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Abstract

Dating back to two famous experiments by the social-psychologist,
Stanley Milgram, in the 1960s, the small-world phenomenon is the idea
that all people are connected through a short chain of acquaintances that
can be used to route messages. Many subsequent papers have attempted
to model this phenomenon, with most concentrating on the “short chain”
of acquaintances rather than their ability to efficiently route messages. For
example, a well-known preferential attachment model by Barabési and
Albert provides a mathematical explanation of how a social network can
have small diameter—hence, short chains between participants—but this
model doesn’t explain how they can route messages. A notable exception
is a well-known model by Jon Kleinberg, which shows that it is possible
for participants in a n X n grid to route a message in O(log2 n) hops by
augmenting the grid with a small number of long-range random links and
using a simple greedy routing strategy. Although Kleinberg’s model is
intriguing, it does not take into account the road network of the United
States used in the original Milgram experiments and its O(log® n) number
of hops for messages is actually quite far from the average of six hops for
successful messages observed by Milgram in his experiments, which gave
rise to the “six-degrees-of-separation” expression. In this paper, we study
the small-world navigability of the U.S. road network, with the goal of
providing a model that explains how messages in the original small-world
experiments could be routed along short paths using U.S. roads. To this
end, we introduce the Neighborhood Preferential Attachment model,
which combines elements from Kleinberg’s model and the Barabasi-Albert
model, such that long-range links are chosen according to both the degrees
and (road-network) distances of vertices in the network. We empirically
evaluate all three models by running a decentralized routing algorithm,
where each vertex only has knowledge of its own neighbors, and find that
our model outperforms both of these models in terms of the average hop
length. Moreover, our experiments indicate that similar to the Barabasi-
Albert model, networks generated by our model are scale-free, which could
be a more realistic representation of acquaintanceship links in the original
small-world experiment.

1 Introduction

The small-world phenomenon is the idea that all people are connected
through a short chain of acquaintances that can be used to route messages.
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This phenomenon was popularized by the social-psychologist, Stanley Milgram,
based on two experiments performed in the 1960s [I8, 22], where a randomly-
chosen group of people were given packages to send to someone in Massachusetts.
Each participant was told that they should mail their package only to its target
person if they knew them on a first-name basis; otherwise, they should mail
their package to someone they knew who is more likely to know the target
person. Remarkably, many packages made it to the target people, with the
median number of hops being 6, which gave rise to the expression that everyone
is separated by just “six degrees of separation” [12].

Subsequent to this pioneering research, many papers have been written on
the small-world phenomenon, e.g., see [9], with a number of models having been
proposed to explain it. Nevertheless, based on our review of the literature,
the models proposed so far do not fully explain observations made by Milgram
regarding his experiments [18,[22]. For example, Milgram observed that message
routing occurred in a geographic setting with distances (measured in miles,
presumably in the road network of the United States) roughly halving with
each hop; see Figure
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Figure 1: Illustration of geographic data from an original small-world
experiment, from [I8].

In spite of the geographic nature of the early small-world experimentSE
we are not familiar with any previous work that models the small-world
phenomenon with road networks. Thus, we are interested in this paper in
modeling the small-world phenomenon with road networks. For example, one
of the surprising results in the original small-world experiments was that people
were able to find very short paths among acquaintances with only a limited
knowledge of the social network of acquaintances. This suggests that a model
should explain how people can find short paths in a social network using a
decentralized greedy algorithm, where individuals, who only have knowledge of

IThe first experiment involved a group of people in Wichita, Kanasas who were asked to
send a package to the wife of a divinity student in Cambridge, and the second experiment
involved a group of people in Omaha, Nebraska (plus a small number of folks in Boston) who
were asked to send a package to a stock broker who worked in Boston and lived in Sharon,
Mass [18].



their direct acquaintances, attempt to send a message towards a target along
some path.

1.1 Related Prior Work

Arguably, the closest prior work on a model directed at explaining how small-
world (social-network) greedy routing can work in a geographic setting is a
well-known model by Jon Kleinberg [14]. Rather than using a road network,
however, Kleinberg’s model is built on a two dimensional n x n grid, where
each grid point corresponds to a single person, with two types of connections—
local connections and long-range connections. The local connections of the
network are made by connecting each grid point to every other grid point within
lattice distance p > 1. The long-range connections are made by connecting
each grid point to ¢ > 0 other grid points chosen randomly (typically with
g = 1 or ¢ being a small constant), such that the probability that grid point
u is connected to grid point v is proportional to [dj(u,v)]”*, where dp(u,v)
is the lattice distance between u and v, and s is the clustering exponent of
the network. Kleinberg showed that in an n x n grid, a decentralized greedy
algorithm, where each message holder forwards its message to an acquaintance
that is closest to the target grid point, is able to achieve an expected path length
of O(log2 n) for p = ¢ =1 and s = 2, with a constant of at least 88 in the leading
term in his Big-O analysis [14].

