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Software for solving sparse systems of hnear equations typically involves fairly complicated data 
structures and storage management In many cases the user of such software simply wants to solve a 
system of equations, and should not have to be concerned with the way this storage management is 
actually done, or the way the matrix components are actually stored. In this paper we describe a 
sparse matrLx package which effectively insulates the user from these considerations, but which still 
allows the user to conveniently use the package m a variety of ways. 
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1. INTRODUCTION 

Computer subroutines for solving the dense linear equations problem involve 
conventional numerical data types such as one- and two-dimensional arrays of 
floating point numbers, which are already available in the programming languages 
normally used for numerical computation. The array storage for these subroutines 
is known as soon as the number of equations to be solved is prescribed, and the 
number of parameters to such procedures is usually quite modest, typically only 
four or five. In addition, the number of subroutines which are used to solve a 
problem of a particular type is seldom greater than two, and often only one. All 
these aspects of software for solving the dense linear equations problem make the 
intellectual overhead involved in learning to use the subroutines fairly small. The 
user is already familiar with the way the data are stored, the number of data 
items to keep in mind is modest, and the number of subroutines used is also small. 

Unfortunately almost none of the above is true about subroutines which 
implement algorithms for solving sparse linear systems. Most of the data struc- 
tures used are sufficiently unconventional that  they are not provided as data 
types in the language of implementation. The amount of storage required is 
usually unpredictable, and is not known until at least part of the overall sequence 
of subroutines has been executed. The overall method of solution is multiphase, 
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with ample opportunity (and usually the necessity) for storage overlays. Finally, 
due to the complicated data structures employed, the subroutines tend to have 
long argument lists, most of which have little or no meaning to the user of the 
subroutine unless he cares to know how the data are stored. 

In this paper we describe the design and implementation of what we loosely 
refer to as a user  in ter face  for a Fortran sparse matrix package developed at the 
University of Waterloo. This interface is a layer of software between the user, 
who has a sparse linear system to solve, and the numerous subroutines which 
implement the various phases of the solution procedure (described in detail in 
Section 2). This layer of software provides storage management services, insulates 
the user from the complicated data structures used by the subroutines, and 
provides a convenient means of communication between the user and the sub- 
routines. It also provides sequencing control, so that subroutines are called in the 
correct order, and convenient checkpoint/restart facilities. Although we describe 
the interface only as it relates to solving sparse positive definite systems of 
equations, it will be obvious that  the method used to implement the interface is 
applicable in a much wider context. The actual package handles both symmetric 
and unsymmetric problems, but it assumes that  the matrix structure is symmetric, 
and that row and/or column interchanges are not required to maintain numerical 
stability. 

2. PROBLEM OVERVIEW 

In order to appreciate the need for an interface as suggested in the Introduction, 
we review the important subtasks in the overall solution scheme, and identify the 
ways in which the package might be used. For definiteness, and to provide 
notation and a framework for subsequent discussion, suppose the sparse N by N, 
positive definite system of equations to be solved is 

A x  = b. (2.1) 

For some N by N permutation matrix P, Cholesky's method is applied to 
P A P  T, yielding the triangular factorization 

P A P  T = L L  T, (2.2) 

where L is lower triangular. Then the two triangular systems L y  = P b  and 
L T ( p x )  = y are solved. Thus instead of eq. (2.1), the formally equivalent system 

( p A p T ) ( p x )  =- P b  (2.3) 

is solved. The crucial practical point is that  the reordering can lead to enormous 
reductions in storage and/or computation compared to applying Cholesky's 
method to the original problem (2.1) (assuming of course, that sparsity is ex- 
ploited). 

It is natural to view the above procedure as consisting of four distinct phases: 

S t e p  1: Order. Find a "good" ordering (permutation P) for A. 
S t e p  2: Data structure setup. Determine the location of the nonzeros in L, 

where P A P  y = L L  T, and set up the appropriate data structures. 
S t e p  3: Factor. Factor P A P  T into L L  T. 
S t ep  4: Triangular solution. Solve L y  =- P b  and LTz  = y, and then set x = PTz.  
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The Design of a User Interface for a Sparse Matrix Package 141 

Our situation is that we possess a collection of subroutines for finding orderings, 
determining the corresponding structure of L, setting up various data structures, 
and performing the actual numerical computation. That  is, we have several 
computer implementations for each of the phases above; for purposes of discus- 
sion we will label these program modules ORDER/, SETUP/,  FACTOR/, and 
SOLVE/, i = 1, 2 . . . . .  m, where m is the number of distinct order /se tup/factor /  
solve combinations available. We refer to each combination collectively, as a 
method or strategy. In specific circumstances, each method has advantages over 
the others; however, note that we are not concerned here with the development 
of these various ordering algorithms, storage schemes, etc. Our objective is to 
package this software so that it can be easily used by those who have problems 
to solve, but who do not have the time or the inclination to learn any details 
about how the ordering and computation are performed. 

In order to make this packaging effective, we must identify how these modules 
might be used, assuming a user was prepared to learn the appropriate calling 
sequences and the exact nature of their parameters. The most obvious way would 
be to choose method ~, and call the sequence of subroutines ORDER/, SETUP/,  
FACTOR/, and SOLVE/. However, different methods will in general require 
different storage and computation, and the best method to use depends on the 
size and origin of the problem. In principle, storage and computation requirements 
are known at the end of Step 2, so the user could execute ORDER/and  SETUP/  
for several different ~, choose the most attractive method k, and then execute 
FACTORk and SOLVEk. Ideally, to avoid reexecuting ORDERk and SETUPk,  
the results from the currently best SETUP/should  be saved until k is determined. 

When the user has selected a method z and executed SETUP/,  he may use 
FACTOR/and  SOLVE/in several ways other than the normal case where he has 
a single problem to solve. In some contexts many problems having the same zero- 
nonzero structure must be solved. Since O R D E R / a n d  S E T U P / d e p e n d  only on 
the structure of A and not its numerical values, they do not have to be executed 
more than once, and if FACTOR/ and SOLVE/ are to be executed over an 
extended time period, the output from SETUP/should  be saved so that  execution 
can begin with FACTOR/for  each new numerical problem. In still other situations 
many problems which differ only in their right-hand sides must be solved, again 
sometimes over an extended time period. In this case only SOLVE/need be used 
repeatedly, and the output of F A C T O R / m a y  be saved and recovered for each 
new right side. 

The above discussion identifies four modes in which a user might use the 
software modules which implement Steps 1-4 above. In addition to the normal 
case where four modules corresponding to one method are called in sequence, 
additional modules may be called, and/or  some may be repeatedly called, in order 
to (a) select the most desirable method; (b) solve many problems having the same 
structure; or (c) solve many problems differing only in their right-hand side. 

