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ABSTRACT
The Automatic Identification System (AIS) allows vessels to emit
their position, speed and course while sailing. By international law,
all larges vessels (e.g., bigger than 15m in Europe) are required to
provide such data. The abundance and free availability of AIS data
has created a huge interest in analyzing them (e.g., to look for pat-
terns of how ships move, detailed knowledge about sailing routes,
etc.). In this paper, we use AIS data to classify areas (i.e., spatial
cells) of the South Atlantic Ocean as productive or unproductive in
terms of the quantity of squid that can be caught. Next, together
with daily satellite data about the area, we create a training dataset
where a model is learned to predict whether an area of the Ocean is
productive or not. Finally, real fishing data are used to evaluate the
model. As a result, for blind movements (i.e., with no information
about real catches in the previous days), our model trained on data
generated from AIS obtains a precision that is 18% higher than
the model trained on actual fishing data – this is due to AIS data
being larger in volume than fishing data, and 36% higher than the
precision of the actual decisions of the ships studied. The results
show that despite their simplicity, AIS data have potential value in
building training datasets in this domain.

CCS CONCEPTS
• Computing methodologies → Machine learning.
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1 INTRODUCTION
Finding productive fishing areas in the Ocean is a difficult task.
Historically, depending on the targeted species, different kinds of
techniques or relevant environmental variables have been used
to find potentially productive areas (e.g., with abundance in fish).
Typically, once a good location is found, the vessels move towards
the same area and tend to fish together, and thus the difficulty lies
in finding the initial location with no information about the actual
catches in the area for the previous days. We refer to those move-
ments as blind movements since they do not rely on any information
about the actual catches to decide for their next fishing location.
In Figure 1, a graphical representation of real vessel movements
(i.e., vessels fishing squids) is shown. As observed, when a good
fishing location is found the vessels tend to fish together in the
same area, but once the captures fall below a given threshold, the

vessels move to other locations. Taking the decision of where to go
next is a challenge.

To address the challenge of blind movements and the overall
problem of fishery management, recent works have studied the
possibility of building predictive presence/absence models using
information on physical and environmental conditions. That is,
models have been trained on top of environmental variables to
predict if fish are present or not in a given area [11, 19]. Typically,
the goal is to prevent overfishing, bycatch or providing forecast-
ing solutions that allow for dynamic fishery management [3, 13].
That is, managing fisheries based on real-time predictions of the
distribution of marine species. Some works go one step further and
study the possibility of predicting the actual catch per unit effort
on a fishing area. Thus, building more complex models that are not
only capable of predicting the presence of fish, but also the effort
required to catch them (e.g., potential quantity) [1]. Regardless of
the complexity of the models, one of the biggest challenges these
works face is the scarcity of data. Generally, actual real catch data
from different ships for different years are used to calculate the
catch per unit effort and classify fishing areas as productive or not.
However, these data are typically not enough since they often cover
a small portion of the Ocean for a small number of years and are
difficult to obtain for the entire fleet. To remedy this problem, some
works have used satellite imagery data in order to extract fishing
information [23]. That is, images have been analyzed to spot the
areas where many vessels fish together, with the pretense that those
areas are potentially abundant in fish. However, this is a tedious
task, not easily scalable and not easily applicable to different types
of species.

In this paper, we study how AIS data can be used as a source
of information for classifying areas of the Ocean as productive
for fishing. AIS data are simple and freely available, yet we show
that they provide a valuable source of information which together
with environmental data from satellites can be used to build large
training datasets for learning models that are capable of predicting
areas that are abundant in fish. In particular, we showcase the
problem using data about vessels that fish Illex argentinus, or the
Argentine short-finned squid, which is an important specie in the
Patagonian shelf ecosystem in the Southwest Atlantic [18].

Contributions. The main contributions of this paper can be
summarized as follows:

• We develop a simple and efficient rule-based method for
generating valuable training datasets for fishing predictions
from abundantly available AIS data.