When attempting to model the original small-world experiments, however,
there are a number of drawbacks with the Kleinberg model. First, it requires
that the underlying distances are in the form of a grid, which is not compatible
with how messages were sent in the original small-world experiments, where
messages were sent using the U.S. road network. Second, the upper bound
O(log®n), with a hidden constant that is at least 88, for the expected number
of hops between vertices does not match the average hop length of six obtained in
the original small-world experiments. For example, if n =9,000, then 88log® n is
approximately 15,000. Finally, as we show in Section [6 when acquaintanceship
links are viewed as bidirectional, the maximum degree in the resulting network
for the Kleinberg model is quite small. Having a degree distribution with a
heavier tail might be more realistic for a social network. Moreover, these
high-degree vertices might improve the performance of the model during the
routing step. Indeed, Milgram noted that in one of his experiments half of the
successfully delivered packages were routed through three “key” individuals; see
Figure [2|

Another well-known social-network model is the preferential attachment
model, which is a random graph model for non-geographic social networks, such
as the World Wide Web. This model traces its roots back roughly 100 years, e.g.,
see [24] 6], [20], and was popularized and formalized by Barabdsi and Albert [1],
who also coined the term scale-free, which describes networks where the
fraction of vertices with degree d follows a power law, d~%, where a > 1. A graph
in the preferential attachment model is constructed incrementally, starting from
a constant-sized “seed” graph, adding vertices one-at-a-time, such that when a



Funneling occurs in the last remove.
Several persons serve as key links in
completing chains.

BROWN
18]

Figure 2: Final hops for the paths of delivered packages for people in an
original small-world experiment, from [I8]. Roughly half of the paths were
routed through three “key” individuals, Jacobs, Jones, and Brown.

vertex, v, is added one adds a fixed number, m, of edges incident to v, where
each other neighbor is chosen with probability proportional to its degree at that
time, e.g., see [3]. This is often called a “rich-get-richer” process, and a rigorous
analysis on the degree distribution and diameter of this model was studied by
Bollabas and Riordan [4]. Further, Dommers, Hofstad and Hooghiemstra [8]
investigated the diameters of several variations of the preferential attachment
model, proving that, for each variant, when the power law exponent exceeds
3, the diameter is Q(logn), and when the power law exponent is in (2, 3), the
diameter is Q(loglogn).

To our knowledge, there does not exist any prior work combining a prefer-
ential attachment model with Kleinberg’s model. In terms of the most relevant
prior work, Flaxman, Frieze, and Vera [I0] introduce a random graph model
that combines preferential attachment graphs with geometric random graphs,
with points created randomly on a unit sphere one-at-a-time, such that for each
added vertex, m neighbors that are within a fixed distance, r, of that vertex
are chosen with probability proportional to their degrees. Flaxman, Friex, and
Vera show that with high probability the vertex degrees in this model follow
a power law assuming r is sufficiently large, and they prove that the diameter



of this graph model is O(Inn/r) w.h.p., but they do not study its ability to
support efficient greedy routing. Indeed, when r > /2, this model is just the
preferential attachment model.

1.2 Additional Prior Work

Ever since being popularized by Milgram’s experiments and the subsequent work
by other researchers on complex networks, the small-world phenomenon has
found applications in a wide array of research fields, including rumor spreading,
epidemics, electronic circuits, wireless networks, the World Wide Web, network
neuroscience, and biological networks. For an overview of the small-world
phenomenon and its applications, the reader can refer to [23].

Incidentally, and not surprisingly, there has been a significant amount of
additional prior work that analyzes the small-world phenomenon on different
types of social network models, e.g., see [16, 21l [15]). Liben-Nowell, Novak,
Kumar, Raghavan, and Tomkins [16] introduce a geographic social network
model, which uses rank-based friendships, where the probability of assigning
long-range connections from any person u to person v is inversely proportional
to the number of people in the network who are geographically closer to u than
v. The social network is modeled based on a 2D grid representation of the
surface of earth, where each grid point has a positive population value, and has
local connections to its immediate neighbors on the grid. Each grid point is then
connected to a fifth neighbor based on their rank. Liben-Nowell et al. prove an
upper bound of O(log3 n) for the expected hop length of paths formed by this
model, which, of course, is worse than the expected O(log2 n) hop lengths in
Kleinberg’s model.

