of the length of the fastest path
as computed by an algorithm, while blue indicates the distribution
of the length of a path with slightly higher duration as chosen by
an actual driver. At the beginning of the fastest path, we observe a
change from a tertiary to a residential and then back to a tertiary
road, while the slower path does not have such a switch. We argue
that a driver is unlikely to decide to return to a road with lower
priority, as driving in such a road can cause potential delays.

To quantify the aforementioned criteria, we measure the road
hierarchy peaks in the road type hierarchy of a given route. A peak
is defined as a sequence of two switches between road types of
lower priority to higher priority and back. Consider again our ex-
ample in Figure 2. The route represented by the red distribution

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chondrogiannis, Bornholdt, Bouros, and Grossniklaus

has two road hierarchy peaks, i.e., residential→tertiary→residential
and secondary→primary→tertiary, while the route represented
by the blue distribution has only one road hierarchy peak, i.e., sec-
ondary→primary→tertiary. Based on the concept of road hierarchy
peaks, we consider the near-fastest path with minimum road hierar-
chy peaks (Min-HP) as a potential solution for the route recovery
problem. Similar to Min-Turns, during the route recovery process,
the travel time of Min-HP is bounded by the recorded duration of
the query trip.

5 REGION RECOVERY
Despite the use of empirical criteria, recovering the exact route for
a given trip remains a very challenging task, as the choice of a route
by drivers depends on many factors including subjective ones. As
such, the efficacy of methods that recover a single route for a given
trip is limited, as shown by our experiments in Section 7. Even
methods that employ machine-learning models and use historical
data to train those models, have demonstrated limited efficacy in
recovering a single route [17, 33]. To this end, in this section, we
abandon the effort to recover a single route and tackle the region
recovery problem formally defined in Definition 2.2.

The most straightforward way to define a recovered region for
a trip 𝑇 is to extract the sub-network formed by the union of the
nodes and edges from all paths the travel time of which does not
exceed the recorded duration of 𝑇 . Following from the concept
of single-via paths [2] and assuming that drivers always abide by
the speed limit, we can compute a route containment region, i.e., a
sub-network that certainly contains the actual route.

Definition 5.1 (Route Containment Region). Let 𝐺 = (𝑁, 𝐸) be
a road network such that each edge 𝑒 ∈ 𝐸 is assigned a weight
representing its travel time. Given a trip 𝑇 = ⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩
where 𝜋𝑠 and 𝜋𝑡 are associated with nodes 𝑠, 𝑡 ∈ 𝑁 respectively, the
Route Containment Region of 𝑇 is the induced sub-network 𝐺 ′ =
(𝑁 ′, 𝐸 ′) of𝐺 such that ∀𝑛 ∈ 𝑁 ′ for the concatenation of the fastest
path from 𝑠 to 𝑛 and the fastest path from 𝑛 to 𝑡 , i.e., 𝑝 𝑓 𝑝 (𝑠→𝑛) ◦
𝑝 𝑓 𝑝 (𝑛→𝑡), we have ℓ (𝑝 𝑓 𝑝 (𝑠→𝑛) ◦ 𝑝 𝑓 𝑝 (𝑛→𝑡)) ≤ 𝑑𝑢𝑟 (𝑇).

While the route containment region is bound to contain the
actual route, something that we verified by conducting preliminary
experiments, in practice it may not be a useful result. Depending on
the difference between the travel time of the fastest path between
two nodes associated with a trip 𝑇 and the recorded duration of
𝑇 , the size of the route containment region may be very large.
Therefore, a compromise between the size of the recovered region
and the chances that the actual route of 𝑇 is contained is necessary.

To tackle the region recovery problem and achieve a compromise
between the size of the recovered region and the chances that
the region contains the actual route, we introduce the framework
shown in Figure 3. As input we consider a road network𝐺 = (𝑁, 𝐸)
and a query trip𝑇 = ⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩. The route recovery process
is performed in three steps. In the first step, the edges (𝑛𝑠𝑖 , 𝑛𝑠 𝑗)
and (𝑛𝑡𝑖 , 𝑛𝑡 𝑗) that are the closest ones to 𝜋𝑠 and 𝜋𝑡 , respectively,
are computed. Then, either 𝑛𝑠𝑖 or 𝑛𝑠 𝑗 is chosen as the source node
and either 𝑛𝑡𝑖 or 𝑛𝑡 𝑗 is chosen as the target node of the route to
be recovered. Note that the accuracy of the route recovery process
is not affected as long as we ensure that the two matched edges
are part of the recovered region. In the second step, our approach

Start
Road net. 𝐺 = (𝑁, 𝐸)

Query trip 𝑇

Trip matching

Candidate path enumeration

Selection of result set 𝑃

Result set 𝑃 Stop

Figure 3: Route recovery framework.

applies path enumeration to generate a number of candidate paths.
Finally, in the third step, our framework applies filtering methods
to select one or more paths out of the candidates that form the
result, i.e., the recovered region. In what follows, we elaborate on
the second and the third step of our framework.

5.1 Candidate Path Generation
Let 𝐺 = (𝑁, 𝐸) be a road network and 𝑠, 𝑡 ⊆ 𝑁 be two nodes
associated with the starting and the ending location of a query
trip 𝑇 = ⟨{𝜋𝑠 , 𝜏𝑠 }, {𝜋𝑡 , 𝜏𝑡 }⟩. A naive approach to compute a set of
candidate paths is to enumerate all near-fastest paths from 𝑠 to 𝑡
the duration of which does not exceed the trip duration 𝜏𝑡 − 𝜏𝑠 [6].
However, the computation of all near-fastest paths from 𝑠 to 𝑡 can
be prohibitively expensive. Furthermore, even if we accomplish this
task, the number of the enumerated paths can be excessively high
thus hindering the determination of any meaningful result. Hence,
in what follows we present two approaches to construct a small,
yet promising set of candidate paths.

