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1. iNTRODUCTiON 

In  r e c e n t  y e a r s  spec i a l  t e c h n i q u e s  k n o w n  as  c a p a c i t a n c e  m a t r i x  m e t h o d s  h a v e  
b e e n  d e v e l o p e d  for  t h e  n u m e r i c a l  s o l u t i o n  of  H e l m h o l t z ' s  e q u a t i o n  in  a g e n e r a l  
p l a n a r  b o u n d e d  r e g i o n  ~2, 

- - h u + c u = f  in  ~2, 

w h e r e  c is a r ea l  c o n s t a n t ,  a n d  e i t h e r  D i r i c h l e t  o r  N e u m a n n  c o n d i t i o n s  a r e  
spec i f i ed  on  t h e  b o u n d a r y  0~. T h e s e  m e t h o d s  m a k e  use  of  f a s t  so lve r s  in r eg ions  
t h a t  a l low for  t h e  s e p a r a t i o n  o f  va r i ab l e s .  O p e r a t i o n  c o u n t  0 ( n, m )  for  s u c h  f a s t  
so lve r s  is p r o p o r t i o n a l  to  m n  log2 n, w h e r e  rn a n d  n a r e  t h e  n u m b e r  of  m e s h  p o i n t s  
in  t h e  two  d i r ec t ions .  F o r  a d e t a i l e d  d i s cus s ion  o f  such  m e t h o d s  a n d  a h i s t o r y  o f  
t h e i r  d e v e l o p m e n t ,  see  P r o s k u r o w s k i  a n d  W i d l u n d  [9] a n d  W i d l u n d  [12]. 

I n  th i s  p a p e r  we conf ine  o u r s e l v e s  to  t w o - d i m e n s i o n a l  b o u n d e d  reg ions ;  for  
p r o b l e m s  in t h r e e  d i m e n s i o n s  see  O ' L e a r y  a n d  W i d l u n d  [6]. 

T h e  r e l a t i v e l y  l a rge  a m o u n t  o f  n e e d e d  core  s t o r a g e  l i m i t s  t h e  a p p l i c a b i l i t y  o f  
o u r  a l g o r i t h m s ,  as  p r e v i o u s l y  d e v e l o p e d .  N o r m a l l y ,  one  g e n e r a t e s  a n d  s t o r e s  a 
d e n s e  c a p a c i t a n c e  m a t r i x  C of  t h e  o r d e r  o f  p ,  w h e r e  p is t h e  n u m b e r  o f  m e s h  
p o i n t s  i n s ide  ~2 a d j a c e n t  to  t h e  b o u n d a r y  0~2. I n  th i s  p a p e r  we d e v e l o p  a n  i m p l i c i t  
m e t h o d  in w h i c h  we a v o i d  g e n e r a t i n g  a n d  s t o r i ng  t h e  m a t r i x  C; see  a lso  O ' L e a r y  
a n d  W i d l u n d  [6]. M o r e o v e r ,  we exp lo i t  t h e  fac t  t h a t  on ly  t h e  m e s h  p o i n t s  in t h e  
c lose  v i c i n i t y  o f  t h e  b o u n d a r y  0~2 a re  i n v o l v e d  in  t h e  m a i n  p a r t  of  t h e  c o m p u t a t i o n ,  
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Numertcal Solution of Helmholtz's Equation 37 

that is, the capacitance matrix iterations. Using a solver on a rectangle, which 
takes the sparsity of the problem into account, developed originally by Banegas 
[1], we design an algorithm that requires only 32p storage locations for its main 
part. Only two steps, computing the space potential term and final solution, are 
limited by the storage requirements of a fast solver on a rectangle, i.e., m .n  
locations, where m and n are the number of mesh points in a rectangle in which 
the region ~2 is imbedded. To remove that obstacle we propose a solver that  
requires only 2 n m  1/2 storage locations at the expense of some computational 
effort. 

For three-dimensional problems, where storage requirements are even more 
critical, the algorithm presented here could be implemented advantageously. 

Numerical results from extensive experiments on a CDC 7600 computer are 
reported and a comparison of different programs is given. 

2. CAPACITANCE MATRIX METHODS AND POTENTIAL THEORY 

In this section we give a brief review of the potential theoretical approach leading 
to the capacitance matrix methods described in Proskurowski and Widlund [9]; 
see also Widlund [12]. 

