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ABSTRACT

Socio-demographic information is usually only accessible at rela-

tively coarse spatial resolutions. However, its availability at thinner

granularities is of substantial interest for several stakeholders, since

it enhances the formulation of informed hypotheses on the distribu-

tion of population indicators. Spatial disaggregation methods aim

to compute these fine-grained estimates, often using regression al-

gorithms that employ ancillary data to re-distribute the aggregated

information. However, since disaggregation tasks are ill-posed, and

given that examples of disaggregated data at the target geospa-

tial resolution are seldom available, model training is particularly

challenging. We propose to address this problem through a self-

supervision framework that iteratively refines initial estimates from

seminal disaggregation heuristics. Specifically, we propose to co-

train two different models, using the results from one model to

train/refine the other. By doing so, we are able to explore comple-

mentary views from the data. We assessed the use of co-training

with a fast regressor based on random forests that takes individual

raster cells as input, together with a more expressive model, based

on a fully-convolutional neural network, that takes raster patches as

input. We also compared co-training against the use of self-training

with a single model. In experiments involving the disaggregation

of a socio-demographic variable collected for Continental Portu-

gal, the results show that our co-training approach outperforms

alternative disaggregation approaches, including methods based

on self-training or co-training with two similar fully-convolutional

models. Co-training is effective at exploring the characteristics of

both regression algorithms, leading to a consistent improvement in

different types of error metrics.

CCS CONCEPTS

• Information systems → Geographic information systems; •

Computing methodologies→ Semi-supervised learning settings.
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1 INTRODUCTION

Demographic and socio-economic statistics are usually only avail-

able or released at relatively aggregated levels corresponding to

coarse and irregular geospatial regions (e.g., districts or munici-

palities). This is not ideal for analyzing the data through different

partitions of space (e.g., through high-resolution regular tessella-

tions of the geographic space, such as those present in the case

of raster representations based on gridded cells), or in terms of

their relation to particular terrain characteristics. In face of these re-

strictions, spatial disaggregation techniques can be used to provide

more localized information, generating high-resolution estimates

from count data made available at coarse geospatial resolutions.

Seminal disaggregation algorithms use straightforward strate-

gies to translate the known counts associated to source admin-

istrative regions to raster cells at a given target resolution. For

instance, mass-preserving areal weighting assumes that the aggre-

gated values can be divided uniformly across the source regions [16],

while pycnophylactic interpolation includes a degree of spatial auto-

correlation in the variable being disaggregated [30]. More recent

methods attempt to re-distribute the source counts with basis on

regression analysis [8, 15, 21, 26] to weight the contribution of

ancillary variables, e.g. using information on aspects such as land

coverage, the location of buildings, or night-time light emissions.

Although most previous literature used relatively simple regression

algorithms (e.g., linear models), some authors have recently sug-

gested that more advanced learning approaches (e.g., models based

on CNNs) can improve the disaggregation performance [19, 22, 29].

Classical regression algorithms (e.g., linear models, or alterna-

tives based on ensembles of decision trees) have been widely used

for spatial data disaggregation. Approaches based on random forests

are particularly suitable for dealing with some common character-

istics of the data that are to be disaggregated, such as skewed distri-

butions in the values or the presence of outliers [3]. Although these

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557915.3561475&domain=pdf&date_stamp=2022-11-22
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methods can take direct advantage of ancillary features, they are

limited in the sense that they process each raster cell independently.

On the other hand, CNNs proposed for similar geospatial tasks (e.g.,

the encoder-decoder U-Net model, commonly used for tasks such

as remote sensing image segmentation) can aid in exploring the

intrinsic characteristics of geospatial data, namely the relationships

between neighboring raster cells.

The training of spatial disaggregation methods is, nonetheless,

an issue that requires particular attention. In fact, ground-truth data

is rarely available to be directly used at the target resolution, e.g. for

supporting model training and/or for evaluating model predictions.

To overcome this, we propose to use a self-supervised learning

strategy that iteratively refines the results from an initial disaggre-

gation heuristic, by using the results of each iteration to inform

the training of the following. Previous literature has used similar

approaches, for instance by experimenting with self-training a sin-

gle regression model [22]. In this article, we use co-training as a

unified framework for taking advantage of the strengths associ-

ated with different regression algorithms. We specifically combine

the advantages associated with fast cell-wise regressors, such as

random forest models, together with more expressive alternatives

that take into account the influence of neighboring cells, such as

encoder-decoder CNNs for processing patches of raster data.

Our method was evaluated on a dataset collected for Continental

Portugal, corresponding to the total amount, in thousands of euros,

for the withdrawals on automated teller machines. We specifically

experimented with the disaggregation of the information origi-

nally available at the level of coarse administrative regions, such

as NUTS III units, into high-resolution grids with a resolution of

200 meters. We compared the proposed co-training approach, that

alternates between two different regression algorithms, against al-

ternative methods. These include seminal disaggregation heuristics,

such as pycnophylactic interpolation, as well as the application of

self-training using a single model. Previous work has specifically

shown that the best disaggregation results for socio-demographic

indicators can be obtained using different models, depending on the

error metric being considered [22]. For instance, models based on

CNNs are better in metrics such as the mean absolute error (MAE),

while random forest alternatives are particularly competitive when

analyzing results using metrics that over-penalize outliers, such as

the root mean squared error (RMSE). By combining the two algo-

rithms, we managed to consistently obtain the best values in all the

considered error metrics, also improving upon the results obtained

when using self-training with the corresponding individual models.