Kleinberg’s model and its extensions have also been studied extensively.
Martel and Nguyen [I7] proved the expected diameter of the resulting graph is
Q(logn), but that a greedy routing strategy cannot find such short paths, as they
show that Kleinberg’s O(logQ) analysis for greedy routing is tight. They extend
Kleinberg’s model by assuming each vertex has some additional (unrealistic)
knowledge of the network. For example, they show that when each node u
knows the long-range contacts of the logn nodes closest to u in the grid, the
expected number of hops is O(log®?n). Fraigniaud, Gavoille and Paul [LT]
provide a similar extension, and they prove a bound of O(logl"H/ d n)) expected
hops in the general d—dimensional mesh, and show that this bound is tight for
a variety of greedy algorithms, including those that have global knowledge of
the network.

1.3 Owur Contributions

In this paper, we study the small-world phenomenon with road networks, which
is motivated by the fact that, as mentioned above, the network of connections
in the original small-world experiments were as much geographic as they were
social [18 22]. We introduce a new small-world model, which we call the
Neighborhood Preferential Attachment model, which blends elements from



the preferential attachment model of Barabdsi and Albert [I] and Kleinberg’s
model [I4], but with underlying distances defined by a road network rather than
a square grid.

In a nutshell, our model generates a random social network starting from
a road network. We add the vertices to our model one-at-a-time at random
from the vertices of the underlying road network (whose vertices stand in as the
participants in our social network). When we add a new vertex, v, to our model,
we create a fixed contant number, m > 1, of additional edges from v to existing
vertices, with each other neighbor, w, chosen with a probability proportional to
the ratio of the current degree of w (counting just the added edges) and d(v, w)?,
where d(v, w) is the distance from v to w in the road network.

By using the constant, m, as parameter, we guarantee that the average
degree in the network is a constant, which matches another observation made
by Milgram for his experiments [I8]. Interestingly, researchers have observed
that an upper bound of O(logn) on the expected hop length in Kleinberg’s
model can be achieved by having an unrealistic O(logn) outgoing links for
every vertex instead of a small constant, e.g., see [I7]. Thus, our model tests
whether short paths can be found using greedy routing in a social network with
constant average degree, but with a few vertices having degrees higher than this,
as was the case for the few “key” individuals, Jacobs, Jones, and Brown, in an
original small-world experiment [I§].

One of the main goals in our design of the Neighborhood Preferential
Attachment model is to introduce a model that brings the average hop length for
greedy routing closer to the six degrees-of-separation found in the original small-
world experiments, while keeping the average degree of the network bounded by
a constant. To test this, we experimentally evaluate instances of our model using
road networks for various U.S. states. We empirically compare the performance
of greedy routing in our model to the performance for a variant of Kleinberg’s
model, where links are chosen with probability proportional to the inverse
squared road-network distances of vertices (rather than a grid), as well as with
the well-known Barabasi-Albert preferential-attachment model. Interestingly,
our experiments show that the Neighborhood Preferential Attachment model
outperforms both the Barabasi-Albert preferential-attachment model and the
road-network variant of Kleinberg’s model. Moreover, our experimental results
show that our model has a scale-free degree distribution, which is arguably a
better representation of real-world social networks than Kleinberg’s model while
also being geographic, unlike the preferential-attachment model of Barabasi and
Albert.

2 Preliminaries

We view road networks as undirected, weighted, and connected graphs, where
each vertex corresponds to a road junction or terminus, and each edge cor-
responds to road segments that connect two vertices. In our social network
model, each junction or terminus in a road network represents a single person,



and each road segment represents a social connection between two people, which
we consider to be the local connections of the network. Intuitively, our social
network model can be seen as a mapping of each person in the population to the
road network vertex that is geographically closest to their address. Likewise,
an edge (u,v) in the road network represents the existence of social connections
between people who were mapped to vertices v and v. This is admittedly an
approximation for a population distribution, but we feel it is reasonable for
most geographic regions, since population density correlates with road-network
density, e.g., see [5, 2l 13]. Certainly, it is is more realistic than modeling
population density using a uniform n x n grid, as in Kleinberg’s model [I4].

