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ABSTRACT
With the development of mobile Internet, online food delivery
(OFD) services have become increasingly popular in our daily lives.
OFD platforms rely heavily on accurate Areas-of-Interest (AOIs)
information on many aspects of their operations to pinpoint cus-
tomers’ exact locations and to define the service areas of restaurants.
Recently, OFD platforms have started to tap into the vast amount of
geospatial data generated in their day-to-day business to improve
the accuracy of their AOI information. Although there has been a
proliferation of studies that leverage such data to detect the underly-
ing AOIs, for example, to identify the names and spatial boundaries
of the AOIs, they focus on the single-AOI detection problem, that
is, they detect AOIs one at a time and ignore their spatial depen-
dency. This would end up with inconsistent results, i.e., AOIs with
overlapping spatial boundaries. To address this issue, we propose
a new approach to detect multiple AOIs simultaneously and solve
the multi-AOIs detection problem. In our approach, we first apply
the existing single-AOI detection algorithms to generate candidate
spatial boundaries for AOIs in a neighborhood, and then develop a
Binary Integer Linear Programming (BILP) model to determine the
best candidate spatial boundaries for these AOIs while accounting
for their spatial dependency. We conduct numerical experiments
using real data from Meituan, the largest OFD platform in China.
Results show that our model not only produces consistent AOI
boundaries, but also improves the average 𝐹1 score by 4.7%.
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1 INTRODUCTION
With the development of mobile Internet, online food delivery
(OFD) services have become more and more popular in our daily
lives [39]. Globally, the OFD market’s revenue had increased by
27% year-on-year and reached $136.4 billion in 2020. The number
of users had increased by nearly 25%, reaching 1.46 billion in 2020
[20]. China is leading the way in terms of market size and has
achieved great success. Take Meituan, one of the world’s largest
OFD platforms as an example [23]. The total revenue had increased
by nearly 18% year-on-year and reached 114.8 billion yuan in 2020.
The number of users had increased by 13%, reaching 460 million in
2019 [27].

OFD platforms rely heavily on accurate Areas-of-Interest (AOIs)
information in their operations. An AOI, also known as a region-of-
interest (ROI), refers to a polygon selection in a map that someone
may find useful or interesting, for example, a residential complex, a
public park or a shopping mall [38]. OFD platforms are concerned
with two key properties associated with an AOI, that is, its name
and spatial boundary. Spatial boundaries of AOIs are stored as
vector formats, which can be easily used in geospatial analysis and
improve service efficiency of the OFD industry. In Figure 1, we give
an example of an AOI, whose name is Yishashi Garden Apartments,
and the spatial boundary is colored in blue. It is a gated apartment
complex, and all 10 buildings of it are within the spatial boundary.

An OFD platform uses AOI information in many different ways,
for example: (1) When a customer places an order, the OFD platform
relies on AOI information to resolve the delivery address. Based
on the GPS coordinates of customers and the boundaries of nearby
AOIs, the platform would suggest possible AOI names to assist cus-
tomers to pinpoint their exact locations, which is critical to ensure
timely delivery. (2) On an OFD platform, a restaurant, say a McDon-
ald’s, is often asked to specify its service area as a list of AOIs. The
OFD platform then uses the GPS location of the customer together
with the spatial boundaries of the AOIs to determine whether to
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Figure 1: An example of an AOI.

show this McDonald’s to the customer. If the OFD platform does
not have the accurate spatial boundary for an AOI, for example,
if the spatial boundary of Yishashi Garden Apartments is incorrect
and Building #10 is erroneously excluded, the OFD platform would
not allow residents living in Building #10 to order from this McDon-
ald’s, although residents living in other buildings of this complex
can. This would create inconsistent experience among residents
living in the same gated complex.

OFD platforms have spent considerable efforts to improve the
accuracy of their AOIs. Recently, they started to tap into the vast
amount of geospatial data generated during the ordering process
which is illustrated in Figure 2. When a customer takes out the
phone to order, the OFD platform typically performs the following
procedures.
• In Step 1, the OFD platform gets the GPS coordinates of the
customer’s location from the GPS chip of the phone, and by
using the boundaries of known AOIs, it suggests possible AOI
names as delivery addresses.
• In Step 2, if the customer does not modify the suggested AOI
name, the AOI is proved to be accurate; otherwise, themodified
address andGPS coordinates are sent to the geospatial database
for potential AOIs.
• In Step 3, if the customer is not located in a known AOI, he/she
is asked to type the address manually, which together with
the GPS coordinates become the geospatial data that can be
used to detect AOIs for potential AOIs.
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Figure 2: How AOI information is used in ordering process.

In this paper, we investigate how to detect AOIs from the geospa-
tial data collected in the above process (see the red rectangle in
Figure 2). The AOI detection problem involves identifying the name
and the boundary of an underlying AOI. Although there has been a
proliferation of studies that investigate the AOI detection problem,
existing approaches all focus on the single-AOI detection problem,
that is, they detect AOIs one at a time. In fact, some noisy GPS
points locate in the wrong locations, therefore, they may construct
spatial boundaries of different AOIs with overlaps. Among existing
studies, multiple geospatial data sources are applied into the single-
AOI detection problem, including social media data (e.g., geo-tagged
Flicker photos [16, 32, 35] and geo-tagged tweets [4, 9, 26]), remote
sensing data [9], and delivery data [33].

Since single AOI detection algorithms detect AOIs independently
of each other, they tend to produce inconsistent results. Take Figure
3 as an example. In Figure 3(a), there are two AOIs whose names are
A and B. The blue dots are GPS locations located in AOI A, while
the red dots are those located in AOI B. These GPS locations are
generated directly from customers’ mobile devices and collected
from the OFD platform. Existing studies would first use the blue dots
to identify the spatial boundary of AOI A, which is shown in Figure
3(b); and then use the red dots to identify the spatial boundary of
AOI B, which is shown in Figure 3(c). When we overlay the spatial
boundaries of these two AOIs in Figure 3(d), they overlap with
each other, which is inconsistent. In summary, different approaches
of single-AOI detection tend to generate inconsistent results and
cannot fully leverage GPS data in adjacent AOIs.

In this research, we aim to address the challenge faced by single-
AOI detection models through simultaneously detecting multiple
AOIs. We propose to detect multiple AOIs simultaneously, that is,
to solve the multi-AOIs detection problem. In our approach, we
first apply existing single-AOI detection algorithms to generate
candidate spatial boundaries for AOIs in a neighborhood, we then
develop a Binary Integer Linear Programming (BILP) model to de-
termine the best candidate spatial boundaries for these AOIs while
accounting for their spatial dependency. We conduct numerical ex-
periments using real data from Meituan, the largest OFD platform
in China. Results show that our model not only produces consistent
AOI boundaries but also improves the average 𝐹1 score by 4.7%. We
improve the accuracy and preserve the details of the boundaries of
detected AOIs by applying a Hidden Markov Model (HMM) to the
road network dataset.

The contributions of this paper can be summarized as follows:
(1) To the best of the authors’ knowledge, we are the first to in-
vestigate the multi-AOIs detection problem. (2) By accounting for
the spatial dependency among neighbouring AOIs, we ensure that
our approach can produce AOI boundaries that are consistent with
each other. (3) We formulate the problem as a Binary Integer Lin-
ear Programming (BILP) model, which can be efficiently solved by
standard branch-and-bound procedures. (4) Using the optimization
model in the dataset collected from Meituan platform, results show
that our model identifies Multi-AOIs and improves the average 𝐹1
score from 0.847 to 0.894 and achieves the best average 𝐹1 score
among all single-AOI detection methods.

