
The Design of a User Interface for a Sparse
Matrix Package

ALAN GEORGE and JOSEPH W. H. LlU

Umversity of Waterloo

Software for solving sparse systems of hnear equations typically involves fairly complicated data
structures and storage management In many cases the user of such software simply wants to solve a
system of equations, and should not have to be concerned with the way this storage management is
actually done, or the way the matrix components are actually stored. In this paper we describe a
sparse matrLx package which effectively insulates the user from these considerations, but which still
allows the user to conveniently use the package m a variety of ways.

Key Words and Phrases. sparse linear equations, mathematmal software, user interface
CR Categories: 4 0, 5.14

1. INTRODUCTION

Computer subroutines for solving the dense linear equations problem involve
conventional numerical data types such as one- and two-dimensional arrays of
floating point numbers, which are already available in the programming languages
normally used for numerical computation. The array storage for these subroutines
is known as soon as the number of equations to be solved is prescribed, and the
number of parameters to such procedures is usually quite modest, typically only
four or five. In addition, the number of subroutines which are used to solve a
problem of a particular type is seldom greater than two, and often only one. All
these aspects of software for solving the dense linear equations problem make the
intellectual overhead involved in learning to use the subroutines fairly small. The
user is already familiar with the way the data are stored, the number of data
items to keep in mind is modest, and the number of subroutines used is also small.

Unfortunately almost none of the above is true about subroutines which
implement algorithms for solving sparse linear systems. Most of the data struc-
tures used are sufficiently unconventional that they are not provided as data
types in the language of implementation. The amount of storage required is
usually unpredictable, and is not known until at least part of the overall sequence
of subroutines has been executed. The overall method of solution is multiphase,

Permmmon to copy without fee all or part of this maternal is granted provided that the copies are not
made or distributed for dLrect commercial advantage, the ACM copyright notice and the title of the
pubhcation and its date appear, and notice Is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permmslon.
This research was supported in part by the Canadian National Research Council under Grant A8111
Authors' address. Department of Computer Science, University of Waterloo, Waterloo, Ont., Canada
N2L 3G1.
© 1979 ACM 0098-3500/79/0600-0139 $00.75

ACM Transactions on Mathematmal Software, Vol 5, No 2, June 1979, Pages 139-162

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355826.355829&domain=pdf&date_stamp=1979-06-01

140 A. George and J. W. H. Liu

with ample opportunity (and usually the necessity) for storage overlays. Finally,
due to the complicated data structures employed, the subroutines tend to have
long argument lists, most of which have little or no meaning to the user of the
subroutine unless he cares to know how the data are stored.

In this paper we describe the design and implementation of what we loosely
refer to as a user in ter face for a Fortran sparse matrix package developed at the
University of Waterloo. This interface is a layer of software between the user,
who has a sparse linear system to solve, and the numerous subroutines which
implement the various phases of the solution procedure (described in detail in
Section 2). This layer of software provides storage management services, insulates
the user from the complicated data structures used by the subroutines, and
provides a convenient means of communication between the user and the sub-
routines. It also provides sequencing control, so that subroutines are called in the
correct order, and convenient checkpoint/restart facilities. Although we describe
the interface only as it relates to solving sparse positive definite systems of
equations, it will be obvious that the method used to implement the interface is
applicable in a much wider context. The actual package handles both symmetric
and unsymmetric problems, but it assumes that the matrix structure is symmetric,
and that row and/or column interchanges are not required to maintain numerical
stability.

2. PROBLEM OVERVIEW

In order to appreciate the need for an interface as suggested in the Introduction,
we review the important subtasks in the overall solution scheme, and identify the
ways in which the package might be used. For definiteness, and to provide
notation and a framework for subsequent discussion, suppose the sparse N by N,
positive definite system of equations to be solved is

A x = b. (2.1)

For some N by N permutation matrix P, Cholesky's method is applied to
P A P T, yielding the triangular factorization

P A P T = L L T, (2.2)

where L is lower triangular. Then the two triangular systems L y = P b and
L T (p x) = y are solved. Thus instead of eq. (2.1), the formally equivalent system

(p A p T) (p x) =- P b (2.3)

is solved. The crucial practical point is that the reordering can lead to enormous
reductions in storage and/or computation compared to applying Cholesky's
method to the original problem (2.1) (assuming of course, that sparsity is ex-
ploited).

It is natural to view the above procedure as consisting of four distinct phases:

S t e p 1: Order. Find a "good" ordering (permutation P) for A.
S t e p 2: Data structure setup. Determine the location of the nonzeros in L,

where P A P y = L L T, and set up the appropriate data structures.
S t e p 3: Factor. Factor P A P T into L L T.
S t ep 4: Triangular solution. Solve L y =- P b and LTz = y, and then set x = PTz.

ACM TransacUons on Mathemat ica l Software, Vol 5, No 2, June 1979

The Design of a User Interface for a Sparse Matrix Package 141

Our situation is that we possess a collection of subroutines for finding orderings,
determining the corresponding structure of L, setting up various data structures,
and performing the actual numerical computation. That is, we have several
computer implementations for each of the phases above; for purposes of discus-
sion we will label these program modules ORDER/, SETUP/, FACTOR/, and
SOLVE/, i = 1, 2 m, where m is the number of distinct order /se tup/factor /
solve combinations available. We refer to each combination collectively, as a
method or strategy. In specific circumstances, each method has advantages over
the others; however, note that we are not concerned here with the development
of these various ordering algorithms, storage schemes, etc. Our objective is to
package this software so that it can be easily used by those who have problems
to solve, but who do not have the time or the inclination to learn any details
about how the ordering and computation are performed.

In order to make this packaging effective, we must identify how these modules
might be used, assuming a user was prepared to learn the appropriate calling
sequences and the exact nature of their parameters. The most obvious way would
be to choose method ~, and call the sequence of subroutines ORDER/, SETUP/,
FACTOR/, and SOLVE/. However, different methods will in general require
different storage and computation, and the best method to use depends on the
size and origin of the problem. In principle, storage and computation requirements
are known at the end of Step 2, so the user could execute ORDER/and SETUP/
for several different ~, choose the most attractive method k, and then execute
FACTORk and SOLVEk. Ideally, to avoid reexecuting ORDERk and SETUPk,
the results from the currently best SETUP/should be saved until k is determined.

When the user has selected a method z and executed SETUP/, he may use
FACTOR/and SOLVE/in several ways other than the normal case where he has
a single problem to solve. In some contexts many problems having the same zero-
nonzero structure must be solved. Since O R D E R / a n d S E T U P / d e p e n d only on
the structure of A and not its numerical values, they do not have to be executed
more than once, and if FACTOR/ and SOLVE/ are to be executed over an
extended time period, the output from SETUP/should be saved so that execution
can begin with FACTOR/for each new numerical problem. In still other situations
many problems which differ only in their right-hand sides must be solved, again
sometimes over an extended time period. In this case only SOLVE/need be used
repeatedly, and the output of F A C T O R / m a y be saved and recovered for each
new right side.