The distance between two vertices u,v € V is denoted as d(u,v) and is
the total weight of the shortest path between u and v in the underlying road
network. The hop distance between two vertices is denoted as dj(u,v) and is
the minimum number of hops required to reach v from w, without considering
edge weights and including both road-network edges and additional edges added
during model formation. In all of the social network models we mention in this
paper, we assume all edges are undirected for the sake of distance computations,
which reflects the notion that friendships are bidirectional.

We define deg(v) to be the degree of v in a graph, G = (V, E), that is, the
number of v’s adjacent vertices in G. If G is understood from context, then we
may drop the subscript.

3 The Road-Network Kleinberg Model

In this section, we introduce a variant of Kleinberg’s small-world model adapted
so that it works with weighted road networks rather than n x n grids. We
denote this model throughout this paper as the KL model. Interestingly, as
we show in our empirical analysis, although this model is not as effective for
performing greedy routing as our Neighborhood Preferential Attachment model,
it nevertheless is much more efficient in practice than the theoretical analysis of
Kleinberg [I4] that is based on using n x n grids would predict.

As mentioned above, Kleinberg’s network model begins by defining a set of
vertices as the lattice points in an n x n grid, i.e., {(¢,5) | ¢ € {1,2,...,n},j €
{1,2,...n}}, so that the distance between any two vertices u = (i,5) and v =
(k,1) is the Manhattan distance, d(u,v) = |k —i| + |l — j|. Each vertex, u,
has an edge to every vertex within distance p > 1, called the local contacts
(typically, we just take p = 1, so these are just grid-neighbor connections), and
each vertex has edges to m > 1 other vertices selected at random, called the
long-range contacts, such that the probability that there exists an edge from
u to v is d(u,v)"°/z, where s > 0 is called the clustering exponent and z
is a normalizing factor that ensures we have a probability distribution. Then,
a decentralized greedy algorithm is used to route messages between a source
and target vertex as follows: at each step, the current message holder forwards
its message to a contact that has the smallest Manhattan distance to the target
vertex.



We now adapt this model to the KL. model that works on weighted road
networks. We start with the set of vertices and edges of a road network, where
each edge corresponds to a local connection. Then, for each vertex, u, we add
m > 1 long-range edges randomly, where the probability that there exists a
long-range connection between u and a vertex, v, is d(u,v)™%/z, where d(u,v)
is the road-network distance between u and v (in miles or kilometers), s > 0
is the clustering exponent, and z is a normalizing factor that ensures we have
a probability distribution. See Algorithm [I} noting that we call it for a road
network, G = (V, E), and parameter, m > 1, for the number of long-range
connections to add for each vertex.

Algorithm 1 CoNSTRUCT-KL(V, E, s,m)
L E <+
2: for each v € V do
3: P« {1/d(v,u)’ |u € V,u+#v}
4z D,ephd
5 Normalize P by dividing each p € P by z,
6: S « sample m vertices according to their probabilities in P
7
8

. B+ E U{(v,w)|weS}
:return G= (V,EUE')

For his original model (on an n x n grid), Kleinberg [14] showed that the
optimal value for the clustering exponent s is 2, for which the decentralized
greedy routing algorithm is able to find paths of length O(log2 n) in expectation,
and that for any other value of s # 2, the greedy algorithm would only be able to
find a path with length that is lower bounded by a polynomial in |V|. Following
Kleinberg, we usually select s = 2 for the weighted road-network variant, KL,
of this model, as well as for the Neighborhood Preferential Attachment model,
and we include some experiments that show the effect of varying this parameter
for the latter model on different road networks.

In the routing algorithm for the KL model, we use a weighted version of
the decentralized greedy algorithm, such that at each step, the current message
holder forwards its message to a directly adjacent contact in the social network
that has the smallest road-network distance to the target vertex (which could
have easily been estimated in the 1960s using a road atlas of the United States
and which can be determined in modern times from any navigation app, such as
Google Maps, OpenStreetMap, Apple Maps, or Waze). We denote this greedy
algorithm as Weighted-Decentralized-Routing.

4 A Road-Network Preferential Attachment Model

In this section, we give a brief description of the preferential-attachment model;
see, e.g., [19, 1,8, [4]. This model is defined by an algorithm to generate random
graphs whose degree distribution follows a power law. The algorithm is based



on a preferential attachment mechanism, where vertices with larger degrees are
more likely to receive new links.