The rest of this paper is organized as follows. In Section 2, the
related work of AOI detection is discussed. Section 3 describes in
detail of the optimization model. In Section 4, we perform numerical



Simultaneous Detection of Multi-AOIs Using Geospatial Data from an OFD Platform (Industrial Paper) SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

(a) (b) (c) (d)

Figure 3: Existing studies detect AOIs independently of each other and may produce AOIs with overlaps. (a) shows the GPS
locations for customers located in AOIs A and B; (b) and (c) illustrate the estimated spatial boundaries of AOIs A and B,
respectively; (d) shows the spatial boundaries of AOIs A and B overlap, which is not acceptable.

experiments to evaluate the benefits of our optimization model.
Finally, we make a conclusion and describe the possible future
expectations in Section 5.

2 EXISTING STUDIES ON AOI DETECTION
With the development of mobile devices, volunteered geographic
information (VGI) is another source of data for numerous spatial
applications [15, 34]. In addition, OFD information is a new type
of geographic data generated by millions of customers and rid-
ers. Although the absence of quality control, some data have been
demonstrated the same quality of the authoritative data [24]. Most
of the existing studies are based on VGI data, such as geo-tagged
Flicker photos, tweets and other social media data [6, 21, 36].

Existing approaches for single-AOI detection can be broadly di-
vided into three groups: pre-defined shapes, density-based cluster-
ing, and grid-based aggregation. And some other novel approaches
are also introduced in this field.

Pre-defined shapes. In [32], the authors use circle with fixed
radius to extract popular tourist routes based on geo-tagged Flickr
photos. In particular, circles are used to represent a trajectory of
coordinates into a series of AOIs. In [1], the authors use rectangular
AOIs to represent stadiums in a study of trajectory pattern min-
ing. Specifically, a stadium’s AOI is the minimum rectangle of its
area. Due to the lack of ability to construct complex polygons, this
approach has significant limitations in practical application.

Density-based clustering. In [19], the authors use K-Means
to discover landmarks based on geo-tagged photos. This method
needs to set the number of clusters, but it is difficult to determine an
optimal number beforehand. In [8], the authors apply the algorithm
of Mean Shift [7] to cluster the locations based on a group of geo-
tagged Flicker photos. Rather than setting the number of clusters,
this algorithm needs to specify a value to determine the density
radius, which is difficult to accurately discover proper number for
different areas. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) is a widely used algorithm of density-based
clustering for geospatial data [13]. In [16], the authors apply DB-
SCAN clustering algorithm to identify urban AOIs based on Flickr
geo-tagged photos. In [33], the authors make use of DBSCAN algo-
rithm to identify clusters based on delivery addresses. Compared

to above clustering algorithms, DBSCAN is very robust against
outliers, and there are no constraints on the boundaries of clusters.
Furthermore, a number of studies have proposed improvements of
clustering approaches based on DBSCAN. In [36], the authors ap-
ply the algorithm of P-DBSCAN to eliminate noises of geographic
coordinates and investigate the tourists’ behaviors in Hong Kong.
In [30], the authors introduce the algorithm of C-DBSCAN, which
defines the constraints based on the background knowledge. In
[26], the authors propose M-DBSCAN to reduce the uncertainty
of detecting clusters by DBSCAN based on different density and
cluster size scales. H-DBSCAN [5] is introduced by improving and
integrating DBSCAN and OPTICS [2]. In [18], the authors apply
H-DBSCAN algorithm to identify AOIs and interest patterns of
tourists from Flickr geo-tagged photos in Vienna. Other cluster-
ing methods are also applied to discover clusters of AOIs. In [25],
the authors devise a clustering method for discovering AOIs from
image densities and enhanced by the secondary densities of sites
adjacent to the images. In [35], the authors propose an adaptive
urban clustering method to discover Points-of-Interest (POIs) based
on different granularities.

Grid-based aggregation. In [22], the authors map coordinates
into a grid cell and defined temporal constraints to discover AOIs.
In [31], the authors collect geo-tagged photos with location names
and conduct clustering by Delaunay triangulation, then POI was
recognized as the average coordinates located in the cluster. In [28],
the authors propose a grid-based algorithm to solve the problem of
discovering Geometries-of-Interest (GOIs) of moving objects based
on GPS trajectories.

Besides above three groups of approaches, we also have reviewed
other single-AOI detection algorithms. In [10], the authors intro-
duce a grid-based Integer Linear Programming (ILP) model to dis-
cover AOIs. In [4], the authors propose an algorithm of G-ROI for
discovering ROIs on multiple social media datasets. The G-ROI
contains two steps of reduction and selection, and achieves higher
𝐹1 score compared with other methods.

The boundary of a cluster is often constructed by a convex hull
[3]. Given a set of points on a Cartesian plane, the convex hull of
these points is represented by the external polygon on them [21].
In order to match boundaries better and reduce blank parts for
polygon construction, the alpha-shape [12] and other approaches
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of building concave hull are widely used [28]. The algorithm of
alpha-shape is built on the base of Delaunay triangulation and can
be used to construct polygons with different shapes flexibly. In
[11], the authors propose an algorithm of chi-shape to construct a
concave hull, and [16] use this method to construct AOIs based on
geo-tagged Flicker photos.

In summary, our study is different from earlier research in two
ways. First, our approach fully utilizes mutual exclusion of different
AOIs and combines multiple single-AOI detection algorithms to-
gether; Second, instead of focusing on detecting one particular AOI,
we propose an optimization model which can detects multi-AOIs
simultaneously.

3 METHODOLOGY
We develop an optimization model for the simultaneous detection
of multi-AOIs in this section. Inputs to this model include GPS
points and multiple candidate spatial boundaries constructed by
single-AOI detection models. The optimization model then outputs
the optimal spatial boundaries of AOIs. We first use an example to
illustrate how the model works, and then detail the optimization
model. Finally, we refine the model by introducing the geohash
technique.

3.1 The General Idea
In order for readers to understand our approach better, before div-
ing into the details, we describe how the model works. We continue
using the example mentioned in Section 1 to explain the working
strategy of the optimization model. Figure 3(d) shows candidate
spatial boundaries of AOIs A and B by a single-AOI detection al-
gorithm. If we change the algorithms and their parameter values,
different candidate spatial boundaries can be generated. For AOIs
A and B, two sets of candidate sptial boundaries are generated as
𝛹𝐴 = {𝐴1, 𝐴2, · · · , 𝐴𝑛} and𝛹𝐵 = {𝐵1, 𝐵2, · · · , 𝐵𝑛} by 𝑛 single-AOI
detection models. Then these data are fed into the optimization
model.

(a) Candidate spatial boundaries (b) Optimal spatial boundaries

Figure 4: Visualization of the proposed approach.

Based on themutual exclusion of different AOIs, the optimization
model helps us discover the optimal spatial boundaries of AOIs A
and B from𝛹𝐴 and𝛹𝐵 simultaneously. In this study, the definition of
optimal spatial boundaries of AOIs is that spatial boundaries contain
the corresponding GPS points as many as possible and there are
no overlaps between any two of these spatial boundaries. Figure 4

illustrates the process of our proposed approach. In Figure 4(a), the
blue and red lines represent candidate spatial boundaries of𝛹𝐴 and
𝛹𝐵 , respectively. In Figure 4(b), the optimal spatial boundaries of
AOIs A and B are represented as the thick blue and red boundaries,
and other candidate spatial boundaries are colored in gray. The
optimal spatial boundaries have no overlaps between each other
and represent major regions of AOIs A and B.