Single-via Paths Enumeration (SvPE). Our first approach for
generating a set of candidate paths is to construct the single-via
paths [2]. Given a source node 𝑠 and a target node 𝑡 , the single-
via path of a node 𝑛 ∈ 𝑁 is the path formed by concatenating
the fastest path from 𝑠 to 𝑛 and the fastest path from 𝑛 to 𝑡 , i.e.,
𝑝 𝑓 𝑝 (𝑠 → 𝑛) ◦ 𝑝 𝑓 𝑝 (𝑛 → 𝑡). By definition, the single-via path of a
node 𝑛 is the fastest possible path that connects 𝑠 and 𝑡 through
𝑛. Naturally, there is no need to enumerate all single-via paths,
i.e., we consider only single-via paths the travel-time of which
does not exceed 𝑑𝑢𝑟 (𝑇). To compute the subset of single-via paths
that do not exceed the trip duration, we first execute Dijkstra’s
algorithm [11] twice to compute two fastest path trees, one from
𝑠 to every node 𝑛 ∈ 𝑁 and a reverse one from every node 𝑛 ∈ 𝑁
to 𝑡 , and we compute sets 𝑁𝑠 ⊆ 𝑁 and 𝑁𝑡 ⊆ 𝑁 such that ∀𝑛 ∈ 𝑁𝑠 :
ℓ (𝑝 𝑓 𝑝 (𝑠 → 𝑛)) ≤ 𝑑𝑢𝑟 (𝑇) and ∀𝑛 ∈ 𝑁𝑡 : 𝑝 𝑓 𝑝 (𝑛 → 𝑡) ≤ 𝑑𝑢𝑟 (𝑇). We
then retrieve the single-via path of every node 𝑛 ∈ 𝑁𝑠 ∩ 𝑁𝑡 where
ℓ (𝑝 𝑓 𝑝 (𝑠 → 𝑛)) + ℓ (𝑝 𝑓 𝑝 (𝑛 → 𝑡)) ≤ 𝑑𝑢𝑟 (𝑇). During the retrieval,
all non-simple single-via paths are excluded from the candidate set.

History Oblivious Route Recovery on Road Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Penalty-based Path Enumeration (PenPE). To develop our sec-
ond approach for enumerating candidate paths, we build upon the
Iterative Penalty Method (IPM) originally proposed by Johnson
et al. [15] and later improved in the context of alternative rout-
ing [3, 9, 13]. The main idea behind IPM is to compute paths by
repeatedly running a shortest/fastest path algorithm, e.g., Dijkstra’s
algorithm. Before each iteration, a penalty is applied on the weights
of the edges of each previously computed path. As a result, the
fastest path algorithm deviates from the previously computed path
and returns a different one (ideally) at each iteration.

The main shortcoming of IPM is that there is no intuition behind
the penalty applied in each iteration. Previous works either deter-
mine the penalty for each edge weight based on some predefined
constant [3, 13] or use randomization. This leads to unpredictable
results, i.e., a very large penalty would result in very few and long
paths, whereas a very small penalty would require the algorithm to
execute more iterations increasing both the number of computed
paths and the computational cost. To address this shortcoming and
employ edge weight penalization for computing candidate paths,
we take into account the recorded duration of the query trip.

Our PenPE technique is based on the following assumption.
Given the recorded duration of a trip, assuming that the moving
object followed the fastest path in the network at the start time
of the trip, the cost of that fastest path has to be equal or greater
to the recorded duration. Therefore, for each computed path, the
penalty has to be distributed proportionally to the weight of the
edges while ensuring that the cost of the path increases in order to
match the recorded duration. This process ensures that the cost of
each computed path will be approximately equal to the recorded
duration after the application of the penalty. Furthermore, in order
to ensure that paths computed during previous iterations are not
affected by penalties applied much later, the weight of each edge is
penalized only once. To this end, given a path 𝑝 computed during
an iteration, the penalty is

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑛𝑖 , 𝑛 𝑗) = (𝑑𝑢𝑟 (𝑇) − ℓ𝜏 (𝑝)) ·
𝑤𝜏 (𝑛𝑖 , 𝑛 𝑗)
ℓ𝜏 (𝐸𝑛𝑝)

where 𝐸𝑛𝑝 ⊆ 𝑝 is the set of edges in 𝑝 the weights of which have
not been penalized during previous iterations of the algorithm. This
iterative process is repeated until the cost of the fastest path com-
puted before the penalization exceeds the recorded duration or if
all edges on the computed path have already been penalized. Al-
gorithm 1 presents the pseudocode of our penalty-based candidate
path enumeration method.

5.2 Candidate Subset Selection
In what follows, we present three methods that enable the selection
of a meaningful subset from a given set of candidate routes. As this
step follows the process in Figure 3, these methods can be used in
combination with either path enumeration method of Section 5.1.