The algorithm for building an instance of the preferential-attachment model
starts with a set, V', of n vertices, and an initial clique of m+1 vertices from VE|
It then selects the remaining vertices from V in random order, with each vertex,
v, getting connected to m existing vertices, where the probability that v connects
to vertex w is proportional to u’s degree at the time v is added. In the case of
m > 2, edges for a particular vertex are added through independent trials, i.e.,
previous edges do not affect the degree counts when choosing later edges for
the same vertex. The algorithm stops when it has constructed a graph with n
vertices. Note that the number of added edges is exactly nm. See Algorithm

Algorithm 2 CONSTRUCT-BA(V, E,m)
1: Select subset M C V of size m + 1 by sampling vertices u.a.r.
20 B {(u,v) | u,v € M,u# v}
3: for each v € V' \ M in random order do

4. P+ {dege (u) | u € V,u # v}, where G' = (V, E’)

5 Zy 4 D peph

6:  Normalize P by dividing each p € P by z,

7: S « sample m vertices according to their probabilities in P
8¢ E' + FE U{(v,w)|weS}

9: return G = (V,EUE’)

Although the preferential attachment model is defined as a non-geographic
model, if the vertices in the model have geographic coordinates, such as
determined in a road network, we can nevertheless apply the same distributed
greedy routing algorithm as for the KL model. Specifically, if we take the set
of candidate vertices in the preferential attachment model to be vertices in a
road network and we union the edges of the final preferential attachment model
with the edges of the road network for the corresponding vertices (as shown in
Algorithm , then we can construct an instance of a preferential-attachment
graph embedded in a road network. This allows each participant to forward
their message to a direct contact (including both added edges and road-network
edges) that is closest to the target (using road-network distance). Indeed, for
our experiments, this is what we refer to as the BA model.

5 The Neighborhood Preferential Attachment
Model

We now introduce our Neighborhood Preferential Attachment (NPA)
model. We start with the same set of local connections as for the road-
network Kleinberg model, KL, except now we distribute long-range connections

2There are other variations for the starting “seed” graph, but the results in the limit are
similar [19].



according to a combination of vertex degrees and road-network distances be-
tween vertices. Thus, our model combines elements of the KL and BA models.
Surprisingly, as we show below, rather than achieving a performance somewhere
between the KL and BA models, our NPA model outperforms both the KL
model and BA model.

To generate the network of long-range connections, we consider the vertices
in random order, adding new (long-range) edges, based on degrees, distances,
and an input parameter, m > 1. Let G = (V, E) be a road network of n vertices.
We begin by selecting a subset, M C V', of m+ 1 vertices from G and we add all
possible edges between them, so that every initial vertex has an initial degree
equal to m. That is, we start by forming a clique of size m+1 of randomly chosen
vertices from V. We then repeatedly randomly consider the remaining vertices
from V', until we have considered all the vertices from V. When we process a
vertex, v, we connect v to m other vertices, where the probability that there
is an edge between a new vertex v and another vertex u is proportional to the

ratio j&g%) , normalized by normalizing factor,
deg(w
2y = —
: d(v,w)*

wH#v

for v, such that deg(v) is the degree of vertex v considering only added edges and
d(v,u) is road-network distance. Typically, we choose s = 2. When m > 2, edges
for a particular vertex are added through independent trials. See Algorithm
and Figure

Algorithm 3 Construct-NPA(V, E, s,m)
1: Select subset M C V of size m + 1 by sampling vertices u.a.r.
20 B+ {(u,v) | u,v € M,u # v}
3: for each v € V'\ M in random order do
P+ {dege (u)/d(v,u)® | u € V,u # v}, where G' = (V, E')
Zy S ZpePp
Normalize P by dividing each p € P by z,
S « sample m vertices according to their probabilities in P
E' '+ E' U{(v,w) |we S}
return G = (V,EUE")

o

Once the model-construction is finished, we add the local road-network
connections back in. Since we add m edges for each vertex in the network, and
since road networks themselves have a constant maximum degree, the average
degree for our network model is a constant when m is a constant. We refer to
this as the NPA model. For the routing phase, we run the same decentralized
greedy routing algorithm for the NPA model as for the KL. and BA models.