Then the framework of the proposed approach is illustrated
in Figure 5. First, geospatial data as inputs are fed into different
single-AOI detection models, which are based on algorithms of
G-ROI (detailed in Section 4.3.1), and DBSCAN (detailed in Section
4.3.2). Then different parameter values are assigned to single-AOI
detectionmodels to construct𝑛models, which are labelled asModel-
1, Model-2, · · · , Model-n. Then these models are used to construct
𝑛 candidate spatial boundaries of every AOI. Suppose there are𝑚
AOIs in the research region, and they are represented as AOI𝐴, AOI
𝐵, · · · , AOI𝑀 . From Figure 5, we can see that𝑚×𝑛 candidate spatial
boundaries are constructed by different models. To make it easier to
understand, we use different fill colors to represent candidate spatial
boundaries constructed by different models. For example, candidate
spatial boundaries created byModel-1 (i.e.,𝐴1, 𝐵1, · · · , 𝑀1) are filled
with blue. And candidate spatial boundaries created by Model-2 and
Model-n are filled with pink and green, respectively. Then all these
candidate spatial boundaries are fed into the multi-AOIs detection
model. After the process of the optimization model, finally, a set
of optimal spatial boundaries of AOIs are discovered. For optimal
spatial boundaries, different colors of AOIs are corresponded to
different single AOI detection models.
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Figure 5: The Framework of the proposed approach.

3.2 Optimization Model
3.2.1 Notation and Terminology. Suppose 𝐴𝑖 is one of the AOIs
in our research area, where 𝑖 ∈ 𝐼 , and 𝐶𝑖, 𝑗 is one of the candidate
spatial boundaries of 𝐴𝑖 , where 𝑗 ∈ 𝐽 . Suppose 𝑃𝑘 is one of the GPS
points, where 𝑘 ∈ 𝐾 . And whether the GPS point 𝑃𝑘 is located in
𝐶𝑖, 𝑗 or not is denoted by a binary variable 𝛿𝑖, 𝑗,𝑘 :

𝛿𝑖, 𝑗,𝑘 =

{
1, if the GPS point 𝑃𝑘 is located in 𝐶𝑖, 𝑗 ;
0, otherwise.

(1)

Then we use a binary variable 𝛾𝑘,𝑖 to indicate whether the corre-
sponding AOI name of 𝑃𝑘 is 𝐴𝑖 , if the answer is yes, then 𝛾𝑘,𝑖 = 1,
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otherwise, 𝛾𝑘,𝑖 = 0. That is,

𝛾𝑘,𝑖 =

{
1, if 𝑃𝑘 ’s corresponding AOI name is 𝐴𝑖 ;
0, otherwise.

(2)

If the candidate spatial boundary 𝐶𝑖, 𝑗 is chosen as the optimal
spatial boundary of 𝐴𝑖 by the optimization model, then 𝑥𝑖, 𝑗 = 1,
otherwise, 𝑥𝑖, 𝑗 = 0. That is,

𝑥𝑖, 𝑗 =

{
1, if 𝐶𝑖, 𝑗 is chosen as the optimal boundary;
0, otherwise.

(3)

3.2.2 The Constraints. For any GPS point 𝑃𝑘 and all candidate spa-
tial boundaries containing it, at most one candidate spatial bound-
ary can be chosen as the optimal spatial boundary. We apply this
requirement by the following constraint:∑︁

𝑖∈𝐼

∑︁
𝑗∈ 𝐽

𝛿𝑖, 𝑗,𝑘 · 𝑥𝑖, 𝑗 ≤ 1, ∀𝑘 ∈ 𝐾. (4)

For any AOI 𝐴𝑖 , only one of the candidate spatial boundaries
can be chosen as the optimal spatial boundary. This is achieved
through the following constraints:∑︁

𝑗∈ 𝐽
𝑥𝑖, 𝑗 = 1, ∀𝑖 ∈ 𝐼 . (5)

𝑥𝑖, 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . (6)

3.2.3 Model Formulation. The objective of this study can be re-
garded as a maximization problem. Thus, this problem is formulated
as a BILP model, which is shown as follows:

max
∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

∑︁
𝑘∈𝐾

𝛿𝑖, 𝑗,𝑘 · 𝛾𝑘,𝑖 · 𝑥𝑖, 𝑗 , (7)

subject to constrains (4) through (6).
At last, the optimization model selects the optimal spatial bound-

aries for AOIs simultaneously.

3.3 Use Geohash to Improve Computational
Performance

In Section 3.2, we have to set variables 𝛿𝑖, 𝑗,𝑘 and 𝛾𝑘,𝑖 based on every
GPS point 𝑃𝑘 , but in fact many GPS points are located in the very
close or even the same location. This fact can directly result in many
GPS points being computed repeatedly and reducing computational
efficiency in the optimization model. Therefore, we can make a grid
with equal sized rectangular shaped cells with fine granularity, and
every grid cell represents the whole GPS points located in it. For
easier implementation of the grid, geohash technique is introduced
in our study.

Geohash is a method of encoding geographic points into strings
representing cells on the map. The size of a geohash cell is deter-
mined by a non-negative integer precision factor. In this research,
we choose the precision factor with 9 and it can create square cells
with 4.8m × 4.8m. Then all GPS points located in the same geohash
cells and with the same parsed AOI names are merged together,
and represented as one geohash cell. And we also count the whole
orders located in every geohash cell as a weighted value. Finally,
we use geohash cells to refine the modelling strategy.

Instead of setting variable 𝛿𝑖, 𝑗,𝑘 based on 𝑃𝑘 , we introduce 𝐺𝑙 as
one of the geohash cells, where 𝑙 ∈ 𝐿. The centroid of a geohash cell

means the geometric center of the cell. And whether the centroid of
the geohash cell 𝐺𝑙 is located in 𝐶𝑖, 𝑗 or not is denoted by a binary
variable 𝛿𝑖, 𝑗,𝑙 :

𝛿𝑖, 𝑗,𝑙 =

{
1, if the centroid of 𝐺𝑙 is located in 𝐶𝑖, 𝑗 ;
0, otherwise.

(8)

For the geohash cell𝐺𝑙 , we also count the total number of orders
located in it as a weighted value 𝑤𝑙 . This is denoted by a non-
negative integer variable 𝛽𝑖, 𝑗,𝑙 :

𝛽𝑖, 𝑗,𝑙 =

{
𝑤𝑙 , if the centorid of 𝐺𝑙 is located in 𝐶𝑖, 𝑗 ;
0, otherwise.

(9)

Then we define a binary variable 𝛾𝑙,𝑖 to determine whether the
corresponding AOI name of 𝐺𝑙 is 𝐴𝑖 , if the answer is yes, then
𝛾𝑙,𝑖 = 1, otherwise, 𝛾𝑙,𝑖 = 0. That is,

𝛾𝑙,𝑖 =

{
1, if 𝐺𝑙 ’s corresponding AOI name is 𝐴𝑖 ;
0, otherwise.