The above discussion identifies four modes in which a user might use the
software modules which implement Steps 1-4 above. In addition to the normal
case where four modules corresponding to one method are called in sequence,
additional modules may be called, and/or some may be repeatedly called, in order
to (a) select the most desirable method; (b) solve many problems having the same
structure; or (c) solve many problems differing only in their right-hand side.

We have now discussed some important problems a user could deal with, given
the software modules and the patience to learn how to call each of them. Our
claim is that this investment in time is likely to be high. As we noted earlier, the
elaborate data structures usually mean that the argument lists are lengthy. In
order to use the modules efficiently, the user must determine which arrays must
be preserved as input to the next module, and which ones can be destroyed

ACM Transactions on Mathematmal Software, Vol 5, No. 2, June 1979.

142 • A. George and J. W. H. Liu

(reused) by that module. In all but the standard mode of usage discussed above,
the user must be aware of all information that needs to be preserved if the
computation is to be restarted at a later time. Finally, perhaps the most persuasive
argument for insulating the user from all these considerations is that storage
requirements for some of the sparse matrix subroutines are often unpredictable.
The user must guess how large some arrays must be declared; if he guesses low,
the module will not execute successfully, and if he guesses high, some storage will
be wasted.

3. DESIGN CONSIDERATIONS

3.1 Int roduct ion

In the previous section we identified what could be loosely described as the
functional capabilities that our sparse matrix package should possess. In this
section we descend to the operational level and examine the actual components
of the interface, from the user's view. Although we defer most of the discussion
of the actual implementation of the interface until Section 4, it is helpful in this
section to be aware of the basic approach. Briefly, the user of the package supplies
a single one-dimensional array S along with its declared size MAXS. All array
storage is allocated from S by the interface, and the origins of these arrays are
transmitted from module to module in a COMMON area. Other information
about the data structures along with control information is also passed from
module to module through a COMMON block.

We now describe the interface components. We first augment the list of steps
discussed in Section 2 to include the points of information exchange between the
user and the software modules discussed in the previous sections. We then discuss
the responsibilities, desirable features, and possible abnormal completions of the
implementation of each step in this augmented list.

Step 1: Initialization.
Step 2: Input nonzero structure. Input the (i,j) pairs for which A v # 0.
Step 3: Order. Find a "good" ordering for A (i.e. find P).
Step 4: Data structure setup. Determine the location of the nonzeros in L and set up the

appropriate data structures.
Step 5" Input A. Input the numerical values for A v.
Step 6: Factor, Factor PAP T into LL T.
Step 7: Input b. Input the numerical values for b.
Step 8: Triangular solution. Solve Ly = Pb and LTz = y, and then set x = PTz.

The discussion in Section 2 concerning the various modes in which the package
might be used strongly suggests the need for a save/restart facility. The possible
abnormal terminations discussed in the following subsections also illustrate the
need for such a capability. Thus we include the following two steps, which (loosely
speaking) can be inserted anywhere in the preceding list.

Step S: Save. Save the current results on a specified input/output unit.
Step R: Restart. Read results written by execution of Step S from a specified input/

output unit.

3.2 Initialization Step

There are two initialization modules, called START and INIT. The module
START must be called once at the beginning of the user's program, before any
ACM Transac t ions on Mathemat ica l Software, Vol. 5, No 2, June 1979

The Design of a User Interface for a Sparse Matrix Package 143

other module of the package is executed. Its role is to initialize certain variables,
to set default values for options, and to perform some installation-dependent
functions such as assigning the logical unit number for the printer, initializing the
timer, etc.

The second initialization routine INIT is called at the beginning of each
completely new problem solution. It signals to the package that the input of the
matrix structure is about to begin; its role is to initialize the "problem parameters,"
such as error flags, operation counts, etc.

These two initialization modules have no arguments and are invoked by
executing the following Fortran statements:

CALL START
CALL INIT

3.3 Input of the Matrix Structure

This step represents the first serious communication with the package. Our
algorithm for finding orderings represent the matrix structure as a symmetric
graph in the array pair (XADJ, ADJNCY); the nodes adjacent to node i (columns
subscripts of the nonzeros in row i of A) are stored in ADJNCY(k), for
k = XADJ(i), XADJ(i) + 1 XADJ(i + 1) - 1. However, it is unlikely (or at
least not at all clear} that the user will have this representation available. In
many situations the (i, j) pairs for which A,1 ~ 0 Will become available to the user
in a more or less arbitrary order, and thus the values of XADJ cannot be
determined until the entire structure of A is known. Thus the user would like to
be able to communicate the (i, j) pairs in any order he chooses. Our package
records this information, eliminating duplications, and when all pairs have been
communicated, the appropriate internal representation is generated. The method
used to communicate the fact that Av ~ 0 is the simple Fortran statement CALL
INIJ(I, J, S). When all pairs have been input, the statement CALL IJEND(S) is
executed to carry ou~ the transformation to the internal (XADJ, ADJNCY)
format. Note that the user is insulated from all the various internal data structures
used in the recording and manipulation of the information. The parameter S in
the subroutine references is again the working storage array, declared by the user
for use by the package.

Recall from our discussion in Section 2 that a user may wish to investigate the
relative merits of several different methods, which implies that we should be able
to restart the computation at the beginning of the ordering phase, and avoid
reinputting the matrix structure. To do this we execute the Fortran statement

CALL SAVE(K, S)

where K is the Fortran logical unit on which the output of IJEND is to be
written, along with other information needed to restart the computation at this
point. If execution is then terminated, the state of the computation can be
reestablished by executing the statement

CALL RESTRT(K, S).

3.4 Finding the Ordering and Sethng Up the Data Structures

For our class of positive definite problems, there are important reasons for
performing the ordering and data structure setup tasks serially in separate

ACM Transact ions on Mathemat ica l Software, Vol. 5, No. 2, June 1979.

144 A. George and J. W. H. Ltu

subroutines. An important reason is that temporary storage used by the ordering
subroutine can be reused by the data structure setup subroutine. However, from
the user's view, there seems little reason to segregate the two steps. The output
from the ordering routine is in itself of little interest to the user, since it is simply
a permutation vector (and for some methods a small amount of partitioning
information). The user is really interested in the implications, in terms of storage
and computation, of using the ordering, and these are only known after the
analysis of the structure of L has been performed. Thus in our package the user
invokes the execution of Steps 3 and 4 (ordering and data structure setup) by
executing the Fortran statement

CALL ORDERs(S)

where ~ is a numerical digit indicating the method (order/setup/factor/solve
sequence) to be used.

What can go wrong? First, there may not be enough storage in S to execute the
ordering algorithm. In this case the user can execute SAVE (if he has not already
done so at the end of the previous step) and after declaring a larger S, he can
execute R E S T R T and call ORDER/ again. The output of the unsuccessful
execution of ORDER/te l l s the user how large S must be to execute the ordering
subroutine. The same S A V E / R E S T R T strategy can be employed if the ordering
algorithm aborts during execution. The ordering subroutines currently in the
package do not terminate abnormally as a result of exceeding the storage
provided, since they all use a fixed predictable amount. However, some imple-
mentations of ordering algorithms do require unpredictable amounts of storage,
and some of these might be included in the package later.