Local Optimality-based Path Filtering. Abraham et al. [2] pro-
posed local optimality as an objective criterion to evaluate whether
a given path is reasonable, i.e., does not involve unnecessary de-
tours. More specifically, let a path 𝑝 and a parameter𝑇 < ℓ (𝑝). Path
𝑝 is𝑇 -locally optimal, if every sub-path 𝑝 ′ of 𝑝 such that ℓ (𝑝 ′) > 𝑇

is a fastest path, and for the subpath 𝑝 ′′ of 𝑝 ′ obtained by removing

Algorithm 1: Penalty-based Path Enumeration
Input: Road network 𝐺 = (𝑁, 𝐸), source node 𝑠 , target

node 𝑡 , travel time upper bound 𝜏𝑢𝑏 , threshold 𝑐
Output: Path set 𝑃

1 𝑝 ← fastest_path (𝐺 ,𝑠 ,𝑡)
2 initialize 𝑃 ← {𝑝}
3 while 𝜏𝑢𝑏 − ℓ𝜏 (𝑝) > 𝑐 do
4 foreach edge (𝑛𝑖 , 𝑛 𝑗) ∈ 𝑝 do
5 𝐸𝑛𝑝 ← set of non-penalized edges of 𝑝
6 if (𝑛𝑖 , 𝑛 𝑗) has not been penalized then
7 𝜏𝑝𝑒𝑛 ← (𝜏𝑢𝑏 − ℓ𝜏 (𝑝)) · (𝑤𝜏 (𝑛𝑖 , 𝑛 𝑗)/ℓ𝜏 (𝐸𝑛𝑝))
8 𝑤𝜏 (𝑛𝑖 , 𝑛 𝑗) ← 𝑤𝜏 (𝑛𝑖 , 𝑛 𝑗) + 𝜏𝑝𝑒𝑛

9 𝑃 ← 𝑃 ∪ {𝑝}
10 𝑝 ← fastest_path (𝐺 ,𝑠 ,𝑡)
11 restore original edge weights𝑤𝜏

12 return 𝑃

the endpoints of 𝑝 ′ we have ℓ (𝑝 ′′) < 𝑇 . Since evaluating local opti-
mality is very hard, we employ the 𝑇 -test, a quick 2-approximation
scheme, to filter out candidate paths that are not locally optimal.
Abraham et al. [2] have shown that if a path 𝑝 passes the 𝑇 -test,
then it is 𝑇 -locally optimal.

Bicriteria Skyline. The Min-HP and Min-Turns methods we pre-
sented in Section 2 allow us to select out of a set of candidate routes
the one that minimizes some criterion other than the travel time.
However, any approach that chooses between routes that minimize
one out of multiple criteria, disregards any routes that offer a com-
promise. Hence, our second approach for filtering candidate paths
involves returning a set of routes such that no route is dominated
by another, i.e., a route dominates another if it is strictly better
in all considered criteria. Such a result is achieved by the skyline
operator [5, 22]. In short, having computed a set of candidate routes,
we define the recovered region by the subset of routes that are on
the skyline. Based on our experiments in Section 7, we compute
the skyline using two criteria, i.e., the travel time and the road
hierarchy peaks.

6 GROUP-BASED REGION RECOVERY
In this section, we present a novel approach that enables region
recovery over groups of trips. More specifically, we introduce group-
based path enumeration (GrPE), which takes as input a group of
trips and returns for each trip a set of candidate paths. The main
difference of GrPE to the methods presented in Section 5.1 is that
GrPE does not treat the trips in the input group as independent
events. GrPE considers trips as part of a group, e.g., grouped by
timestamp, where all trips are affected by the conditions of traffic
the same way. If GrPE makes an assumption about the travel time
of an edge of the road network, e.g., the actual travel time of the
edge is double the original one, then this assumption is taken into
account for the region recovery of all trips in the input group.

GrPE is based on the main idea behind PenPE for generating can-
didates. Let a road network 𝐺 = (𝑁, 𝐸) and a group of query trips
S = {𝑇1, . . . ,𝑇𝑚}. The region recovery process starts by computing

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chondrogiannis, Bornholdt, Bouros, and Grossniklaus

the fastest path between the pair of nodes 𝑠𝑖 , 𝑡𝑖 ∈ 𝑁 associated with
each trip 𝑇𝑖 ∈ S. However, the approach of PenPE for applying
a penalty on the weights of the edges of the computed paths is
applicable only when the computed paths share no edges. Recall
that during the region recovery for a query trip𝑇 , PenPE distributes
a penalty on the weights of edges of a computed path 𝑝 to make
the penalized travel time of 𝑝 equal to the recorded duration of 𝑇 .
This approach cannot be directly applied by GrPE. If two or more
computed paths share some edges, then the weights of those edges
have to be penalized by taking into account the recorded duration
of all related trips. More specifically, a penalty must be added on
the edge weights such that the penalized costs of all paths match
the recorded duration of each associated trip.

Towards addressing this issue, we employ a method for applying
a multiplicative penalty on the weights of the edges on computed
paths, in contrast to the additive penalty of PenPE. More specifically,
we model the problem of determining a penalty value as a system
of linear equations as follows. Given a set of computed paths 𝑃 we
first compute the set 𝐸𝑢 ⊂ 𝐸 which contains every edge 𝑒𝑖 ∈ 𝐸𝑢
that appears at least once on a path 𝑝 𝑗 ∈ 𝑃 . Then, for each path 𝑝 𝑗
associated with a trip 𝑇𝑗 , we construct an equation of the form:

𝑥1 · 𝑐 (𝑒1) + . . . + 𝑥 |𝐸𝑢 | · 𝑐 (𝑒 |𝐸𝑢 |) = 𝑑𝑢𝑟 (𝑇𝑗) .
where 𝑥𝑖 is the multiplicative penalty that is applied to each edge
and 𝑐 (𝑒𝑖) is either equal to the weight of edge 𝑒𝑖 if the edge lies on
the path 𝑝𝑖 or 0 otherwise, i.e.,

𝑐 (𝑒𝑖) =
{
𝑤𝜏 (𝑒𝑖), if 𝑒𝑖 ∈ 𝑝𝑖
0, otherwise.