(10)

For any geohash cell 𝐺𝑙 and all candidate spatial boundaries
containing it, at most one candidate spatial boundary can be chosen
as the optimal spatial boundary. We apply this requirement by the
following constraint:∑︁

𝑖∈𝐼

∑︁
𝑗∈ 𝐽

𝛿𝑖, 𝑗,𝑙 · 𝑥𝑖, 𝑗 ≤ 1, ∀𝑙 ∈ 𝐿. (11)

The definition of 𝑥𝑖, 𝑗 and constraints (5) and (6) remain un-
changed. And the objective function is changed as follows:

max
∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

∑︁
𝑙∈𝐿

𝛿𝑖, 𝑗,𝑙 · 𝛽𝑖, 𝑗,𝑙 · 𝛾𝑙,𝑖 · 𝑥𝑖, 𝑗 , (12)

subject to constrains (5), (6) and (11).

4 NUMERICAL EXPERIMENTS
To quantify the advantages of the proposed model, numerical exper-
iments are performed. The computer programs for the optimization
model are written in python and solved by IBM ILOG CPLEX 20.1.0
[17]. All computational tests are performed on a MacBook Pro
equipped with an Intel 2.6 GHz CPU with 16 GB memory.

4.1 Dataset
Meituan, the offline-to-online (O2O) specialist, was founded in
2010, and now is one of the world’s largest online food delivery
platforms. It had 290 million monthly active users and around 600
million registered users as of April 2018 [27]. In this study, OFD
data are collected from 4 Chinese cities for 3 months from October
1st to December 31st 2021 by Meituan platform. A description
and example of the dataset used in this study is shown in Table
1. For every order, it contains detailed GPS coordinates (fields of
user_lon and user_lat) and address (the field of user_addr) of the
user’s location.

For the improved optimization model, before feeding the geospa-
tial data into models, GPS points have to be converted into geohash
cells. We use an example to illustrate the process, which is shown
in Figure 6. Figure 6(a) illustrates original GPS points of orders, and
the corresponding geohash cells are shown in Figure 6(b). From
Figure 6(b), the different colors of geohash cells indicate numbers
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Table 1: Major data types of an order in Meituan

Field Description Example
order_id Unique identification of the order. 16015325888
user_id Unique identification of the user. 320597876
user_lon Longitude of the user’s location. 121.397207
user_lat Latitude of the user’s location. 31.147946
user_addr Text string of the user’s address. Room-𝑁 , XX
rider_id Unique identification of the rider. 14790342

of orders located in them, and the geohash cell with darker color
means it contains more orders. We treat every geohash cell as a
GPS point, then feed them into single-AOI detection models.

(a) Original GPS points (b) Geohash cells

Figure 6: Visualization of geohash cells.

Due to the limitation of variables and constraints of CPLEX,
instead of implementing the optimization model throughout the
whole city, we partition the city into multiple regions (also called
large grids) based on road network and implement the model in
every region separately. Road network data of these 4 cities are
collected, and every road segment is stored as a polyline, which con-
sists of a sequence of geographic coordinates. Every road segment
has a property of road hierarchy, and the road network partition can
be implemented by the road hierarchy, which is shown in Figure 7.
Figure 7(a) illustrates road segments based on hierarchy 1-5. Then
the road network help us partition the urban area into multiple
regions, as shown in Figure 7(b) [37]. In this figure, we use different
colors to distinguish these regions. For every region, the shape is
around 1km × 1km, and there are about 5 to 10 AOIs in it.

4.2 System Framework
The detailed system framework of the proposed approach is elabo-
rated in Figure 8, consisting of four components:

Dataset. This component includes two types of data: (1) Histori-
cal Order Data, which include detailed addresses and GPS coordi-
nates of customers; (2) Road Network Data, which include detailed
information of every road segment.

Data Pre-processing. This component takes dataset of his-
torical order and road network, then performs 6 main tasks: (1)
Hierarchy-Based Road Network Partition, which partitions the road
network into large grids based on road hierarchy; (2) Large Grids,
which are the partitioned regions and OFD data located in the
specific large grid are captured; (3) Address Resolution, which ex-
tracts AOI names and geographic coordinates of every order in the

(a) Road segments (b) Hierachy-based region partition

Figure 7: Road network and small partitioned regions in
Wangjing area of Beijing.
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Figure 8: The detailed Framework of the proposed approach.

large grid; (4) Data Cleaning, which removes outlier GPS points;
(5) Polygon Merging, which merges the same AOI with alias names;
(6) Original Convex Polygons of AOIs, which constructs original
boundaries of AOIs based on the convex hull.

Modelling. This component takes the preprocessed data as in-
puts, and generates boundaries of multi-AOIs, and then are fed
into the optimization model. It includes two steps: (1) Single-AOI
Detection, which generate a set of candidate spatial boundaries of
every AOI based on algorithms of G-ROI and DBSCAN (detailed in
Section 4.3); (2) Optimization Model, which uses the optimization
model to detect multi-AOIs simultaneously based on the candidate
spatial boundaries created in the previous step.

Evaluation. This component takes results of the optimization
model, and evaluates the performance of results based on four
metrics, which are precision, recall, 𝐹1 score and inconsistency
(detailed in Section 4.5).

4.3 Baseline Algorithms
In this section, we briefly review the baseline algorithms used in our
numerical experiments. According to existing studies in single-AOI
detection, G-ROI algorithm [4] achieves the best 𝐹1 score compared
with other methods, and DBSCAN algorithm [16, 33] has been
widely used in AOI detection problem and achieves the robust
performance. Additionally, we construct spatial boundaries of point
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(a) Original alpha-shape (b) Modified alpha-shape

Figure 9: Visualization of alpha-shape algorithms. (a) and (b)
show the boundaries (purple) by the original and modified
alpha-shape algorithms, blue polygons are deleted parts.

clusters based on convex hull and modified alpha-shape concave
hull.

4.3.1 G-ROI Algorithm. In [4], the authors propose a G-ROI algo-
rithm for discovering ROIs on multiple social media datasets, and
this algorithm achieves the best 𝐹1 score among other detection
methods. This algorithm contains two stages of reduction and se-
lection. Let 𝐶 be a set of geographic points within an AOI, and ℎ0
be the convex hull of 𝐶 , and represented by a set of vertices.

The reduction stage begins from ℎ0, then it finds one of its ver-
tices to generate the smallest polygon and remove this vertex. With
the same strategy, it continues until the convex hull containing
only three vertices. This stage returns a set of convex hulls 𝐻 =

{ℎ0, ℎ1, · · · , ℎ𝑛} and a set of removed points 𝑃 = {𝑝0, 𝑝1, · · · , 𝑝𝑛−1}
obtained through the 𝑛 steps that have been processed. The selec-
tion stage tries to discover the cut-off point 𝑝𝑐𝑢𝑡 . In this study, we
set different parameter values to construct candidate spatial bound-
aries of AOIs, and then feed them into the optimization model.

4.3.2 DBSCAN Algorithm. DBSCAN [13] is a density-based clus-
tering algorithm, and is widely used in clustering for geospatial
data. Compared with clustering methods like K-Means, DBSCAN
does not require to specify the number of clusters, and can identify
outlier points. Given a set of points on a Cartesian plane, DBSCAN
can group together points with multiple nearby neighbors, and
marks outlier points that lie alone in low-density regions (whose
nearest neighbors are too far away). The working strategy behind
DBSCAN is to identify the minimum number of neighboring points
𝑚𝑖𝑛𝑃𝑡𝑠 within the circle range of the radius 𝜖 . In comparison to
other clustering algorithms, DBSCAN can identify clusters with
different shapes and has good robustness for data noises [16].