When the ordering is obtained, the appropriate subroutine is called from
ORDERs to determine the structure of L and set up its data structure. A
disagreeable but inevitable characteristic of many of these subroutines is that
their storage requirements are unpredictable, because the number of data struc-
ture pointers, etc., is not known until the structure of L has been fully determined.
There may be enough storage available to execute the subroutine and thereby
determine the storage needed for the data structure even though the data
structure itself cannot be saved.

Thus, the interface module ORDERs may terminate in several distinctly
different ways:

(a) There is not enough storage to execute the ordering subroutine.
(b) The ordering is successfully obtained, but there is insufficient storage to

even initiate execution of the data structure setup subroutine.
(c) The data structure setup subroutine is executed, and the storage required

for the data structure pointers, etc., is determined, but there is insufficient
storage for those pointers.

(d) The data structure is successfully generated, but there is insufficient storage
for the actual numerical values, so the next step cannot be executed.

(e) O R D E R / i s successfully executed, and there is sufficient storage to proceed
to the next step.

If any of the above conditions occurs, the user may execute SAVE, and
reinitiate the computation after adjusting his storage declarations (either up or
A C M T r a n s a c t m n s on M a t h e m a t m a l Software, Vol 5, No 2, J u n e 1979

The Destgn of a User Interface for a Sparse Matrix Package • 145

down) and executing RESTRT. If (a) or (b) occurs, information is supplied
indicating the minimum value of MAXS needed so that at least (c) will occur
upon reexecution. If (c) occurs, the minimum value of MAXS needed for (d) and
(e) is provided.

When (b) or (c) occurs, after executing SAVE, adjusting our storage declara-
tions, and executing RESTRT, we must again call ORDERL However, the
interface will detect that the ordering has already been found, and will skip that
part of the computation. Note that if the user is simply using the package to
select a particular method, (c) may be an acceptable termination state.

3.5 Input of the Numerical Values for A and b

After having successfully set up the data structure for L, and determined that
enough storage for the numerical values is available, the user may now input the
actual numerical values for A and b. The position of Step 7 in the sequence of
steps in Section 3.1 is arbitrary; the only restriction is that numerical values for
b should be input after Step 4 has been executed, and before Step 8 is executed.
Numbers can be transmitted by subroutine calls of the form

CALL INBI(I, VALUE, S)

where I refers to the subscript of the original given ordering, and not Pb. Similarly,
input of the numerical values of A is achieved by repeated subroutine calls of the
form

CALL INAIJz(I, J, VALUE, S)

where again I and J refer to the subscripts of the unpermuted A, and VALUE is
the numerical value of A,~. Thus the user is insulated from the fact that the
problem, as he knows it, has been permuted. Note that there is a different matrix
input subroutine for each method, because the data structures used are different.
However, the parameter lists for all the methods are the same, and the subroutine
names are the same except for the last digit which distinguishes the method.

In some situations, such as in certain finite-element applications, the values of
A,j and b, are obtained in an incremental fashion. That is, A,j may be equal to
VALUE1 + VALUE2, with VALUE1 and VALUE2 being computed at different
steps in the user's program, which is utilizing the sparse matrix package. For this
reason, INAIJi simply adds VALUE to the appropriate current value of A,~ in

a

storage rather than making an assignment; we can then handle such incremental
calculation of numerical values. The same remarks apply to treatment of the
right-hand side. Note that this strategy implies that the storage used for L and b
must be initially set to zero before numerical values of A and b are supplied. This
initialization is performed automatically by the interface during the first calls to
INAIJi and INBI, through the use of a "state variable" called STAGE, discussed
in Section 4.3.4.

Our package has no provisions for explicitly storing the nonzero components of
A in compact form, which implies that the position of Step 5 in the sequence of
tasks in Section 3.1 is significant. The nonzero components of A supplied by the
user are placed directly into the data structure for L, and are overwritten by L
during the factorization of the matrix. Thus the numerical values of A and b
cannot be accepted by the package until the determination of the structure of L

ACM Transactions on Mathematical Software, Vol. 5, No 2, June 1979

146 A. George and J. W. H. Liu

has been completed. The advantage of this approach is that it conserves storage;
storage used for the ordering and data structure setup can be reused to store the
numerical values. Moreover, once the permutation P and the data structures are
determined, the matrix structure of A is not needed by the package, and can be
(and is) discarded. Finally, our experience is that in many applications the
structure of A is known much earlier than its numerical values anyway.

This decision to put the numerical values of A directly into the space to be
occupied by L has a disadvantage as well. Obviously, if the (i, j) pairs for which
Av ~ 0 and the numerical values A v are naturally available at the same time, the
user must save the numerical values until after O R D E R / h a s been successfully
executed. Our advice is to write out the (/, J , Av) triples on an auxiliary file at the
same time INIJ(I, J, S) is called, and then later read the file and insert the
numerical values using INAIJi. The right-hand side b can be handled similarly if
it is inconvenient to compute the components of b when needed.

3.6 The Numerical Computation

The algorithm used to perform the numerical computation is the standard
Cholesky method. The actual implementations obviously vary across the meth-
ods, since different data structures are involved. However, this again is a fact that
should not concern the user.

Up to this point we have distinguished between the factorization and solution
steps, but in the actual interface both steps are initiated by the single Fortran
statement.

CALL SOLVEi(S)

where S is the working storage array for the package, provided by the user.
It turns out that enough information can be retained by the interface to allow

the user to handle the various possible situations discussed in Section 2 (multiple
problems having a common structure, multiple right-hand sides, etc.). Again
through the use of the state variable STAGE, discussed in Section 4.3.4, the
interface can detect upon entry to SOLVE/ whether the factorization of the
matrix has already been performed, and bypass executing that part of the module.

4. IMPLEMENTATION AND FEATURES

In the previous two sections we have discussed the functional capabilities and
design objectives of the package. We now examine some implementation details
of the interface. We begin by displaying a skeleton program which illustrates how
simple it is to use the package. The labeled COMMON block USER is discussed
in Section 4.2.

COMMON/USER/MSGLVL, IERR, MAXS
REAL S(10000)
MAXS-- 10000
CALL START
CALL INIT

(Input of adjacency pairs by repeated use of CALL INIJ(I, J, S)}
CALL IJEND(S)
CALL ORDERi(S)

ACM Transac t ions on Mathemat ica l Software, Vol 5, No. 2, June 1979.

The Design of a User Interface for a Sparse Matrix Package • 147

{Input of the matrix nonzeros by repeated use of CALL INAIJt(I, J, AIJ, S)}
{Input of the right-hand side by repeated use of CALL INBI(I, BI, S)}

CALL SOLVEs{S)

{Solution is now in the first N locations of S}

STOP
END

Figure 1 shows tha t the user is comple te ly insulated f rom all the sparse mat r ix
routines; communica t ion is made possible via a handful of interface modules. In
other words, the interface serves as a bridge be tween the user and the set of
sparse mat r ix rout ines and at the same t ime it provides communica t ion among
the mat r ix routines. Communica t ion is done th rough c o m m o n blocks, mos t of
which need not even be considered by the user. We shall discuss t h e m in detail
in what follows.