Having constructed such an equation for each path, we now solve
the resulting system of linear equations to compute the penalties 𝑥𝑖 .
Obviously, such a system of linear equations is very unlikely to have
a unique solution and is more likely to be either underdetermined
or overdetermined. So, we employ the bounded-variable linear least
squares [29] algorithm to obtain an approximate solution with
small error. The algorithm also allows us to set both a lower bound
𝑐 (𝑒𝑖) ≥ 1 on the values of the variables to ensure that the penalty
can only increase an edge weight and an upper bound to ensure
that the penalized weights do not become unrealistically large.

Algorithm 2 presents the pseudocode of our GrPE approach. The
algorithm takes as input the road network 𝐺 , a set of query trips
𝑆 and an additional parameter 𝜖 which is used by the termination
condition. In Lines 1–7, the algorithm initializes the result map 𝑅

that stores a set of result paths for each trip in 𝑇𝑖 ∈ 𝑆 , and then
initializes each set with the fastest path between the 𝑠𝑜𝑢𝑟𝑐𝑒−𝑡𝑎𝑟𝑔𝑒𝑡
nodes associated with every 𝑇𝑖 . At the same time, the average
error, i.e., the average difference between the recorded duration
of a trip and the travel time of the fastest path, is computed. In
Lines 8–21, the iterative process to apply penalties and compute
more routes is executed. The determination and the application of
the penalty on the weights 𝑤𝜏 of the edges of the road network
takes place in Lines 10–15. First, the set of all edges 𝐸𝑝𝑒𝑛 that lie on
at least one path computed during the previous round are identified
in Lines 10–12. In Line 13, we execute the linear least squares
algorithm to determine the penalties for all edges in 𝐸𝑝𝑒𝑛 . The
weights of the edges are updated in Lines 14–15. Then, in Lines 16–
21 we proceed with the computation of the fastest path for each

Algorithm 2: Group-based Path Enumeration
Input: Road net. 𝐺 = (𝑁, 𝐸), Set of query trips

𝑆 = {𝑇1, . . . ,𝑇 |𝑆 |}
Output: Result map 𝑅 = ⟨𝑅 [𝑇1], . . . , 𝑅 [𝑇 |𝑆 |]⟩

1 𝑒𝑟𝑟𝑝𝑟𝑒𝑣 ← 0, 𝑒𝑟𝑟𝑠𝑢𝑚 ← 0
2 initialize result map 𝑅
3 foreach 𝑇𝑖 ∈ 𝑆 do
4 𝑝 = fastest_path(𝐺,𝑇𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒,𝑇𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡)
5 𝑅 [𝑇𝑖] ← 𝑅 [𝑇𝑖] ∪ 𝑝
6 𝑒𝑟𝑟𝑠𝑢𝑚 ← 𝑒𝑟𝑟𝑠𝑢𝑚 + 𝑑𝑢𝑟 (𝑇𝑖) − ℓ𝜏 (𝑝)
7 𝑒𝑟𝑟𝑎𝑣𝑔 ← 𝑒𝑟𝑟𝑠𝑢𝑚

|𝑆 |
8 while |𝑒𝑟𝑟𝑎𝑣𝑔 − 𝑒𝑟𝑟𝑝𝑟𝑒𝑣 | > 𝜖 do
9 𝑒𝑟𝑟𝑝𝑟𝑒𝑣 ← 𝑒𝑟𝑟𝑎𝑣𝑔

10 𝐸𝑝𝑒𝑛 ← ∅
11 foreach 𝑇𝑖 ∈ 𝑆 do
12 𝐸𝑝𝑒𝑛 ← 𝐸𝑝𝑒𝑛 ∪ {last path added to 𝑅 [𝑇𝑖]}
13 𝑃𝑒𝑛 = penalty_computation_llsq(𝐸𝑝𝑒𝑛)
14 foreach 𝑒𝑖 ∈ 𝐸𝑝𝑒𝑛 do
15 𝑤𝜏 (𝑒𝑖) ← 𝑤𝜏 (𝑒𝑖) · 𝑃𝑒𝑛[𝑒𝑖]
16 𝑒𝑟𝑟𝑠𝑢𝑚 ← 0
17 foreach 𝑇𝑖 ∈ 𝑆 do
18 𝑝 = fastest_path(𝐺,𝑇𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒,𝑇𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡)
19 𝑅 [𝑇𝑖] ← 𝑅 [𝑇𝑖] ∪ 𝑝
20 𝑒𝑟𝑟𝑠𝑢𝑚 ← 𝑒𝑟𝑟𝑠𝑢𝑚 + 𝑑𝑢𝑟 (𝑇𝑖) − ℓ𝜏 (𝑝)
21 𝑒𝑟𝑟𝑎𝑣𝑔 ← 𝑒𝑟𝑟𝑠𝑢𝑚/|𝑆 |
22 restore original edge weights𝑤𝜏

23 return 𝑅

trip considering the updated/penalized edge weights and we update
the average error accordingly. This process is repeated until the
average error computed during the last round has not changedmore
than the user-defined constant 𝜖 . We use this termination condition
because the linear least squares algorithm does not guarantee that
the average error will ever be zero. Therefore, the iterative penalty
and path computation stops when the average error does not change
significantly (Line 8). The result map 𝑅 is returned in Line 23.

7 EXPERIMENTAL EVALUATION
In order to evaluate the efficacy of all presented methods for the
route and the region recovery problems, we conduct a comprehen-
sive experimental evaluation. All our methods were implemented
in Python 3.9 using the NetworkX package with the exceptions of
Min-HP and Min-Turns, which were partly implemented in C++.
This section reports the results of our evaluation.