We have now discussed some important problems a user could deal with, given 
the software modules and the patience to learn how to call each of them. Our 
claim is that  this investment in time is likely to be high. As we noted earlier, the 
elaborate data structures usually mean that the argument lists are lengthy. In 
order to use the modules efficiently, the user must determine which arrays must 
be preserved as input to the next module, and which ones can be destroyed 
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(reused) by that  module. In all but the standard mode of usage discussed above, 
the user must be aware of all information that  needs to be preserved if the 
computation is to be restarted at a later time. Finally, perhaps the most persuasive 
argument for insulating the user from all these considerations is that  storage 
requirements for some of the sparse matrix subroutines are often unpredictable. 
The user must guess how large some arrays must be declared; if he guesses low, 
the module will not execute successfully, and if he guesses high, some storage will 
be wasted. 

3. DESIGN CONSIDERATIONS 

3.1 Int roduct ion 

In the previous section we identified what could be loosely described as the 
functional capabilities that  our sparse matrix package should possess. In this 
section we descend to the operational level and examine the actual components 
of the interface, from the user's view. Although we defer most of the discussion 
of the actual implementation of the interface until Section 4, it is helpful in this 
section to be aware of the basic approach. Briefly, the user of the package supplies 
a single one-dimensional array S along with its declared size MAXS. All array 
storage is allocated from S by the interface, and the origins of these arrays are 
transmitted from module to module in a COMMON area. Other information 
about the data structures along with control information is also passed from 
module to module through a COMMON block. 

We now describe the interface components. We first augment the list of steps 
discussed in Section 2 to include the points of information exchange between the 
user and the software modules discussed in the previous sections. We then discuss 
the responsibilities, desirable features, and possible abnormal completions of the 
implementation of each step in this augmented list. 

Step 1: Initialization. 
Step 2: Input nonzero structure. Input the (i,j) pairs for which A v # 0. 
Step 3: Order. Find a "good" ordering for A (i.e. find P). 
Step 4: Data structure setup. Determine the location of the nonzeros in L and set up the 

appropriate data structures. 
Step 5" Input A. Input the numerical values for A v. 
Step 6: Factor, Factor PAP T into LL T. 
Step 7: Input b. Input the numerical values for b. 
Step 8: Triangular solution. Solve Ly = Pb and LTz = y, and then set x = PTz. 

The discussion in Section 2 concerning the various modes in which the package 
might be used strongly suggests the need for a save/restart  facility. The possible 
abnormal terminations discussed in the following subsections also illustrate the 
need for such a capability. Thus we include the following two steps, which (loosely 
speaking) can be inserted anywhere in the preceding list. 

Step S: Save. Save the current results on a specified input/output unit. 
Step R: Restart. Read results written by execution of Step S from a specified input/ 

output unit. 

3.2 Initialization Step 

There are two initialization modules, called START and INIT. The module 
START must be called once at the beginning of the user's program, before any 
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other module of the package is executed. Its role is to initialize certain variables, 
to set default values for options, and to perform some installation-dependent 
functions such as assigning the logical unit number for the printer, initializing the 
timer, etc. 

The second initialization routine INIT is called at the beginning of each 
completely new problem solution. It signals to the package that  the input of the 
matrix structure is about to begin; its role is to initialize the "problem parameters," 
such as error flags, operation counts, etc. 

These two initialization modules have no arguments and are invoked by 
executing the following Fortran statements: 

CALL START 
CALL INIT 

3.3 Input of the Matrix Structure 

This step represents the first serious communication with the package. Our 
algorithm for finding orderings represent the matrix structure as a symmetric 
graph in the array pair (XADJ, ADJNCY); the nodes adjacent to node i (columns 
subscripts of the nonzeros in row i of A) are stored in ADJNCY(k), for 
k = XADJ(i), XADJ(i) + 1 . . . . .  XADJ(i + 1) - 1. However, it is unlikely (or at 
least not at all clear} that the user will have this representation available. In 
many situations the (i, j)  pairs for which A,1 ~ 0 Will become available to the user 
in a more or less arbitrary order, and thus the values of XADJ cannot be 
determined until the entire structure of A is known. Thus the user would like to 
be able to communicate the (i, j )  pairs in any order he chooses. Our package 
records this information, eliminating duplications, and when all pairs have been 
communicated, the appropriate internal representation is generated. The method 
used to communicate the fact that Av ~ 0 is the simple Fortran statement CALL 
INIJ(I, J, S). When all pairs have been input, the statement CALL IJEND(S) is 
executed to carry ou~ the transformation to the internal (XADJ, ADJNCY) 
format. Note that the user is insulated from all the various internal data structures 
used in the recording and manipulation of the information. The parameter S in 
the subroutine references is again the working storage array, declared by the user 
for use by the package. 

Recall from our discussion in Section 2 that a user may wish to investigate the 
relative merits of several different methods, which implies that  we should be able 
to restart the computation at the beginning of the ordering phase, and avoid 
reinputting the matrix structure. To do this we execute the Fortran statement 

CALL SAVE(K, S) 

where K is the Fortran logical unit on which the output of IJEND is to be 
written, along with other information needed to restart the computation at this 
point. If execution is then terminated, the state of the computation can be 
reestablished by executing the statement 

CALL RESTRT(K, S). 

3.4 Finding the Ordering and Sethng Up the Data Structures 

For our class of positive definite problems, there are important reasons for 
performing the ordering and data structure setup tasks serially in separate 

ACM Transact ions  on Mathemat ica l  Software,  Vol. 5, No. 2, June  1979. 



144 A. George and J. W. H. Ltu 

subroutines. An important reason is that temporary storage used by the ordering 
subroutine can be reused by the data structure setup subroutine. However, from 
the user's view, there seems little reason to segregate the two steps. The output 
from the ordering routine is in itself of little interest to the user, since it is simply 
a permutation vector (and for some methods a small amount of partitioning 
information). The user is really interested in the implications, in terms of storage 
and computation, of using the ordering, and these are only known after the 
analysis of the structure of L has been performed. Thus in our package the user 
invokes the execution of Steps 3 and 4 (ordering and data structure setup) by 
executing the Fortran statement 

CALL ORDERs(S) 

where ~ is a numerical digit indicating the method (order/setup/factor/solve 
sequence) to be used. 

What can go wrong? First, there may not be enough storage in S to execute the 
ordering algorithm. In this case the user can execute SAVE (if he has not already 
done so at the end of the previous step) and after declaring a larger S, he can 
execute R E S T R T  and call ORDER/  again. The output of the unsuccessful 
execution of ORDER/te l l s  the user how large S must be to execute the ordering 
subroutine. The same S A V E / R E S T R T  strategy can be employed if the ordering 
algorithm aborts during execution. The ordering subroutines currently in the 
package do not terminate abnormally as a result of exceeding the storage 
provided, since they all use a fixed predictable amount. However, some imple- 
mentations of ordering algorithms do require unpredictable amounts of storage, 
and some of these might be included in the package later. 