The final publication is available at ACM via http://dx.doi.org/10.1145/3557921.3565543
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Figure 1: Daily movements of ships for two months. Rows denote fishing areas of size 1◦ × 1◦. Columns represent days. Colored
circles represent vessels and their size represents the normalized quantity (i.e., kilograms per fishing line) of squid captured.
The movements marked by arrows are considered blind movements.

Table 1: Example of the information contained in the fishing reports.

Vessel Lines Day Latitude Longitude Species Size Quantity (kg)

— 60 02/25/2019 44.52º 63.58º Squid M 2339.67

Figure 2: Trajectories of the entire squid vessel fleet sail-
ing/fishing in close proximity on January 22, 2020. Colors
indicate vessels.

• We demonstrate that training datasets generated out of AIS
data can be effectively used to learn predictive models in a
real fishing case in the South Atlantic Ocean. In particular,
– Models trained over AIS data obtain a precision that is

18% higher than the models trained on actual fishing
data.

– The predictions are 36% more precise than the actual
decisions of the studied vessels.

The remainder of this paper is organized as follows. In Section 2,
we describe the data sources used in our study. In Section 3, we
explain the preprocessing applied over the data. In Section 4, we
discuss the developed predictive models and the results obtained
after their evaluation. In Section 5, we discuss the Related Work
and finally in Section 6, we provide the Conclusions.

2 DATA SOURCES
The different data sources used in this study can be grouped into
three categories: Fishing data, AIS data and Environmental data.
The first two allow to label geographical locations in terms of fish-
ing productivity while the latter is used to enrich the information
of those locations with environmental variables. In particular, the
geographical area under study is conceptually viewed as a grid
and the data sources are used to enrich each cell of the grid with
information from the domain. The Fishing data provide information
about real catches in each cell, the AIS data provide vessel move-
ment information through the cells and Environmental data provide
the physical conditions of the Ocean in each cell. Hereunder, an
overview of the content of the different sources is presented.

2.1 Fishing Data
Fishing reports are provided by the Iberconsa company. Apart from
technical details about the vessel, they contain information about
the location of fishing sessions and the kilograms caught per specie,
per size and per day (see Table 1 for an example). Only the reports
from squid vessels were selected, which correspond to six vessels
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Figure 3: Overview of the preprocessing pipelines for all the data sources. Pipelines for AIS data, Environmental data and
Fishing reports are shown on the top, middle and bottom, respectively.

from the entire fleet of the company. Regarding the time period, they
extend from 2017 to 2022, and they correspond to the South Atlantic
Ocean squid season period, which usually takes place from January
to June. Considering the grid view over the geographical area, the
fishing data are relevant since they can be used to classify the cells
as productive or unproductive. However, note that these reports
exist only for a few vessels, hence despite being rich in information
they are low in volume and coverage of the vast Ocean.

2.2 AIS Data
AIS is an automatic tracking system for vessels, which provides
information about their speed, course and position (i.e., latitude and
longitude) through the day in iregular intervals. Data provided by a
vessel tracking platform1, which at the time of the report covers the
2019-2021 period, was used to calculate fishing sessions, detect ves-
sel movements, and impute missing information in the daily catch
1https://www.bigoceandata.com

reports. From it, special attention was paid to the movements of the
more than 75 squid vessels that fish each season in the Argentinian
Economic Exclusive Zone (EEZ). In Figure 2, we provide a snapshot
of the vessel movements for a given day. It is obvious that squid
vessels tend to fish in nearby locations. That is, depending on the
period of the season, out of all the Argentinian EEZ, fishing is done
only around a handful of cells, resulting in little catch information
available for other zones.

Considering the grid view and studying movement patterns
from AIS data one can use them to classify the cells as productive
or unproductive. This may be an approximation, however, given
that AIS data are available for the entire fleet,2 they provide a rich
source of information that can compensate for the low volume in
terms of fishing reports. The latter is demonstrated in Section 4.