10
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Figure 3: How edges are chosen in the Neighborhood Preferential Attachment
model, illustrated with the road network of San Francisco, Berkeley, and
Oakland. When vertex v is added, the ratio for the probability for a is
2/16(= 0.125), the ratio for the probability for b is 2/144(= 0.014), the ratio
for the probability for ¢ is 4/144(= 0.028). Thus, even though b and c are the
same distance from v, ¢ is twice as likely as b to be chosen, and a is 4.5 times
more likely to be chosen than ¢, because ¢’s degree of 4 is twice that of b or a,
but a’s squared distance is 9 times smaller than that of b and c¢. (Background
image is from OpenStreetMap and is licensed under the Open Data Commons
Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF).)

6 Experimental Analysis

Intuitively, the BA model tries to capture how popularity is often distributed
according to a power law, with the “rich getting richer” as more people are
added to a group, but it completely ignores geography in forming friendship
connections. That is, in the BA model, if there is a popular person, u, in New
York and an equally popular person, w, in Los Angeles, a newly-added person,
v, in San Diego is just as likely to form a long-range connection to u as to w.

The KL model, on the other hand, tries to capture how friendship is
correlated with geographic distance, but it completely ignores popularity. That
is, in the KL model, if there is a popular person, u, in Hollywood and an
unpopular person, w, who is also in Hollywood, a newly-added person, v, in
San Diego is just as likely to form a long-range connection to u as to w.

In contrast to both of these extremes, as illustrated above in Figure 3] our
NPA model tries to capture how friendship is correlated with both popularity
and geographic distance. That is, in the NPA model, if there is a popular person,
u, in New York and an equally popular person, w, in Los Angeles, a newly-

11
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Figure 4: Average hop lengths over 1000 runs of Weighted-Decentralized-
Routing for 50 U.S. states and Washington, DC.

added person, v, in San Diego is more likely to form a long-range connection
to w than to u. Furthermore, if there is a popular person, u, in Hollywood and
an unpopular person, w, who is also in Hollywood, a newly-added person, v, in
San Diego is more likely to form a long-range connection to w than to w.
Intuition aside, however, we are interested in this paper in determining how
effective the BA, KL, and NPA models are at greedy routing. For example,
which of these models is the best at greedy routing and can any of them achieve
the six-degrees-of-separation phenomenon shown in the original small-world

experiments [I8] 22]7

6.1 Experimental Framework

To answer the above question, we implemented the BA, KL and NPA models in
C++ (using an open-source routing library [7] to find shortest paths), randomly
sampled 1000 source/target pairs, then ran Weighted-Decentralized-Routing on
each pair and measured the average hop length. The datasets we used are road
networks for 50 U.S. states and Washington, D.C., obtained from the formatted
TIGER/Line dataset available from the 9th DIMACS Implementation Challenge

12



Websiteﬂ For each road network, only the largest connected component was
considered. The sizes of the road networks we used range from 9,522 to 2,037,156
vertices. As a preprocessing step, we normalized edge weights so that the
smallest edge weight is 1.

6.2 Hop Counts with Few Long-Range Links

The first set of experiments that we performed was to test the effectiveness of
each of the three models on each road-network data set assuming that we add
only a small number of long-range links. In particular, we tested each model
for the cases when m = 1,2,3,4. We show the results of these experiments in
Figure [l which show that the NPA model outperforms both the KL and BA
models for each of these small values for m. For example, even for m = 1, the
number of hops for the NPA model tends to be half the numbers for the BA and
KL models. Once m > 2, the KL model shows improved performance over the
BA model, with the KL model achieving degrees-of-separation values that are
roughly half those for the BA model. Nevertheless, for m > 2, the NPA model
still beats the KL model, with hop-counts that are between a third and a half
better than the KL model. Further, as would be expected, all the models tend
to do better as we increase the value of m. For example, when m = 1, the NPA
model achieves a degrees-of-separation value of between 40 and 60, whereas
when we increase m to just 4, the NPA model achieves a degrees-of-separation
value of between 10 and 20. Admittedly, this still isn’t 6, but it is getting closer,
and it shows what can be achieved with just a few added long-range links.