We consider a problem on an arbitrary bounded planar region ~. The region 
~2 is first imbedded in a rectangle, and a uniform mesh is introduced with the 
same mesh size in the two coordinate directions. The boundary conditions on the 
rectangle can be of arbitrary type as long as they allow for use of a fast solver; see 
Widlund [ n ]  and Proskurowski and Widlund [9]. The set of mesh points is 
decomposed into three disjoint sets: ~2h, 0~2h, and (C~2)h. The set ~2h is the set of 
interior mesh points, i.e., each of its members has all its immediate neighbors in 
the open set ~2. The remaining mesh points in Et constitute 0~2h, the set of irregular 
mesh points, while the set (C~2)h contains all the remaining mesh points, i.e., the 
exterior mesh points. The Laplacian is represented by the five-point formula for 
all points in ~2h LJ (C~2)h. The data for the exterior points are extended in an 
arbitrary way; for the proof that  the solution on ~2h (J O~2h is independent of the 
solution and the data on (Cl2)h, see Proskurowski and Widlund [9, sec. 3]. For the 
irregular points we must introduce a formula that  also takes the boundary 
conditions on 0~2 into account. We therefore combine the discrete Laplacian with 
an interpolation formula. The important problem of scaling these auxiliary 
equations is treated in detail in Proskurowski and Widlund [9] and Shieh [10]. 
We denote by A the n. m x n. m matrix corresponding to the difference problem 
enlarged to a rectangle handling the given boundary conditions on O~. The 
regularly structured problem for which a fast solver can be used is given by the 
n. m × n. m matrix B representing the discrete Laplacian. With a proper ordering 
of the equations, A and B differ only in the rows corresponding to the irregular 
mesh points. For the Neumann problem we write A = B -  U V  T, and for the 
Dirichlet problem A = B + U Z  T, where U, V, and Z have p columns, and p is the 
number of irregular mesh points. The matrix U represents an extension operator, 
which maps O~2h onto the whole rectangle. It retains the values on 0~h and makes 
the remaining values equal to zero. Its transpose, U T, is a trace operator. Matrices 
V T and - Z  T are compact representations of B - A, from which the zero rows 
corresponding to the regular mesh points have been deleted. 
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38 W. Proskurowsk, 

In potential theory the solution of the Neumann problem is given as a sum of 
a space potential us and a single layer potential of charge distribution p at the 
boundary O~t: 

u ( x )  -- u~ (x )  + 7/ ' (x) .  (2.1) 

A discrete analog to eq. (2.1) is 

u ffi G f +  G U p  (2.2) 

where each of the p columns of U represents a unit charge placed at an irregular 
point, where the discrete operator G plays the same role as the integral operator 
defined by the fundamental solution of the continuous problem (see Proskurowski 
and Widlund [9]), and p is determined by solving the capacitance matrix equation 

Cp = (Ip - V T G U ) p  ffi v T a f  ffi g (2.3) 

where the p × p matrix C is the capacitance matrix and p is a vector of p 
components. A proper approach for the Dirichlet problem is a double-layer 
potential 7~ of dipole density # at the boundary O~t: 

u ( x )  = u , ( x )  + 7 / ' ( x ) .  (2.4) 

A discrete analog to eq. (2.4) is 

u ffi G f +  G D # ,  (2.5) 

where D has p columns, each of them representing a unit discrete dipole placed 
at an irregular point, and # is the solution of 

C# -- (Ip + Z T G D ) #  = - Z T G f  = g ,  (2.6) 

where # is a vector o f p  components. Shieh [10] has shown that the capacitance 
matrix C is equal to the sum of Kh and a matrix with a small condition number, 
where Kh is an approximation to the correct compact operator of the correspond- 
ing Fredholm integral equation of the second kind. The conjugate gradient 
method converges superlinearly for Fredholm integral equations of the second 
kind, as shown by Hayes [5]. Therefore, the conjugate gradient method applied 
for solving eqs. (2.3) and (2.6) converges rapidly; in practice, it is almost inde- 
pendent of the size of the mesh; see also Proskurowski and Widlund [9]. In 
summary, the algorithm consists of the following steps: 

1. Generate the capacitance matrix C. 
2. Compute  g. 
3. Solve eq. (2 3) or (2 6) by the conjugate gradient method 
4. Use the fast solver to obtain u = G(f+ Up) or u ffi G(f+ 1:)#). 

Another option for Step 3 is to factor C and to solve eq. (2.3) or (2.6) by Gaussian 
elimination. For the details of the algorithms and ways of fast generation of C, 
see Proskurowski and Widlund [9]. 

The total operation count for that algorithm is proportional to n m  log2 n and 
p2 log2 p if the conjugate gradient option is used. 

Some alternatives to this algorithm that make it possible to avoid the explicit 
generation of C are described in the next sections. 
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3. AN IMPLICIT CAPACITANCE MATRIX METHOD 
Methods in which we explicitly generate, store, and possibly factor the capaci- 
tance matrix may become inefficient when the mesh is refined. The capacitance 
matrix is a dense, p x p matrix, where p is the number of irregular mesh points, 
which grows linearly with the number of mesh points in a coordinate direction. 
For example, somewhere between the values ofp  equal to 150 and 200 the small 
core memory (SCM) for the CDC 7600 computer becomes saturated. The CDC 
7600 has two types of core storage: (1) the SCM which contains 65,536 decimal 
60-bit words, and (2) the large core memory (LCM) which contains 512,000 
decimal 60-bit words. The use of the LCM would allow us to increase the 
maximum values ofp  by a factor of 2 or slightly more, while for even larger p one 
must use a secondary memory device with a much longer access time. Therefore, 
we now present a method in which the capacitance matrix is used only implicitly 
without generating and storing it, thus saving p~ storage locations at the expense 
of a small increase in computational effort; see also O'Leary and Widlund [6], 
Widlund [12], and an early paper of George [4]. 