For instance, when comparing co-training with the random forest

model and the CNN, against self-training with the corresponding

models, gains over the best baseline can increase from 15.6% to

18.3%, in MAE, and from 10.8% to 14.0%, in RMSE. Additionally, the

training time required for the co-training approach is around 20%

of the time for the alternative using self-training with the CNN.

In brief, the main contributions of this article are the following:

• We propose a co-training approach for spatial data disaggre-

gation, alternating between two different regression algo-

rithms to efficiently combine the sources of ancillary data;

• We compare the application of the co-training approach,

using a random forest model and an encoder-decoder CNN,

against the use of a self-training technique which only uses

the corresponding single models. We also assessed the use

of co-training with two similar models, namely two CNNs

differing only in their initializations;

• We evaluate the co-training approach in the disaggrega-

tion of socio-demographic data concerning the territory of

Continental Portugal. The experimental results show that

co-training with two different models outperformed all the

alternatives. Also, co-training with two versions of the same

model leads to better results than self-training with the cor-

responding single model;

• We analyze model robustness to the presence of outliers in

the data, as well as the error evolution across the iterations

of the different self-supervised approaches.

The rest of this article is organized as follows: Section 2 presents

the necessary background on spatial data disaggregation, including

seminal methods and relevant related work. Section 3 describes

our disaggregation approach. Section 4 describes the experimen-

tal setup, and Section 5 presents the results obtained for socio-

demographic data relative to the territory of Continental Portugal.

Finally, Section 6 highlights our main conclusions, as well as possi-

ble directions for future work.

2 BACKGROUND

This section starts by describing classical approaches for spatial

data disaggregation. Then, it describes recent developments and

practical applications, including methods which use regression

analysis and/or some form of self-supervision.

2.1 Seminal Disaggregation Heuristics

Mass-preserving areal weighting is perhaps the simplest spatial

disaggregation method. It divides the known counts associated to

source administrative regions (e.g., the total values associated with

coarse administrative districts) uniformly across their area [16]. Al-

though this method is very straightforward, inherently conserving

the total count values within each source region, it is based on the

assumption that the phenomenon of interest is evenly distributed

across the territory. Since most geospatial data are rarely uniform,

it produces poor estimates when compared against the results of

other alternative approaches.

Pycnophylactic interpolation is a refinement that starts by ap-

plying the mass-preserving areal weighting procedure, and then

smooths the values for the resulting grid cells by replacing them

with the average of their neighbors (i.e., the adjacent cells in a

raster grid) [30]. The method continues until there are no signif-

icant changes from the previous iteration. The sum of all values

within each source region is also kept consistent, in order to meet

the mass-preserving property. The estimates obtained through pyc-

nophylactic interpolation take into account the property of spatial

auto-correlation, which states that regions close to each other tend

to have similar values. However, the method does not enforce other

properties about the distribution of the target variable, and often

leads to over-smooth results.

If additional information is available on how the source data is

geographically distributed, e.g. in the form of external variables

expected to be correlated with the target counts, one can also use it
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Figure 1: The different steps involved in the proposed co-training approach.

to inform the disaggregation. One can, for instance, use dasymetric

mapping to distribute the source counts according to pre-specified

weights, leveraging a source of ancillary data such as the presence

of particular land cover classes (e.g., target counts should usually

not be assigned to regions covered by water), or the human pop-

ulation distribution (i.e., most socio-economic variables correlate

strongly with population density), to define the weights. In previ-

ous work, we have also combined dasymetric disaggregation, based

on population density, with a smoothing process similar to that of

pycnophylactic interpolation, this way promoting auto-correlation

over the results, and calling it smooth weighted interpolation [22].

2.2 Spatial Disaggregation Using Regression

There are nowadays many openly available gridded datasets that

consistently describe the human population distribution. These

were often created using spatial disaggregation techniques that

leverage machine learning procedures for combining ancillary in-

formation from different sources, within dasymetric approaches.

Well-known examples include the datasets made available in the

context of the WorldPop project. One study from Stevens et al. [28],

within the scope of this project, reported the use of statistical mod-

eling based on random forests to create gridded predictions of

population density with a resolution of 100 meters. The authors

used ancillary datasets that encode information on land coverage,

digital elevation, the road network, and water bodies. First, their

approach iteratively tunes a random forest model, at the level of

census units, by predicting the population density with basis on

mean values of the aggregated data. At the end of each iteration,

importance values are computed for each feature, by measuring the

change in model performance when ignoring information about

that feature. The features with an importance equal to zero are

removed, and the tuning process continues until only positive im-

portance scores remain. The random forest model obtained with the

selected features is then used for producing country-wide estimates

at the cell level, leveraging the ancillary data available at the same

resolution. Stevens et al. evaluated their method with census data

for the countries of Cambodia, Vietnam, and Kenya. The predicted

per-cell population densities were used to redistribute the data

available at the level of census units, to obtain the per-cell counts.