4.1 Instal latton Dependent Parameters

T h e package contains a small labeled C O M M O N block /SYSTEM/ which
contains three instal lat ion dependen t variables:

C O M M O N / S Y S T E M / I P R N T R , RATIO, TIME

T h e variables I P R N T R and R A T I O are set in the subrout ine S T A R T ; the fo rmer
is the uni t n u m b e r for the pr in ter and the la t ter is used to allow the package to
exploit shor t integer features available in some For t ran dialects (see Sect ion
4.3.5).

In order to supply t iming information, the package assumes the existence of a
real function D T I M E which re turns the processor execution t ime tha t has e lapsed
since D T I M E was last referenced. Thus , a D T I M E function m u s t be supplied for

USER

START

INIT

INIJ

IJEND

ORDER SPARSE

INAIJ" MATRIX

' ~ INBI ROUTINES

SOLVE'

SAVE

RESTR"

PSTAT~

USER INTERFACE

ROUTINES

Fig. 1. RelaUonshlp of the user, the interface subroutines, and the sparse matrix subroutines
ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979

148 A. George and J. W. H. Liu

each installation of the package. The variable TIME is provided to facilitate the
writing of this function. For example, sometimes the installation timer provides
the elapsed time since the user program began execution; the variable TIME can
be used to provide the function DTIME with "memory," so it can return the time
elapsed since it was last called.

4.2 User /Module Commumcation

As noted in Section 3, the user supplies a one-dimensional real array S, from
which all array storage is allocated. In particular, the interface allocates the first
N storage locations in S for the solution vector of the linear system. After all the
interface modules for a particular method have been successfully executed, the
user can retrieve the solution from these N locations.

There is one labeled COMMON block that the user must provide, having three
variables:

COMMON/USER/MSGLVL, IERR, MAXS

The variable MAXS is the declared size of the one-dimensional array S and it
must be set by the user at the beginning of his program. For each module in the
interface that allocates storage (e.g. INIJ, IJEND, ORDER/), MAXS is used to
make sure there is enough storage to carry out the particular phase.

When a fatal error is detected, so that the computation cannot proceed, a
positive code, indicating the type of error that occurred, is assigned to IERR.
The user can simply check the value of IERR to see if the execution of an
interface module has been successful. This error flag can be used in conjunction
with the save/restart feature to retain the results of successfully completed parts
of the computation, as shown by the program fragment that follows:

CALL ORDERt(S)
IF (IERR .EQ. 0) GO TO 100
CALL SAVE(3, S)
STOP
100 CONTINUE

In case an error is found in ORDER/, unit 3 will be used to save the relevant
data in the storage array. The contents of the data saved could be the adjacency
structure of the matrix, the ordering, or the ordering together with the data
structure (depending on what went wrong, as discussed in Section 3.3).

The first variable MSGLVL i n / U S E R / s t a n d s for "message level," and governs
the amount of information printed by the interface modules. Its default value is
two, and for this value a relatively small amount of summary information is
printed, indicating the completion of each phase and the values of some important
numbers, such as the amount of storage used by each module. When MSGLVL
is set to one by the user, only fatal error messages are printed; this option could
be useful if the package is being used in the "inner loop" of a large computation,
where even summary information would generate excessive output. Increasing
the value of MSGLVL (up to four) provides increasingly detailed information
about the computation.
ACM Transactions on Mathematmal Software, Vol 5, No. 2, June 1979

The Design of a User Interface for a Sparse Matrix Package • 149

In many circumstances, our package will be embedded in still another "super"
package which models phenomena which produce sparse matrix problems. Mes-
sages printed by our package may be useless or even confusing to the ultimate
users of this super package, or the super package may wish to field the error
conditions and perhaps take some corrective action which makes the error
messages inapplicable. (See Section 4.3.2 for an example.) Thus all printing by
the package can be inhibited by setting MSGLVL to zero.

If all phases of a method execute successfully, the user may want to obtain
statistics of the particular run, in addition to the solution vector. In view of this,
the package provides a COMMON block for statistics.

COMMON/STATS/ORDTIM, ALOCTM, FCTIME, SLVTIM, FCTOPS, SLVOPS,
ORDSTR, ALOSTR, SLVSTR, OVERHD

where

ORDTIM
ALOCTM
FCTIME
SLVTIM
FCTOPS
SLVOPS
ORDSTR
ALOSTR
SLVSTR
OVERHD

time used to find the ordering;
time used for data structure setup;
time used for the factorization step;
time used for the triangular solution step;
number of operations required by the factorization step;
number of operations required by the triangular solution;
storage used for the ordering subroutine;
storage used for the data structure of the permuted system;
storage used by the SOLVE/module;
overhead storage for the problem.

However, the user does not have to know anything abou t /STATS/ . All he
needs to supply is the statement

CALL PSTATS

at the end of his run to get the required information.
If the package is used as described in Section 2 to select a method, PSTATS

could be called after executing ORDER/ for each i, thus providing storage
information for each method. Of course, the user could also obtain the storage
information during execution by including the STATS common declaration in
his program and examining the appropriate variables.

4.3 Module /Module Commumcat~on

There are two labeled COMMON blocks used for communication among modules
within the interface. They are the control block and the storage map block:

/CNTROL/ STAGE, MXUSED, MXREQD, NEQNS, NEDGES, METHOD,
(other method-related control variables}

/SMAP/ PERM, INVP, RHS,
(data structure pointers}

T h e / C N T R O L / b l o c k has 10 integer variables and contains control information
about the specific run. There are 15 variables in t h e / S M A P / b l o c k and they
form a storage map of the array S.

4.3.1 Locations of Storage Arrays. Since storage management is the respon-
ACM Transact ions on Mathematmal Software, Vol. 5, No. 2, June 1979

150 A. George and J. W. H. Liu

sibility of the interface, it must be able to tell the various modules where data
should be stored or has been stored. The 15 variables in t h e / S M A P / b l o c k are
used to keep the locations (origins in S) of the various arrays used in the particular
storage scheme. These storage schemes differ in complexity across the methods,
so the s a m e / S M A P / b l o c k must be used in the corresponding routines ORDER/,
INAIJi, and SOLVE/.

In Figure 2, there is an example of the storage allocation for the symmetric
envelope method [3]. Since three vectors are sufficient for the matrix structure,
the cor responding/SMAP/could be

/SMAP/ PERM, INVP, RHS, DIAG, XENV, ENV, IPAD(9)

4.3.2 Save~Restart Implementation. The SAVE routine saves the control
information in /CNTROL/ , the storage pointers in /SMAP/ , as well as the
storage vector S. In this way, the state of the computation can be reestablished
by executing RESTRT, which restores t h e / C N T R O L / a n d / S M A P / b l o c k s , and
the vector S. The first statement in R E S T R T is a call to START.

