
Partitioning Hypergraphs is Hard: Models, Inapproximability,
and Applications

Pál András Papp

pal.andras.papp@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Georg Anegg
∗

ganegg@ethz.ch

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Albert-Jan N. Yzelman

albertjan.yzelman@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

ABSTRACT
We study the balanced 𝑘-way hypergraph partitioning problem,

with a special focus on its practical applications to manycore sched-

uling. Given a hypergraph on 𝑛 nodes, our goal is to partition the

node set into 𝑘 parts of size at most (1 + 𝜖) · 𝑛
𝑘
each, while mini-

mizing the cost of the partitioning, defined as the number of cut

hyperedges, possibly also weighted by the number of partitions

they intersect. We show that this problem cannot be approximated

to within a 𝑛1/poly log log𝑛 factor of the optimal solution in poly-

nomial time if the Exponential Time Hypothesis holds, even for

hypergraphs of maximal degree 2. We also study the hardness of

the partitioning problem from a parameterized complexity perspec-

tive, and in the more general case when we have multiple balance

constraints.

Furthermore, we consider two extensions of the partitioning

problem that are motivated from practical considerations. Firstly,

we introduce the concept of hyperDAGs to model precedence-

constrained computations as hypergraphs, and we analyze the adap-

tation of the balanced partitioning problem to this case. Secondly,

we study the hierarchical partitioning problem tomodel hierarchical

NUMA (non-uniform memory access) effects in modern computer

architectures, and we show that ignoring this hierarchical aspect of

the communication cost can yield significantly weaker solutions.

CCS CONCEPTS
•Theory of computation→Approximation algorithms anal-
ysis; Parallel computing models; Problems, reductions and complete-
ness.

KEYWORDS
Hypergraph, HyperDAG, Balanced partitioning, Parallel computing,

Approximation, Hierarchical NUMA

1 INTRODUCTION
One of the most fundamental graph problems is to partition the

node set of a graph into 𝑘 parts of similar size, while minimizing

the number of cut edges. Recently, the focus of this balanced 𝑘-way

partitioning problem has shifted from graphs to hypergraphs, where

a hyperedge can contain not only two, but an arbitrary number of

nodes.

∗
Author is currently affiliated with ETH Zurich, Switzerland.

©Pál András Papp, Georg Anegg, Albert-Jan N. Yzelman, 2023. This is the author’s full

version of the work, posted here for personal use. Not for redistribution. The definitive

version (extended abstract) was published in the 35th ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA 2023), https://doi.org/10.1145/3558481.3591087.

A prominent application of this problem is finding the most

efficient way to execute a complex computation in a parallel manner

on 𝑘 processors. That is, we can use each node 𝑣 of a hypergraph

to represent a specific step of a computation (e.g. a function call, or

in a more fine-grained model, a single operation). A hyperedge 𝑒 ,

on the other hand, represents a unit of data (e.g. an input or output

variable) in this computation that is shared by a given subset of

nodes; hence it would be desirable to execute the nodes of 𝑒 on

the same processor in order to avoid data movement. In such a

setting, the partitioning of the nodes into 𝑘 parts can be interpreted

as an assignment of the computational steps to the 𝑘 available

processors, and the balance constraint on the size of the parts

ensures that the workload is indeed sufficiently parallellized. On

the other hand, our objective is to cut as few hyperedges as possible,

which corresponds to minimizing the total communication cost
between the processors; this is indeed known to be the bottleneck

in many real-world computations.

The main advantage of this hypergraph model is that it allows

us to capture the communication cost accurately: if the hyperedge

𝑒 (representing the value of some variable) intersects 𝜆𝑒 out of the

𝑘 parts, then it takes exactly (𝜆𝑒 − 1) data transfer operations to
move this value from one of these processors (where it is initially

stored) to all others (where it is needed). In contrast to this, if we

try to model this connection between the same subset of nodes

𝑒 as a simple graph, then this will always result in an over- or

underestimation of the real cost in some cases [26, 27].

In this paper, we present new hardness results for the balanced

hypergraph partitioning problem, extending a 𝑛1/poly log log𝑛-factor
inapproximability bound which was only known for the similar

bisection problem before. More importantly, we show that this

hardness result already holds for hypergraphs of very small degree,

thus pointing out the crucial role of heuristics in practice.