Then, the authors summed the values within small geospatial re-

gions (e.g., villages or sub-locations), and compared the results with

the corresponding known counts through metrics such as the Mean

Absolute Error (MAE) or the Root Mean Squared Error (RMSE).

The authors concluded that their method outperformed several

competitors, such as the products produced within the Gridded

Population of the World (GPW) [11] project.

Cheng et al. [9] reported another study that explores the use of

dasymetric mapping based on regression analysis. The dasymetric

weights were inferred by combining environmental information

and mobile phone positioning data as the ancillary variables. Then,

the weights were used for the disaggregation of census data for

the territory of China, into a raster grid with a resolution of 1

kilometer, for each month in 2015. The method from Cheng et al.

combines random forests with area-to-point kriging. The random

forest model is trained with data at the town level, by predicting

population density as the target variable, with basis on aggregated

ancillary data (i.e., taking the mean values of each ancillary source,

per town, as the independent variables). The learned model is then

used to predict population estimates at the level of the target cells.

The area-to-point kriging approach later adjusts the random forest

predictions, leveraging the residuals computed for each town (i.e.,

computed by summing the encompassing residuals at the pixel
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level). The pixel residuals are, in turn, computed through a weighted

linear combination of the known residuals of neighboring towns

(e.g., each pixel residual may increase based on the proximity to

towns with higher residuals). The proposed approach achieved the

best results in terms of the R2 between predicted and real data,

when comparing against gridded population products such as those

from the WorldPop or GPW projects.

2.3 Self-Supervised Approaches

The training of the regression models that inform a disaggregation

procedure constitutes a particular challenge. This is due to the lack

of ideal ground-truth data, i.e., data available at the target resolution

for at least a part of the territory. Some studies have proposed

to address this problem through self-supervised approaches that

operate directly at the target resolution, by iteratively refining

results through the successive training of regression models.

Malone et al. [21] proposed dissever, an approach for downscal-

ing soil organic carbon data using a regression algorithm based

on generalized additive modeling. This approach fits, directly at

the target resolution, a non-linear model associating the target

variable and the predictive covariates. Dissever is initialized with a

re-sampling procedure that transfers the data from the source to

the target regions. This is followed by the iterative application of a

generalized additive model, to predict the initial estimates from the

set of covariates. In the iterative phase, results are first aggregated

to the level of source zones (i.e., by averaging all the encompassing

estimates), compared with the available values, and adjusted to

keep consistency. Then, the generalized additive model is used to

predict new values for all the grid cells.

Recent work from our team has adapted the dissever procedure,

considering spatial disaggregation instead of the downscaling of

non-additive variables. Monteiro et al. reported three studies that

share a common general disaggregation methodology for combin-

ing pycnophylactic interpolation with dasymetric mapping [22–24].

In the first, Portuguese socio-economic variables were disaggre-

gated with methods such as linear or generalized additive regres-

sion to combine the different sources of ancillary information. The

second study instead focused on historical census data for the ter-

ritories of the Netherlands, Belgium, and Great Britain, and lever-

aged more expressive regression algorithms, such as ensembles

of decision trees and a neural network based on the LeNet-5 ar-

chitecture [20]. The last study used a fully-convolutional neural

network for the spatial disaggregation of socio-demographic data

concerning the territory of Continental Portugal. The good results

reported in the studies from Monteiro et al., and specifically the

good performance of different regression models depending on

the error metrics being considered, motivated the co-training ap-

proach reported in the present article. We also use the same CNN

architecture outlined in the most recent study [22].

3 THE PROPOSED APPROACH

Our approach builds on previous methods for spatial data disaggre-

gation based on the self-training of regression models, advancing

over previous work by using co-training as a better alternative to

model fitting. One can co-train two different regression models,

this way assuring that different characteristics in the training data

are explored. The original proposal for co-training from Blum and

Mitchell [6] stated that, to guarantee success, the models being

co-trained should explore two sufficient and redundant representa-

tions of the data that are conditionally independent given the target

labels. Still, later studies have relaxed this assumption. For instance,

Abney [1] showed that a weak dependence between two different

views can also guarantee successful co-training, while Balcan et

al. [2] discussed that the learner in each view should not be confi-

dent but wrong. Wang and Zhou [31], in turn, showed that if the two

models have a large diversity (i.e., the diversity between the two

learners is larger than their errors), co-training can also succeed.

Some previous studies exploring co-training have successfully used

two different supervised learning algorithms, or even two different

parameter configurations of the same base learner [32].

Next, we present our co-training approach for spatial data dis-

aggregation. Then, we describe the regression methods that were

selected, and how we performed the training of the models.