When the ordering is obtained, the appropriate subroutine is called from 
ORDERs to determine the structure of L and set up its data structure. A 
disagreeable but  inevitable characteristic of many of these subroutines is that 
their storage requirements are unpredictable, because the number of data struc- 
ture pointers, etc., is not known until the structure of L has been fully determined. 
There may be enough storage available to execute the subroutine and thereby 
determine the storage needed for the data structure even though the data 
structure itself cannot be saved. 

Thus, the interface module ORDERs may terminate in several distinctly 
different ways: 

(a) There is not enough storage to execute the ordering subroutine. 
(b) The ordering is successfully obtained, but  there is insufficient storage to 

even initiate execution of the data structure setup subroutine. 
(c) The data structure setup subroutine is executed, and the storage required 

for the data structure pointers, etc., is determined, but there is insufficient 
storage for those pointers. 

(d) The data structure is successfully generated, but  there is insufficient storage 
for the actual numerical values, so the next step cannot be executed. 

(e) O R D E R / i s  successfully executed, and there is sufficient storage to proceed 
to the next step. 

If any of the above conditions occurs, the user may execute SAVE, and 
reinitiate the computation after adjusting his storage declarations (either up or 
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down) and executing RESTRT. If (a) or (b) occurs, information is supplied 
indicating the minimum value of MAXS needed so that  at least (c) will occur 
upon reexecution. If (c) occurs, the minimum value of MAXS needed for (d) and 
(e) is provided. 

When (b) or (c) occurs, after executing SAVE, adjusting our storage declara- 
tions, and executing RESTRT, we must again call ORDERL However, the 
interface will detect that the ordering has already been found, and will skip that  
part of the computation. Note that if the user is simply using the package to 
select a particular method, (c) may be an acceptable termination state. 

3.5 Input of the Numerical  Values for A and b 

After having successfully set up the data structure for L, and determined that 
enough storage for the numerical values is available, the user may now input the 
actual numerical values for A and b. The position of Step 7 in the sequence of 
steps in Section 3.1 is arbitrary; the only restriction is that numerical values for 
b should be input after Step 4 has been executed, and before Step 8 is executed. 
Numbers can be transmitted by subroutine calls of the form 

CALL INBI(I, VALUE, S) 

where I refers to the subscript of the original given ordering, and not Pb. Similarly, 
input of the numerical values of A is achieved by repeated subroutine calls of the 
form 

CALL INAIJz(I, J, VALUE, S) 

where again I and J refer to the subscripts of the unpermuted A, and VALUE is 
the numerical value of A,~. Thus the user is insulated from the fact that the 
problem, as he knows it, has been permuted. Note that there is a different matrix 
input subroutine for each method, because the data structures used are different. 
However, the parameter lists for all the methods are the same, and the subroutine 
names are the same except for the last digit which distinguishes the method. 

In some situations, such as in certain finite-element applications, the values of 
A,j and b, are obtained in an incremental fashion. That  is, A,j may be equal to 
VALUE1 + VALUE2, with VALUE1 and VALUE2 being computed at different 
steps in the user's program, which is utilizing the sparse matrix package. For this 
reason, INAIJi simply adds VALUE to the appropriate current value of A,~ in 

a 

storage rather than making an assignment; we can then handle such incremental 
calculation of numerical values. The same remarks apply to treatment of the 
right-hand side. Note that this strategy implies that the storage used for L and b 
must be initially set to zero before numerical values of A and b are supplied. This 
initialization is performed automatically by the interface during the first calls to 
INAIJi and INBI, through the use of a "state variable" called STAGE, discussed 
in Section 4.3.4. 

Our package has no provisions for explicitly storing the nonzero components of 
A in compact form, which implies that the position of Step 5 in the sequence of 
tasks in Section 3.1 is significant. The nonzero components of A supplied by the 
user are placed directly into the data structure for L, and are overwritten by L 
during the factorization of the matrix. Thus the numerical values of A and b 
cannot be accepted by the package until the determination of the structure of L 
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has been completed. The advantage of this approach is that it conserves storage; 
storage used for the ordering and data structure setup can be reused to store the 
numerical values. Moreover, once the permutation P and the data structures are 
determined, the matrix structure of A is not needed by the package, and can be 
(and is) discarded. Finally, our experience is that  in many applications the 
structure of A is known much earlier than its numerical values anyway. 

This decision to put the numerical values of A directly into the space to be 
occupied by L has a disadvantage as well. Obviously, if the (i, j )  pairs for which 
Av ~ 0 and the numerical values A v are naturally available at the same time, the 
user must save the numerical values until after O R D E R / h a s  been successfully 
executed. Our advice is to write out the (/, J ,  Av) triples on an auxiliary file at the 
same time INIJ(I, J, S) is called, and then later read the file and insert the 
numerical values using INAIJi. The right-hand side b can be handled similarly if 
it is inconvenient to compute the components of b when needed. 

3.6 The Numerical Computation 

The algorithm used to perform the numerical computation is the standard 
Cholesky method. The actual implementations obviously vary across the meth- 
ods, since different data structures are involved. However, this again is a fact that 
should not concern the user. 

Up to this point we have distinguished between the factorization and solution 
steps, but in the actual interface both steps are initiated by the single Fortran 
statement. 

CALL SOLVEi(S) 

where S is the working storage array for the package, provided by the user. 
It turns out that enough information can be retained by the interface to allow 

the user to handle the various possible situations discussed in Section 2 (multiple 
problems having a common structure, multiple right-hand sides, etc.). Again 
through the use of the state variable STAGE, discussed in Section 4.3.4, the 
interface can detect upon entry to SOLVE/ whether the factorization of the 
matrix has already been performed, and bypass executing that part of the module. 

4. IMPLEMENTATION AND FEATURES 

In the previous two sections we have discussed the functional capabilities and 
design objectives of the package. We now examine some implementation details 
of the interface. We begin by displaying a skeleton program which illustrates how 
simple it is to use the package. The labeled COMMON block USER is discussed 
in Section 4.2. 

COMMON/USER/MSGLVL, IERR, MAXS 
REAL S(10000) 
MAXS-- 10000 
CALL START 
CALL INIT 

(Input of adjacency pairs by repeated use of CALL INIJ(I, J, S)} 
CALL IJEND(S) 
CALL ORDERi(S) 
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{Input of the matrix nonzeros by repeated use of CALL INAIJt(I, J, AIJ, S)} 
{Input of the right-hand side by repeated use of CALL INBI(I, BI, S)} 

CALL SOLVEs{S) 

{Solution is now in the first N locations of S} 

STOP 
END 

Figure 1 shows tha t  the  user  is comple te ly  insulated f rom all the  sparse  mat r ix  
routines;  communica t ion  is made  possible via a handful  of  interface modules.  In  
other  words, the interface serves as a bridge be tween  the  user  and  the  set  of  
sparse mat r ix  rout ines  and at  the same t ime it provides communica t ion  among  
the  mat r ix  routines.  Communica t ion  is done th rough  c o m m o n  blocks, mos t  of  
which need not  even be considered by the user. We shall  discuss t h e m  in detail  
in what  follows. 