Besides this general hardness result, we also study two further as-

pects of the partitioning problemwhich are both strongly motivated

by practical considerations. Firstly, we study the setting where we

also have dependencies (precedence relations) between the different

computational steps in our hypergraph, e.g. when modelling the

steps of an entire algorithm. We introduce the notion of hyperDAGs
to capture the communication cost of a parallel execution in this

case: this essentially combines the concept of computational DAGs

with the more accurate hyperedge-based modeling of communi-

cation costs. We study the partitioning problem on hyperDAGs

specifically.

Finally, we also define the hierarchical variant of the hypergraph

partitioning problem. This deals with an oversimplification from our

original model, namely, that the communication cost is assumed to

1

ar
X

iv
:2

20
8.

08
25

7v
2

 [
cs

.C
C

]
 5

 A
pr

 2
02

3

https://orcid.org/0009-0005-6667-802X
https://orcid.org/0000-0002-5730-5812
https://orcid.org/0000-0001-8842-3689

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

be uniform between any pair of processors. The majority of modern

computing architectures, however, are organized into a hierarchical

tree structure: several cores are connected to the same CPU, several

CPUs to the same RAM, and then we possibly have multiple such

units connected on a network level. Due to this, these architectures

exhibit highly non-uniform communication costs between different

pairs of processing units: transferring data between two cores on

the same processor only induces a small cost, whereas transferring

it through multiple levels of the hierarchy is much more time-

consuming. As such, for a realistic model of communication cost, it

is essential to also incorporate this hierarchical structure into the

partitioning problem.

Our main contributions are as follows:

• As our main result, we show that assuming the Exponential

Time Hypothesis (ETH), there is no polynomial-time approx-

imation algorithm of factor less than 𝑛1/poly log log𝑛 to the

𝜖-balanced hypergraph partitioning problem for any 𝑘 ≥ 2 or

𝜖 ≥ 0. Furthermore, this hardness result already applies for

practically relevant cases: it already holds if our inputs are

restricted to hyperDAGs of node degree at most 2.

• We define and analyze a special class of hypergraphs (hy-

perDAGs) that provide a more accurate model of capturing

I/O cost in computations modelled by DAGs. We then study

two natural techniques to develop more appropriate balance

constraints for hyperDAGs. In case of layer-wise constraints,

we show that the best solution cannot be approximated to

an 𝑛1−𝛿 factor (for any 𝛿 > 0). In case of schedule-based con-

straints, our observations show that a precise measurement

of parallelization in hyperDAGs is not viable in practice.

• We discuss several hardness results for the natural extension

of the partitioning problem where we have multiple indepen-

dent balance constraints.

• Finally, we introduce the hierarchical partitioning problem

to obtain a significantly more accurate model of I/O cost in

today’s computing architectures. We show that ignoring this

hierarchical aspect of the cost function can result in signifi-

cantly weaker solutions.

2 RELATEDWORK
Both the graph- and hypergraph partitioning problem is known to

be NP-hard already for 𝑘 = 2, and for any (non-trivial) 𝜖 ≥ 0 [23].

The problems have a wide range of applications, including parallel

computing, VLSI design, and scientific computing [37].

There is a long line of work on approximation algorithms for

the case of 𝜖 = 0 and 𝑘 = 2, also known as the bisection problem,

culminating in an 𝑂 (log𝑛)-approximation by Räcke [17, 32, 41].

The variant of the problem without a balance constraint has also

been studied [24, 44], as well as lower bounds for the case when 𝑘

is a variable part of the input [2, 18].

Many further works on approximating the partitioning problem

have focused on (𝛼, 𝛽)-bi-criteria approximations of the bisection

problem [4, 18, 33, 34], where the cost is at most 𝛼 times that of the

optimal bisection, and every partition has at most 𝛽 · 𝑛
𝑘
nodes (i.e.

the strict balance constraint can be violated by a factor 𝛽). However,

this is a significantly different concept from approximating the 𝜖-

balanced partitioning problem, because bi-criteria approximations

compare each solution only to the optimal bisection cost, and this

optimal bisection cost can be a factorΘ(𝑛) larger than the optimum

for 𝜖-balanced partitioning. As such, in applications where our goal

is to find an 𝜖-balanced solution of low cost, the guarantees of

the bi-criteria approach might not be meaningful: even if a low-

cost 𝜖-balanced solution exists, the bi-criteria approximations may

return a solution that only approximates the (possibly much higher)

optimal bisection cost.