3.1 Co-training

Figure 1 presents our co-training framework for spatial data disag-

gregation. It alternates between two different regression algorithms,

in order to refine initial estimates produced by a disaggregation

heuristic. In more detail, the different steps are as follows.

(1) Produce a vector polygon layer for the aggregated informa-

tion, by associating the source counts of the variable that is

to be disaggregated with the corresponding regions;

(2) Compute initial estimates using a simple disaggregation

heuristic, such as pycnophylactic interpolation [30] or dasy-

metric mapping proportional to population density, from the

layer with source region counts produced in Step 1;

(3) Iteratively refine results using a co-training approach that

leverages intermediate estimates computed at each iteration

to inform the training of regression models. In odd iterations,

regressionmodel 1 uses the estimates produced by regression

model 2 (or the initial estimates from the disaggregation

heuristic, in the first iteration) as the regression target. In

even iterations, regression model 2 instead leverages the

estimates from regression model 1 as the regression target;

(4) Regardless of the regression model being used, the new esti-

mates are adjusted for mass-preservation;

(5) Steps 3 and 4 are repeated until reaching a maximum number

of iterations, or until some other stopping criteria is met.

3.2 Regression Algorithms

The selection of the regression algorithms to use in the co-training

framework is crucial for the disaggregation performance. Previ-

ous work has emphasized that CNN models can achieve the best

disaggregation results, although fast regression models such as

random forests are very competitive and can obtain the best results

in metrics such as the RMSE [22]. Taking this into account, we

experimented with these two models in our co-training approach.

Specifically, random forests combinemultiple decision trees, each

corresponding to a non-linear procedure based on inferring a flow-

chart-like structure, where each internal node denotes a test on an

attribute, each branch represents the outcome of a test, and each leaf

node holds a target value. Decision trees can be learned by splitting
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the source set of training instances into subsets, based on finding

an attribute value test that optimizes the homogeneity of the target

variable within the resulting subsets (e.g., by optimizing a metric

such as the mean squared error). This process is recursively applied

to each derived subset. The random forest approach averages the

results of different decision trees that are fitted on random subsets

of the features and instances, this way improving accuracy and

controlling model overfitting [7].

The random forest approach processes each raster grid cell in-

dependently of the others. Since this can be limiting, we comple-

mented it with the use of a model that takes as input patches of

raster cells. We specifically use a CNN model based on the fully-

convolutional U-Net architecture, similar to those adopted in stud-

ies processing remote sensing data for land coverage classification

and/or image segmentation [27]. U-Nets are built upon an encoder-

decoder structure, in which a contraction path (i.e., the encoder)

corresponds to a stack of standard convolutional and max-pooling

layers which progressively augment the number of feature maps

while reducing the spatial dimensionality of the intermediate rep-

resentations. The expansion path (i.e., the decoder) is then used

to upscale the representations learned by the encoder, leveraging

up-convolutions. Figure 2 presents a graphical representation for

the U-Net architecture that was used in our work. We specifically

used the architecture outlined in a previous work [22], which adds

a shortcut (skip) connection to the original U-Net architecture be-

tween the final block in the expansive path and the input patches,

in order to take direct advantage of the input ancillary variables.

3.3 Model Training

For the random forest model, the training procedure considered the

mean squared error for measuring the quality of the splits, as well

as the remaining default parameters from the scikit-learn package

that supported our implementation.

In the case of the CNN model, the training procedure optimizes

a multi-component loss function that explores different charac-

teristics of the geospatial input data, namely the fact that (i) the

absolute orientation of a patch of ancillary data, used in the disag-

gregation approach, should not affect the resulting counts, and (ii)

the produced results should be spatially heterogeneous.

Specifically, we predict two outputs using our CNN model. The

first, named𝑦1, results from applying a forward pass with the model

over the original patches with ancillary data. For the second, named

𝑦2, we first apply a random geometric transformation to the input

patches, such as flipping over an axis or a rotation. This is followed

by a forward pass with the model over the transformed patches,

and finally by the application of the inverse transformation to the

corresponding transformed result.

The global loss function is presented in Equation 1, and it is

comprised of three components, namely:

• LCellwise(𝑦, avg(𝑦1, 𝑦2)) corresponds to an aggregated dif-
ference between the target values 𝑦 and the average of the
two predicted outputs 𝑦1 and 𝑦2, at the level of individual
cells within the patches;

• LCompatibility(𝑦1, 𝑦2) corresponds to an aggregated dif-

ference between the two versions of the predicted patches,

namely between 𝑦1 and 𝑦2;

Table 1: The datasets used in our experimental evaluation.

Dataset Source Year Resolution Type

Withdrawals National Institute of Statistics (INE) 2019 Municipalities Aggregated

Terrain development Global Human Settlement project 2015 38 × 38 m Ancillary

Population density Global Human Settlement project 2015 250 × 250 m Ancillary

Land coverage Copernicus Land Monitoring Service 2018 100 × 100 m Ancillary

Human settlements Copernicus Land Monitoring Service 2015 10 × 10 m Ancillary

Nighttime lights VIIRS Nighttime Lights dataset 2016 450 × 450 m Ancillary

• LHomogeneity(𝑦1, 𝑦2) is inversely derived from the stan-

dard deviation of the predictions from the CNN, which result

from averaging the two output patches (i.e., std(avg(𝑦1, 𝑦2))).