Data Sets. The data sets we use in our evaluation are (1) a subset
of the trajectories obtained from taxis in the region of Porto [20],
and (2) the road network of the district of Porto obtained from
OpenStreetMap (OSM)1. The subset of trajectories contains 101,705
trajectories sampled over the period of one month during all hours
of each day, excluding all trajectories that consist of only two points.

1https://www.openstreetmap.org/

https://www.openstreetmap.org/

History Oblivious Route Recovery on Road Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Table 1: Results summary for route recovery methods.

Shortest Fastest Min-HP Min-Turns
precision 0.559 0.613 0.611 0.575
recall 0.485 0.525 0.531 0.469

f0.5 score 0.542 0.593 0.593 0.550
f1 score 0.519 0.566 0.568 0.517
f2 score 0.498 0.541 0.545 0.487
recall@n 0.429 0.482 0.490 0.443
accuracy 0.429 0.482 0.487 0.439

On average, each remaining trajectory consists of 49 points. The
road network of Porto contains 78,080 nodes and 183,404 edges.
A speed limit and a list of labels indicating the type of the road
each edge represents are also provided by OSM. We first create a
set of trips from the trajectories by extracting the source location,
the target location and the duration of each trajectory. Next, we
match the source and the target location of each trajectory to nodes
of the road network. We then obtain a ground truth for each trip,
i.e., the actual route the taxi has traveled, by map-matching the
associated trajectory to the road network. For the map-matching
process, we use the Fast Map Matching algorithm proposed by Yang
and Gidófalvi [34].

EvaluationMeasures. We adopt a variety of measures to evaluate
the efficacy of the presented methods. First, following the paradigm
of binary classification, we consider precision, recall, and f-score [12].
Given an actual route 𝑝𝑔𝑡 of a trip and the set 𝐸𝑟 of recovered edges
by either a route or a region recovery method, precision is defined
as the ratio of the number |𝑝𝑔𝑡 ∩ 𝐸𝑟 | of correctly recovered edges
over the total number |𝐸𝑟 | of recovered edges, and recall is defined
as the ratio of the number |𝑝𝑔𝑡 ∩ 𝐸𝑟 | of correctly recovered edges
over the number of edges |𝑝𝑔𝑡 | in the ground truth. The f𝑏𝑒𝑡𝑎 scores
are computed based on precision and recall. In addition, following
from previous works on the route recovery problem [17], we report
recall@n and accuracy which are both computed using the length,
e.g., in meters, of the edges of the road network. Recall@n is defined
as the ratio of the cumulative length of the correctly predicted road
segments 𝑝𝑔𝑡 ∩ 𝐸𝑟 over the cumulative length of the ground truth
𝑝𝑔𝑡 . Accuracy is defined as the cumulative length of 𝑝𝑔𝑡 ∩ 𝐸𝑟 over
the maximum value of the length of the ground truth 𝑝𝑔𝑡 and the
cumulative length of the recovered edges 𝐸𝑟 . Furthermore, for the
region recovery methods, we report the size of the recovered region,
i.e., the percentage of nodes of the road network that consist the
recovered region.

7.1 Route Recovery
Table 1 summarizes the results of our experiment to evaluate the
efficacy of methods for the route recovery problem. In addition to
the methods we presented in Section 4, we also include the shortest
path as a route recovery method. First, by comparing the results for
the shortest and the fastest path, we confirm that the travel time is
more useful as an edge weight for the route recovery process than
the distance. Then, we observe that Min-HP is the best approach
for four out of five measures, with the exception of precision in
which the fastest path comes first. At the same time, the scores for

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
recall@n

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Shortest Fastest Min-HP Min-Turns

Figure 4: Reverse-order cumulative histograms of all mea-
sures for single route recovery methods.

Min-Turns are significantly lower than both Min-HP and the fastest
path. In short, the minimum travel time and the minimum road
highway peaks seem to be the most effective traits for the route
recovery process.

To gain additional insight on the efficacy of the route recovery
methods, we conduct further analysis. Due to the limited space we
include our results only for precision and recall. Figure 4 shows
the cumulative reverse-order histograms of the precision and re-
call of all route recovery methods. In other words, we report the
percentage of trips that have at least a specific precision or recall
score. Similar to the results presented in Table 1, the fastest path
and Min-HP are the most effective methods for route recovery,
outperforming the shortest path and Min-Turns. However, we also
observe that both the precision and the recall are high only for a
small percentage of trips. In fact, only for around 30% of the trips
the precision is over 0.8, while for the recall that percentage is just
10%. These results demonstrate how hard it is to recover a single
route that matches the actual route for a trip or even a large part of
it accurately.

In Figure 5, we study the effect of the time of the day that a
given trip took place to the precision and recall. The results are in
line with the previous results reported in Table 1 and in Figure 4,
i.e., Min-HP demonstrates the best results coming only slightly
ahead of the fastest path, while the shortest path and Min-Turns
are clearly below. Another observation is that neither precision
nor recall are affected by the different time slots. While one would
expect time slots that include rush hour to affect the efficacy of the
route recovery process, that does not seem to be the case.

Lastly, in Figure 6 we split trips into 10 buckets based on the error
defined as the difference between the recorded duration of the trip
and the lowest possible travel time, i.e., 𝑒𝑟𝑟𝑜𝑟 = 𝜏𝑡 −𝜏𝑠 −ℓ𝜏 (𝑝fp). For
all methods, we observe that they perform better when the error is
low. This decrease in precision and recall is expected. A low error
indicates that drivers chose the fastest path or a similar one, while
a high error indicates that the choices of drivers were influenced by
external factors for which we do not have any information. With
regard to the performance of the route recoverymethods, the fastest
path demonstrates the highest precision and recall for low errors.
However, while the error increases, the fastest path is outperformed
by Min-HP. The shortest path demonstrates once again the lowest
scores in all cases, while Min-Turns comes third in most cases.