6.3 Dropouts

There is another aspect of the original small-world experiments, which (like most
prior research on the small-world phenomenon) we have heretofore ignored.
Namely, as participants perform greedy routing in the real world there is
a probably that someone will simply drop out of the experiment and not
forward the package to anyone. For example, in one of the original small-
world experiments [22], Travers and Milgram observed a dropout probability of
roughly p = 0.2 at each step in a routing operation. That is, in the original small-
world experiment, it was observed that some amount of messages never ended
up reaching the target person, e.g., due to recipients refusing to participate or
not having anyone to forward the message to. The longer a source-to-target
path gets, the more likely it is that at least one person will drop the message,
so we expect that the average path length would decrease as the probability of
dropping messages increases. To see whether this could have contributed to the
small average hop length observed in the original small-world experiment, we
ran a variant of Weighted-Decentralized-Routing on the KL and NPA models,
such that each message holder has a fixed probability p of dropping the message.
Our results can be seen in Figure 5] for m = 4. As expected, these experiments

3http://www.diag.uniromal.it/~challenge9/data/tiger/
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show that the average hop counts for successful paths decrease as we increase
the dropout probability, p, but we still are not quite achieving six degrees of
separation for these values.

—— p=0.05
—— p=0.1
—=— p=0.15
p=0.2

27.5 4
25.0 A
22.5 4
20.0 A
17.5 A
15.0 1
12.5 A

10.0 A

7.5 1

Average hop length

0.00 0.25 050 0.75 1.00 125 150 1.75 2.00
le6

VI

Figure 5: Effect of varying the probability p of dropping the message at each

step during Weighted-Decentralized-Routing for the KL and NPA models, with
m = 4.
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6.4 Six Degrees of Separation

We can, in fact, achieve six degrees of separation in the NPA model, just by
slightly increasing the value of m. In particular, we provide experimental results
in Figure[6]for the NPA model with m = 30 with different dropout probabilities.
As this result shows, even with p = 0 (no dropouts), we can achieve 7 degrees of
separation for modestly sized road networks (and 8 degrees of separation for the
three largest road networks). With p = 0.2, for the majority of road networks,
we get average hop counts that match the findings in the original small-world
experiments, where the average hop length was found to be 6. For the largest
road networks, we get average hop counts that are between 6 and 7.

Average hop length
(o))

51 gl —— p=0

—— p=0.1
4 4 —=— p=0.2
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
VI le6

Figure 6: Average hop length of the NPA model with m = 30 for different
dropout probabilities.

Intuitively, setting m = 30 is equivalent to assuming that people partic-
ipating in a small-world experiment would consult their address books when
deciding who to send a package to next and that the average number of entries
in each address book is 30, which we feel is a reasonable assumption.

7 Diving Deeper

We are actually interested in more than just showing that the NPA model
can achive six degrees of separation and thereby match the performance of the
original small-world experiments. In this section, we take a deeper dive into
the models we introduce in this paper, with an eye towards trying to better
understand what is going on during the greedy routing done in each model.

7.1 Degree Distributions

Comparing the degree distributions of the three models, which are shown in
Figure [7] we see that the KL model has a light-tailed distribution, whereas our
model seems to be scale-free, similar to the BA model. These results indicate

15



1071
102
102

1074

California

107

10°¢

-1
10 5
1072

1073

Illinois

1074

P(degree)

107°

10°¢

10!
1072

1073

Washington

1074

10°°

106

degree

Figure 7: Degree distributions of the three main models with m = 4 on road
networks of different sizes.

that the NPA model, similar to the KL model, is able to utilize local clustering
when finding long-range contacts, while still having the scale-free property.

7.2 How Distances to the Target Decrease

As shown above, we observe that the NPA model outperforms both of the
KL and BA models in terms of the average hop length. We also see that
the KL model performs significantly better than Kleinberg’s theoretical upper
bound [14] on the grid, which was clog®n for ¢ > 88. Still, Kleinberg’s
theoretical analysis was based on an interesting proof technique that was
inspired from Milgram’s figure showing how distances to the target tend to
halve with each hop, as shown above in Figure [I At a high level, Kleinberg’s
proof for his O(log? n) bound is based on finding that the probability that the
distance from the current vertex to the target is halved at any step is ©(1/logn);
hence, this is a constant after ©(logn) hops, and we can reach the target by
repeating this argument O(logn) times.

We provide experimental results in Figure [§| showing how the remaining
distance to the target changes for the NPA model over multiple runs of Weighted
-Decentralized-Routing. We see that for most runs, the distance typically gets
halved every few steps, as Milgram observed.
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Figure 8: Remaining distance to target, denoted as d, during 10 runs of
Weighted-Decentralized-Routing on two road networks, with m = 4. Each
line corresponds to a separate run of Weighted-Decentralized-Routing, with the
markers on each line corresponding to the remaining distance at a particular
step. The last data point for each run corresponds to the penultimate step, i.e.
when the message holder is one hop away from the target.