LGlobal(𝑦,𝑦1, 𝑦2) =𝑤1LCellwise(𝑦, avg(𝑦1, 𝑦2))+

𝑤2LCompatibility(𝑦1, 𝑦2)+

𝑤3LHomogeneity(𝑦1, 𝑦2).

(1)

The three components are weighted by the parameters𝑤1,𝑤2,

and𝑤3, which control their relative importance. Predictions from

outside the region of interest are ignored, by masking out their

values in the different computations of the loss.

In terms of the individual loss functions (i.e., the aggregated

differences) for the components LCellwise and LCompatibility,

we used the standard Huber loss function defined in Equation 2,

which has a quadratic behavior when the error is below a threshold

𝛿 , and a linear behaviour otherwise.

HuberLoss𝛿 (𝑦,𝑦) =

{
1
2 (𝑦 − 𝑦)2, for |𝑦 − 𝑦 | ≤ 𝛿

𝛿 ( |𝑦 − 𝑦 | − 1
2𝛿), otherwise.

(2)

4 EXPERIMENTAL SETUP

We evaluated the proposed spatial data disaggregation procedure

through a set of experiments using socio-demographic data for the

territory of Continental Portugal. We specifically considered data

originally available at the level of large territorial divisions, and

disaggregated it into a raster grid with a resolution of 200 meters.

Given that we lack examples of disaggregated data available

at the target resolution, we relied on an evaluation strategy that

compares results at the level of intermediary regions. For that, we

first collect the aggregated data at a coarse level (i.e., NUTS III).

We then use our disaggregation approach to estimate results for a

regular raster grid with a resolution of 200 meters per cell. Finally,

we re-aggregate the estimates, and compare them with known data

available at intermediary regions (i.e., municipalities).

All the experiments reported in this article result from com-

puting a fixed number of iterations (i.e., 30) of the correspond-

ing co-training/self-training procedures. Also, in order to alleviate

problems with random initializations, the values reported for all

experiments using CNN models result from averaging five tests.

4.1 Datasets

Table 1 presents the aggregated data that was collected at the Por-

tuguese National Institute of Statistics (INE), specifically containing

information on the overall amount of money corresponding to with-

drawals from automated teller machines, in thousands of euros,

between January and December 2019.
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Figure 2: The encoder-decoder CNN architecture.

The ancillary information used to re-distribute the aggregated

data is also presented in Table 1. We specifically collected two

datasets from the Global Human Settlement1 (GHS) project [10, 13,

14, 25]. The first concerns information on terrain development, and

aims to describe the built-up structures in terms of their location

and density. In our work, we used the GHS built-up presence grid

related to the year of 2015, made available at a resolution of 38

meters per cell, which specifically encodes the distribution of built-

up areas as the proportion of occupied footprint in each cell. The

second dataset collected from the GHS project corresponds to a

population density grid for the same year of 2015, with a resolution

of 250 meters per cell, and was created with basis on a raster-based

dasymetric mappingmethodology. It specifically uses the GHS built-

up presence dataset to refine the population information available

through the Gridded Population of the World2 (GPW) dataset.

We also used ancillary information collected from the Coperni-

cus Land Monitoring Service. This included the standard Corine

Landcover 3 (CLC) product, which is based on the processing of

satellite images as the primary source of information [18]. We used

the dataset for the year of 2018, available at a resolution of 100

meters, and converted the 44 different classes of the 3-level Corine

nomenclature, considered in the original product (e.g., classes for

water bodies, artificial surfaces, agricultural areas, etc.), into a real

value in the range [0, 1] that encodes terrain development. We also

used a modern pan-European4 dataset, made available at a spatial

resolution of 10 meters per cell. This dataset represents the percent-

age of built-up area coverage per spatial unit, based on SPOT5 and

SPOT6 satellite imagery from the year of 2015. [12].

Finally, we also considered information regarding night-time

light emissions. We used the publicly available VIIRS Nighttime

Lights-20165 dataset, which is maintained by the Earth Observa-

tion Group of the NOAA National Geophysical Data Center. We

1http://ghsl.jrc.ec.europa.eu/datasets.php
2http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
3http://land.copernicus.eu/pan-european/corine-land-cover
4http://land.copernicus.eu/pan-european/GHSL/european-settlement-map
5http://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html

specifically selected the global cloud-free composite of VIIRS night-

time lights, that was generated with VIIRS day/night band (DNB)

observations collected on nights with zero moonlight. The raster

data which we used, available at a resolution of 450 meters per cell,

consist of floating-point values calculated by averaging the pixels

deemed to be cloud-free.

Independently of their original resolution, all the datasets corre-

sponding to ancillary variables were first converted into a resolu-

tion of 200 meters per cell, through simple upscaling/downscaling

procedures such as nearest neighbour interpolation.