2Here we mean the entire fleet of vessels that fish squid in the Argentinian EEZ,
regardless of who owns them.

https://www.bigoceandata.com
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2.3 Environmental Data
The purpose of using environmental satellite data is to expand
the information of each fishing session with potentially relevant
environmental variables, aiming at capturing patterns or drawing
conclusions from the results in the modeling phase. These data
are provided by open source datasets from different international
institutions, and as explained in Section 3, they were assessed care-
fully to know which one satisfies best the study’s needs. To select
which environmental variables were to be included in the models,
domain knowledge was combined with conclusions and practices
from scientific and research publications [12, 21]:

• Chlorophyll a (Chl-a): chlorophyll levels are directly as-
sociated with phytoplankton levels, which are the base of
the marine food chain. Hence, variations of the chlorophyll
concentration in different zones could have a relation with
the abundance of species.

• Sea Surface Temperature (SST): different fish species
have temperature ranges in which they feel more comfort-
able. Moreover, slight variations in temperature have been
reported to increase fish’s activity.

• Bathymetry: it gives a measure of the depth of the ocean.
Various studies have found a direct relationship between
bathymetry and the distribution and behavior of species.
Contrary to the other variables, this has been considered
as atemporal.

• Sea Level Anomaly (SLA): in upwelling zones, water from
the sea floor raises up, bringing with it nutrients that could
be used by phytoplankton, creating an ideal environment
for fish to find nutrients. The contrary situation occurs in
downwellings.

• Wind: certain wind intensities can induce the upwelling
effect, as well as the creation of currents, which provoke
the movement of both fish and nutrients.

In addition to these, the Lunar Phase was considered too. Due
to the techniques of squid fishing, the productivity can be heavily
affected by the moon phase: with low luminosity (i.e. new moon)
the vessel lamps whose aim is to attract squids could be more
efficient; moreover, the moon phase could also have an effect on
tides. However, when the final task of modeling is to find productive
zones given a day, as the lunar phase is constant for all the cells, it
becomes an uninformative variable. Thus, it has not been used as a
variable in the final models.

3 DATA PREPROCESSING
Before explaining in detail the data preparation steps, a general
view of which are the needs for the modeling process should be
presented. On the one hand, fishing reports are used to classify a
fishing session as productive or unproductive depending on the
kilograms fished. On the other hand, heuristic rules are defined
to detect fishing sessions from the AIS data and also label them
according to their productivity. Finally, environmental data are
needed for all the zones where these fishing sessions took place,
both from the fishing sources and the ones created from AIS data.
An overview of the entire preprocessing pipeline, whose details
are explained in the following sections is depicted in Figure 3. The
final goal is to train classification models that predict whether a

Figure 4: Distribution of cells of size 0.5◦ × 0.5◦ for which
fishing reports for Illex argentinus exist. Patagonian Shelf,
Southwest Atlantic.

fishing cell is productive or not. It should be noted that correctly
defining the dimensions of the fishing cell is crucial for producing
informative outputs. This has been defined in concordance with
the suggestions from the expert team regarding vessel velocities
and squid detection capabilities and also by taking into account
the internal division of the fishing area. Hence, the Argentinian
EEZ has been divided into 0.5◦ × 0.5◦ cells as shown in Figure 4,
which are small enough to address vessels there, but big enough
for an adequate number of instances to be registered in all of them,
enabling the creation of predictive models.

3.1 Fishing Data Preprocessing
The preprocessing applied over the Fishing data is depicted in the
bottom part of Figure 3. Once the data is collected, vessels are fil-
tered to only those that fish squid. Next, as the daily catches are
reported by vessel, species and size, an aggregation per vessel of the
daily total kilograms for different sizes has been calculated. Further-
more, as vessels have different technical characteristics, the fishing
reports had to be transformed in order to become comparable (i.e.,
in two areas with the same productivity, a bigger vessel would fish
more kilograms than a small one). Hence, a normalization step
of calculating the kilograms per fishing line (i.e., the cords with
baited hooks attached) for each vessel is performed. Additionally,
for the days in which there is missing information about the fishing
locations, the results of the Fishing Session Detection explained
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in the next subsection are used to impute the position. Next, the
locations of all the fishing sessions are mapped into the defined
cells and finally the generated data is used for labeling the cells (see
Section 3.4).