Before using DBSCAN, the two parameters require to be set with
proper values. The value of 𝜖 can be determined according to the
geographic scale of the research problem. In general, if 𝜖 is set with
a larger value, DBSCAN can construct AOIs with bigger coverage,
while if the value is smaller, the produced AOIs are also smaller.
The value of𝑚𝑖𝑛𝑃𝑡𝑠 determines the minimum number of points of
a cluster and represents the significance of the identified AOIs. If

𝑚𝑖𝑛𝑃𝑡𝑠 is set with a larger value, it can make sure to extract AOIs
with a higher significance but may also miss some useful areas.
while if𝑚𝑖𝑛𝑃𝑡𝑠 is set with a smaller value, more clusters can be
extracted but may also contain noisy points. In regard of the above
reasons, it’s difficult to find the best parameters of DBSCAN for
every case, therefore, we set several groups of parameters to create
different candidate spatial boundaries of AOIs, and then feed them
into the optimization model.

4.3.3 Concave Hull. After identifying clusters of customers’ loca-
tions, the next step is to construct polygons from these GPS points.
The convex hull is a typical way to represent the external poly-
gon of those points, and has been applied in many studies [14, 16].
While in some cases, the convex hull cannot match the boundary
better but contains empty parts which do not belong to the original
points. In our research, we try to find spatial boundaries of AOIs
with no overlaps among each other, therefore, convex polygons
cannot represent these AOIs properly. For more precise delineation
of cluster shapes, Edelsbrunner et al. [12] propose the algorithm
of alpha-shape, which can be used to construct a concave hull and
represents the shape of the AOI more properly.

The steps for concave hull computation can be summarized as
follows: (1) Generate a triangulated irregular network (TIN) of a
set of discrete points using Delaunay triangulation method; (2)
Remove exterior edges of the triangle with circumradius longer
than a pre-defined length parameter 𝑙 ; (3) Repeat step 2 until every
triangle’s circumradius in the TIN is shorter than 𝑙 ; (4) Generate
the resulted shape, which is the purple polygon in Figure 9(a). The
parameter 𝑙 can equal to any positive number. If 𝑙 is less than the
shortest circumradius 𝑟𝑚𝑖𝑛 , then all edges are removed. If 𝑙 is more
than the longest circumradius 𝑟𝑚𝑎𝑥 , then all edges are kept, and
the generated hull will be the convex hull of the points. Therefore,
only values between 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 can be the optimal value.

In this research, we modify the algorithm of alpha-shape to be
more accurate for our dataset. For the algorithm of alpha-shape, it
aims to delete all exterior edges with circumradius longer than 𝑙 ,
therefore, it will create some empty parts. For the modified alpha-
shape, it can create smoother boundaries, as described in Algorithm
1. For the input of this algorithm, 𝑝𝑜𝑖𝑛𝑡𝑠 means GPS points, and
𝑝𝑒𝑟 refers to the percentage of deleted triangles. We first calculate
𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑀𝑒𝑠ℎ by Delaunay triangulation method. Then, the ci-
cumradius of every triangle is calculated and sorted from large to
small. A threshold of circumradius is calculated by 𝑝𝑒𝑟 , we keep
all triangles with the circumradius shorter than the threshold. For
other triangles, we use the method of 𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑑_𝑢𝑛𝑖𝑜𝑛 to merge
adjacent triangles together, therefore some separated polygons are
created, which are blue polygons in Figure 9(a). We calculate areas
of these polygons, and find the largest and second largest ones
𝑎𝑟𝑒𝑎1 and 𝑎𝑟𝑒𝑎2. If 𝑎𝑟𝑒𝑎1/𝑎𝑟𝑒𝑎2 is larger than 3, only the largest
polygons are deleted, which is the blue polygon in Figure 9(b), and
other parts are merged together as the return concave hull, which
is the purple polygon in Figure 9(b). Otherwise, the convex hull of
𝑝𝑜𝑖𝑛𝑡𝑠 is returned.

4.4 Fine-tune Detected Boundaries
4.4.1 HMM Matching. In [29], the authors propose a map match-
ing method by using HMM to discover the most probable route
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Algorithm 1: Modified alpha-shape
Input: 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑝𝑒𝑟
Output: 𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝐻𝑢𝑙𝑙

1 begin
2 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑀𝑒𝑠ℎ ← 𝐷𝑒𝑙𝑎𝑢𝑛𝑎𝑦𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑖𝑛𝑡𝑠)
3 for (𝑖𝑎, 𝑖𝑏 , 𝑖𝑐 ) ∈ 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑀𝑒𝑠ℎ.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
4 𝑐𝑖𝑟𝑐𝑢𝑚𝑅 ← 𝑐𝑖𝑟𝑐𝑢𝑚𝑟𝑎𝑑𝑖𝑢𝑠 (𝑎, 𝑏, 𝑐)
5 𝑒𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠𝐴𝑝𝑝𝑒𝑛𝑑 (𝑒𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑝𝑜𝑖𝑛𝑡𝑠 [[𝑖𝑎, 𝑖𝑏 , 𝑖𝑐 ]])
6 𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐴𝑝𝑝𝑒𝑛𝑑 (𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡, 𝑝𝑜𝑖𝑛𝑡𝑠 [[𝑖𝑎, 𝑖𝑏 , 𝑖𝑐 ]])
7 end
8 𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡 ← 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡)
9 𝑖𝑛𝑑𝑒𝑥 ← 𝑟𝑜𝑢𝑛𝑑 (𝑝𝑒𝑟 × 𝑙𝑒𝑛(𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡)

10 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡 [𝑖𝑛𝑑𝑒𝑥]
11 for 𝑖 ← 0 to 𝑙𝑒𝑛(𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡) do
12 if 𝑐𝑖𝑟𝑐𝑢𝑚𝑅𝐿𝑖𝑠𝑡 [𝑖] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
13 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠.𝑝𝑜𝑝 (𝑖))
14 end
15 end
16 𝑘𝑒𝑝𝑡𝑃𝑜𝑙𝑦𝑠 ← 𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑑_𝑢𝑛𝑖𝑜𝑛(𝑒𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠)
17 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦𝑠 ← 𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑑_𝑢𝑛𝑖𝑜𝑛(𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠)
18 𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝐻𝑢𝑙𝑙 ← 𝑃𝑜𝑙𝑦𝑔𝑜𝑛()
19 if 𝑡𝑦𝑝𝑒 (𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦𝑠) = 𝑀𝑢𝑙𝑡𝑖𝑃𝑜𝑙𝑦𝑔𝑜𝑛 then
20 for 𝑝𝑜𝑙𝑦 ∈ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦𝑠 do
21 𝑎𝑟𝑒𝑎𝑃𝑜𝑙𝑦𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎𝑟𝑒𝑎(𝑝𝑜𝑙𝑦))
22 end
23 𝑖𝑛𝑑𝑒𝑥1, 𝑎𝑟𝑒𝑎1 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐴𝑟𝑒𝑎(𝑎𝑟𝑒𝑎𝑃𝑜𝑙𝑦𝑠, 1)
24 𝑖𝑛𝑑𝑒𝑥2, 𝑎𝑟𝑒𝑎2 ← 𝑔𝑒𝑡𝐼𝑛𝑑𝑒𝑥𝐴𝑟𝑒𝑎(𝑎𝑟𝑒𝑎𝑃𝑜𝑙𝑦𝑠, 2)
25 if 𝑎𝑟𝑒𝑎1𝑎𝑟𝑒𝑎2