The variable MXUSED i n / C N T R O L / i s used to avoid saving irrelevant data
from S. After the successful completion of each phase, MXUSED is set to the
maximum number of storage locations used thus far. It is then only necessary to
save the first M X U S E D locations of S whenever the routine SAVE is called.

Some operating systems allow a program to change the space it occupies in
main storage during execution. Thus in some installations the user of our package
might be able to increase or decrease dynamically the size of the working storage
S. He can determine what the value of MAXS should be by declaring the common
block CNTROL in his mainline program, and examining the value of MXREQD.
At the end of each successfully executed phase of the computation, MXREQD is

Ms

PERM

INVP

XENV >

DIAG

ENV i"-

right-hand slde vector

permutation vector

inverse permutation vector

index to envelope structure

dlagonal of the matr]x

envelope of the matrix

Fig 2 Storage allocation for the symmet r i c envelope m e t h o d

ACM Transactions on Mathematmal Software, Vol 5, No 2, June 1979

The Design of a User Interface for a Sparse Matrix Package 151

set to the minimum value of MAXS required to execute the next phase of the
computation successfully.

It is often the case that when this dynamic growth of program space is provided,
the effect is to increase the space allocated to unlabeled COMMON, which is
usually assigned the highest memory locations in the user's program area. In such
a circumstance the array S in the user's program would have to be declared in
blank common.

In this connection, we might have asked the user of our package always to
declare S in a blank or labeled common block, and consequently avoided having
the parameter S appearing in all our interface modules. While there were
advantages and disadvantages to this, we felt that in balance our current decision
allowed the user somewhat more flexibility. In some applications the array S
which the user passes to the sparse matrix package may actually be a segment of
the user's own working storage arrays, where MAXS is simply the amount of
that array left over by his own program's computation. It is sometimes inconven-
ient to arrange that the storage made available to the package be in blank
common, or an appropriately labeled common block.

4.3.3 Method Checking. As we discussed in Section 2, using a particular
"method" means calling the appropriate interface routines ORDER/, INAIJi,
and SOLVE/, where the last character is a numerical digit denoting the method.
These ordering, input, and solve modules cannot be mixed since they in general
involve different data structures for L. In order to ensure that these modules are
not inadvertently mixed by the user, ORDER/sets the variable METHOD equal
to i, and this variable is checked by subsequently executed modules INAIJi and
SOLVE/.

4.3.4 Stage (Sequence) Checking. Another control variable that deserves spe-
cial consideration is the STAGE code. As its name implies, it is used to keep
track of the current step or stage of the execution. This variable is particularly
important in connection with the save/restart feature. In restarting the system
using the RESTRT routine, the STAGE code i n / C N T R O L / i s restored, and it
indicates the last successfully completed stage before the routine SAVE was
called. In this way, the execution can be restarted without repeating already
successfully completed steps.

Another function of this variable is to enforce the correct execution sequence
of the various interface routines. Before the actual execution of each routine, the
STAGE code is used to check that all previous modules have been successfully
completed. This avoids producing erroneous results due to improper processing
sequences, or accidental omission of steps.

The content of the variable STAGE is only changed after a phase has been
successfully executed. When an error occurs during the execution of the phase,
the STAGE code remains unchanged. This prevents the execution of all the
subsequent phases, even if they are invoked by the user. As mentioned in Sections
3.4 and 3.5, STAGE is also used by the modules to determine whether some
initialization is necessary in a module, or whether part of the module has already
successfully executed during a previous call to it.

4.3.5 Storage Allocatmn of Integers and Floating Point Arrays. The ANSI
Fortran standard specifies that the numbers of bits used to represent integers
and floating point numbers are the same. However, many vendors provide the

ACM TransacUons on Mathematical Software, Vol. 5, No. 2, June 1979.

152 A. George and J. W. H. Liu

user with the option of specifying "short" integers, either explicitly in declarations
such as "INTEGER*2" or via a parameter to the Fortran processor which
automatically represents all integers using fewer bits than used for floating point
numbers. Since a significant portion of the storage used in sparse matrix com-
putation involves integer data for pointers, subscripts, etc., it is desirable to try to
exploit these short integer features when it makes sense to do so.

Our interface contains a variable RATIO, set in the module START, which
specifies the ratio of the number of bits used for floating point numbers to the
number used for integers. In our package, floating point arrays are declared
REAL, integer arrays are declared INTEGER, and RATIO is set to 1. However,
if the size of the integer representation is halved (either through changing the
integer array declarations, or specifying a system parameter, or by some other
mechanism), then the only change required is to set RATIO to 2 in START. The
interface then uses RATIO to allocate only [p/RATIO1 elements of S for integer
arrays of length p.

Since a substantial portion of the real storage vector S is allocated for integer
arrays, the provision for different lengths of integer and floating point numbers
may lead to word boundary problems, when the integer arrays are passed to the
sparse matrix routines. This is overcome by always starting each array at a
boundary of a floating point number in S. In other words, the storage pointers in
/ S M A P / a r e defined with respect to the storage vector S.

The variable RATIO would also be set to 2 if the floating point arrays were
declared to be double precision. However, we assume that the declaration of S
that the user makes in his program is of the same type as that used for the
floating point computation, so the user's declaration of the working storage array
would also have to be double precision. We also make the reasonable assumption
that RATIO >_ 1.

5. CONCLUDING REMARKS

The numerous examples supplied in the Appendix serve to illustrate that the
interface meets the functional requirements outlined in Section 2. The error
messages printed also illustrate how the use of the internal parameters METHOD
and STAGE discussed in Section 4 serve to protect the user from many of the
potential blunders.

It is a relatively simple task to include an additional layer of software around
the various ORDER/, INAIJi, and SOLVE~ modules, to provide an automatic
method-selection feature in the package. The user would then call SELECT,
INAIJ, and SOLVE, where SELECT would determine the value of the internal
variable METHOD by calling each ORDER/, and INAIJ and SOLVE would call
the appropriate INAIJi and SOLVE/ modules according to the value of
METHOD. Of course, the selection of the method could depend on various
criteria, so SELECT might have some parameters.

There are advantages and disadvantages associated with this second layer of
software. One advantage is that the user must remember even less about the
package in order to use it, and will use the most efficient method (according to
the criterion SELECT uses). There is a danger with the package as it stands in
that a user may simply choose a method and not bother investigating other
possibly more efficient ones included in the package. Obviously there is a tradeoff
ACM Transac t ions on Mathematmal Software, Vol 5, No 2, June 1979

The Design of a User Interface for a Sparse Matrix Package • 153

here that is difficult to quantify, since SELECT exacts a price which might offset
any gains realized through choosing the best method. However, in cases where
many problems having the same structure must be solved, it would appear that
a strong case could be made for having a SELECT module in the package.