We describe the method for the Dirichlet boundary condition in which the 
double-layer potential approach is used. The method is very similar for the 
Neumann boundary condition in which a single-layer approach is used. 

Once more we write the capacitance matrix equation 

Ct x = (Ip + Z T G D ) ~  = - - Z T G f  = g. (3.1) 

The capacitance matrix C can also be factored into the form 

C - -  U T A G D ,  (3.2) 

which we will use subsequently. Since matrix C is nonsymmetric and we intend 
to use the conjugate gradient method for solving eq. (3.1), we reformulate it in 
terms of a least squares problem 

CTC~ = CWg. (3.3) 

Thus each step of the conjugate gradient method requires the computation of a 
matrix-vector product c T ( C x )  for any vector x of length p given on the set of 
irregular mesh points, i.e., 

DTG( U T A  )w( UTA)GDx.  (3.4) 

Let us rewrite expression (3.4) as a sequence of equations: 

Xl ~-- Dx, 

x2 = Gx l  or B x 2  = x l ,  

x3 = ( U T A  ) x2, 

X, = ( UTA ) Tx3, 

xs = Gx4 or B x s  = x4, 

y = DTx5. 

ACM 

(3.5) 
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40 W. Proskurowskl 

Consequently, we first set an m x n array equal to zero, then generate the mesh 
function Dx by setting up the discrete dipoles. This step costs 2p multiplicative 
operations. Then we obtain G (Dx) by using the fast solver at a cost proportional 
to mn log2 n operations. U w maps a mesh function defined for all mesh points into 
its restriction to irregular mesh points. Therefore, it is enough to apply the 
operator A to GDx only on the set of closest neighbors of irregular mesh points. 
Acting in this way we compute UTA (GDx) at the expense of 4p multiplicative 
operations. The part corresponding to the transpose of C is performed in a similar 
fashion. Thus the vector CTCx is obtained at a cost of two calls of the fast solver, 
proportional to mn loge n operations, plus a lower-order term, proportional to p 
operations. In our program some operations were repeated in order to save 
storage space. 

Summing up, this method requires mn + 8p storage locations (mn + 10p for 
the Neumann problem) compared wi thp  2 + n m  plus a lower-order term propor- 
tional to p for the explicit capacitance matrix methods, as implemented in 
Proskurowski and Widlund [9]. On the other hand, the operation count for the 
present method is (2k + 3).8(m, n), where k is the number of the conjugate 
gradient iterations and is proportional to log2 p and 8(n, m) is the cost of a fast 
Helmholtz solver proportional to mnlog2n. By comparison, the cost for the 
explicit capacitance method with the conjugate gradient option is equal to 
3.5.8(n, m) + (2k + c) .p  2 operations, where c is a constant arising from the 
generation of the capacitance matrix. 

An experimental comparison of the computation times for n = 64, p = 132 and 
a circular region is given in Section 7. It shows that  whenever the capacitance 
matrix is small enough to fit into the SCM, the explicit capacitance matrix 
methods are slightly faster. On the other hand, the present method does not make 
use of the translation invariance of the solution, which is exploited in our variant 
of the explicit capacitance matrix method, and alternative fast solvers might be 
easily used. A further development of this method is described in Section 5. 

4. A HELMHOLTZ SOLVER THAT TAKES ADVANTAGE OF SPARSITY 

Consider the Helmholtz equation ( -  h + c)u = f o n  a rectangular region with an 
m . n  mesh. Let the mesh values of f and u be called sources and targets, 
respectively. Denote then by s the number of nonzero sources and by t the 
number of targets where the solution is required. In our .application we have 
either s << m. n or t << m. n, or both; see Section 5. We now describe how to make 
use of the sparsity of the sources and the fact that  the solution is needed only at 
relatively few mesh points. A related idea for the case of a point source and 
targets on the lines parallel to the axes is mentioned in Buzbee and Dorr [2, 
p. 758]. The present method was developed by Banegas [1] and in our experiments 
we have been using a considerably altered variant of her algorithm. This algorithm 
was designed to be compatible with the one using fast Fourier transform (FFT) 
as described in Proskurowski and Widlund [9]. Nevertheless, there is no difficulty 
in adapting it to alternative fast Helmholtz solvers, if necessary. We remark also 
that  there is no restriction on the location and number of sources and targets and 
that  the only restriction on n is that  it is even. 

We first outline the fast Helmholtz solver described in [9]. The solution is 
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obtained by applying the F F T  in one coordinate direction, i.e., for m vectors of 
length n, then  by solving n very special tridiagonal systems of equations of order  
m by a Toepli tz  method,  and finally by using an inverse F F T  on m vectors of 
length n. Storage requirements  are here  equal m - n  and the total  operat ion count  

9 for this solver is 0 (m,  n )  = ~ m n  log2 (n/2)  + 15mn,  where each multiplication 
and each floating point  addition is taken as a unit  operation. We remark  tha t  the 
operat ion count  always shows only a par t  of the actual computat ional  expenses 
and is not  an exact measure of it. 