> 3.0 then
26 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦 ← 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦𝑠.𝑝𝑜𝑝 (𝑖𝑛𝑑𝑒𝑥1)
27 end
28 end
29 𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝐻𝑢𝑙𝑙 ← 𝑘𝑒𝑝𝑡𝑃𝑜𝑙𝑦𝑠 ∪ 𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑃𝑜𝑙𝑦𝑠
30 return 𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝐻𝑢𝑙𝑙
31 end

represented by a time series of coordinates, and achieve a good
performance. In this study, every candidate spatial boundary has
vertices of GPS points, which can be applied to this algorithm. This
algorithm can be used to fine-tune the detected boundaries to match
road network. Since vertices of AOIs’ actual boundaries are not
necessarily positioned on the road network, therefore, it does not
perform good enough in cases without high quality internal road
network. In this study, we use two indices to evaluate results, which
are defined as:

𝑅𝑎𝑡𝑖𝑜1 =
𝐴𝑟𝑒𝑎

(
𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑

)
𝐴𝑟𝑒𝑎

(
𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑 ∪𝐴𝑂𝐼𝐻𝑀𝑀

) , (13)

𝑅𝑎𝑡𝑖𝑜2 =
𝐴𝑟𝑒𝑎

(
𝑀𝑅𝑅

(
𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑

))
𝐴𝑟𝑒𝑎

(
𝑀𝑅𝑅

(
𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑 ∪𝐴𝑂𝐼𝐻𝑀𝑀

)) , (14)

where 𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑 is the detected AOI’s boundary; 𝐴𝑂𝐼𝐻𝑀𝑀 is the
boundary calculated by HMM matching; 𝑀𝑅𝑅(·) is a function to

get the minimum rotated rectangle of a polygon. And only if both
two ratios are larger than the threshold, the HMM matching result
will be accepted, otherwise will keep the original detected AOI’s
boundaries.

4.4.2 Grid Matching. We partition every research region into small
grids by the internal road network, then match small grids to AOIs.
We determine which AOI do these grids belong to by the ratio
defined as follows:

𝑅𝑎𝑡𝑖𝑜 =

𝐴𝑟𝑒𝑎

(
𝐴𝑂𝐼 𝑓 𝑜𝑢𝑛𝑑 ∩ 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝐺𝑟𝑖𝑑

)
𝐴𝑟𝑒𝑎

(
𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝐺𝑟𝑖𝑑

) , (15)

where 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝐺𝑟𝑖𝑑 is the polygon of every small grid. Then, we
merge all small grids belonging to the same AOI, and use strategies
mentioned in Section 4.4.1 to determine whether to keep the result
or not.

Finally, these two fine-tuning algorithms are combined together
to fine-tune the detected spatial boundaries. We compare the two
results of HMM matching and grid matching, and keep the one
with bigger area as the final result of the combining result.

4.5 Performance Metrics
Metrics of precision and recall are used to evaluate the performance
of the baseline algorithms as well as our approach in detecting AOIs.
The ground-truth AOIs in this study are manually labeled by ground
survey. As in [4], let 𝐺_𝐴𝑂𝐼𝑖 be one of the ground-truth AOIs in
a region, where 𝑖 ∈ 𝐼 , and let 𝐹_𝐴𝑂𝐼𝑖 be the corresponding found
AOI by a single AOI detection method. Let𝐺_𝐴𝑂𝐼𝑖 ∩ 𝐹_𝐴𝑂𝐼𝑖 be the
corresponding true positive area, which is defined as the overlap of
𝐺_𝐴𝑂𝐼𝑖 and 𝐹_𝐴𝑂𝐼𝑖 . The two metrics are defined as:

Precision =

∑
𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐺_𝐴𝑂𝐼𝑖 ∩ 𝐹_𝐴𝑂𝐼𝑖 )∑

𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐹_𝐴𝑂𝐼𝑖 )
, (16)

Recall =
∑
𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐺_𝐴𝑂𝐼𝑖 ∩ 𝐹_𝐴𝑂𝐼𝑖 )∑

𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐺_𝐴𝑂𝐼𝑖 )
, (17)

where
∑
𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐺_𝐴𝑂𝐼𝑖 ) is the whole areas of the ground-truth

AOIs, and
∑
𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐹_𝐴𝑂𝐼𝑖 ) is the whole areas of the correspond-

ing found AOIs, and
∑
𝑖∈𝐼 𝐴𝑟𝑒𝑎(𝐺_𝐴𝑂𝐼𝑖 ∩ 𝐹_𝐴𝑂𝐼𝑖 ) refers to the

whole true positive areas in the region.
To sort the results, the 𝐹1 score is defined as the harmonic mean

of precision and recall as follows:

𝐹1 =
2 × Precision × Recall
Precision + Recall . (18)

To evaluate the overlap degree among different detected AOIs.
We define the metric of inconsistency to calculate the overlap ratio
of AOIs within a region as follows:

Inconsistency =
𝐴𝑟𝑒𝑎 (∩𝑖∈𝐼 𝐹_𝐴𝑂𝐼 𝑖 )
𝐴𝑟𝑒𝑎 (∪𝑖∈𝐼 𝐹_𝐴𝑂𝐼 𝑖 )

, (19)

where 𝐴𝑟𝑒𝑎 (∩𝑖∈𝐼 𝐹_𝐴𝑂𝐼 𝑖 ) is the overlap area of all AOIs , and
𝐴𝑟𝑒𝑎 (∪𝑖∈𝐼 𝐹_𝐴𝑂𝐼 𝑖 ) is the union area of all AOIs in the region.

If the inconsistency is 0, it means all of those polygons are com-
pletely separated from each other. Higher inconsistency means a
worse performance in this metric.
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4.6 Optimization Results
In this study, we choose the densely populated area filled with large
numbers of residential complexes as the research regions. Based on
this principle, we choose 28 research cases from 4 Chinese cities.
Two optimization models mentioned in Section 3 are represented
as OM-1 (detailed in Section 3.2) and OM-2 (detailed in Section
3.3), which are applied to these research regions. After testing, two
models achieve the same results on multi-AOIs detection, but they
differ greatly in problem size. We report the summary statistics for
OM-1 and OM-2 in Table 2. On average, they have the same number
of binary variables, which is 199, but OM-1 has 13,017 constraints
and OM-2 has only 1,525 constraints. We notice that instances
can be solved in 78.7s and 13.8s by OM-1 and OM-2, respectively.
Therefore, OM-2 has a significant efficiency improvement compared
with OM-1.

Table 2: Optimization summary.

Design Problem size CPU time(s)Binary variables Constraints
OM-1 199 13,017 78.7
OM-2 199 1,525 13.8

Then we evaluate the average metrics of these research regions.
Table 3 illustrates the performance (precision, recall, 𝐹1 score, and
inconsistency) of all single-AOI detection models, and the best
values of the whole models are shown on the last row. G-ROI-01,
G-ROI-02, · · · , G-ROI-08 are models generated by G-ROI algorithm,
and AVG-G-ROI refers to the average values of these 8 models;
DBSCAN-01, DBSCAN-02, · · · , DBSCAN-16 are models generated
by DBSCAN algorithm, and AVG-DBSCAN represents the average
values of these 16 models.