4.1 Instal latton Dependent  Parameters 

T h e  package contains a small  labeled C O M M O N  block /SYSTEM/ which 
contains three  instal lat ion dependen t  variables: 

C O M M O N / S Y S T E M / I P R N T R ,  RATIO, TIME 

T h e  variables  I P R N T R  and R A T I O  are set  in the subrout ine  S T A R T ;  the  fo rmer  
is the uni t  n u m b e r  for the pr in ter  and the la t ter  is used to allow the  package  to 
exploit  shor t  integer  features  available in some For t ran  dialects (see Sect ion 
4.3.5). 

In  order  to supply t iming information,  the package assumes  the  existence of a 
real function D T I M E  which re turns  the processor  execution t ime tha t  has  e lapsed 
since D T I M E  was last  referenced. Thus ,  a D T I M E  function m u s t  be  supplied for 

USER 

START 

INIT 

INIJ 

IJEND 

ORDER SPARSE 

INAIJ" MATRIX 

' ~  INBI ROUTINES 

SOLVE' 

SAVE 

RESTR" 

PSTAT~ 

USER INTERFACE 

ROUTINES 

Fig. 1. RelaUonshlp of the user, the interface subroutines, and the sparse matrix subroutines 
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each installation of the package. The variable TIME is provided to facilitate the 
writing of this function. For example, sometimes the installation timer provides 
the elapsed time since the user program began execution; the variable TIME can 
be used to provide the function DTIME with "memory," so it can return the time 
elapsed since it was last called. 

4.2 User /Module Commumcation 

As noted in Section 3, the user supplies a one-dimensional real array S, from 
which all array storage is allocated. In particular, the interface allocates the first 
N storage locations in S for the solution vector of the linear system. After all the 
interface modules for a particular method have been successfully executed, the 
user can retrieve the solution from these N locations. 

There is one labeled COMMON block that  the user must provide, having three 
variables: 

COMMON/USER/MSGLVL, IERR, MAXS 

The variable MAXS is the declared size of the one-dimensional array S and it 
must be set by the user at the beginning of his program. For each module in the 
interface that  allocates storage (e.g. INIJ, IJEND, ORDER/), MAXS is used to 
make sure there is enough storage to carry out the particular phase. 

When a fatal error is detected, so that  the computation cannot proceed, a 
positive code, indicating the type of error that  occurred, is assigned to IERR. 
The user can simply check the value of IERR to see if the execution of an 
interface module has been successful. This error flag can be used in conjunction 
with the save/restart feature to retain the results of successfully completed parts 
of the computation, as shown by the program fragment that  follows: 

CALL ORDERt(S) 
IF (IERR .EQ. 0) GO TO 100 
CALL SAVE(3, S) 
STOP 
100 CONTINUE 

In case an error is found in ORDER/, unit 3 will be used to save the relevant 
data in the storage array. The contents of the data saved could be the adjacency 
structure of the matrix, the ordering, or the ordering together with the data 
structure (depending on what went wrong, as discussed in Section 3.3). 

The first variable MSGLVL i n / U S E R / s t a n d s  for "message level," and governs 
the amount of information printed by the interface modules. Its default value is 
two, and for this value a relatively small amount of summary information is 
printed, indicating the completion of each phase and the values of some important 
numbers, such as the amount of storage used by each module. When MSGLVL 
is set to one by the user, only fatal error messages are printed; this option could 
be useful if the package is being used in the "inner loop" of a large computation, 
where even summary information would generate excessive output. Increasing 
the value of MSGLVL (up to four) provides increasingly detailed information 
about the computation. 
ACM Transactions on Mathematmal  Software, Vol 5, No. 2, June 1979 
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In many circumstances, our package will be embedded in still another "super" 
package which models phenomena which produce sparse matrix problems. Mes- 
sages printed by our package may be useless or even confusing to the ultimate 
users of this super package, or the super package may wish to field the error 
conditions and perhaps take some corrective action which makes the error 
messages inapplicable. (See Section 4.3.2 for an example.) Thus all printing by 
the package can be inhibited by setting MSGLVL to zero. 

If all phases of a method execute successfully, the user may want to obtain 
statistics of the particular run, in addition to the solution vector. In view of this, 
the package provides a COMMON block for statistics. 

COMMON/STATS/ORDTIM, ALOCTM, FCTIME, SLVTIM, FCTOPS, SLVOPS, 
ORDSTR, ALOSTR, SLVSTR, OVERHD 

where 

ORDTIM 
ALOCTM 
FCTIME 
SLVTIM 
FCTOPS 
SLVOPS 
ORDSTR 
ALOSTR 
SLVSTR 
OVERHD 

time used to find the ordering; 
time used for data structure setup; 
time used for the factorization step; 
time used for the triangular solution step; 
number of operations required by the factorization step; 
number of operations required by the triangular solution; 
storage used for the ordering subroutine; 
storage used for the data structure of the permuted system; 
storage used by the SOLVE/module; 
overhead storage for the problem. 

However, the user does not have to know anything abou t /STATS/ .  All he 
needs to supply is the statement 

CALL PSTATS 

at the end of his run to get the required information. 
If the package is used as described in Section 2 to select a method, PSTATS 

could be called after executing ORDER/ for each i, thus providing storage 
information for each method. Of course, the user could also obtain the storage 
information during execution by including the STATS common declaration in 
his program and examining the appropriate variables. 

4.3 Module /Module  Commumcat~on 

There are two labeled COMMON blocks used for communication among modules 
within the interface. They are the control block and the storage map block: 

/CNTROL/ STAGE, MXUSED, MXREQD, NEQNS, NEDGES, METHOD, 
(other method-related control variables} 

/SMAP/ PERM, INVP, RHS, 
(data structure pointers} 

T h e / C N T R O L / b l o c k  has 10 integer variables and contains control information 
about the specific run. There are 15 variables in t h e / S M A P / b l o c k  and they 
form a storage map of the array S. 

4.3.1 Locations of Storage Arrays. Since storage management is the respon- 
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sibility of the interface, it must be able to tell the various modules where data 
should be stored or has been stored. The 15 variables in t h e / S M A P / b l o c k  are 
used to keep the locations (origins in S) of the various arrays used in the particular 
storage scheme. These storage schemes differ in complexity across the methods, 
so the s a m e / S M A P / b l o c k  must be used in the corresponding routines ORDER/,  
INAIJi, and SOLVE/. 

In Figure 2, there is an example of the storage allocation for the symmetric 
envelope method [3]. Since three vectors are sufficient for the matrix structure, 
the cor responding/SMAP/could  be 

/SMAP/ PERM, INVP, RHS, DIAG, XENV, ENV, IPAD(9) 

4.3.2 Save~Restart Implementation. The SAVE routine saves the control 
information in /CNTROL/ ,  the storage pointers in /SMAP/ ,  as well as the 
storage vector S. In this way, the state of the computation can be reestablished 
by executing RESTRT,  which restores t h e / C N T R O L / a n d / S M A P / b l o c k s ,  and 
the vector S. The first statement in R E S T R T  is a call to START. 