4.2 Evaluation Metrics

With the strategy based on intermediary aggregation zones, results

can be summarized by various statistics that capture the quality of

the disaggregation results, such as the Root Mean Squared Error

(RMSE), the Mean Absolute Error (MAE), or the Coefficient of

Determination (R2). The corresponding formulas are as follows.

MAE(𝑦,𝑦) =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
. (3)

RMSE(𝑦,𝑦) =

√∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑛
. (4)

R2 (𝑦,𝑦) = 1 −

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )

2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

. (5)

In Equations 3, 4, and 5,𝑦𝑖 corresponds to a ground-truth value,𝑦𝑖
corresponds to a predicted value, and 𝑛 is the number of evaluation
regions. Multiple metrics can provide a better picture of the error

distribution. The MAE gives the same weight to all errors. On

the other hand, the RMSE penalizes variance, as it gives errors

with larger absolute values more weight than errors with smaller

absolute values. The coefficient of determination R2 measures the

proportion of total variation in the ground-truth values that is

explained by the model.
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4.3 Implementation Details

The entire procedure was implemented in the Python language,

using frameworks such as scikit-learn6 and Tensorflow7. The source

code is available on a GitHub repository8.

We tuned the hyper-parameters of the models for optimal per-

formance, through an initial set of tests. The encoder-decoder CNN

takes input patches of 16 × 16 grid cells (i.e., 256 cells in total). We

used the Adam optimization algorithm, and set the learning rate

to 10−3. The 𝛿 value of the Huber loss was set to 1, and 𝑤3 from

Equation 1 was set to 40, while𝑤1 and𝑤2 were set to 1.

Taking inspiration on recent work from our team, we used a

smooth weighted interpolation method for model initialization,

i.e., for producing the initial estimates that are later iteratively re-

fined [22]. This disaggregation heuristic first produces results pro-

portional to the population distribution, which are then smoothed

using one iteration of the pycnophylactic interpolation procedure.

5 EXPERIMENTAL RESULTS

Wenow summarize the results obtained using the co-training frame-

work to disaggregate the spatially aggregated data mentioned in

Table 1. We start by showing, in Subsection 5.1, the disaggregation

errors associated with the proposed approach. We then present, in

Subsection 5.2, the impact of replacing the initial estimates, as well

as replacing the loss function of the CNN. We finally discuss, in

Subsection 5.3, the evolution of the error across different iterations

of the co-training approach, supporting our discussion on visual

inspection of the results, or in terms of MAE/RMSE values.

We report, in each table that presents results, the disaggregation

quality through metrics such as MAE, RMSE, and R2. We present

their values, as well as the percentage of gain over the best baseline,

i.e., the smooth weighted interpolation. Tables 3 and 4 also show the

standard deviation associated with the five tests computed for each

experiment. The reported results correspond to the best iteration,

inferred by using a stopping criterion based on the standard devia-

tion of the resulting map. Our previous work has shown that, when

dealing with spatial disaggregation techniques, one should expect

the produced estimates to have high spatial heterogeneity [22]. We

also concluded that the standard deviation of the results can be

used as a proxy for inferring disaggregation performance, since the

best iterations are usually the ones whose disaggregated map has

the highest standard deviation in the target values.

5.1 Results with the Proposed Approach

In Table 2, we first present results obtained with seminal disaggre-

gation heuristics, namely using mass-preserving areal weighting,

pycnophylactic interpolation, weighted interpolation based on the

population distribution, and the smooth version of the weighted

interpolation (i.e., smooth weighted interpolation). We then report

the results achieved with the application of a version of our self-

supervised approach which only uses a single regression model.

This can be seen as a standard self-training (ST) technique, similar

to that of our previous work [22], and we report results when using

a random forest model, as well as the CNN.

6http://scikit-learn.org
7http://www.tensorflow.org
8http://github.com/joaomigl15/spdisaggregation

Table 2: Results obtained with different disaggregation meth-

ods for the withdrawals on automated teller machines.

Gain(%) / Baseline

MAE RMSE R
2 MAE RMSE R

2

Areal weighting 79667.9 205045.5 -0.0471 -368.1 -224.5 -105.2

Pycno. interpolation 78290.1 201420.9 -0.0104 -360.0 -218.8 -101.2

Weighted interpolation 17089.6 63394.2 0.8999 -0.4 -0.3 -0.1

Smooth weigh. interpolation 17019.0 63181.8 0.9006 — — —

ST w/ Random Forest (RF) 14361.2 54692.0 0.9255 15.6 13.4 2.8

ST w/ CNN 14084.4 56374.2 0.9208 17.2 10.8 2.2

Table 3: Results obtained with the co-training procedure for

disaggregating withdrawals on automated teller machines.