A hierarchical version of the partitioning problem has also been

studied on simple graphs, mainly through similar bi-criteria ap-

proximations where 𝛽 also depends on the height of the hierarchy

[25, 43].

In recent years, the attention in partitioning problems has shifted

to hypergraphs. The case of hypergraph partitioning without a

balance constraint has been analyzed [9, 10]. As for the constrained

case, the work of Räcke, Schwartz and Stotz [42] again focuses on

the bisection problem: they present an approximation algorithm of

factor 𝑂 (
√
𝑛), as well as several lower bounds for approximability,

and they also show that tree-based methods (which provide some

of the best approximations for graph partitioning) are not viable

for hypergraphs.

The closest result to our main theorem (also from [42]) is a

similar inapproximability bound of 𝑛1/poly log log𝑛 for the bisection

problem. Our result is different from this in twoways. First, we show

this bound for the balanced partitioning problem with 𝜖 > 0, which

is an easier problem than bisection: there is a simple reduction from

balanced partitioning to bisection via adding isolated nodes (see

Appendix A), but the other direction is not straightforward. Second,

we show that the bound already holds in hypergraphs (or even

hyperDAGs) of very small degree.

We note that some of these related works consider the natural

extension of the problem with node or edge weights; our hardness

results also carry over to these more general settings.

We also point out that a similar (slightly more general) notion to

hyperDAGs has already been discussed in the work of [40], noting

that it provides a more accurate model of communication cost in

computational DAGs; however, this work does not study the topic

(either hyperDAGs or the partitioning problem) from a theoretical

perspective.

Finally, due to the wide applicability of hypergraph partitioning,

finding efficient and scalable solutions in practice has also been an

active area of research for a long time. This includes sophisticated

heuristics [7, 8, 28, 45, 47] as well as optimized exact algorithms

[30, 39].

3 PRELIMINARIES
3.1 Hypergraphs and partitioning
A hypergraph𝐺 (𝑉 , 𝐸) consists of a set of nodes 𝑉 and hyperedges

𝐸 ⊆ 2
𝑉
, where 2

𝑉
denotes the power set of 𝑉 . We denote the

number of nodes by 𝑛 := |𝑉 |, the total number of pins by 𝜌 :=∑
𝑒∈𝐸 |𝑒 |, and the maximal node degree by Δ := max𝑣∈𝑉 |{𝑒 ∈

𝐸 | 𝑣 ∈ 𝑒}|. We also use [ℓ] as shorthand notation for the set of

integers {1, . . . , ℓ}.
2

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

×

×

×

Figure 1: Illustration of converting a computational DAG into a hyperDAG. For simplicity, we only show hyperedges with at
least 3 nodes (generated by the nodes marked with an ×).

A 𝑘-way partitioning P of 𝐺 is a disjoint partitioning 𝑃1, . . . , 𝑃𝑘
of the nodes 𝑉 . For a hyperedge 𝑒 ∈ 𝐸, we define 𝜆𝑒 B |{𝑖 ∈ [𝑘] |
𝑒 ∩ 𝑃𝑖 ≠ ∅}| as the number of partitions intersecting 𝑒 , and we say

that 𝑒 is cut if 𝜆𝑒 > 1. There are two popular cost metrics for a

𝑘-way partitioning 𝑃 : the cut-net metric |{𝑒 ∈ 𝐸 | 𝜆𝑒 > 1}|, and the

connectivity metric

∑
𝑒∈𝐸 (𝜆𝑒 − 1). Our hardness results apply to

both of these cost metrics (unless one of the metrics is explicitly

specified). Note that for the simplest case of 𝑘 = 2, the two metrics

are identical. In this case, we will also refer to the nodes in 𝑃1 and

𝑃2 as red and blue nodes for simplicity.

Given a balance constraint parameter 𝜖 > 0, we say that P is 𝜖-
balanced if for all 𝑖 ∈ [𝑘] we have |𝑃𝑖 | ≤ (1+𝜖) · 𝑛

𝑘
. For convenience,

this is sometimes relaxed to |𝑃𝑖 | ≤ ⌈(1 + 𝜖) · 𝑛
𝑘
⌉ to ensure that a

balanced P always exists. We also implicitly assume 𝜖 < 𝑘 − 1, i.e.

the balance constraint ensures that no part 𝑃𝑖 can contain the entire

set 𝑉 .