Let  us now write the Fourier  coefficients as inner products  of the data  vector  
f(t) with the eigenvectors ~ (J) of a certain block of the block matr ix B representing 
the discrete Laplacian ( -  h + c): 

n 

[k(J) = -nl Z=~l= ~/(j)./~(l), (4.1) 

w h e r e j  = 1 . . . . .  n and k = 1 . . . .  , m. In addition, the inverse Fourier  coefficients 
can be writ ten as 

n 

ukIt) = Z q~/J)'t2k (J), (4.2) 
j = l  

where l = 1, 2 . . . . .  n and k = 1, 2 . . . .  , m. For  sparse sources the  number  of 
nonzero entries fk Ct) in eq. (4.1) is reduced to s. Similarly, if the solution is needed 
at t mesh points we evaluate only t of the sums (4.2). Consequently,  the operat ion 
count  for the summat ion  formulas (4.1) and (4.2) is reduced considerably. More- 
over, we reorder  the computation,  performing it separately for each f requency j.  
We first compute  the Fourier  coefficients for all nonzero sources f~, i = 1 . . . .  , s, 
and simultaneously sum those having the same index k. We then  solve the 
intermediate  tridiagonal matr ix problem (with X~ corresponding to each frequency 
j) with the previously computed Fourier  coefficients as a r ight-hand side. We 
finally compute  the inverse Fourier  coefficients for all targets we need for the 
solution u,, i -= 1 . . . . .  t, and sum simultaneously those having the same index k. 
At this point  locations used for the temporary  values of [(J) can be released and 
used for [(,+1). 

Thus,  this procedure  requires 3(s + t) locations for sources, targets, and their  
coordinates, plus 2m locations to store certain values of the sine and cosine 
functions and 2n locations to store temporar i ly  some of the Fourier  coefficients. 
In our  program we also store temporari ly  some indexes in order  to avoid 
recomputing them. In all, we use 

4(s + t) + 2(m + n) (4.3) 

storage locations. If  the location of the sources and targets coincide, we can 
perform the computat ions in place (as we do in the fast solver using FFT) ,  
thereby  fur ther  reducing these requirements  to 4s + 2(m + n) locations. 

It  is evident  tha t  for large s and t this procedure,  which uses the conventional  
(i.e., slow) Fourier  transform, will be much slower than a comparable  solver using 
FFT.  Now we will establish restrictions on s and t for this procedure  to be 
competi t ive with a fast Helmholtz  solver. The  operat ion count  is 

~p(n, m,  s, t,) = 3n .  ( s  + t)  + 4ran. (4.4) 
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3 m log2 n / 2  + -~ m. For example, take m -- n and Then ~ -- 8 for s + t -- 
9 log~(n/2) + -~, which is equal to s + t = 10n. This gives the ratio 8 ( n ) / ~ ( n )  ~ -~ 

1.1 for n -- 64. The corresponding ratio for execution times in numerical experi- 
ments (see Section 7) is very close to it. 

5. AN IMPLICIT CAPACITANCE MATRIX METHOD USING A HELMHOLTZ 
SOLVER THAT EMPLOYS SPARSITY 

We recall from Section 3 that  the main computational effort (more than 90 
percent) in an implicit capacitance matrix method goes for computing vectors 
y = C T C x  = DTG ( U T A ) T ( U T A )  G D x  during the conjugate gradient iterations. 
Moreover, a dominant part of this computation, also over 90 percent, is spent on 
a fast Helmholtz solver. We recall also that  while distributing the discrete dipoles 
D and using the five-point stencils UTA,  only the mesh points from a close 
neighborhood of the p irregular mesh points are involved in the computation. 
The values at the rest of the mesh points are set to zero. In the second and fifth 
steps of the sequence of equations Bx2 = x, and Bx~ = x4, the sources x and x4 are 
sparse (s). Moreover, we need the solution x2 and x~ only at a few, t, mesh points. 

A straightforward count for the Dirichlet problem gives s < 5p for x4 (t < 5p 
for x2) and s = 3p for xl (t = 3p for xs). For the Neumann problem the 
corresponding values differ for x~ (s = p)  and x5 (t -- p) ,  as we have here a single 
layer of charges instead of dipoles. 

We observe that the coordinates of the mesh points involved in computation 
are often repeated as we go from one irregular mesh point to the next. For 
example, for U T A  only the layer of mesh points inside ~ at a distance not larger 
than 2h from the boundary 0~2 is used in computation. This gives the final value 
s + t < 5p for the Dirichlet problem and s + t = 3p for the Neumann problem. A 
comparison of the amount of computational effort, formula (4.4), shows that the 
use of Helmholtz solver that  employs sparsity instead of a conventional one using 
FFT should be favorable here also. 