The variable MXUSED i n / C N T R O L / i s  used to avoid saving irrelevant data 
from S. After the successful completion of each phase, MXUSED is set to the 
maximum number of storage locations used thus far. It is then only necessary to 
save the first M X U S E D  locations of S whenever the routine SAVE is called. 

Some operating systems allow a program to change the space it occupies in 
main storage during execution. Thus in some installations the user of our package 
might be able to increase or decrease dynamically the size of the working storage 
S. He can determine what the value of MAXS should be by declaring the common 
block CNTROL in his mainline program, and examining the value of MXREQD. 
At the end of each successfully executed phase of the computation, MXREQD is 

Ms 

PERM 

INVP 

XENV > 

DIAG 

ENV i"- 

right-hand slde vector 

permutation vector 

inverse permutation vector 

index to envelope structure 

dlagonal of the matr]x 

envelope of the matrix 

Fig 2 Storage allocation for the  symmet r i c  envelope m e t h o d  
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set to the minimum value of MAXS required to execute the next phase of the 
computation successfully. 

It is often the case that  when this dynamic growth of program space is provided, 
the effect is to increase the space allocated to unlabeled COMMON, which is 
usually assigned the highest memory locations in the user's program area. In such 
a circumstance the array S in the user's program would have to be declared in 
blank common. 

In this connection, we might have asked the user of our package always to 
declare S in a blank or labeled common block, and consequently avoided having 
the parameter S appearing in all our interface modules. While there were 
advantages and disadvantages to this, we felt that in balance our current decision 
allowed the user somewhat more flexibility. In some applications the array S 
which the user passes to the sparse matrix package may actually be a segment of 
the user's own working storage arrays, where MAXS is simply the amount of 
that array left over by his own program's computation. It is sometimes inconven- 
ient to arrange that the storage made available to the package be in blank 
common, or an appropriately labeled common block. 

4.3.3 Method Checking. As we discussed in Section 2, using a particular 
"method" means calling the appropriate interface routines ORDER/, INAIJi, 
and SOLVE/, where the last character is a numerical digit denoting the method. 
These ordering, input, and solve modules cannot be mixed since they in general 
involve different data structures for L. In order to ensure that  these modules are 
not inadvertently mixed by the user, ORDER/sets  the variable METHOD equal 
to i, and this variable is checked by subsequently executed modules INAIJi and 
SOLVE/. 

4.3.4 Stage (Sequence) Checking. Another control variable that  deserves spe- 
cial consideration is the STAGE code. As its name implies, it is used to keep 
track of the current step or stage of the execution. This variable is particularly 
important in connection with the save/restart feature. In restarting the system 
using the RESTRT routine, the STAGE code i n / C N T R O L / i s  restored, and it 
indicates the last successfully completed stage before the routine SAVE was 
called. In this way, the execution can be restarted without repeating already 
successfully completed steps. 

Another function of this variable is to enforce the correct execution sequence 
of the various interface routines. Before the actual execution of each routine, the 
STAGE code is used to check that all previous modules have been successfully 
completed. This avoids producing erroneous results due to improper processing 
sequences, or accidental omission of steps. 

The content of the variable STAGE is only changed after a phase has been 
successfully executed. When an error occurs during the execution of the phase, 
the STAGE code remains unchanged. This prevents the execution of all the 
subsequent phases, even if they are invoked by the user. As mentioned in Sections 
3.4 and 3.5, STAGE is also used by the modules to determine whether some 
initialization is necessary in a module, or whether part of the module has already 
successfully executed during a previous call to it. 

4.3.5 Storage Allocatmn of Integers and Floating Point Arrays. The ANSI 
Fortran standard specifies that the numbers of bits used to represent integers 
and floating point numbers are the same. However, many vendors provide the 
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user with the option of specifying "short" integers, either explicitly in declarations 
such as "INTEGER*2" or via a parameter to the Fortran processor which 
automatically represents all integers using fewer bits than used for floating point 
numbers. Since a significant portion of the storage used in sparse matrix com- 
putation involves integer data for pointers, subscripts, etc., it is desirable to try to 
exploit these short integer features when it makes sense to do so. 

Our interface contains a variable RATIO, set in the module START, which 
specifies the ratio of the number of bits used for floating point numbers to the 
number used for integers. In our package, floating point arrays are declared 
REAL, integer arrays are declared INTEGER, and RATIO is set to 1. However, 
if the size of the integer representation is halved (either through changing the 
integer array declarations, or specifying a system parameter, or by some other 
mechanism), then the only change required is to set RATIO to 2 in START. The 
interface then uses RATIO to allocate only [p/RATIO1 elements of S for integer 
arrays of length p. 

Since a substantial portion of the real storage vector S is allocated for integer 
arrays, the provision for different lengths of integer and floating point numbers 
may lead to word boundary problems, when the integer arrays are passed to the 
sparse matrix routines. This is overcome by always starting each array at a 
boundary of a floating point number in S. In other words, the storage pointers in 
/ S M A P / a r e  defined with respect to the storage vector S. 

The variable RATIO would also be set to 2 if the floating point arrays were 
declared to be double precision. However, we assume that the declaration of S 
that the user makes in his program is of the same type as that  used for the 
floating point computation, so the user's declaration of the working storage array 
would also have to be double precision. We also make the reasonable assumption 
that  RATIO >_ 1. 

5. CONCLUDING REMARKS 

The numerous examples supplied in the Appendix serve to illustrate that the 
interface meets the functional requirements outlined in Section 2. The error 
messages printed also illustrate how the use of the internal parameters METHOD 
and STAGE discussed in Section 4 serve to protect the user from many of the 
potential blunders. 

It is a relatively simple task to include an additional layer of software around 
the various ORDER/, INAIJi, and SOLVE~ modules, to provide an automatic 
method-selection feature in the package. The user would then call SELECT, 
INAIJ, and SOLVE, where SELECT would determine the value of the internal 
variable METHOD by calling each ORDER/, and INAIJ and SOLVE would call 
the appropriate INAIJi and SOLVE/ modules according to the value of 
METHOD. Of course, the selection of the method could depend on various 
criteria, so SELECT might have some parameters. 

There are advantages and disadvantages associated with this second layer of 
software. One advantage is that  the user must remember even less about the 
package in order to use it, and will use the most efficient method (according to 
the criterion SELECT uses). There is a danger with the package as it stands in 
that  a user may simply choose a method and not bother investigating other 
possibly more efficient ones included in the package. Obviously there is a tradeoff 
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here that  is difficult to quantify, since SELECT exacts a price which might offset 
any gains realized through choosing the best method. However, in cases where 
many problems having the same structure must be solved, it would appear that  
a strong case could be made for having a SELECT module in the package. 