Definition 3.1. In the 𝜖-balanced 𝑘-way hypergraph partitioning
problem (or simply partitioning problem), we are given an input hy-

pergraph𝐺 (𝑉 , 𝐸), and our goal is to find an 𝜖-balanced partitioning
of 𝑉 with minimal cost (with respect to either the cut-net or the

connectivity metric). In the decision version of the problem, the

input also contains an 𝐿 ∈ Z, and we need to decide if there is an

𝜖-balanced partitioning of cost at most 𝐿.

Note that both 𝑘 ≥ 2 and 𝜖 ≥ 0 are fixed constants, i.e. parame-

ters of the problem and not part of the input. The special case of

𝑘 = 2, 𝜖 = 0 is known as the bisection problem.

Some of our hardness results are built on different complexity

assumptions (we discuss these in Appendix C in more detail). Most

important among these is the Exponential Time Hypothesis (ETH);
intuitively, this states that 3-SAT cannot be solved in subexponential

time. We also occasionally use stronger variants of this hypothesis

(such as SETH or Gap-ETH).

We also assume some familiarity with the parameterized com-

plexity classes W[1], XP, and para-NP (see Appendix C for details).

Intuitively, a problem with some parameter 𝐿 is in XP if it can be

solved in 𝑛𝑓 (𝐿) time; it is para-NP-hard if it is already NP-hard for

a fixed 𝐿 ∈ 𝑂 (1).

3.2 HyperDAGs
General hypergraphs are indeed the appropriate way to model

large computations when we can execute the computational steps

in arbitrary order; for example, they are often used to model the

parallelization of large SpMV (sparse matrix-dense vector) multipli-

cations [30].

However, in other cases, our goal is e.g. to model the steps of

a complex algorithm, where we also have dependencies between

the different computational steps; as such, we clearly cannot ex-

ecute them in any desired order. Such a setting can be modelled

as a directed acyclic graph (DAG), where the nodes again repre-

sent specific computational steps (intermediate values to compute),

and the directed edges represent precedence relations between

these computations: the edge (𝑢, 𝑣) implies that the output value

of computation 𝑢 is an input to computation 𝑣 . This computational

DAG model has been studied extensively in terms of scheduling,

time-memory trade-off and many other perspectives [13, 14, 36].

Note, however, that if we directly apply computational DAGs

to capture communication costs, we face the same problem as in

simple graphs: the number of cut edges does not directly describe

the number of values transferred between processors, and as such,

it can provide a very inaccurate metric for the cost. In the extreme

case, it can happen that a red node 𝑢 has an edge to (𝑛 − 1) distinct
blue successors; while this implies (𝑛−1) cut edges between the two
parts, in reality, we only need to transfer a single value once: the

output of computation𝑢 from the red to the blue processor. As such,

to obtain an accurate model of communicate costs in computational

DAGs, we introduce the notion of hyperDAGs.

Definition 3.2. For a given a computational DAG 𝐺 (𝑉 , 𝐸), the
corresponding hyperDAG 𝐺 ′(𝑉 ′, 𝐸 ′) is defined by 𝑉 ′ B 𝑉 and

𝐸 ′ B {{𝑢} ∪ 𝑆𝑢 | 𝑢 ∈ 𝑉 } ,
where 𝑆𝑢 B {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} is the set of immediate successors

of 𝑢 ∈ 𝑉 .

Given this hypergraph representation of the computational DAG

(illustrated in Figure 1), the hypergraph partitioning problem now

provides the correct metric for the communication cost: if an in-

termediate value 𝑢 (represented by hyperedge 𝑒 = {𝑢} ∪ 𝑆𝑢) is

computed and stored on some processor 𝑝𝑢 ∈ [𝑘], then we need

(𝜆𝑒 − 1) transfer operations to make this value available for all the

other processors that compute a successor of 𝑢. As such, using hy-

perDAGs instead of computational DAGs allows us to also capture

the communication cost correctly when modelling a computation

with precedence constraints.

We point out that many works on computational DAGs assume

that the indegrees of nodes are bounded by a small constant [1, 6].