We regard the case for having general INAIJ and SOLVE modules as much
weaker than that for having a SELECT module. The main disadvantage is that
under most operating system environments, all the INAIJi and SOLVE/modules
of the package would be loaded during execution of SOLVE, even though only
one of each would be actually executed. This problem was solved in the EISPACK
system [5] on IBM computer systems by using the execution time linking and
loading features provided by OS/360. However, we reject this approach because
not all operating systems provide such facilities. To summarize this point, we
regard a SELECT module as desirable and plan to include one in a future version
of the package. However, we do not think the advantages of having a general
INAIJ and SOLVE warrant their inclusion.

The use of the interface routines INIJ and INAIJi provides great flexibility in
the input of the matrix structure and matrix components. However, for systems
with large overhead in subroutine calls, the repeated use of INIJ and INAIJi can
be expensive. In view of this, the package includes interface routines which allow
the input of an entire row or subarray of nonzero subscripts and nonzero
components. This can be useful when the structure and nonzeros are available in
a more structured manner.

At the moment, all our sparse matrix software lies within the portable subset
of Fortran specified by the PFORT verifier [4]. The same applies to the interface
routines, with only one exception: array types are allowed to change across
subroutines. We do not regard this as a serious violation, since it is tolerated and
handled uniformly by most systems. As described in Section 4.3.5, we have been
careful to allocate storage for arrays in such a way as to avoid the alignment
problems which sometimes occur, particularly on IBM 360/370 systems, when
array types are mixed in this way.

We should point out that in order for a user program to be standard Fortran,
all common blocks appearing in the interface routines referenced by the user
must be declared in the user's program. However, we know of no system which
actually requires these declarations to appear, so in practice, only the common
block USER needs to be declared.

One of our objectives in creating the interface was to reduce the time and effort
required to use our sparse matrix software. We feel this objective has been
achieved. The parameter lists for the various interface modules are short, and
apart from the storage array S, they all mean something specific to the user and
his problem. Furthermore, except for the last character in the module names
(which distinguishes the method), the names of the modules are the same across
the various methods. Thus there are relatively few things for the user to remem-
ber.

APPENDIX

In this Appendix we provide several mainline programs which illustrate how the
package can be used in the various modes discussed in Section 2. In order to keep
the programs short, we utilize the subroutines GRID, GRIDA, GRIDB1,
GRIDE1, GRIDB2, and GRIDE2; the Fortran listings of the first four are given

ACM Transac t ions on Mathemat ica l Software, Vol. 5, No. 2, June 1979.

154 • A. George and J. W. H. Liu

below. An approximate solution to the Poisson equation u~ + uyy ffi f i s computed
on the domain R = (0, 1) x (0, 1), using the standard five-point difference operator
on an regular n by n grid, with grid points (ih, jh) , 1 <_ i <_ n, h = 1/(n + 1). The
subroutine GRID calls the sparse matrix package routines INIT, INIJ, and
IJEND to set up the structure of the coefficient matrix A. The subroutine GRIDA
calls the sparse matrix module INAIJ1 (since we use ORDER1 in all our
examples) to insert the numbers for A into the package. The subroutine GRIDB1
uses INBI to insert the appropriate right-hand side b so that the solution to the
continuous problem is u(x, y) ffi e ¢~+y>, and GRIDE1 computes the error in the
computed (discrete) solution. The subroutines GRIDB2 and GRIDE2 are analo-
gous, except the solution to the problem they treat is u(x, y) ffi sin(x - y).

The programs were run under the WATFIV debugging compiler, developed at
the University of Waterloo, on an IBM 360/75 computer. Since the code generated
by the compiler has extensive error-checking overhead, the execution times are
quite large. All times reported are in seconds.

*

C* * * * * * * * * * GRID N BY N GRID GENERATOR * * * * * * * * *

C
C PURPOSE - THIS SUBROUTINE GENERATES AN N BY N GRID
C STRUCTURE BY REPEATED CALLS TO INIJ.
C
C INPUT PARAMETERS-
C N - SIZE OF THE GRID (IMPLIES THAT THE
C NUMBER OF EQUATIONS IS N**2)
C S - WORKING STORAGE VECTOR
C

C
SUBROUTINE GRID(N, S)

C

REAL S(1)
INTEGER SUB, I , J, IJ , N

C
C SUB MAPS THE COORDINATES (l , J) OF THE GRID ONTO
C THE INTEGERS 1,2 N**2. THE SUBSCRIPTS
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW
C BY ROW ORDERING OF THE GRID.
c .

C .

C
CALL INIT

C
DO 200 1 = I , N

DO I00 J : 1, N
IJ = SUB(I,J)
IF (I .NE. 1) CALL INIJ(IJ , SUB(I-I , J) , S)
IF (J .NE. 1) CALL INIJ(IJ , SUB(I, J - l) , S)

I00 CONTINUE
200 CONTINUE

C
CALL IJEND (S)

C
RETURN

END

ACMTransactlonsonMathemaUc~ So~w~e, Vol, 5, No 2, June1979

The Design of a User Interface for a Sparse Matr ix Package • 155

C * ~ . ~ *
C * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * ~ * * ~ *
C* * * * * * * * GRIDA GRID COEFFICIENT GENERATOR * * * * * *
C * * * ~ *
C * ~ . ~ * * * * * * * * * * * * * * *
C
C PURPOSE - THIS SUBROUTINE GENERATES A COEFFICIENT
C MATRIX FOR THE 5-POINT DIFFERENCE OPERATOR FOR
C AN N BY N GRID.
C
C INPUT PARAMETERS-
C N - SIZE OF THE GRID (IMPLIES THAT THE
C NUMBER OF EQUATIONS IS N**2)
C S - WORKING STORAGE VECTOR
C
C * * * * * ~ * * * * * * * * * * * * * * * ~ * ~ * * * * * * * * * ~ *
C

SUBROUTINE GRIDA (N, S)
C
C * ~ * * ~ * * * * * * * * * * * * * * ~ * * ~ * * * * * ~ * * ~ * * * * * * * * ~ * * * * * * * * * * * * * * * *

REAL S(I)
INTEGER SUB, I , J, IJ , N

C * * * * * * * * * * * * * ~ * * * ~ * * * * * * * * ~ . ~ * * * * * * * ~ * * * * ~ * * * * * * * * * * * * * * * *
C
C SUB MAPS THE COORDINATES (l , J) OF THE GRID ONTO
C THE INTEGERS 1,2 N**2. THE SUBSCRIPTS
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW
C BY ROW ORDERING OF THE GRID.
c .