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chondrogiannis, Bornholdt, Bouros, and Grossniklaus

[0–4) [4–8) [8–12) [12–16) [16–20) [20–24)
0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

[0–4) [4–8) [8–12) [12–16) [16–20) [20–24)
Time slot

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Shortest Fastest Min-HP Min-Turns

Figure 5: Precision and recall of single route recovery meth-
ods varying time of the day.

7.2 Region Recovery
In this section, we present the results on the efficacy of methods for
the region recovery problem. Each method is defined as a combina-
tion of a path enumeration method, i.e., SvPE, PenPE, or GrPE, and
a candidate subset selection method, i.e., local optimality (LOpt)
or bicriteria skyline (Sky) if used. For instance, PenPE-LOpt uses
the PenPE path enumeration method in combination with the local
optimality-based candidate path filtering. Furthermore, following
from the results for the route recovery problem which showed the
efficacy of Min-HP, we define the bi-criteria skyline using the travel
time and the number of road hierarchy peaks.

Table 2 shows the average scores of all evaluation measures. First,
we observe that when path enumeration methods are used without
any candidate subset selection, they achieve the highest recall and
recall@n. At the same time though, precision and accuracy are
too low, thus resulting in low f𝑏𝑒𝑡𝑎 scores as well. Second, the use
of candidate subset selection methods leads to a better trade-off
between recovered region size and recovery quality. This is demon-
strated by the size of the recovered regions and the f𝑏𝑒𝑡𝑎 scores of
all the combinations that involve the bi-criteria skyline or the local
optimality, with the methods employing bi-criteria skyline candi-
date subset selection being slightly better. Overall, we observe that
solutions based on different candidate path enumeration methods,
offer slightly different trade-offs between precision and recall, with
SvPE-based methods offering higher recall.

To gain additional insight on the efficacy of the route recovery
methods, we further investigate the efficacy of both the candidate
path enumeration and candidate subset selection methods. Due to
the limited space, we present results only for precision and recall.

7.2.1 Candidate Path Enumeration. Figure 7 shows the precision
and recall for region recovery using the SvPE and PenPE path enu-
meration methods without any candidate path selection. In other

low error high error
0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

low error high error
0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

Shortest Fastest Min-HP Min-Turns

Figure 6: Precision and recall of single route recovery meth-
ods varying real and fastest path duration difference.

words, the recovered region is determined using all the candidate
paths. On the one hand, SvPE achieves the perfect recall, i.e., the
region recovered using SvPE always contains the ground truth. In
fact, the result of SvPE is the route containment region (see Defini-
tion 5.1). By examining Figure 7 along with Table 2, we observe that
the precision of SvPE is very low as the size of the recovered region
is high and therefore there are too many false positives. On the
other hand, the recall of PenPE is high, but does not reach the recall
of SvPE. However, PenPE offers a much better precision. This is due
to the fact that the recovered region by PenPE is much smaller than
the recovered region of SvPE, resulting in a much smaller amount
of false positives.

This difference in precision and recall between SvPE and PenPE
as well as the size of each recovered region is also connected to the
number of paths each approach enumerates. SvPE enumerates ap-
proximately 4,734 candidate paths per trip, while PenPE enumerates
approximately only 15 candidate paths per trip.

7.2.2 Candidate Subset Selection. In Figure 8, we present our mea-
surements for the candidate subset selection methods presented in
Section 5.2. As these methods work in combination with candidate
path enumeration methods, we report the precision and recall for
all subset selection methods over the results of SvPE and PenPE
separately. In general, for both candidate subset selection methods,
we observe that by filtering out candidate paths, the recall of each
region recovery method drops, i.e., a smaller part of the actual route
is contained in the recovered region on average, while the precision
increases, i.e., the number of false positives is lower as the recovered
region is smaller. More specifically, local optimality-based filter-
ing (LOpt) improves the precision of both SvPE and PenPE only
by little. At the same time though, the drop in recall is small. For
instance, while PenPE demonstrates a recall of at least 0.8 for more
than 80% of the trips, for PenPE-LOpt the percentage of trips for

History Oblivious Route Recovery on Road Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Table 2: Results summary for region recovery methods.

SvPE SvPE-LOpt SvPE-Sky PenPE PenPE-LOpt PenPE-Sky GrPE-30 GrPE-30-LOpt GrPE-30-Sky
precision 0.015 0.053 0.553 0.181 0.239 0.567 0.351 0.466 0.605
recall 1.0 0.953 0.606 0.901 0.816 0.596 0.693 0.631 0.555

f0.5-score 0.018 0.065 0.563 0.215 0.279 0.572 0.390 0.492 0.594
f1-score 0.029 0.100 0.579 0.301 0.370 0.581 0.466 0.536 0.579
f2-score 0.069 0.215 0.595 0.502 0.551 0.590 0.580 0.589 0.564
recall@n 1.0 0.908 0.565 0.857 0.769 0.555 0.641 0.583 0.510
accuracy 0.012 0.041 0.466 0.174 0.230 0.469 0.331 0.413 0.483

region size (%) 9.03 1.63 0.08 0.49 0.26 0.08 0.15 0.07 0.06

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

SvPE PenPE

Figure 7: Precision and recall for path enumeration methods.

which the recall is at least 0.8 drops to less than 65%. Regarding
the bicriteria skyline, we observe that both the improvement in
precision and the drop in recall is much higher than when using
LOpt. The bicriteria skyline filters out much more candidate paths
than LOpt resulting in a much smaller recovered region. In fact, the
precision and recall of SvPE-Sky and PenPE-Sky are much closer
to the precision and recall of single route recovery methods than
other region recovery methods. This leads us to the conclusion that
the recovered regions by SvPE-Sky and PenPE-Sky are determined
by a very small number of paths.