3.2 AIS Data Preprocessing
As explained before, only the movements of squid vessels are of
interest, thus the entire squid fleet (consisting of 78 different ves-
sels on average every year, both from the company and not) are
processed accordingly in order to extract valuable knowledge from
them. To select the squid fleet vessels, the IMO numbers from the
AIS reports are matched with the annual reports provided by the
Argentinian National Institute of Fishery Research and Develop-
ment (INIDEP).3 The different preprocessing steps depicted on the
top part of Figure 3 are the result of different iterations done with
the recommendations of domain experts and supported by real fish-
ing data. Once the data is collected, a mapping over the grid with
spatial cells of size 0.5◦ × 0.5◦ is performed. Next, two important
preprocessing steps are applied:

3.2.1 Fishing Session Detection. The first crucial step is to detect
when a squid vessel is fishing, for which a collection of rules created
alongside the team with an expertise on the domain are defined:

• FD1: The velocity of the vessel should be under 1.5 knots
(nautical miles per hour), as during the fishing sessions the
engines are shot down and the only movement is caused
by drift.

• FD2: The time of the day should be between dusk and dawn,
as the squid fishing technique is based on attracting them
with powerful incandescent lights during the night.

• FD3: The location should comply with the fishing closure
periods (which are different for every year and are decided
by governmental institutions) and not be in locations close
to harbors.

• FD4: The aggregated duration of the session (i.e. the to-
tal temporal length of consecutive AIS registers satisfying
FD1, FD2 and FD3) should exceed 3 hours, since smaller
durations could introduce noise due to being originated by
non-fishing related activities.

With this procedure, the AIS reports have been transformed into
a collection of periods of certain duration — derived from an or-
dered list of AIS reports, tagged as Fishing or No Fishing for each
vessel (see Figure 6 for an example), whose locations have also been
mapped into the cells shown in Figure 4.

Finally, notice that the data generated here, as noted in Figure 3
and Section 3.1, is also used to impute the missing fishing locations
inside the Fishing data.

3.2.2 Movement Identification. Once the trajectory of a vessel is
marked as Fishing or No Fishing, the second step is to identify
fishing location changes. To this end, a set of additional rules are
defined:

• MI1: Both start and end locations must have been previously
tagged as Fishing.

3https://www.argentina.gob.ar/inidep

• MI2: The distance between start and end locations must be
greater than 30 miles, since shorter movement distances
are not considered as a fishing zone change.

The above mentioned steps generate the base information required
for later labeling the cells within the trajectory of the movements
as productive or not (see Section 3.4) and also for identifying blind
movements (see Section 4.1).

3.3 Environmental Data Preprocessing
The environmental variables can be extracted from different data
sources, each of them having different spatial resolution and tem-
poral availability. The former does not play an important role in
the decision making process, as the defined working resolution
(0.5◦ × 0.5◦) is coarser than any of those provided by the studied
sources. However, as these data are collected from sensors in satel-
lites or vessels, one should previously analyze them to assess their
quality and usefulness. Concretely, the main problem we found
were for the Chl-a, SST and Wind variables, as the sensors captur-
ing them are not capable of gathering data through dense clouds,
resulting in zones of incomplete information for some days. This
problem is shown in Figure 5, where the SST registers in the Ar-
gentinian coast are shown for a given day from various sources.
The most important problem that can be seen is that as the missing
values are clustered, an imputation procedure by spatial interpola-
tion is not possible in the vast majority of the cells. Moreover, one
should also take into account that different sources can use their
own satellites with different sensors and produce the measurements
at different times of the day, hence combining the data from more
than one source would not be an appropriate procedure. The final
solution used to solve the completeness problem was inspired by
techniques used by domain experts, which consists in using in a
weighted (𝑤 𝑗 ) manner (e.g., closer days have higher weight), values
(𝑇𝑗 ) for the same position from three days before and three days
after ( 𝑗 ). Hence, in the case of having a missing value for a day:

𝑇𝑖 =


𝑇𝑖 , if 𝑇𝑖 ≠ 𝑛𝑢𝑙𝑙∑

(𝑖−3)< 𝑗< (𝑖+3), 𝑗≠𝑖,𝑇𝑗 ≠𝑛𝑢𝑙𝑙 𝑤𝑗𝑇𝑗∑
(𝑖−3)< 𝑗< (𝑖+3), 𝑗≠𝑖,𝑇𝑗 ≠𝑛𝑢𝑙𝑙 𝑤𝑗

, otherwise

Regarding the data source selection, the decision was to work
with two different sources. The first choice was Climate Data4,
as apart from providing data for Wind, Chl-a, SLA and SST by
means of the same API, although separated in different files per
variable, it showed a good trade-off between reliability (i.e., some
sources provide measurements with their corresponding levels of
quality, hence data with low reliability is provided and the decision
whether to use it is let to the user), resolution and completeness.
For the Bathymetry variable, GEBCO5 was chosen as it provides
very detailed and complete data for all the Ocean.

Furthermore, as explained in more detail in Section 4.2, long
range temporal correlations were studied between the environmen-
tal variables and the fishing productivity, and a correlation with past
Chl-a concentration levels was found (see Figure 7). Consequently,
in the final preprocessing stage this lagging information is also

4https://cds.climate.copernicus.eu/#!/home
5https://www.gebco.net/data_and_products/gridded_bathymetry_data

https://cds.climate.copernicus.eu/#!/home
https://www.gebco.net/data_and_products/gridded_bathymetry_data


Pons, et al.

Figure 5: SST registers for the Argentinian coast from different sources for January 6, 2020. The values on the top left corner
denote completeness and the white zones correspond to missing values.

Figure 6: An example of a trajectory of a vessel (from January
19 through Januray 23, 2020) with parts of the trajectory
marked as Fishing and No Fishing, based on the heuristic
rules applied.

computed. To this end, in summary, the environmental preprocess-
ing steps start by scaling the data to the defined grid dimensions
(0.5◦ × 0.5◦), selecting the grids corresponding to Argentinian EEZ,
solving the completeness problem with the mentioned procedure,
calculating the Chl-a lag variable and joining by grid and day the
different variables; see Figure 3.

3.4 Data Labeling
With the previous explained transformations applied to the data,
they need to be labeled accordingly to be fed to our classification
models. Different approaches were taken depending on the origin
of the data.

3.4.1 Fishing reports. For the fishing reports, the actual kilograms
fished are used to label the cells as productive or not. In particular,
a moving threshold for the normalized kilograms fished is defined
by calculating a running average for the different weeks of the year
using a two week window and the fishing reports from the 2017 to
2021 seasons. This procedure is done because as it can be seen in
Figure 8, the squid abundance is not constant throughout the fishing
season, hence defining a static threshold would be inappropriate.

Figure 7: Correlation of the normalized kilograms (kg/line)
with different values of Chl-a temporal lag (from 0 to 18
weeks). The dashed line indicates the temporal Chl-a lag
used as a model variable, as it corresponds to the maximum
correlation value.

With it, cells where a vessel fished over the moving threshold are
labeled as Productive and the cells where they fished below it as
Unproductive.

3.4.2 AIS data. For AIS data, since the actual kilograms fished are
not available, different rules are required to label the cells as pro-
ductive or not. In particular, rules were defined taking into account
movements and fishing sessions described in Section 3.2, and also
domain expert suggestions. Thus, a cell is labeled as Productive if:

• PC1: A vessel moves over the cell complying with the move-
ment criteria defined by rules MI1 and MI2, thus it is fishing
there.

• PC2: It stays in the same cell for three days or more.
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Figure 8: Evolution of the moving threshold (kg/line)
throughout the squid season compared with a static thresh-
old defined as the global median.

If PC1 holds but the vessel moves after just one or two days of
being there, the cell is labeled as Unproductive. Hence, with these
rules it is assumed that a vessel will stay three or more days in a
fishing spot if it is productive. Using a lower number of days could
result in wrongly labelling the cell, as it is not usual for vessels to
change locations immediately after having committed to a long
range movement. Note that these rules have been defined using
domain knowledge on squid, hence for other species they must be
fine tuned depending on the characteristics of the target specie.