When we use a two-dimensional array of entries the summation over the same 
coordinates (here double indexes) comes in a natural way. On the contrary, while 
using the Hemholtz solver described in Section 4, we work only with vectors of 
values and of coordinates of the entries. Tha t  is why we must construct an 
algorithm to recognize entries with the same coordinates in an effective way. To 
perform such a search in each conjugate gradient iteration would be costly. 
Therefore, in our computer implementation we preprocess the information about 
the irregular mesh points and their neighbors. It is performed only once at a cost 
proportional to the execution o f p  2 logical IF statements. This constitutes only a 
small part of the total computational effort; less than 2.5 percent for meshes 
n _ 64. Additional storage for two vectors of an approximate total length of 5p is 
required. 

We now give a brief summary of the implicit capacitance algorithm: 

1. Compute g = - Z G f  
2. Solve CTc~ = CWg for # 

3. Compute u = G ( f  + D#). 

The capacitance matrix equation for the Dirichlet problem, in its normal form 
(Step 2) can be solved at the cost of 2k. (15np + 4ran)  operations, where k is the 
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number of conjugate gradient iterations proportional to log2 p, while using only 
32p storage locations. For the Neumann problem, the corresponding values are 
2k.  (9np + 4mn)  and 25p. 

Thus, if m = n, the cost of the main part of our Helmholtz solver is proportional 
to np log2 p. This is well confirmed by the experiments reported in Table II. 

Assume for the moment that we solve only the Laplace equation. Then the 
total storage requirements for the present algorithm are proportional to p. This 
allows us to use a very fine mesh or to employ a computer with a small core 
storage. 

In a general case, i.e., when f # 0, we must also compute the term u~ denoted 
as the space potential in Section 2. There we have both s and t equal to almost 
m. n, and the sparse Helmholtz solver is quite ineffective (the operation count is 
proportional to m.n2); hence in most cases it cannot be recommended. On the 
other hand, a standard fast solver requires m. n storage locations, i.e., much more 
than needed for the rest of our algorithm. To resolve the last difficulty we have 
designed a fast Helmholtz solver that requires 2 n m  1/2 storage locations, which is 
described in Section 6. 

In the only process where a repetitive use of a Helmholtz solver is needed, Step 
2, both the sources are sparse and the targets are needed at a few mesh points, as 
we have already seen. Therefore, a certain increase of computation time in Step 
1 and in Step 3, in order to save storage (see Section 6), plays a lesser role in the 
total computational effort. Moreover, we can easily use LCM for the two-dimen- 
sional arrays needed in Step 1 and Step 3. LCM here will be accessed infrequently 
and therefore at a comparatively low cost. For CDC 7600 computers we can take 
advantage of the use of an inexpensive routine, MOVLEV, to manipulate n 
consecutive locations of the storage between SCM and LCM. 

There are also applications where the solution or its gradient are required only 
on 0~2h. In those cases t << m . n  in Step 3. In order to retain flexibility we 
implemented the Helmholtz solver that employs sparsity together with the fast 
solver that uses FFT. Four different options were used for sparse and nonsparse 
s and t. 

6. A METHOD OF SOLVING HELMHOLTZ'S EQUATION IN A RECTANGLE 
USING 2n  3/2 STORAGE LOCATIONS 

Standard fast methods for solving Helmholtz's equation on a rectangular region 
require n. m storage locations. This poses a limitation on the size of the mesh if 
only fast core memory is to be used. If a disk is used to store the n. m array for 
large n and m, then the standard fast solver requires frequent transfers to and 
from the disk of parts of the array. The long access times make this procedure 
very expensive. 

We now propose a method that somewhat lessens the restriction on the mesh 
at the expense of an increase in the number of operations. 

Let us consider an infinite parallel strip with periodic boundary conditions. 
Denote by n the number of mesh points across the strip and impose free-space 
boundary conditions. Denote then by m the number of mesh points along the 
strip. After the change of basis by the FFT on m lines of length n and a suitable 
permutation, we obtain n tridiagonal systems of equations of order m having the 
following special structure; see Proskurowski and Widlund [9]: 
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# - I  C - I  ~ - i  

- .~ -- f. ( 6 . 1 )  

- 1  # 

where # = ~/2 + (X2/4 - 1) 1/~, i.e. X = # + #-1. For  IX I > 2 we have the following 
explicit formula for the  solution of our problem: 

~ ? , = o ~ # - I ' - J l . ~ ,  i , j = l , . . . , m ,  (6.2a) 
J 

where o = (~ - - 1 ) - 1 ,  as can be verified by inspection. For  [h I = 2 we choose 

1 
2, = - ~ ~ ()~/2)1'-~+11.1 i - l [ . ~ ,  (6.2b) 

and for [~[ < 2 we choose 

1 
2, = - ~ ~ [sin ([ ~ - j [ . 4 ) ) / s i n ~ ] . ~ ,  (6.2c) 

where }~ = 2 cos @; see Proskurowski  and Widlund [9]. Note  tha t  when [h[ --) 2, 
the expression in (6.2c) converges to the one in (6.2b). 