We regard the case for having general INAIJ and SOLVE modules as much 
weaker than that  for having a SELECT module. The main disadvantage is that  
under most operating system environments, all the INAIJi and SOLVE/modules 
of the package would be loaded during execution of SOLVE, even though only 
one of each would be actually executed. This problem was solved in the EISPACK 
system [5] on IBM computer systems by using the execution time linking and 
loading features provided by OS/360. However, we reject this approach because 
not all operating systems provide such facilities. To summarize this point, we 
regard a SELECT module as desirable and plan to include one in a future version 
of the package. However, we do not think the advantages of having a general 
INAIJ and SOLVE warrant their inclusion. 

The use of the interface routines INIJ and INAIJi provides great flexibility in 
the input of the matrix structure and matrix components. However, for systems 
with large overhead in subroutine calls, the repeated use of INIJ and INAIJi can 
be expensive. In view of this, the package includes interface routines which allow 
the input of an entire row or subarray of nonzero subscripts and nonzero 
components. This can be useful when the structure and nonzeros are available in 
a more structured manner. 

At the moment, all our sparse matrix software lies within the portable subset 
of Fortran specified by the PFORT verifier [4]. The same applies to the interface 
routines, with only one exception: array types are allowed to change across 
subroutines. We do not regard this as a serious violation, since it is tolerated and 
handled uniformly by most systems. As described in Section 4.3.5, we have been 
careful to allocate storage for arrays in such a way as to avoid the alignment 
problems which sometimes occur, particularly on IBM 360/370 systems, when 
array types are mixed in this way. 

We should point out that  in order for a user program to be standard Fortran, 
all common blocks appearing in the interface routines referenced by the user 
must be declared in the user's program. However, we know of no system which 
actually requires these declarations to appear, so in practice, only the common 
block USER needs to be declared. 

One of our objectives in creating the interface was to reduce the time and effort 
required to use our sparse matrix software. We feel this objective has been 
achieved. The parameter lists for the various interface modules are short, and 
apart from the storage array S, they all mean something specific to the user and 
his problem. Furthermore, except for the last character in the module names 
(which distinguishes the method), the names of the modules are the same across 
the various methods. Thus there are relatively few things for the user to remem- 
ber. 

APPENDIX 

In this Appendix we provide several mainline programs which illustrate how the 
package can be used in the various modes discussed in Section 2. In order to keep 
the programs short, we utilize the subroutines GRID, GRIDA, GRIDB1, 
GRIDE1, GRIDB2, and GRIDE2; the Fortran listings of the first four are given 
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below. An approximate solution to the Poisson equation u~ + uyy ffi f i s  computed 
on the domain R = (0, 1) x (0, 1), using the standard five-point difference operator 
on an regular n by n grid, with grid points (ih, jh) ,  1 <_ i <_ n, h = 1/(n + 1). The 
subroutine GRID calls the sparse matrix package routines INIT, INIJ, and 
IJEND to set up the structure of the coefficient matrix A. The subroutine GRIDA 
calls the sparse matrix module INAIJ1 (since we use ORDER1 in all our 
examples) to insert the numbers for A into the package. The subroutine GRIDB1 
uses INBI to insert the appropriate right-hand side b so that  the solution to the 
continuous problem is u(x, y) ffi e ¢~+y>, and GRIDE1 computes the error in the 
computed (discrete) solution. The subroutines GRIDB2 and GRIDE2 are analo- 
gous, except the solution to the problem they treat is u(x, y) ffi sin(x - y). 

The programs were run under the WATFIV debugging compiler, developed at 
the University of Waterloo, on an IBM 360/75 computer. Since the code generated 
by the compiler has extensive error-checking overhead, the execution times are 
quite large. All times reported are in seconds. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C* * * * * * * * * *  GRID . . . . .  N BY N GRID GENERATOR * * * * * * * * *  

C 
C PURPOSE - THIS SUBROUTINE GENERATES AN N BY N GRID 
C STRUCTURE BY REPEATED CALLS TO INIJ. 
C 
C INPUT PARAMETERS- 
C N - SIZE OF THE GRID (IMPLIES THAT THE 
C NUMBER OF EQUATIONS IS N**2) 
C S - WORKING STORAGE VECTOR 
C 

C 
SUBROUTINE GRID( N, S ) 

C 

REAL S(1) 
INTEGER SUB, I ,  J, IJ ,  N 

C 
C SUB MAPS THE COORDINATES ( l , J )  OF THE GRID ONTO 
C THE INTEGERS 1,2 . . . . .  N**2. THE SUBSCRIPTS 
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW 
C BY ROW ORDERING OF THE GRID. 
c . . . . . . . . . . . . . . . . . . . . . . . .  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
CALL INIT 

C 
DO 200 1 = I ,  N 

DO I00 J : 1, N 
IJ = SUB(I,J) 
IF ( I .NE. 1 ) CALL INIJ( IJ ,  SUB(I-I ,  J ) ,  S) 
IF ( J .NE. 1 ) CALL INIJ( IJ ,  SUB(I, J - l ) ,  S) 

I00 CONTINUE 
200 CONTINUE 

C 
CALL IJEND (S) 

C 
RETURN 

END 
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C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ . ~ * * * * * * * * * * * * * * * * * * * * * * * *  
C * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * ~ * * ~ * * * * * * * * * * * * * * * * * * * * * *  
C* * * * * * * *  GRIDA . . . . .  GRID COEFFICIENT GENERATOR * * * * * *  
C * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ . ~ * * * * * * * * * * * * * * *  
C 
C PURPOSE - THIS SUBROUTINE GENERATES A COEFFICIENT 
C MATRIX FOR THE 5-POINT DIFFERENCE OPERATOR FOR 
C AN N BY N GRID. 
C 
C INPUT PARAMETERS- 
C N - SIZE OF THE GRID (IMPLIES THAT THE 
C NUMBER OF EQUATIONS IS N**2 ) 
C S - WORKING STORAGE VECTOR 
C 
C * * * * * ~ * * * * * * * * * * * * * * * ~ * ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * *  
C 

SUBROUTINE GRIDA ( N, S ) 
C 
C * ~ * * ~ * * * * * * * * * * * * * * ~ * * ~ * * * * * ~ * * ~ * * * * * * * * ~ * * * * * * * * * * * * * * * *  

REAL S(I ) 
INTEGER SUB, I ,  J, IJ ,  N 

C * * * * * * * * * * * * * ~ * * * ~ * * * * * * * * ~ . ~ * * * * * * * ~ * * * * ~ * * * * * * * * * * * * * * * *  
C 
C SUB MAPS THE COORDINATES ( l , J )  OF THE GRID ONTO 
C THE INTEGERS 1,2 . . . . .  N**2. THE SUBSCRIPTS 
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW 
C BY ROW ORDERING OF THE GRID. 
c . . . . . . . . . . . . . . . . . . . . . . .  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 