4 MODELING
One must notice that after the preprocessing, two labeled datasets
are obtained, one from the fishing reports and one coming from the
AIS reports (see the final output of Figure 3). The former contains
more reliable information, as real quantities fished are used for
the labeling, but in terms of volume it is much smaller. On the
other hand, for the latter there is a high volume of data but with
estimated information, as heuristic rules are used for deriving the
labels. Although in machine learning contexts volume usually has
a higher weight than quality, two models have been created using
the different sources and their performances have been compared.
Nevertheless, it must be highlighted that the validation has been
done with data from fishing reports from 2022 for both of the
models. Thus, they both have been assessed against real fishing
data and not against rule derived labels.

The final training datasets are created by joining the labeled data
from the respective source (i.e., all the available AIS data for 2019
to 2021 and Fishing data for 2017 to 2021) with the preprocessed en-
vironmental variables, and for the test dataset the same procedure
has been done but only for Fishing data from 2022. The idea is to
assess whether AIS data contain valuable information that can be
used to complement the actual fishing data. If this holds, AIS data
that are available in abundance can be used not only for detecting
the patterns of how vessels move or for obtaining detailed knowl-
edge about sailing routes [2, 14, 15], but they can also be used for

building training datasets that can serve other purposes. Moreover,
they are not limited to a particular specie and thus can be used for
other species too (just adapting the heuristic rules).

Before going into more details on the modeling step, let us recall
what is expected from the model and what it will be used for:

• First of all, the model is thought to be used when a blind
movement is to be attempted (i.e., the vessel has just de-
parted from the port or wants to substantially change loca-
tions due to poor fishing results). Moreover, this movement
should be uninformed: it is clear that when a vessel captain
has information about the presence of squids in his actual or
other locations the model suggestions fall in second place
(see Section 1, for more details about blind movements).

• The models have been evaluated giving greater importance
to the precision6 metric. As the output of the model will
suggest productive fishing locations where to move ships,
the risk of suggesting a bad spot should be minimized due
to its economical impact.

• The model should suggest productive fishing spots through-
out all the season, not just clustering them in the best fishing
months.

Finally, the data preprocessing and modeling are performed using
Python (using scikit-learn [17], pandas [24] and netCDF4 libraries)
and R (using raster [22] library). Yet, the data in its entirety can-
not be made publicly available since it contains information about
the company. Only the code, data and the models that do not con-
tain/use information about the company are publicly available in
Github7.

4.1 Baseline Definition
As explained before, the models are not to be used when captains
have factual information about the presence of squid in certain
locations (i.e., the quantity of squid caught at the time of moving
towards that location), as it obviously cannot compete against them.
Hence, a baseline needs to be decided against which the models can
be fairly compared in order to assess their performance. For that,
one needs to calculate the ratio of productive movements performed
by a vessel. This allows to calculate the precision of decisions over
historical fishing data.

To spot a productive movement, a set of simple rules are ap-
plied over the fishing reports in combination with the movement
identifications:

• GM1: A vessel performs a long range movement (i.e. +30
miles) to a cell.

• GM2: There is no information available for that cell for the
previous day.

• GM3: It fishes a quantity over the moving threshold.
Contrarily, if only GM1 and GM2 hold, it is considered an unpro-
ductive movement.

To this end, for the available historical fishing data, the success
rate of finding new productive locations, for the year 2021 (the
last year for which data about the entire season is available) is

6Given that we are dealing with a binary classification problem of predicting a pro-
ductive or not productive cell, precision is calculated as the ratio of true productive
cells over all locations predicted as productive.
7https://github.com/gerardponsrecasens/fishing-information-from-AIS
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Figure 9: Distribution of the correct predictions when learn-
ing a model using Fishing Data.

Figure 10: Distribution of the correct predictions when learn-
ing a model using AIS Data.

of 50.2%. That is, for blind movements, the likelihood of finding a
productive cell (i.e., with catches above the threshold) resembles
that of tossing a coin. These results illustrate the difficulty of finding
new productive areas without a priori information, as explained in
Section 1.