We divide the strip lengthwise into k equal boxes and find the solution 2 on the 
(k + 1) lines connecting the boxes, in accordance with formulas (6.2). T h e n  by 
taking the inverse F F T  on those (k + 1) lines, we obtain the solution x on them. 
We remark  tha t  this in itself is a cheap method  of computing the solution to 
Helmholtz 's  equat ion on a sparse set of lines. Moreover,  the summat ion  in eqs. 
(6.2) needs to be taken only for those i for which fj is nonzero, in the case of 
sparse data  f. 

Finally, we consider each box of the size n. m /k  as a separate  problem with 
Dirichlet  boundary  conditions across the strip (the values of x on (k + 1) lines 
computed  within the machine accuracy) and with periodic conditions on the 
shor ter  edges. By  a suitable choice of the value m/k,  we can use a s tandard  fast 
me thod  for each separate  box. 

Note  tha t  in order  to save storage the procedures  of computing 1~ by taking 
F F T  on each line and of computing x on (k + 1) lines must  be carried out  
s imultaneously in the same loop for all i = 1 . . . .  , m: 

1. T a k e  t h e  F F T  f(" -~/( ' .  
2. Fo r  a l l  c h o s e n  h n e s  l -- 1 . . . .  k + 1, a d d  t h e  t e r m s  1~('),] -- 1 . . . .  m, to  ~(l) m a c c o r d a n c e  w i t h  eq. 

(6.2) 
3. S t o r e  &('*; r e l e a se  f~'). 

Note  also tha t  the data  f are required twice (from a function subprogram or 
from a disk): in Step  (1) above and while solving problems in each individual box. 
In bo th  cases values of n consecutive locations of the n . m  array are used 
simultaneously, which simplifies the access from and to a disk. No in termediate  
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results are stored in an auxiliary storage in contrast  to a s traightforward extension 
of s tandard fast solvers to fine meshes. 

Storage requirements  for this algori thm are as follows: m temporary  locations 
for/z- ' ,  i = 1 . . . . .  m - 1 and o, and n locations for ]~ which all can be released 
after  the first step is performed; n ( k  + 1) locations for the solution x on the 
(k + 1) chosen lines, and n . m / k  locations needed for solving k problems on small 
boxes. Thus  totally we need n .  ( m / k  + k + 1) memory  locations. The  operat ions 
count  is consequently:  

11 (1) FFT on m hnes of length n ~.mn logz (n/2) + ~- rnn, 
(2) computmg ~ on (k + 1) hnes' (k + 1) ran, 
(3) reverse F F T o n  (k + 1) hnes. ~.(k + 1)nlog2(n/2) + ~ n(k + 1); 
(4) solving the Dmchlet problem m k boxes. 

k(~ n(m/k) log2 (m/2k) + 15 (m/k).n). 

Thus  the total  operat ion count  is 

9 ~ log2 ( m / 2 k )  + k + 431 q~(m, n, k )  = m n  [~ log2 (n/2) + z 

plus a lower-order term. For  comparison, the operat ion count  for the s tandard  
fast solver is O(m, n )  = m n  (~ log2 (n /2 )  + 15). 

F o r  k = m 1/2 the storage requirements  are minimal and equal to n (2m 1/2 + 1). 
For  simplicity, take m = n. Then  for the optimal choice of  k, equal to n 1/2, we 
have the following increase in computat ional  effort: 

n ~(n, n)/O(n, n) n 2 2n '~/2 32p 

2 s 1.6 2 "  2' ~ 2 TM 

2 .0 1 8 2 2'~ 2 '~ 2 '~ 
2 '2 2 2 2 z4 2 TM 2 TM 

We have also tabulated the storage requirement for standard and present fast 
solvers, and the storage requirements for the capacitance matrix iterations, i.e., 
n 2, 2n ~/2, and 32p (p = 2n), respectively. The values of the last two columns are 
of the same order of magnitude for mesh sizes considered. 

This solver has not yet been tested experimentally. 

7. NUMERICAL EXPERIMENTS 

In this section we repor t  the results of a series of numerical  experiments  tha t  
were carried out  on the CDC 7600 computer  at the Lawrence Berkeley Labora-  
tory. In our experiments  we have used programs tha t  are now obtainable from 
LBL's  computer  l ibrary [7]. 

For  studying our  capacitance matr ix  methods  we have chosen problems with 
no discretization error  and regions tha t  are circular. 

We use the following notation: 

Variant 1 The capamtance matrix C Is generated and factored, the capacitance matrix system is 
solved by Gausslan ehminatlons. 

Variant 2: C is exphcitly generated; the linear system with C is solved by the conjugate gradmnt 
method. 