DO 2001 = I ,  N 
DO I00 J = I ,  N 

IJ : SUB(I,J) 
CALL INAIJI(  IJ ,  IJ ,  4 .0,  S) 
IF ( I .NE. 1 ) 

1 CALL INAIJI ( I J ,  SUB( I - I , J ) ,  - I . 0 ,  S) 
IF ( J .NE. 1 ) 

1 CALL INAIJI ( I J ,  SUB( I ,J - I ) ,  - I . 0 ,  S) 
I00 CONTINUE 
200 CONTINUE 

C 
RETURN 

END 
C * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C******  GRIDBI. GENERATES A RIGHT HAND SIDE FOR A * * * * * * * * *  
C***** *  FIVE POINT DIFFERENCE OPERATOR ON AN N BY N * * * * * * * *  
C***** *  GRID. THE DOMAIN OF THE PROBLEM IS ASSUMED TO * * * * *  
C******  BE ( 0 , I )  X ( 0 , I ) ,  SO THE MESH WIDTH H IS I / ( N + I ) . * * *  
C***** *  THE BOUNDARY CONDITIONS AND THE TRUE SOLUTION * * * * * *  
C***** *  ARE PROVIDED BY THE STATEMENT FUNCTION F ( I , J )  * * * * * *  
C***** *  WHICH EVALUATES THE FUNCTION F AT (X,Y) ,  WHERE * * * * *  
C***** *  X = I*H AND Y = J*H. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * * * ~ * ~ * * * * ~ * ~ * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * *  
C 
C INPUT PARAMETERS° 
C N - SIZE OF THE GRID (IMPLIES NEQNS : N**2) 
C S - WORKING STORAGE VECTOR 
C 

C 
SUBROUTINE GRIDB]( N, S ) 

C 
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REAL S(1), H, H2 
INTEGER SUB, I ,  J, IJ, N 

C 
C SUB MAPS THE COORDINATES ( I ,J)  OF THE GRID ONTO 
C THE INTEGERS 1 ,2 , . . . ,N* '2 .  THE SUBSCRIPTS 
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW 
C BY ROW ORDERING OF THE GRID. 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUB(II, JJ) = ( I I  - l)*N + JJ 
C 
c 
C RIGHT HAND SIDE IS ADJUSTED SO THAT F IS ALSO THE 
C TRUE SOLUTION TO THE PROBLEM, AS H GOES TO O. 
C 

F( I I ,  JJ) = EXP(FLOAT(II)*H + FLOAT(JJ)*H ) 

C 
H = ].O/FLOAT(N + l )  
H2 = H*H 

C 
DO 200 I = l ,  N 

C 
CALL INBI(SUB(I,I), F(I,O), S) 
CALL INBI(SUB(I,N), F(I,N+I), S) 
CALL INBI(SUB(I,I), F(O,I), S) 
CALL INBI(SUB(N,I), F(N+I,I), S) 

C 
DO ]OO J = l ,  N 

CALL INBI(SUB(I,J), -2.0*H2*F(I,J), S) 

lO0 CONTINUE 
C 

200 CONTINUE 
C 

RETURN 
END 

C****** GRIDEI..COMPUTES THE ERROR FOR THE N BY N GRID **** 
C****** PROBLEM GENERATED BY GRIDA AND GRIDB]. ***********  

C 
C INPUT PARAMETERS- 
C N - SIZE OF THE GRID (IMPLIES NEQNS = N**2) 
C S - WORKING STORAGE VECTOR 
C OUTPUT PARAMETER- 
C ERROR - THE MAXIMUM ERROR IN THE COMPUTED 
C SOLUTION. 
C 

C 
SUBROUTINE GRIDE] (N, S, ERROR) 

C 

REAL S(1), H, H2, ERROR 
INTEGER SUB, I ,  J, IJ, N 

C 
C SEE COMMENTS IN GRIDBI ON SUB AND F. 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUB(II, JJ) = ( I f  - l)*N + JJ 
F( I I ,  JJ) = EXP(FLOAT(II)*H + FLOAT(JJ)*H ) 
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C 
H = I.O/FLOAT(N + I )  
H2 : H*H 
ERROR : 0.0 

I00 
200 

DO 200 1 : I ,  N 
DO I00 J = I ,  N 

I a  : SUB(I, J) 
ERROR : AMAXI( ERROR, ABS(F(I,J) - S( IJ ) )  ) 

CONTINUE 
CONTINUE 

RETURN 
END 

E x a m p l e  1 

This is an example of the simplest use of the package, with each of the modules 
of method 1 used in sequence. The structure of A is input by GRID, which uses 
INIT, INIJ, and IJEND. After ORDER1 is executed, GRIDA and GRIDE1 
generate the numerical values of A and b, respectively, and transmit them to the 
package using the interface modules INAIJ1 and INBI. The module SOLVE1 is 
called to do the numerical solution, and then PSTATS is called to print out the 
statistics gathered by the interface during execution. Finally GRIDE1 is called to 
compute the error in the computed approximate solution. 

COMMON /USER/ MSGLVL, IERR, MAXS 
REAL S(250) 

CALL START 
MAXS = 250 
N = 5 
CALL GRID(N, S) 
CALL ORDER1( S ) 
CALL GRIDA( N, S) 
CALL GRIDBI( N, S ) 
CALL SOLVE1 ( S ) 
CALL PSTATS 
IF ( IERR .GT. 0 ) STOP 
CALL GRIDEI( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 

I I  FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6) 
STOP 

END 

INIT- INITIALIZATION 

INIJ- INPUT OF ADJACENCY PAIRS 

IJEND- END OF ADJACENCY PAIRS 

ORDER1- RCM ORDERING 
NUMBER OF EQUATIONS 25 
NUMBER OF EDGES IN GRAPH 40 

SIZE OF THE ENVELOPE 90 
BANDWIDTH 5 

INAIJI- INPUT OF MATRIX COMPONENTS 
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INBI- INPUT OF RIGHT HAND SIDE 

SOLVE1- ENVELOPE SOLVE 

PSTATS- STATISTICS 
TIME FOR ORDERING 0 . I I 0  
STORAGE FOR ORDERING 182. 
TIME FOR ALLOCATION 0.020 
STORAGE FOR ALLOCATION I01. 
STORAGE FOR SOLUTION 216. 
OVERHEAD STORAGE 76. 
TIME FOR FACTORIZATION 0.120 
TIME FOR SOLVING 0.080 
OPERATIONS IN FACTORIZATION 320. 
OPERATIONS IN SOLVING 230. 

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03 

Example 2 

This example is the same as Example 1, except after solving the problem 
corresponding to GRIDB1, a new right-hand side is input using GRIDB2, corre- 
sponding to a different problem. When the module SOLVE1 is called a second 
time, the interface detects that  the factorization has already been done, and only 
the triangular solution is performed. 