C .
C

DO 2001 = I , N
DO I00 J = I , N

IJ : SUB(I,J)
CALL INAIJI(IJ , IJ , 4 .0, S)
IF (I .NE. 1)

1 CALL INAIJI (I J , SUB(I - I , J) , - I . 0 , S)
IF (J .NE. 1)

1 CALL INAIJI (I J , SUB(I ,J - I) , - I . 0 , S)
I00 CONTINUE
200 CONTINUE

C
RETURN

END
C * * * * ~ *
C * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * ~ *
C****** GRIDBI. GENERATES A RIGHT HAND SIDE FOR A * * * * * * * * *
C***** * FIVE POINT DIFFERENCE OPERATOR ON AN N BY N * * * * * * * *
C***** * GRID. THE DOMAIN OF THE PROBLEM IS ASSUMED TO * * * * *
C****** BE (0 , I) X (0 , I) , SO THE MESH WIDTH H IS I / (N + I) . * * *
C***** * THE BOUNDARY CONDITIONS AND THE TRUE SOLUTION * * * * * *
C***** * ARE PROVIDED BY THE STATEMENT FUNCTION F (I , J) * * * * * *
C***** * WHICH EVALUATES THE FUNCTION F AT (X,Y) , WHERE * * * * *
C***** * X = I*H AND Y = J*H. *
C * * * ~ * ~ * * * * ~ * ~ * * * * * * * * * * * * * * ~ *
C * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * *
C
C INPUT PARAMETERS°
C N - SIZE OF THE GRID (IMPLIES NEQNS : N**2)
C S - WORKING STORAGE VECTOR
C

C
SUBROUTINE GRIDB](N, S)

C

ACMTransactlonsonMathemat~calSo~ware, Vol 5, No. 2, June 1979.

156 A. George and J. W. H. L~u

REAL S(1), H, H2
INTEGER SUB, I , J, IJ, N

C
C SUB MAPS THE COORDINATES (I ,J) OF THE GRID ONTO
C THE INTEGERS 1 ,2 , . . . ,N* '2 . THE SUBSCRIPTS
C GENERATED BY SUB CORRESPOND TO THE STANDARD ROW
C BY ROW ORDERING OF THE GRID.
C .

SUB(II, JJ) = (I I - l)*N + JJ
C
c
C RIGHT HAND SIDE IS ADJUSTED SO THAT F IS ALSO THE
C TRUE SOLUTION TO THE PROBLEM, AS H GOES TO O.
C

F(I I , JJ) = EXP(FLOAT(II)*H + FLOAT(JJ)*H)

C
H =].O/FLOAT(N + l)
H2 = H*H

C
DO 200 I = l , N

C
CALL INBI(SUB(I,I), F(I,O), S)
CALL INBI(SUB(I,N), F(I,N+I), S)
CALL INBI(SUB(I,I), F(O,I), S)
CALL INBI(SUB(N,I), F(N+I,I), S)

C
DO]OO J = l , N

CALL INBI(SUB(I,J), -2.0*H2*F(I,J), S)

lO0 CONTINUE
C

200 CONTINUE
C

RETURN
END

C****** GRIDEI..COMPUTES THE ERROR FOR THE N BY N GRID ****
C****** PROBLEM GENERATED BY GRIDA AND GRIDB]. ***********

C
C INPUT PARAMETERS-
C N - SIZE OF THE GRID (IMPLIES NEQNS = N**2)
C S - WORKING STORAGE VECTOR
C OUTPUT PARAMETER-
C ERROR - THE MAXIMUM ERROR IN THE COMPUTED
C SOLUTION.
C

C
SUBROUTINE GRIDE] (N, S, ERROR)

C

REAL S(1), H, H2, ERROR
INTEGER SUB, I , J, IJ, N

C
C SEE COMMENTS IN GRIDBI ON SUB AND F.
C .

SUB(II, JJ) = (I f - l)*N + JJ
F(I I , JJ) = EXP(FLOAT(II)*H + FLOAT(JJ)*H)

ACM Transac tmns on Mathemat ica l Software, Vol 5, No. 2, June 1979

The Design of a User Interface for a Sparse Matr ix Package • 157

C
H = I.O/FLOAT(N + I)
H2 : H*H
ERROR : 0.0

I00
200

DO 200 1 : I , N
DO I00 J = I , N

I a : SUB(I, J)
ERROR : AMAXI(ERROR, ABS(F(I,J) - S(IJ)))

CONTINUE
CONTINUE

RETURN
END

E x a m p l e 1

This is an example of the simplest use of the package, with each of the modules
of method 1 used in sequence. The structure of A is input by GRID, which uses
INIT, INIJ, and IJEND. After ORDER1 is executed, GRIDA and GRIDE1
generate the numerical values of A and b, respectively, and transmit them to the
package using the interface modules INAIJ1 and INBI. The module SOLVE1 is
called to do the numerical solution, and then PSTATS is called to print out the
statistics gathered by the interface during execution. Finally GRIDE1 is called to
compute the error in the computed approximate solution.

COMMON /USER/ MSGLVL, IERR, MAXS
REAL S(250)

CALL START
MAXS = 250
N = 5
CALL GRID(N, S)
CALL ORDER1(S)
CALL GRIDA(N, S)
CALL GRIDBI(N, S)
CALL SOLVE1 (S)
CALL PSTATS
IF (IERR .GT. 0) STOP
CALL GRIDEI(N, S, ERROR)
WRITE(6, I I) ERROR

I I FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6)
STOP

END

INIT- INITIALIZATION

INIJ- INPUT OF ADJACENCY PAIRS

IJEND- END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING
NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40

SIZE OF THE ENVELOPE 90
BANDWIDTH 5

INAIJI- INPUT OF MATRIX COMPONENTS

ACM Transact ions on Mathemat ica l Software, VoL 5, No. 2, June 1979

158 A. George and J. W. H. Liu

INBI- INPUT OF RIGHT HAND SIDE

SOLVE1- ENVELOPE SOLVE

PSTATS- STATISTICS
TIME FOR ORDERING 0 . I I 0
STORAGE FOR ORDERING 182.
TIME FOR ALLOCATION 0.020
STORAGE FOR ALLOCATION I01.
STORAGE FOR SOLUTION 216.
OVERHEAD STORAGE 76.
TIME FOR FACTORIZATION 0.120
TIME FOR SOLVING 0.080
OPERATIONS IN FACTORIZATION 320.
OPERATIONS IN SOLVING 230.

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

Example 2

This example is the same as Example 1, except after solving the problem
corresponding to GRIDB1, a new right-hand side is input using GRIDB2, corre-
sponding to a different problem. When the module SOLVE1 is called a second
time, the interface detects that the factorization has already been done, and only
the triangular solution is performed.

COMMON /USER/ MSGLVL, IERR, MAXS
REAL S(250)

CALL START
MAXS = 250
N = 5
CALL GRID(N, S)
CALL ORDERI(S)
CALL GRIDA(N, S)
CALL GRIDBI(N, S)
CALL SOLVE1 (S)
CALL GRIDEI(N, S, ERROR)
WRITE(6, I I) ERROR

I I FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6)
CALL GRIDB2(N, S)
CALL SOLVE1 (S)
CALL GRIDE2(N, S, ERROR)
WRITE(6, I I) ERROR
STOP

END

INIT- INITIALIZATION

INIJ- INPUT OF ADJACENCY PAIRS

IJEND- END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING
NUMBER OF EQUATIONS
NUMBER OF EDGES IN GRAPH

SIZE OF THE ENVELOPE
BANDWIDTH

INAIJI- INPUT OF MATRIX COMPONENTS

ACMTransac~onsonMathematlc~ Softw~e, Vol 5, No 2, June1979.