Gain(%) / Baseline

MAE RMSE R
2 MAE RMSE R

2

ST w/ CNN 14084.4±15.8 56374.2±99.0 0.9208±0.0003 17.2 10.8 2.2

CoT w/ 2 CNNs 14063.6±42.1 55941.7±357.0 0.9221±0.0010 17.4 11.5 2.4

CoT w/ CNN and RF 13906.8±54.6 54366.1±635.4 0.9264±0.0017 18.3 14.0 2.9

ST w/ avg. of CNN and RF 14106.3±43.4 55003.2±295.2 0.9246±0.0008 17.1 12.9 2.7

From the table, one can conclude that self-training with either of

the regression models clearly outperforms the four disaggregation

heuristics. Also, each of the different regressors can achieve the

best results, depending on the error metric being considered. For

example, self-training with the CNN leads to better MAE values,

while the random forest model achieved the best RMSE and 𝑅2.
We then assessed the application of co-training (CoT) using dif-

ferent regression algorithms. Table 3 presents the results in two

different scenarios, namely (i) when alternating between two simi-

lar CNN models which only differ in their initializations, and (ii)

when alternating between the CNN and the random forest model.

We compare the results against the use of the corresponding self-

training technique. We also present results with a typical ensemble

approach using the same models (i.e., the CNN and the random

forest model), specifically by averaging the results computed by

both algorithms at each iteration, instead of alternating between

them (i.e., training both models simultaneously, at each iteration,

and then averaging their results).

From Tables 2 and 3, we can infer the benefit of combining the

two regression algorithms (i.e., random forests and the CNN) us-

ing co-training, since it achieved the best disaggregation results in

all error metrics. When comparing against self-training using the

corresponding models, one can notice the increase in gains from

15.6% to 18.3% in MAE (against self-training with the random forest

model), as well as from 10.8% to 14.0% in RMSE (against self-training

using the CNN). It is also worth noticing that co-training using

similar models (i.e., using two CNNs differing only in their initial-

izations) had a better disaggregation performance, in all metrics,

than self-training with the CNN. On the other hand, the ensemble

approach that averaged the results from the random forests and

the CNN produced higher errors than the co-training strategy.

Besides the improvement in disaggregation quality, the differ-

ence in training time associated with the co-training approach is

also significant, when compared with self-training the CNN model.

Figure 3 illustrates this, by plotting the average time associated
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Figure 3: Training time associated with different spatial data

disaggregation approaches.

with the execution of the experiments from Table 3. It specifically

considers the average time associated with running the CNN (in

blue) and the random forest model (in orange).

5.2 Result Analysis

We also explored how the co-training approach is affected when

replacing two core components of the general framework, namely

the approach used for computing the initial estimates, and the loss

function for training the CNN. We specifically aimed to analyze

how robust the method is to the presence of outliers. For that, we

experimented with replacing the initial estimates, as well as the

loss function used for training the CNN, with alternatives that can

perhaps better focus on outlier detection and filtering.

We start by illustrating, in Figure 4, the errors obtained across 30

iterations of the co-training procedure, when leveraging different

alternatives for computing the initial estimates (i.e., iteration 0).

We specifically tested initial estimates resulting from separately

running a self-training technique that leverages a single random

forest model (i.e., similar to the results from Table 2). We collected

the results from that separate procedure after 10 and 30 iterations.

We then compare the error evolution of the co-training approach

when using as initial estimates (i) the smooth weighted interpola-

tion, as in previous experiments, (ii) the result of self-training using

the random forest model after 10 iterations, and (iii) the result of

self-training using the random forest model after 30 iterations. We

specifically present the mean absolute error (MAE) of the approach

used as initial estimate, as well as the same metric for each iteration

of the co-training procedure.

From Figure 4, we conclude that the results from self-training us-

ing the random forest model are useful to be used as initial estimates,

since they led to the best co-training results when considering only

10 iterations. More iterations (i.e., 30 iterations for training the ran-

dom forest model) imposedmore difficulties in generalizing towards

better estimates, and led to a worse co-training performance.

To further assess how robust our approach is to the presence

of outliers, Table 4 reports tests with a simpler loss function (i.e.,

the loss in the first two components of Equation 1) that is also

sensible to their presence, namely the MSE. We also experimented

Figure 4: Disaggregation quality, measured in terms of the

mean absolute error (MAE), using different approaches for

the initialization of the co-training procedure.

Table 4: Results obtained with different loss functions for dis-

aggregating the withdrawals on automated teller machines.

Gain(%) / Baseline

MAE RMSE R
2 MAE RMSE R

2

CoT w/ MSE 14226.6±54.4 53793.7±290.3 0.9279±0.0008 16.4 14.9 3.0

CoT w/ Huber Loss 13906.8±54.6 54366.1±635.4 0.9264±0.0017 18.3 14.0 2.9

CoT w/ Robust Loss 13947.2±47.3 54491.2±242.5 0.9260±0.0007 18.0 13.8 2.8

with a recently proposed robust loss function that generalizes upon

different common alternatives. We specifically used the function

from Barron and Jonathan [4], which generalizes several other

robust loss functions. The function includes two parameters which

control the overall robustness, but an adaptive version of the loss

function, which we used in our experiments, can specifically learn

its own parameters from training data. For comparison, we also

present the result with the Huber loss (i.e, the same from Table 3).