Finally, notice that the precision of the decisions (i.e., baseline)
can be compared against model predictions, as they are both calcu-
lated over movements that do not rely on catch information.

4.2 Modeling with Fishing Data
Obviously, when relying on data about the actual catches (i.e., kilo-
grams caught), one can think of building a model to predict the
actual quantity in a given cell (i.e., treating the problem as a re-
gression problem [4]), and then assess whether this translates to a
productive cell or not. The other option is to convert the problem

into a classification problem [4], where a cell is already labeled as
productive or not using data from real catches (see Section 3.4).
The latter was our main goal, however, here, we briefly explain our
alternative try, since it allowed us to gain some deeper knowledge
on the modeling part.

4.2.1 Regression Model. The first naive approach into modeling
could be to predict the productivity using regression models trained
directly over the normalized fishing reports. Although these would
have resulted in very informative models, the lack of data hinders
their learning capabilities, and the results are far from acceptable.
Yet, performing such an exercise allows to get an understanding
of the data and explore patterns and correlations. Concretely, long
range correlations of environmental variables with kilograms fished
were studied, and although there were no important findings for
Wind, SST and SLA, fishing productivity showed a significantly
higher correlation with Chl-a concentration with a three months
lag, reaching its maximum at concretely eleven weeks prior (see
Figure 7). As a consequence, this additional information has been
included as an input variable in the different classification models
that follow.

4.2.2 Classification Model. Our main goal was to learn a classifi-
cation model using the labels from the daily fishing reports. For
it, different classification models and configurations of them have
been studied. The best results were obtained using Random Forest
Models [5], for which the precision reached 60.1%. Yet, the model
predicting capabilities are limited when it comes to generating
correct suggestions for the first weeks of the season. That is, the
model is not able to predict enough truly productive cells in the
first weeks of the season as shown in Figure 9, where the length of
each bar represents the number of correct predictions for Productive
cells (orange) and Unproductive cells (blue). The results shown in
Figure 9 were undesirable and thus we followed with developing
models over training datasets labeled using AIS data.

4.3 Modeling with AIS Data
In this approach, the data labeled using AIS information was used,
and the exact same modeling steps as in Section 4.2.2 were followed.
In this case however, the best model found is created with a Voting
ensemble [9] of Support Vector Machines (SVM) [8] and Random
Forests. With this model the obtained precision is 68.5%, which
results in an acceptable increase with respect to the classification
model based on Fishing data. Moreover, the correct suggestions are
spread out more evenly across the season — see Figure 10, hence
resulting to a more informative model. To understand what the
model is learning, the feature importances of the Random Forest
model used in the ensemble (whose isolated precision was 65.6%)
are visualized in Figure 11. It can be observed that the model gave
more importance to environmental variables, with the lagging Chl-
a variable being the most informative in predicting a productive
location. In contrast, for the model obtained in Section 4.2.2, it
was the week who took the first place, resulting to the undesirable
behavior of producing few (if at all) suggestions of productive cells
for certain weeks.
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Figure 11: Importance of the different features in the model
for the Random Forest Classifier which is part of the Voting
Ensemble of the model with AIS data.

4.4 Results
Finally, a comparison of the results of the models with respect to
the baseline (50.1%) are shown in Table 2. It can be seen that both

Table 2: Summary of the precision of the models and their
improvement with respect to the baseline.

Model Precision % Imp. over the Baseline

Model Fishing data 60.1% 19.7%
Model AIS data 68.5% 36.4%

models outperform the baseline results, hence they are more precise
at suggesting productive fishing locations than the methods and
practices currently used when there is no information available.
Furthermore, modeling with AIS yields better results than modeling
with fishing reports, indicating that in this domain, establishing
appropriately defined rules can help overcome the data scarcity
problem. In turn, these results suggest that acquiring more fishing
data (e.g., getting reports from more vessels or recording them
during more years) could help improve the modeling performance,
as it contains more precise and valuable information.