Results of the Table 3 show that the best precision of the whole
single-AOI detection models is achieved by G-ROI, which is 0.983,
while recall of it is the lowest one. The reason is that G-ROI al-
gorithm removes too many points, therefore, in most cases, the
ground-truth AOIs contain the found ones. DBSCAN achieves rela-
tively high results (𝐹1 score ranging from 0.850 to 0.869), and the
best recall and 𝐹1 score of the whole single-AOI detection models
is achieved by DBSCAN. On average of all models by DBSCAN,
the precision is 0.895 and the recall is 0.825, which results in the 𝐹1
score of 0.858. The precision is bigger than the recall, which means
the identified AOIs are smaller than the ground-truth ones.

Table 4 illustrates the evaluation results of convex hull, optimiza-
tion model, and fine-tuning algorithms. For the original convex hull,
the precision and recall are 0.827 and 0.865, respectively, which
results in the 𝐹1 score of 0.847. The fact that the value of precision
is lower than recall, means that the original convex hulls are on
average bigger than the ground-truth ones. The inconsistency is
0.105, which means those AOIs have quite a lot of overlaps.

Then, the optimization model outperforms the other single-AOI
detection algorithms in Table 3. The precision is 0.923 and the
recall is 0.843, which leads to a 𝐹1 score of 0.881. These results
support the ability of the optimization model to discover multi-
AOIs simultaneously. The inconsistency is 0, which means that the
spatial boundaries of different AOIs are completely separated.

Table 3: Average precision, recall, 𝑭1 score, and inconsistency
of all single-AOI detection models in all cases

Model Precision Recall 𝐹1 Inconsistency
G-ROI-01 0.878 0.836 0.856 0.063
G-ROI-02 0.897 0.824 0.859 0.049
G-ROI-03 0.918 0.810 0.861 0.031
G-ROI-04 0.931 0.788 0.854 0.024
G-ROI-05 0.949 0.758 0.843 0.014
G-ROI-06 0.965 0.705 0.815 0.005
G-ROI-07 0.976 0.641 0.774 0.001
G-ROI-08 0.983 0.511 0.672 0.000
AVG-G-ROI 0.937 0.734 0.817 0.023
DBSCAN-01 0.851 0.865 0.858 0.080
DBSCAN-02 0.857 0.865 0.861 0.072
DBSCAN-03 0.887 0.851 0.869 0.038
DBSCAN-04 0.888 0.846 0.866 0.036
DBSCAN-05 0.889 0.844 0.866 0.036
DBSCAN-06 0.917 0.803 0.856 0.014
DBSCAN-07 0.918 0.801 0.856 0.014
DBSCAN-08 0.919 0.800 0.855 0.012
DBSCAN-09 0.858 0.838 0.847 0.048
DBSCAN-10 0.863 0.836 0.850 0.041
DBSCAN-11 0.900 0.837 0.867 0.022
DBSCAN-12 0.900 0.832 0.865 0.021
DBSCAN-13 0.901 0.830 0.864 0.021
DBSCAN-14 0.923 0.787 0.849 0.008
DBSCAN-15 0.924 0.786 0.850 0.008
DBSCAN-16 0.925 0.785 0.849 0.007
AVG-DBSCAN 0.895 0.825 0.858 0.030
Best values 0.983 0.865 0.869 0.000

Finally, algorithms of HMM and grid matching are applied to
fine-tune the detected spatial boundaries of AOIs based on the
road network data. After improved by the HMM algorithm, 𝐹1
score increases to 0.892, and this value is 0.892 based on the grid
matching algorithm. For the algorithm combining both HMM and
grid matching, the best 𝐹1 score is achieved, and the value is 0.894.

5 CONCLUSION AND FUTURE DIRECTIONS
In this paper, a novel optimizationmodel is proposed to detect multi-
AOIs simultaneously. Results of numerical experiments suggest that
the detection results are promising, and our model achieves the
best average 𝐹1 score of the whole single-AOI detection models.
To the best of our knowledge, this is the first instance of multi-
AOIs detection. Moreover, we use two algorithms to fine-tune the
detected spatial boundaries based on road network and achieve
better performance of 𝐹1 score.

Future work of this study includes: First, we only use two types
of algorithms to create candidate spatial boundaries, while we can
add more promising algorithms in the single-AOI detection step,
which may help to improve the detection performance. Second,
collecting more information of lower-level road network, which can
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Table 4: Average precision, recall, 𝑭1 score, and inconsistency
achieved by convex hull, the optimization model, and fine-
tuning algorithms in all cases

Model Precision Recall 𝐹1 Inconsistency
Convex Hull 0.827 0.868 0.847 0.105
Our Model 0.923 0.843 0.881 0.000

HMM Matching 0.888 0.896 0.892 0.000
Grid Matching 0.899 0.886 0.892 0.000
HMM+Grid 0.892 0.895 0.894 0.000

increase the possibility of further region partition. Third, since some
AOIs are separated by rivers, walls or other man-made barriers,
adding these networks can efficiently complement the road network.
Fourth, a possible extension of this study is to add other data sources,
such as remote sensing data, which can be used to perform image
recognition of AOIs.

ACKNOWLEDGMENTS
This research was supported by Tsinghua University - Meituan
Joint Institute for Digital Life.

REFERENCES
[1] Albino Altomare, Eugenio Cesario, Carmela Comito, Fabrizio Marozzo, and

Domenico Talia. 2016. Trajectory pattern mining for urban computing in the
cloud. IEEE Transactions on Parallel and Distributed Systems 28, 2 (2016), 586–599.

[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.
OPTICS: Ordering points to identify the clustering structure. ACM Sigmod record
28, 2 (1999), 49–60.

[3] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The quickhull
algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (1996), 469–483.

[4] Loris Belcastro, Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. 2018. G-roi:
Automatic region-of-interest detection driven by geotagged social media data.
ACM Transactions on Knowledge Discovery from Data (TKDD) 12, 3 (2018), 1–22.

[5] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based
clustering based on hierarchical density estimates. In Pacific-Asia conference on
knowledge discovery and data mining. Springer, 160–172.

[6] Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Sui. 2011. Exploring mil-
lions of footprints in location sharing services. In Proceedings of the International
AAAI Conference on Web and Social Media, Vol. 5.

[7] Dorin Comaniciu and Peter Meer. 2002. Mean shift: A robust approach toward fea-
ture space analysis. IEEE Transactions on pattern analysis and machine intelligence
24, 5 (2002), 603–619.

[8] David J Crandall, Lars Backstrom, Daniel Huttenlocher, and Jon Kleinberg. 2009.
Mapping the world’s photos. In Proceedings of the 18th international conference
on World wide web. 761–770.

[9] Bidur Devkota, Hiroyuki Miyazaki, Apichon Witayangkurn, and Sohee Minsun
Kim. 2019. Using Volunteered Geographic Information and Nighttime Light
Remote Sensing Data to Identify Tourism Areas of Interest. Sustainability 11, 17
(2019), 4718.

[10] Alexandre Dubray, Guillaume Derval, Siegfried Nijssen, and Pierre Schaus. 2020.
Mining Constrained Regions of Interest: An Optimization Approach. In Interna-
tional Conference on Discovery Science. Springer, 630–644.

[11] Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. 2008. Efficient
generation of simple polygons for characterizing the shape of a set of points in
the plane. Pattern recognition 41, 10 (2008), 3224–3236.