From the table, we can conclude that the MSE loss led to better

results in terms of the RMSE metric, which may indicate that it was

better for dealing with outliers in the data. However, it worsened

the results in terms of MAE. The Huber Loss offers a good tradeoff

between the different metrics, while the use of a more recent robust

loss resulted in slightly worse results over all metrics.

5.3 Convergence of Self-Supervision

We analyzed the evolution of the error in our co-training approach,

in terms of the impact associated with each distinct regression

algorithm. In the plot from Figure 5, we can see the evolution of the

results associated with two different error metrics, namely the MAE

and the RMSE, when using co-training with the CNN (leveraging

the Huber loss) and the random forest model. In both cases, the

values are transformed using a min-max normalization, and result

from applying a different algorithm at each iteration. The figure

shows that co-training seems to be penalized, in terms of MAE, by

the random forests. However, the RMSE metric improves at each

random forest iteration, and this is perhaps linked to the best results

overall (i.e., in terms of MAE and RMSE) that co-training ends up

obtaining, when compared to the individual models alone.
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Figure 5: Disaggregation error measured in terms of the nor-

malized MAE and RMSE.

Figure 6: Disaggregation error, measured in terms of the

RMSE, when using the CNN regressor in the self-training

and co-training approaches.

In Figure 6, we further validate our co-training approach, by

comparing the evolution of the corresponding RMSE error values,

against the ones obtained when using self-training with the CNN.

The figure highlights that both self-supervised techniques are useful

for error reduction, since better results are obtained after Iteration

1, although co-training is particularly suitable for that purpose.

Figure 7 shows the residuals for the Portuguese municipalities

within the district of Lisbon and its outskirts. It specifically maps

(in the upper plot) the residuals associated with Iteration 1, and it

shows (in the bottom plot) the evolution of the residuals during 4

iterations, for three municipalities highlighted in the map. Notice

that odd iterations correspond to the application of the CNN, while

even iterations relate to the use of the random forest model.

From Figure 7, we can observe that errors in municipalities such

as Mafra seem to be reduced when applying the CNN, while Odive-

las improves in the random forest iterations. Some municipalities

have different types of penalizations when using different algo-

rithms, such as Cascais (i.e., it is underestimated in CNN iterations,

and overestimated in random forest iterations). This is perhaps

Figure 7: Residuals for the municipalities in the district of

Lisbon and its outskirts.

linked to the fact that the random forest algorithm can better deal

with population outliers/hotspots concentrated on one or a small

number of cells (i.e., more likely present in the case of Odivelas,

oppositely to the more rural city of Mafra).

6 CONCLUSIONS AND FUTUREWORK

This article reported on experiments with a spatial disaggregation

technique that uses self-supervision for refining initial estimates

produced through a simple disaggregation heuristic. We specif-

ically proposed a co-training approach that alternates between

two regression algorithms, namely a random forest model and an

encoder-decoder CNN. We used our approach for disaggregating

socio-demographic data concerning the territory of Continental

Portugal, and produce estimates at a 200 meter resolution.

Different regression models can be used with the proposed

method. Models based on ensembles of decision trees are an in-

teresting choice, given that they are fast (e.g., one can use them

on very large spatial regions), and can naturally deal with differ-

ent types of features. For instance, these models tend to have a

good performance in the presence of un-normalized data, or when

dealing with very different/biased distributions. On the other hand,

convolutional neural networks can achieve better results at the ex-

pense of additional computational complexity, given that they can

naturally account for relations between neighboring raster cells.

The experimental results indicate that co-training with the two

different regressionmodels outperformed alternativemethods based



SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Monteiro et al.

on seminal disaggregation heuristics, as well as self-training ap-

proaches that consider a single regression model. Our method

achieved the best results in all error metrics, improving over the best

baseline (i.e., a smooth weighted interpolation that disaggregates

the data proportionally to the population density) with 18.3% in

MAE, and 14.0% in RMSE. When comparing against the application

of self-training using a single model, the percentage of gains when

using co-training increased from 15.6% to 18.3%, in MAE (against

self-training with the random forest model), and from 10.8% to

14.0%, in RMSE (against self-training with the CNN).

Despite the interesting results, there are also many open chal-

lenges for future work in the area. The approach reported in this

article can for instance be extended to consider different regression

algorithms. We plan to experiment with more advanced CNN or

Transformer-based architectures, and we also plan to explore differ-

ent strategies to encode geospatial positioning information directly

into random forests or CNN models [5, 17].

In terms of the evaluation methodology, future work can also

consider some alternatives to the strategy that re-aggregates the dis-

aggregated results to intermediary regions. One can further validate

the proposed approach in a variable computed from point databases,

for instance from volunteered sources such as OpenStreetMap. Ag-

gregated information can thus be available at different levels, by

summing up all the points that fall within each aggregated region.

By doing so, the data computed at the coarser resolution can be dis-

aggregated to the same 200 meter resolution, but later evaluated for

smaller extents, for example cells with a resolution of 1 kilometer.
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