7.3 Varying the Clustering Coefficient

In Figure [0] we see how varying the clustering coefficient affects the average
hop length in the NPA model for the HI and CA road networks. Though s = 2
is not the best-performing clustering exponent for either road network in our
experiments, the results indicate that the best-performing clustering exponent
seems to move towards 2 when the input size gets larger, which suggests that
the asymptotically optimal clustering exponent could still be 2. A similar effect
could be observed in Kleinberg’s original model as well, since the lower bounds
that are proved for s # 2 are Q(n?=*)/3) for s < 2 and Q(n(*=2/=1) for s > 2,
both of which require input sizes that are orders of magnitude larger than real-
world road networks to be able to experimentally observe the optimality of
s =2.

7.4 Capping the Maximum Degree

We considered another variation of the NPA model, where we cap the maximum
degree such that only vertices of degree less than ¢ are considered when choosing
long-range contacts. We call this the NPA-cap model. We choose ¢ = logn and
¢ = 150 as possible maximum degree caps. Intuitively, the cap on the maximum
degree is like a cap on the size of someone’s address book during a small-world
experiment. We provide experimental results comparing the models KL, NPA,
and NPA-cap (for ¢ = logn and ¢ = 150), with m = 4, in Figure
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Figure 9: Effect of varying the clustering coefficient on the average hop length
in the NPA model for the road networks of Hawaii (|V| = 21774) and California
(V| =1595577), for m = 1.
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Figure 10: Comparing the average hop lengths of the NPA, KL, and the NPA-
cap models, and the degree distribution of the NPA and NPA-cap models for
Illinois, with m = 4.

In Figure we compare the models NPA and NPA-cap (for ¢ = 150), when
there is a dropout probability of p = 0.2, with m = 30.
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Figure 11: Comparing the average hop lengths of the NPA and NPA-cap (150)
models with a dropout probability of 0.2 and m = 30.

7.5 Routing Across Multiple States

The experiments we have performed so far have been limited to the road
networks of individual states. However, Milgram’s small-world experiments
were performed across multiple states. For this reason, we also performed
experiments on the combined road networks of Virginia, Washington, D.C.,
Maryland, Delaware, New Jersey, New York, Connecticut, and Massachusetts.
For m = 30, we found that the average hop length was ~ 8.06, and when we
introduced a dropout probability of p = 0.2, the average hop length was ~ 7.15.
In Figure we provide the resulting degree distribution of this road network
when the NPA model with a dropout of p = 0.2 was used.

107 5 O NPA (p=0.2)
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Figure 12: Degree distribution in the multi-state road network, using the NPA
model with a dropout probability of 0.2 and m = 30.
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7.6 Key Participants

We also considered the importance of key participants in performing greedy
routing, as shown in Figure [2] which motivated the NPA model in the first
place.

Having a long-tailed degree distribution could be benefiting the routing
phase, as we know that having more links per vertex improves the asymptotic
bound of Kleinberg’s model.

In Figure [I3] we compare the degree distribution of vertices that were used
during the routing phase with the degree distribution of the whole network for
both the NPA and BA models. We can see that for the NPA model, high-degree
vertices are being better utilized during an instance of the routing algorithm
compared to the BA model.

O Al vertices
BA © \Vertices on paths NPA

o
o

P(degree)

degree

Figure 13: Degree distributions in the Washington road network for vertices in
the whole network, and vertices visited during the routing phase, using the BA
and NPA models with m = 4.

8 Conclusion

We introduced a new small world model, the Neighborhood Preferential At-
tachment model, which combines elements of both Kleinberg’s model and the
Barabdsi-Albert model, and experimentally outperforms both models in terms
of the average hop length. Importantly, our model is built using real-world
distances from nodes in a road network rather than vertices in a square grid or
random points on a sphere.

8.1 Future Work

For future work, given our experimental results, it would be interesting to
perform a mathematical analysis of our model, e.g., to see whether our model
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has an asymptotic bound on the expected hop length that is o(log2 n). Another
interesting question is whether the power law exponent of the degree distribution
differs from the Barabasi-Albert model in the limit of the size of the network, or
what the diameter of graphs generated by our model is. Yet another interesting
problem is whether Kleinberg’s lower bounds for the standard model when the
clustering coefficient is # 2 still holds for our model.
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