[12] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. 1983. On the
shape of a set of points in the plane. IEEE Transactions on information theory 29,
4 (1983), 551–559.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[14] Tianhui Fan, Naijing Guo, and Yujie Ren. 2021. Consumer clusters detection with
geo-tagged social network data using DBSCAN algorithm: a case study of the
Pearl River Delta in China. GeoJournal 86, 1 (2021), 317–337.

[15] Michael F Goodchild. 2007. Citizens as sensors: the world of volunteered geogra-
phy. GeoJournal 69, 4 (2007), 211–221.

[16] Yingjie Hu, Song Gao, Krzysztof Janowicz, Bailang Yu, Wenwen Li, and Sathya
Prasad. 2015. Extracting and understanding urban areas of interest using geo-
tagged photos. Computers, Environment and Urban Systems 54 (2015), 240–254.

[17] IBM. 2021. Python tutorial of IBM ILOG CPLEX 20.1.0. Retrieved May 12, 2021
from https://www.ibm.com/docs/en/icos/20.1.0?topic=tutorials-python-tutorial

[18] Mohamed Ibrahim. 2020. Extracting and mapping areas of interest from social
media. Ph. D. Dissertation. Wien.

[19] Lyndon S Kennedy and Mor Naaman. 2008. Generating diverse and representa-
tive image search results for landmarks. In Proceedings of the 17th international
conference on World Wide Web. 297–306.

[20] Jastra Kranjec. 2021. Online Food Delivery Market to Hit $151.5B in Rev-
enue and 1.6B users in 2021, a 10% Jump in a Year. Retrieved May 12, 2021
from https://stockapps.com/blog/2021/01/05/online-food-delivery-market-to-
hit-151-5b-in-revenue-and-1-6bn-users-in-2021-a-10-jump-in-a-year

[21] Chiao-Ling Kuo, Ta-Chien Chan, I Fan, Alexander Zipf, et al. 2018. Efficient
method for POI/ROI discovery using Flickr geotagged photos. ISPRS International
Journal of Geo-Information 7, 3 (2018), 121.

[22] Dmitry Laptev, Alexey Tikhonov, Pavel Serdyukov, and Gleb Gusev. 2014.
Parameter-free discovery and recommendation of areas-of-interest. In Proceedings
of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. 113–122.

[23] Charlene Li, Miranda Mirosa, and Phil Bremer. 2020. Review of Online Food
Delivery Platforms and their Impacts on Sustainability. Sustainability 12, 14
(2020), 5528.

[24] Linna Li and Michael F Goodchild. 2012. Constructing places from spatial foot-
prints. In Proceedings of the 1st ACM SIGSPATIAL international workshop on
crowdsourced and volunteered geographic information. 15–21.

[25] Jiajun Liu, Zi Huang, Lei Chen, Heng Tao Shen, and Zhixian Yan. 2012. Discover-
ing areas of interest with geo-tagged images and check-ins. In Proceedings of the
20th ACM international conference on Multimedia. 589–598.

[26] Xinyi Liu, Qunying Huang, and Song Gao. 2019. Exploring the uncertainty
of activity zone detection using digital footprints with multi-scaled DBSCAN.
International Journal of Geographical Information Science 33, 6 (2019), 1196–1223.

[27] Meituan. 2021. Meituan Announces Financial Results for the Year Ended Decem-
ber 31, 2020. Retrieved June 8, 2021 from https://www.prnewswire.com/news-
releases/meituan-announces-financial-results-for-the-year-ended-december-
31-2020-301256643.html

[28] Seyed Morteza Mousavi, Aaron Harwood, Shanika Karunasekera, and Mojtaba
Maghrebi. 2017. Geometry of interest (GOI): spatio-temporal destination extrac-
tion and partitioning in GPS trajectory data. Journal of Ambient Intelligence and
Humanized Computing 8, 3 (2017), 419–434.

[29] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems. 336–343.

[30] Carlos Ruiz, Myra Spiliopoulou, and Ernestina Menasalvas. 2007. C-dbscan:
Density-based clustering with constraints. In International workshop on rough
sets, fuzzy sets, data mining, and granular-soft computing. Springer, 216–223.

[31] Motohiro Shirai, Masaharu Hirota, Hiroshi Ishikawa, and Shohei Yokoyama. 2013.
A method of Area of Interest and Shooting Spot Detection using Geo-tagged
Photographs. (2013).

[32] Evaggelos Spyrou and Phivos Mylonas. 2016. Analyzing Flickr metadata to
extract location-based information and semantically organize its photo content.
Neurocomputing 172 (2016), 114–133.

[33] Vishal Srivastava, Priyam Tejaswin, Lucky Dhakad, Mohit Kumar, and Amar
Dani. 2020. A Geocoding Framework Powered by Delivery Data. In Proceedings of
the 28th International Conference on Advances in Geographic Information Systems.
568–577.

[34] Daniel Sui, Sarah Elwood, and Michael Goodchild. 2012. Crowdsourcing geo-
graphic knowledge: volunteered geographic information (VGI) in theory and practice.
Springer Science & Business Media.

[35] Junjie Sun, Tomoki Kinoue, and Qiang Ma. 2020. A City Adaptive Clustering
Framework for Discovering POIs with Different Granularities. In International
Conference on Database and Expert Systems Applications. Springer, 425–434.

[36] Huy Quan Vu, Gang Li, Rob Law, and Ben Haobin Ye. 2015. Exploring the travel
behaviors of inbound tourists to Hong Kong using geotagged photos. Tourism
Management 46 (2015), 222–232.

[37] Nicholas Jing Yuan, Yu Zheng, and Xing Xie. 2012. Segmentation of urban areas
using road networks.Microsoft, Albuquerque, NM, USA, Tech. Rep. MSR-TR-2012-65
(2012).

[38] Libao Zhang and Shiyi Wang. 2017. Region-of-interest extraction based on local–
global contrast analysis and intra-spectrum information distribution estimation
for remote sensing images. Remote Sensing 9, 6 (2017), 597.

[39] Jie Zheng, Ling Wang, Shengyao Wang, Yile Liang, and Jize Pan. 2021. Solving
two-stage stochastic route-planning problem in milliseconds via end-to-end deep
learning. Complex & Intelligent Systems 7, 3 (2021), 1207–1222.

https://www.ibm.com/docs/en/icos/20.1.0?topic=tutorials-python-tutorial
https://stockapps.com/blog/2021/01/05/online-food-delivery-market-to-hit-151-5b-in-revenue-and-1-6bn-users-in-2021-a-10-jump-in-a-year
https://stockapps.com/blog/2021/01/05/online-food-delivery-market-to-hit-151-5b-in-revenue-and-1-6bn-users-in-2021-a-10-jump-in-a-year
https://www.prnewswire.com/news-releases/meituan-announces-financial-results-for-the-year-ended-december-31-2020-301256643.html
https://www.prnewswire.com/news-releases/meituan-announces-financial-results-for-the-year-ended-december-31-2020-301256643.html
https://www.prnewswire.com/news-releases/meituan-announces-financial-results-for-the-year-ended-december-31-2020-301256643.html

	Abstract
	1 Introduction
	2 Existing Studies on AOI Detection
	3 Methodology
	3.1 The General Idea
	3.2 Optimization Model
	3.3 Use Geohash to Improve Computational Performance

	4 Numerical Experiments
	4.1 Dataset
	4.2 System Framework
	4.3 Baseline Algorithms
	4.4 Fine-tune Detected Boundaries
	4.5 Performance Metrics
	4.6 Optimization Results

	5 Conclusion and Future Directions
	Acknowledgments
	References