7.3 Group-based Path Enumeration
In this section, we elaborate on the efficacy of the group-based path
enumeration. First, we split the trips in our query set into groups
based on 15, 30, and 60 minute intervals, denoted by GrPE-15, GrPE-
30, and GrPE-60, respectively. In general, using a small interval
leads to groups that have fewer trips, but have lower chances that
the computed paths overlap. Using a large interval leads to larger
groups of trips, but the chances that the conditions in the road net-
works have changed over time increase. Nevertheless, determining
the best clustering method for the input trips is out of the scope of
this paper, and is a direction we plan to explore in the future.

Regarding recall, in Figure 9, we observe that GrPE-15 comes
first, followed by GrPE-30, with GrPE-60 coming last. However, the
result is exactly the opposite for precision, where GrPE-60 comes
first and GrPE-15 comes last. This result indicates that using small
groups leads to recovering regions that contain a larger part of the
actual route than when using large groups, but it also leads to the
computation of more routes thus larger recovered regions.

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)
0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

SvPE SvPE-LOpt SvPE-Sky

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

PenPE PenPE-LOpt PenPE-Sky

Figure 8: Precision and recall for candidate path selection
methods over SvPE (upper) and PenPE (lower).

Since, GrPE-30 demonstrates the most balanced behaviour of
all three groupings, we investigate its efficacy on region recov-
ery in combination with the candidate subset selection methods
presented in Section 5.2. In Figure 9, we observe that LOpt and
bicriteria skyline have a similar effect on GrPE as on SvPE and
PenPE. More specifically, LOpt increases precision while inflicting
only a small drop in recall, while the bicriteria skyline offers even
higher precision at the cost of a more significant drop in recall.

Last but not least, in Table 2we observe that GrPE-30-Sky, demon-
strates the highest precision, the highest accuracy and the highest
f0.5-score among all region recovery methods.

8 CONCLUSIONS & FUTUREWORK
In this paper, we studied the route recovery and the region recovery
problems from trips in the absence of historical trajectory data. For
the route recovery problem, we explored two existing methods
and we introduced a novel one that takes that takes road type
hierarchy into account. Regarding region recovery, we introduced

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Chondrogiannis, Bornholdt, Bouros, and Grossniklaus

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

GrPE-15 GrPE-30 GrPE-60

0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ip

s
(n

or
m

.)

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

GrPE-30 GrPE-30-Lopt GrPE-30=Sky

Figure 9: Precision and recall forGrPE for different groupings
of trips (upper) and candidate path selectionmethods (lower).

a framework which first enumerates a number of candidate paths,
then filters out non-promising candidates, and finally defines the
recovered region by the union of the remaining paths. Last but not
least, we investigate region recovery from trip groups. Through a
comprehensive experimental evaluation, we demonstrated the pros
and cons of all presented methods for both the route and the region
recovery problem. In the future, we plan to further investigate the
group-based route and region recovery by employing additional
information that can be shared between processes. We also plan to
extend our framework with methods based on machine-learning
that learn spatio-temporal features of trips.

ACKNOWLEDGMENTS
This work is partially supported by Grant No. CH 2464/1-1 of the
Deutsche Forschungsgemeinschaft (DFG) and by the Center for the
Advanced Study of Collective Behavior at the University of Kon-
stanz, DFG Centre of Excellence 2117 (ID: 422037984). Panagiotis
Bouros is a Carl-Zeiss Stiftungsprofessor for “Big Data: In-Memory
Databases and Data Analytics”. Parts of this work are based on the
MSc thesis of David Englert at the University of Konstanz.

REFERENCES
[1] Sofiane Abbar, Rade Stanojevic, and Mohamed Mokbel. 2020. STAD: Spatio-

temporal adjustment of traffic-oblivious travel-time estimation. In Proc. IEEE
MDM. 79–88.

[2] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. 2013.
Alternative routes in road networks. Journal of Exp. Algorithmics 18 (2013), 1–1.

[3] Vedat Akgün, Erhan Erkut, and Rajan Batta. 2000. On finding dissimilar paths.
European Journal of Operational Research 121, 2 (2000), 232–246.

[4] Prithu Banerjee, Sayan Ranu, and Sriram Raghavan. 2014. Inferring uncertain
trajectories from partial observations. In Proc. IEEE ICDM. 30–39.

[5] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline
operator. In Proc. IEEE ICDE. 421–430.

[6] W. Matthew Carlyle and R. Kevin Wood. 2005. Near-shortest and K-shortest
simple paths. Networks 46, 2 (2005), 98–109.

[7] Vaida Ceikute and Christian S Jensen. 2015. Vehicle routing with user-generated
trajectory data. In Proc. IEEE MDM, Vol. 1. 14–23.

[8] Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. 2020. A survey on
map-matching algorithms. In Proc. Australasian Database Conference. 121–133.

[9] Dan Cheng, Olga Gkountouna, Andreas Züfle, Dieter Pfoser, and Carola Wenk.
2019. Shortest-Path Diversification through Network Penalization: AWashington
DC Area Case Study. In Proc. IWCTS@SIGSPATIAL Workshop. 10:1–10:10.

[10] Paolo Cintia and Mirco Nanni. 2016. An effective time-aware map matching
process for low sampling GPS data. arXiv preprint arXiv:1603.07376 (2016).

[11] Edsger W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs.
Numer. Math. 1, 1 (1959), 269–271.