This directly translates to a small Δ in the resulting hyperDAG:

3

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

Figure 2: Example hypergraph that does not correspond to
any computational DAG.

if e.g. each node of a DAG has an indegree of at most 2 (i.e. all

operations are binary), then our hyperDAG will have Δ ≤ 3. As

such, hyperDAGs with a small constant degree are of particular

interest in practice.

If we have a description of our hyperDAG that specifies for

each hyperedge the node from which it was generated, then one

can easily verify whether this hyperDAG corresponds to a valid

(computational) DAG. On the other hand, if we are only given a

general hypergraph 𝐺 (without the generator nodes specified), it

is not trivial to decide whether 𝐺 is actually a hyperDAG, i.e. if it

corresponds to the hyperDAG representation of some DAG. For

example, the triangle in Figure 2 is a simple hypergraph that cannot

be obtained as a hyperDAG from any original DAG: for instance, it

does not have a node of degree 1 that could correspond to a source

of the original DAG.

This shows that hyperDAGs are only a subclass of general hyper-

graphs, and hence understanding their properties is an important

question: hyperDAGs could have some structural properties that

make the partitioning problem easier on them. As such, even though

this is not closely related to the main focus of the paper, we also pro-

vide a brief analysis of the fundamental properties of hyperDAGs

in Appendix B.

• Firstly, we develop a complete characterization of hyper-

DAGs: we show that a hypergraph is a hyperDAG if and

only if a specific property holds for all of its subgraphs.

• Using this characterization, we then also show that it can

be decided in linear time whether a given hypergraph is a

hyperDAG.

• Finally, for the sake of completeness, we prove that the par-

titioning problem still remains NP-hard if restricted to hy-

perDAG inputs.

4 INAPPROXIMABILITY RESULT
In this section we discuss our main theorem, which extends the

previously known hardness result from the bisection case to the

partitioning problem for general 𝜖 ≥ 0. More importantly, we also

show that this hardness result already holds in heavily restricted

cases (hyperDAGs of degree at most 2), suggesting that the problem

is not even approximable in practically relevant settings.

Theorem 4.1. Assuming ETH, it is not possible to approximate
the optimum of the partitioning problem to an 𝑛1/(log log𝑛)

𝛿
factor in

polynomial time (for some constant 𝛿 > 0). This holds for any 𝑘 ≥ 2

and 𝜖 ≥ 0, even if the input is restricted to hyperDAGs with Δ = 2.

Proof (sketch). We use a reduction from thewell-studied Small-

est 𝑝-Edge Subgraph (S𝑝ES) problem: given a graph 𝐺 (𝑉 , 𝐸), we
need to find a subset 𝑉0 ⊆ 𝑉 such that the subgraph induced by

𝑉0 has at least 𝑝 edges, and |𝑉0 | is minimized. It is known that if

ETH holds, then there is a 𝛿 > 0 such that no polynomial-time

𝑛1/(log log𝑛)
𝛿
-factor approximation exists to this problem [35].

Given an instance of the S𝑝ES problem, the main idea is to con-

vert it into a hypergraph that mostly consists of blocks: groups
of nodes which are so densely interconnected by hyperedges that

they all need to receive the same color, otherwise we end up with

an unreasonably high cost. These blocks are also used as a funda-

mental ingredient in several other constructions throughout the

paper. In our current construction, we begin by creating two very

large blocks 𝐴, 𝐴′
, and enforcing (through the balance constraint)

that they must obtain different colors; let us assume w.l.o.g. that

𝐴 is colored blue, and 𝐴′
is colored red. We also create a smaller

block for each 𝑒 ∈ 𝐸, and we carefully select the size of blocks such

that at least 𝑝 of these edge blocks must be colored red in order

to satisfy the balance constraint. Finally, for each 𝑣 ∈ 𝑉 , we create

a hyperedge which contains (i) a node from the block of every 𝑒

that is incident to 𝑣 , and (ii) a further node that is forced to be blue

(due to further hyperedges connecting it to 𝐴). The construction is

illustrated in Figure 3.

In the resulting hypergraph, we need to select a subset of (at

least) 𝑝 edge gadgets that we color red. However, if a node 𝑣 ∈ 𝑉 is

incident to any of these 𝑝 edges, then the hyperedge corresponding

to 𝑣 will be cut, since it contains both a red and a blue node. Alto-

gether, the cost of a solution will be exactly the number of nodes

covered by the 𝑝 chosen (red) edges of 𝐺 ; as such, approximating

the minimum cost would also allow us to approximate the S𝑝ES

problem to the same factor.