5 RELATEDWORK
Relationships between species distributions and the physical en-
vironment have been observed consistently. They are typically
modeled using Species Distribution Models (SDM) [10]. SDMs can
be applied across terrestrial, freshwater, and marine environments.
In [10], the challenges of SDMs as numerical tools that combine
observations of species occurrence or abundance with environmen-
tal species are studied. In [20], it is argued that eco-informatics
solutions that allow for near real-time prediction of the distribution
of highly mobile marine species are an important step towards

the maturation of dynamic ocean management and ecological fore-
casting. Fisheries’ observer data (with observer rates of 15%) from
the California drift gillnet fishery are used to model the relative
probability of occurrence (presence–absence) and catchability (total
catch per gillnet set) of broadbill swordfish in the California Cur-
rent System. In [19], they develop predictive models of Argentine
shortfin squid abundance in relation to physical and environmental
conditions. Again, fishery and biological data collected by scientific
observers aboard commercial trawlers are analysed in relation to
physical and environmental factors to establish the spatio-temporal
pattern of the species’ distribution and quantify the influence of
environmental variables.

To prevent overfishing and bycatch, in [11], they create species
distributionmodels for one target specie and three bycatch-sensitive
species using both satellite telemetry and fisheries observer data.
In [7], using catch per unit effort data of Argentine shortfin squid
from squid jigging fleets during the years 2004–2013, they evaluate
their variability in abundance and the most possible relationships
to migration patterns. In [1], they build models to predict the catch
per unit effort in the North-western Adriatic Sea. The area of study
is organized in the form of a grid and each cell is given a score of
catch per unit effort. Real fishing data and AIS data are combined
together to impute the fishing quantity on each cell. Finally, a model
is built to learn the relationship between environmental variables
and the catch per unit effort. However, the scarce availability of
fishing data limits the study to only two years. In [6], a detailed
study of how temperature effects the size and maturity of Argen-
tine squid is performed. 20-year time series of fisheries data and
monthly temperature data from the key regions associated with
Illex argentinus are used.

Generally, data about fishing catches is either scarce or unre-
liable [16]. Most of the works mentioned above rely on fishery
observer data which are limited to small samples or small datasets.
There have been studies however, that have looked at the possi-
bility of using imagery satellite data to study the distribution of
Argentine squid [23]. Argentine squid is caught by jigging vessels
which attract squid using powerful incandescent lights, which are
detectable in remotely sensed satellite imagery data. The assump-
tion is that changes in the distribution of the fleet can reflect shifts
in the distribution of the squid. To this end, in [23] they have ar-
gued for the use of such external data source to label areas of the
Ocean as abundant or not. However, this approach is quite complex
and we contend that there is a better and simpler alternative of
obtaining similar data, that of using heuristics on top of AIS data.

6 CONCLUSIONS
Evidences suggest that catch data updated and disseminated an-
nually by the Food and Agriculture Organization of the United
Nations (FAO)8 on behalf of member countries may considerably
underestimate actual fisheries catch [16]. Even more, such data
is typically aggregated and thus extrapolating it to the cells of a
hypothetical grid over the Ocean is not trivial, if not impossible.
A solution to the problem is to get data from individual ships and
companies, however such data is not accessible. To this end, we
propose a method that exploits the movement data of the vessels

8https://www.fao.org/fishery/statistics-query/en/capture/capture_quantity

https://www.fao.org/fishery/statistics-query/en/capture/capture_quantity
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(i.e., reported via AIS transceivers) in order to label the geographical
cells of the Ocean as productive or not at a given point of time. We
use data about vessels that catch Argentine short-finned squid in
order to evaluate our proposal. In particular, we use heuristic rules
on top of AIS data in order to label the geographical cells accord-
ing to their productivity. Together with environmental variables
this provides a training dataset on top of which a predictive model
is learned, with the goal of forecasting the most productive cells.
Finally, real catch data are used to validate the proposed model and
the heuristic rules. As a result, the model trained on top of AIS data
performs 19.7% more precisely than the model trained on top of
real catch data, and 36.4% more precisely than the currently used
methods in the company which is considered as our baseline.
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and Alvaro Pazos and Jose Dominguez for sharing their valuable
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