COMMON /USER/ MSGLVL, IERR, MAXS 
REAL S(250) 

CALL START 
MAXS = 250 
N = 5 
CALL GRID(N, S) 
CALL ORDERI( S ) 
CALL GRIDA( N, S) 
CALL GRIDBI( N, S ) 
CALL SOLVE1 ( S ) 
CALL GRIDEI( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 

I I  FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6) 
CALL GRIDB2( N, S ) 
CALL SOLVE1 ( S ) 
CALL GRIDE2( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 
STOP 

END 

INIT- INITIALIZATION 

INIJ- INPUT OF ADJACENCY PAIRS 

IJEND- END OF ADJACENCY PAIRS 

ORDER1- RCM ORDERING 
NUMBER OF EQUATIONS 
NUMBER OF EDGES IN GRAPH 

SIZE OF THE ENVELOPE 
BANDWIDTH 

INAIJI- INPUT OF MATRIX COMPONENTS 
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INBI- INPUT OF RIGHT HAND SIDE 

SOLVE1- ENVELOPE SOLVE 

MAXIMUM ERROR IN THE SOLUTION 0.94599lE-03 

INBI- INPUT OF RIGHT HAND SIDE 

SOLVE1- ENVELOPE SOLVE 
FACTORIZATION ALREADY DONE. 

MAXIMUM ERROR IN THE SOLUTION 0.454187E-04 

Example 3 

This example is almost identical to Example 2, except it inustrates how problems 
having the same structure but differing in both A and b can be solved. After 
solving the first problem, both GRIDB2 and GRIDA are called, thus simulating 
a completely new numerical problem to be processed. 

COMMON /USER/ MSGLVL, IERR, MAXS 
REAL S(250) 

CALL START 
MAXS = 250 
N = 5 
CALL GRID(N, S) 
CALL ORDERI( S ) 
CALL GRIDA( N, S) 
CALL GRIDBI( N, S ) 
CALL SOLVE1 ( S ) 
CALL GRIDEI( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 

I I  FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6) 
CALL GRIDA( N, S) 
CALL GRIDB2( N, S ) 
CALL SOLVE1 ( S ) 
CALL GRIDE2( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 
STOP 

END 

INIT- 

INIJ- 

IJEND- 

INITIALIZATION 

INPUT OF ADJACENCY PAIRS 

END OF ADJACENCY PAIRS 

ORDER1- RCM ORDERING 
NUMBER OF EQUATIONS 25 
NUMBER OF EDGES IN GRAPH 40 

SIZE OF THE ENVELOPE 90 
BANDWIDTH 5 

INAIJI- INPUT OF MATRIX COMPONENTS 

INBI- INPUT OF RIGHT HAND SIDE 

SOLVE1- ENVELOPE SOLVE 

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03 
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INAIJI- INPUT OF MATRIX COMPONENTS 

INBI- INPUT OF RIGHT HAND SIDE 

SOLVE]- ENVELOPE SOLVE 

MAXIMUM ERROR IN THE SOLUTION 0.454187E-04 

Example 4 

This example illustrates the use of the checkpoint/restart feature of the package. 
After the factorization is computed, SAVE is executed, which writes the current 
state of the computation on Fortran logical unit 3. The module RESTRT is then 
executed to read the information from unit 3, and the computation resumes at 
the point at which SAVE was invoked. 

] I  

COMMON /USER/ MSGLVL, IERR, MAXS 
REAL S(250) 

CALL START 
MAXS = 250 
N = 5 
CALL GRID(N, S) 
CALL ORDER]( S ) 
CALL GRIDA( N, S) 
CALL SOLVE1 ( S ) 
CALL SAVE( 3, S ) 

THE NEXT DAY . . . . . . .  

CALL RESTRT( 3, S ) 
CALL GRIDB]( N, S ) 
CALL SOLVE1 ( S ) 
IF ( IERR .GT. 0 ) STOP 
CALL GRIDEI( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 
FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION 
STOP 

END 

INIT- 

INIJ- 

IJEND- 

INITIALIZATION 

INPUT OF ADJACENCY PAIRS 

END OF ADJACENCY PAIRS 

ORDER]- RCM ORDERING 
NUMBER OF EQUATIONS 
NUMBER OF EDGES IN GRAPH 

SIZE OF ENVELOPE 
BANDWIDTH 

INAIJI- INPUT OF MATRIX COMPONENTS 

SOLVE]- ENVELOPE SOLVE 
NO RIGHT HAND SIDE PROVIDED, 
SOLUTION WILL BE ALL ZEROS. 

SAVE- STORAGE VECTOR SAVED 

RESTRT- RESTART SYSTEM 
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INBI- INPUT OF RIGHT HAND SIDE 

SOLVE1- ENVELOPE SOLVE 
FACTORIZATION ALREADY DONE. 

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03 

Example 5 

The first part of this example illustrates a situation where there was sufficient 
storage provided to input the adjacency structure but insufficient storage to 
execute the ordering algorithm. 

After the value of MAXS is adjusted, the second part of the example shows 
that the new MAXS is not large enough for SOLVE1 to execute successfully. 
This situation is detected by ORDER1, which sets IERR positive. The modules 
INAIJ1 and INBI detect the error condition and do not increment STAGE, 
hence the error message from SOLVE1. 

COMMON /USER/ MSGLVL, IERR, MAXS 
REAL S(250) 

CALL START 
MAXS = 150 
N = 5 
CALL GRID(N, S) 
CALL ORDER1( S ) 
MAXS = 200 
IERR = 0 
CALL ORDER1( S ) 
CALL GRIDA( N, S) 
CALL GRIDBI( N, S ) 
CALL SOLVE1 ( S ) 
IF ( IERR .GT. 0 ) STOP 
CALL GRIDEI( N, S, ERROR ) 
WRITE(6, I I  ) ERROR 

I I  FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14,6) 
STOP 

END 

INIT- INITIALIZATION 

INIJ- INPUT OF ADJACENCY PAIRS 

IJEND- END OF ADJACENCY PAIRS 

ORDER1- RCM ORDERING 
NUMBER OF EQUATIONS 25 
NUMBER OF EDGES IN GRAPH 40 

ORDER1- ERROR NUMBER 23 
INSUFF STORAGE FOR ORDERING 
MAXS MUST AT LEAST BE 182 

ORDER1- RCM ORDERING 
NUMBER OF EQUATIONS 25 
NUMBER OF EDGES IN GRAPH 40 

SIZE OF THE ENVELOPE 90 
BANDWIDTH 5 

ORDERI- ERROR NUMBER 26 
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INSUFF STORAGE FOR SOLVE1, 
MAXS MUST AT LEAST BE 216 

SOLVEI- ENVELOPE SOLVE 

SOLVE]- ERROR NUMBER 5] 
INCORRECT EXECUTION SEQUENCE, 
NUMERICAL INPUT ROUTINES MUST BE 
SUCCESSFULLY EXECUTED BEFORE SOLVE] 
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