Variant 3" An lmphclt capacitance method, an FFT solver is used in each conjugate gradient iteration. 
Variant 4 An imphmt capacitance method, a solver that employs sparsity Is used in each conjugate 

gradmnt iteration. 
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A comparison of the performance of all four variants is presented in Table I for 
a comparatively crude mesh, 64 × 64 points. Storage requirements for arrays in 
this case are roughly 24,000 locations for Variants 1 and 2, while only 5,000 to 
8,000 locations are needed for Variants 3 and 4; see Table IB, where a more 
detailed comparison of storage requirements is reported. If the capacitance matrix 
fits into the core memory, Variant 2 is the fastest one. The only exception is 
Variant 4 for the Neumann problem, where the number of sources and targets for 
which the solution is required is quite low. If a repetitive use of a solver for a 
given geometry is needed [for instance, in nonseparable problems (see Concus et 
al. [3]), or in eigenvalue problems (see Proskurowski [6])], Variant 1 is recom- 
mended. Variant 1 is also superior when a very high accuracy of the solution is 
required. On the other hand, one must keep in mind that  most often the 
discretization error is larger than 1 × 10 -s. To obtain the solution with normalized 
/2-norm of the error, [[ eli2 = (1/n~/2)(~, e2,) 1/2, of 1 × 10 -3 only six iterations for 
Variants 2, 3, and 4 were needed with a subsequent saving in execution time from 
0.85 - 1.24 to 0.65 - 0.71 second for all these solvers. 

In Table III we compare the separable solvers (on rectangular regions) we have 
used; one uses FFT and the other one employs sparsity. The number of sources 

Table IA. CPU Time on CDC 7600 with FTN4 Compiler (opt = 2) for All Solvers 

(The region was a mrcle, the mesh 64 x 64. There  were 132 boundary mesh points and 1,789 mesh 
points reside ~2 ) 

Variant 4 
Varmnt  1 Variant 2 Variant  3 
Dmchle t  Dlnchlet  Dinchlet  Dtrmhlet Neumann  

Generation of C 0.455* 0 445 w _ _ 
Factonzatlon of C 0.602 . . . .  
Total executmn 1 180" 0 855 1.243 1.147 0.602 

time in seconds 
Number  of ~tera- - -  12 12 12 8 

tlons 
•2-norm of conju- - -  0.3 × 10 -6 0.8 x 10 -(, 1 0 × 10 -6 0.1 X 10 -6 

gate gradient re- 
siduals 

(2-norm of error 1.2 × 10 -~2 08  x 10 -6 2.3 × 10 -6 32 × 10 -6 1.2 x 10 -6 
Time per iteration - -  0.033 0 090 0.085 0 061 
Time to solve an ad- 0 138 0.410 1.243 1.116 0 582 

dltlonal problem 

* Using single-layer Ansatz, one can generate C in 0.165 seconds, decreasing the total execution time 
to 0.905 second. 

Table IB. Approximate Storage Requirements  for Arrays in All Solvers 

Mesh 64 × 64 128 × 128 256 × 256 

Variants 1 and 2 24,000 - -  - -  
Variant 3 5,300 18,700 70,000* 
Variant 4 as implemented 8,000 24,400 81,000t 
Variant 4 using the solver of Section 6 5,000 11,200 25,000 

* Exceeds SCM of the CDC 7600 and therefore not used The  use of LCM would be 
costly here. 

Using LCM, see Tables I I  and I I I  
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Table II. Influence of Mesh Refinements on Number of Iterations and Execution Time 
(CDC 7600 with FTN4 (opt = 2) compher The regmn was a circle.) 

47 

Variant 3 Variant 4 

Neumman 
Dirmhlet problem Dmchlet problem problem 

Mesh 64 x 64 128 x 128 64 x 64 128 x 128 256 x 256 64 x 64 
Number of 132 268 132 268 540 132 

boundary 
points 

Number of 1789 7209 1789 7209 28913 1789 
mesh 
points m- 
side ~2 

Number of 12 14 13 15 16 8 
conJugate 
gradient 
iterations 

ta2-norm of 2,3 x 10 -*' 2 0 x 10 -~' 1.0 x 10 -~' 1.0 x 10 -~' 1.3 X 10 -~' 1.2 x 10-" 
error 

Total exe- 1.243 6 473 1 232 5 470 24.158 0 602 
cution 
time m 
seconds 

Share of 1.155 6.087 1 095 5 038 22.941 0 536 
separable 
solvers 

Time per it- 0 090 0.432 0.085 0 324 1.290 0 061 
eratlon 

Table III CPU Time on CDC 7600 with FTN4 Compiler (opt = 2) for 
Solvers on Rectangular Regmns 