25
40

90
5

The Des=gn of a Userlnterface for a Sparse Matrix Package • 159

INBI- INPUT OF RIGHT HAND SIDE

SOLVE1- ENVELOPE SOLVE

MAXIMUM ERROR IN THE SOLUTION 0.94599lE-03

INBI- INPUT OF RIGHT HAND SIDE

SOLVE1- ENVELOPE SOLVE
FACTORIZATION ALREADY DONE.

MAXIMUM ERROR IN THE SOLUTION 0.454187E-04

Example 3

This example is almost identical to Example 2, except it inustrates how problems
having the same structure but differing in both A and b can be solved. After
solving the first problem, both GRIDB2 and GRIDA are called, thus simulating
a completely new numerical problem to be processed.

COMMON /USER/ MSGLVL, IERR, MAXS
REAL S(250)

CALL START
MAXS = 250
N = 5
CALL GRID(N, S)
CALL ORDERI(S)
CALL GRIDA(N, S)
CALL GRIDBI(N, S)
CALL SOLVE1 (S)
CALL GRIDEI(N, S, ERROR)
WRITE(6, I I) ERROR

I I FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6)
CALL GRIDA(N, S)
CALL GRIDB2(N, S)
CALL SOLVE1 (S)
CALL GRIDE2(N, S, ERROR)
WRITE(6, I I) ERROR
STOP

END

INIT-

INIJ-

IJEND-

INITIALIZATION

INPUT OF ADJACENCY PAIRS

END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING
NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40

SIZE OF THE ENVELOPE 90
BANDWIDTH 5

INAIJI- INPUT OF MATRIX COMPONENTS

INBI- INPUT OF RIGHT HAND SIDE

SOLVE1- ENVELOPE SOLVE

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

A C M Transactions on Mathematmal Software, VoL 5, No. 2, J u n e 1979

160 A, George and J. W, H. Liu

INAIJI- INPUT OF MATRIX COMPONENTS

INBI- INPUT OF RIGHT HAND SIDE

SOLVE]- ENVELOPE SOLVE

MAXIMUM ERROR IN THE SOLUTION 0.454187E-04

Example 4

This example illustrates the use of the checkpoint/restart feature of the package.
After the factorization is computed, SAVE is executed, which writes the current
state of the computation on Fortran logical unit 3. The module RESTRT is then
executed to read the information from unit 3, and the computation resumes at
the point at which SAVE was invoked.

] I

COMMON /USER/ MSGLVL, IERR, MAXS
REAL S(250)

CALL START
MAXS = 250
N = 5
CALL GRID(N, S)
CALL ORDER](S)
CALL GRIDA(N, S)
CALL SOLVE1 (S)
CALL SAVE(3, S)

THE NEXT DAY

CALL RESTRT(3, S)
CALL GRIDB](N, S)
CALL SOLVE1 (S)
IF (IERR .GT. 0) STOP
CALL GRIDEI(N, S, ERROR)
WRITE(6, I I) ERROR
FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION
STOP

END

INIT-

INIJ-

IJEND-

INITIALIZATION

INPUT OF ADJACENCY PAIRS

END OF ADJACENCY PAIRS

ORDER]- RCM ORDERING
NUMBER OF EQUATIONS
NUMBER OF EDGES IN GRAPH

SIZE OF ENVELOPE
BANDWIDTH

INAIJI- INPUT OF MATRIX COMPONENTS

SOLVE]- ENVELOPE SOLVE
NO RIGHT HAND SIDE PROVIDED,
SOLUTION WILL BE ALL ZEROS.

SAVE- STORAGE VECTOR SAVED

RESTRT- RESTART SYSTEM

ACM Transactions on Mathematical Software, Vol 5, No 2, June 1979

25
40

90
5

, E14.6)

The Design of a User Interface for a Sparse Matr ix Package 161

INBI- INPUT OF RIGHT HAND SIDE

SOLVE1- ENVELOPE SOLVE
FACTORIZATION ALREADY DONE.

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

Example 5

The first part of this example illustrates a situation where there was sufficient
storage provided to input the adjacency structure but insufficient storage to
execute the ordering algorithm.

After the value of MAXS is adjusted, the second part of the example shows
that the new MAXS is not large enough for SOLVE1 to execute successfully.
This situation is detected by ORDER1, which sets IERR positive. The modules
INAIJ1 and INBI detect the error condition and do not increment STAGE,
hence the error message from SOLVE1.

COMMON /USER/ MSGLVL, IERR, MAXS
REAL S(250)

CALL START
MAXS = 150
N = 5
CALL GRID(N, S)
CALL ORDER1(S)
MAXS = 200
IERR = 0
CALL ORDER1(S)
CALL GRIDA(N, S)
CALL GRIDBI(N, S)
CALL SOLVE1 (S)
IF (IERR .GT. 0) STOP
CALL GRIDEI(N, S, ERROR)
WRITE(6, I I) ERROR

I I FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14,6)
STOP

END

INIT- INITIALIZATION

INIJ- INPUT OF ADJACENCY PAIRS

IJEND- END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING
NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40

ORDER1- ERROR NUMBER 23
INSUFF STORAGE FOR ORDERING
MAXS MUST AT LEAST BE 182

ORDER1- RCM ORDERING
NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40

SIZE OF THE ENVELOPE 90
BANDWIDTH 5

ORDERI- ERROR NUMBER 26

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979.

162 A. George and J. W. H. L=u

INSUFF STORAGE FOR SOLVE1,
MAXS MUST AT LEAST BE 216

SOLVEI- ENVELOPE SOLVE

SOLVE]- ERROR NUMBER 5]
INCORRECT EXECUTION SEQUENCE,
NUMERICAL INPUT ROUTINES MUST BE
SUCCESSFULLY EXECUTED BEFORE SOLVE]

REFERENCES
1. BROWN, W.S. An operating environment for dynamlc-recurslve computer programming systems.

Comm. ACM 8, 6 (June 1965), 371-377.
2. GENTLEMAN, W.M., AND GEORGE, A. Sparse matrix software. In Sparse Matrix Computattons,

J.R. Bunch and D.J. Rose, Eds., Academic Press, New York, 1976, pp. 243-261.
3. LIu, J.W.H. On reducing the profile of sparse symmetric matrices, Rep. CS-76-07, Dept. of

Comptr. Sci., U. of Waterloo, Waterloo, Ont., Canada, Feb. 1976.
4. RYDER, B.G. The PFORT verifier. Software--Practice and Expertence 4 (1974), 359-377.
5. SMITH, B.T., BOYLE, J.M., GARBOW, B.S., IKEBE, Y., KLEMA, V C., AND MOLER, C B. Lecture

Notes m Computer Scwnce, Matrix E~gensystem Routines Eispack Gutde Springer Verlag, New
York, 1974.

6. USA Standard Fortran. ANS X3.9-1966, Amer. Nat. Stand. Inst., New York, 1966.

Received July 1977

ACM Transactlor~ on Mathematical Software, Vol 5, No. 2, June 1979