[12] David A Grossman and Ophir Frieder. 2012. Information Retrieval: Algorithms
and Heuristics. Vol. 15. Springer.

[13] Christian Häcker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst
Althaus. 2021. Most Diverse Near-Shortest Paths. In Proc. ACM SIGSPATIAL.
229–239.

[14] George Rosario Jagadeesh and Thambipillai Srikanthan. 2014. Robust real-time
route inference from sparse vehicle position data. In Proc. IEEE International
Conference on Intelligent Transportation Systems. 296–301.

[15] P E Johnson, D S Joy, D B Clarke, and J M Jacobi. 1993. HIGHWAY 3.1: An enhanced
HIGHWAY routing model: Program description, methodology, and revised user‘s
manual. Technical Report. U.S. Dept. of Energy, OSTI.

[16] Ibai Lana, Javier Del Ser, Manuel Velez, and Eleni I. Vlahogianni. 2018. Road traffic
forecasting: Recent advances and new challenges. IEEE Intelligent Transportation
Systems Magazine 10, 2 (2018), 93–109.

[17] Xiucheng Li, Gao Cong, and Yun Cheng. 2020. Spatial transition learning on
road networks with deep probabilistic models. In Proc. IEEE ICDE. 349–360.

[18] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, WeiWang, and Yan Huang. 2009.
Map-matching for low-sampling-rate GPS trajectories. In Proc. ACM SIGSPATIAL.
352–361.

[19] Lu Lu, Nan Cao, Siyuan Liu, Lionel Ni, Xiaoru Yuan, and Huamin Qu. 2014. Visual
analysis of uncertainty in trajectories. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. 509–520.

[20] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis
Damas. 2013. Predicting taxi–passenger demand using streaming data. IEEE
Transactions on Intelligent Transportation Systems 14, 3 (2013), 1393–1402.

[21] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In Proc. ACM SIGSPATIAL. 336–343.

[22] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2003. An optimal
and progressive algorithm for skyline queries. In Proc. ACM SIGMOD. 467–478.

[23] Ciaran S. Phibbs and Harold S. Luft. 1995. Correlation of travel time on roads
versus straight line distance. Medical Care Research and Review 52, 4 (1995),
532–542.

[24] Mahmood Rahmani and Haris N. Koutsopoulos. 2012. Path inference of low-
frequency GPS probes for urban networks. In Proc. IEEE International Conference
on Intelligent Transportation Systems. 1698–1701.

[25] Dimitris Sacharidis and Panagiotis Bouros. 2013. Routing directions: Keeping it
fast and simple. In Proc. ACM SIGSPATIAL. 164–173.

[26] Dimitris Sacharidis, Panagiotis Bouros, and Theodoros Chondrogiannis. 2017.
Finding the most preferred path. In Proc. ACM SIGSPATIAL. 1–10.

[27] Peter Sanders and Dominik Schultes. 2005. Highway Hierarchies Hasten Exact
Shortest Path Queries. In Proc. European Symp. on Algorithms. 568–579.

[28] Mudhakar Srivatsa, Raghu Ganti, Jingjing Wang, and Vinay Kolar. 2013. Map
matching: Facts and myths. In Proc. ACM SIGSPATIAL. 484–487.

[29] Philip B. Stark and Robert L. Parker. 1995. Bounded-variable least-squares: an
algorithm and applications. Computational Statistics 10 (1995), 129–129.

[30] Youze Tang, Andy Diwen Zhu, and Xiaokui Xiao. 2012. An efficient algorithm
for mapping vehicle trajectories onto road networks. In Proc. ACM SIGSPATIAL.
601–604.

[31] New York (N. Y.). Taxi and Limousine Commission. 2019. New York City Taxi
Trip Data, 2009-2018. https://doi.org/10.3886/ICPSR37254.v1

[32] Manolis Terrovitis and Nikos Mamoulis. 2008. Privacy preservation in the publi-
cation of trajectories. In Proc. IEEE MDM. IEEE, 65–72.

[33] Hao Wu, Jiangyun Mao, Weiwei Sun, Baihua Zheng, Hanyuan Zhang, Ziyang
Chen, and Wei Wang. 2016. Probabilistic robust route recovery with spatio-
temporal dynamics. In Proc. ACM SIGKDD. 1915–1924.

[34] Can Yang andGyőző Gidófalvi. 2018. Fast mapmatching, an algorithm integrating
hiddenMarkovmodel with precomputation. International Journal of Geographical
Information Science 32, 3 (2018), 547–570.

[35] Jing Yuan, Yu Zheng, Chengyang Zhang, Xing Xie, and Guang-Zhong Sun. 2010.
An interactive-voting based map matching algorithm. In Proc. IEEE MDM. 43–52.

[36] Kai Zheng, Yu Zheng, Xing Xie, and Xiaofang Zhou. 2012. Reducing uncertainty
of low-sampling-rate trajectories. In Proc. IEEE ICDE. IEEE, 1144–1155.

[37] Yuheng Zheng and Mohammed A Quddus. 2011. Weight-based shortest-path aided
map-matching algorithm for low-frequency positioning data. Technical Report.

https://doi.org/10.3886/ICPSR37254.v1

	Abstract
	1 Introduction
	2 Background & Problem Definitions
	3 Related Work
	4 Single Route Recovery
	5 Region Recovery
	5.1 Candidate Path Generation
	5.2 Candidate Subset Selection

	6 Group-based Region Recovery
	7 Experimental Evaluation
	7.1 Route Recovery
	7.2 Region Recovery
	7.3 Group-based Path Enumeration

	8 Conclusions & Future Work
	Acknowledgments
	References