Execution Number of 
time in sources and 

Mesh seconds targets 

Solver usmg FFT 64 × 64 0.043 - -  
128 × 128 0.203 - -  
256 × 256 1 235* - -  

Solver employing 64 × 64 0.027"~ 392 
sparsity 64 x 64 0.0385 600 

128 x 128 0 156 1224 
256 x 256 0.622 2472 

* Computed while usmg LCM, which slows down the solver by 25-30 
percent. 
t Thzs result is for an apphcation to a Neumann problem, all the rest for 
Dmchlet problems 

s a n d  t a r g e t s  t g i v e n  h e r e  is  t y p i c a l  f o r  V a r i a n t  4 a n d  c o r r e s p o n d s  t o  e x p e r i m e n t s  

s h o w n  in  T a b l e  II.  R e s u l t s  o f  e x p e r i m e n t s  w i t h  r e f i n e d  m e s h  c o n f i r m  o u r  c o n j e c -  

t u r e  t h a t  t h e  e x e c u t i o n  t i m e  f o r  t h e  s o l v e r  t h a t  e m p l o y s  s p a r s i t y  is  p r o p o r t i o n a l  

t o  n ( s  + t)  a n d  t h u s  is  e s s e n t i a l l y  o f  t h e  o r d e r  o f  n 2 f o r  V a r i a n t  4, w h i l e  t h e  

c o r r e s p o n d i n g  g r o w t h  f a c t o r  f o r  V a r i a n t  3 is  m n  log2 n.  
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Table IV. Influence of Mesh Refinements on Number of Conjugate Gradient 
Iterations for Circular Region with Circular Hole m Its Center 

Mesh 16 × 16 32 x 32 64 x 64 
Number of boundary points 44 84 168 
Number of mesh points reside ~ 100 412 1680 
Number of conjugate gradient ]tera- 16 16 16 

tmns 
t~2-norm of conjugate gradient resid- 1.7 x 10 -b 1.7 x 10 -" 1 6 x 10 -(' 

uals 

T h e  r e s u l t s  g iven  in T a b l e  I I  show t h a t  t h e  n u m b e r  o f  c o n j u g a t e  g r a d i e n t  
i t e r a t i o n s  r e m a i n s  a l m o s t  c o n s t a n t  w h e n  t h e  m e s h  is re f ined ;  m o r e  p rec i se ly ,  i t  
g rows  as  log2 p .  W e  can  a lso  see  c l e a r l y  t h a t  t h e  e x e c u t i o n  t i m e  p e r  i t e r a t i o n  is 
p r o p o r t i o n a l  to  n 2 for  V a r i a n t  4 a n d  to  m n  log2 n for  V a r i a n t  3. H e n c e  t h e  t o t a l  
c o m p u t a t i o n a l  e f for t  b e h a v e s  s imi l a r ly ;  w h e n  t h e  n u m b e r  of  i n n e r  p o i n t s  g rows  
b y  a f ac to r  of  4.0, t h e  t o t a l  C P U  t i m e  g rows  b y  a f a c t o r  4.4 for  V a r i a n t  4 a n d  b y  
5.2 for  V a r i a n t  3, for  t h e  m e s h  sizes c o n s i d e r e d .  

W e  h a v e  a lso  r u n  e x p e r i m e n t s  on  v e r y  f ine m e s h e s  for  t h e  L a p l a c e  e q u a t i o n  
us ing  V a r i a n t  4. T h e  s o l u t i o n  w a s  o b t a i n e d  on  a s p a r s e  se t  of  m e s h  p o i n t s  c lose  
to  012. W e  r e p o r t  he r e  one  o f  t h e s e  e x p e r i m e n t s ,  w i th  n = 650, p ffi 1468, s + t = 
6728, a n d  212,201 m e s h  p o i n t s  ins ide  ~2. T h e  n u m b e r  of  c o n j u g a t e  g r a d i e n t  
i t e r a t i o n s  was  18 ( t h e / 2 - n o r m  of  t h e  e r r o r  3 × 10 -6) a n d  t h e  t o t a l  e x e c u t i o n  t i m e  
was  157.6 s e c o n d  on  t h e  C D C  7600 w i t h  t h e  F T N 4  (op t  = 2) compi l e r .  S t o r a g e  
s p a c e  n e e d e d  for  a r r a y s  h e r e  was  a b o u t  47,000 loca t ions .  

A d d i t i o n a l l y ,  we chose  a c i r c u l a r  r eg ion  w i th  a c i r c u l a r  ho le  in i ts  cen te r .  T h e  
d i a m e t e r  of  t h e  h o l e  was  o n e - f o u r t h  of  t h e  d i a m e t e r  of  t h e  o u t e r  circle.  T h e  r a t e  
o f  c o n v e r g e n c e  of  t h e  c o n j u g a t e  g r a d i e n t  i t e r a t i o n s  was  in th i s  case  s lower  t h a n  
for  p l a i n  c i rc les .  N e v e r t h e l e s s ,  t h e  in f luence  of  m e s h  r e f i n e m e n t  was  ins igni f ican t ;  
see  T a b l e  IV. T h i s  s e e m s  to  s u p p o r t  o u r  conv i c t i on  t h a t  s u c h  b e h a v i o r  is to  be  
e x p e c t e d  for  r eg ions  w i th  s m o o t h  b o u n d a r i e s ,  i.e., w i t h o u t  cusps ,  sl i ts ,  etc.  
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