The more technical part of the theorem is to extend the reduction

first to hypergraphs with Δ = 2, and then to hyperDAGs. For the

extension to Δ ≤ 2, we essentially replace all the blocks by “grid

gadgets”: these are gadgets which are 2-regular (each node has

degree 2), but they still ensure that cutting off a significant portion

of the nodes from the gadget induces an unacceptably high cost.

We then discuss how to connect these grid gadgets to each other in

a way such that it essentially exhibits the same properties as the

original construction with blocks. Finally, in order to convert the

construction into a hyperDAG, we add further auxiliary nodes that

cannot affect the optimal partitioning, and then we show that there

is an injective assignment from hyperedges to generating nodes,

i.e. there indeed exists a computational DAG that corresponds to

this hypergraph. □

We note that our hardness results also carry over to the spe-

cial class of 2-regular hypergraphs recently studied by [30] for

modelling SpMV problems.

Furthermore, note that Theorem 4.1 was expressed in terms of

ETH, which is a rather standard complexity assumption. There are

several stronger inapproximability results for S𝑝ES based on less

standard assumptions; these also provide stronger hardness results

for the partition problem.

4

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

𝐴′

(all red)

𝐴

(all blue)

each edge of 𝐺
separate block for

blue node (connected by
many hyperedges to 𝐴)

separate hyperedge for each node of 𝐺 , which
intersects into the blocks of incident edges

Figure 3: High-level illustration of the construction for Theorem 4.1 in the general case, with the squares denoting block
gadgets. To fulfill the balance constraint, at least 𝑝 of the blocks in the middle (corresponding to edges of 𝐺) need to be red.
The hyperedges corresponding to the nodes of𝐺 all contain a blue node, so they are cut if and only if at least one of the incident
edge blocks is red. As such, a partitioning of cost at most 𝐿 corresponds to a subset of 𝑝 edges in𝐺 that are altogether incident
to at most 𝐿 nodes. Note that instead of a separate blue node, the hyperedges could also directly intersect into𝐴; however, this
would make the adaptation to Δ = 2 more technical.

Corollary 4.2. Our reduction method also shows the inapprox-
imability of the partitioning problem to the following factors based
on stronger complexity conjectures:

• 𝑛𝑓 (𝑛) for any function 𝑓 (𝑛) = 𝑜 (1), if Gap-ETH holds [35],

• 𝑛𝛿 for a given 𝛿 > 0, if specific one-way functions exist [3],

• 𝑛
1

12
−𝛿 for any 𝛿 > 0, if the Hypergraph Dense vs. Random

Conjecture holds [12].

Besides approximation algorithms, it is also interesting to study

the hardness of the problem from a parameterized complexity per-

spective, in terms of the allowed cost 𝐿. It follows easily from the

W[1]-hardness of S𝑝ES that the partitioning problem is also W[1]-

hard. On the other hand, one can show that the problem is in XP,

i.e. it can be solved in time 𝑛𝑓 (𝐿) for some function 𝑓 . Intuitively,

the main idea is to try all possible combinations of cut hyperedges

that can result in a total cost of at most 𝐿; this means that at most 𝐿

hyperedges are cut, so there are only 𝑛𝑓 (𝐿) such cases. Then in each
of these cases, we can essentially remove these cut hyperedges (con-

verting them into constraints) to obtain a delicate packing problem

that can be solved by a dynamic programming approach.

Lemma 4.3. In terms of the allowed cost 𝐿 as a parameter, the
partitioning problem is W[1]-hard (already for hyperDAGs of degree
≤ 2), but it is in XP.

5 BALANCE CONSTRAINTS FOR
HYPERDAGS

If our hypergraph models an application where the computational

steps have no inter-dependence, i.e., they can be executed in any

order, then the balance constraint already ensures that the computa-

tional workload on the 𝑘 processors is evenly distributed. However,

if we have a hyperDAG which was obtained from a computational

DAG with precedence constraints, then a simple balance constraint

may fail to ensure any amount of parallel execution.

Indeed, if for example our DAG 𝐺 is a serial concatenation of

two DAGs 𝐺1 and 𝐺2 of the same size (as sketched in Figure 4),

then an assignment where 𝐺1 and 𝐺2 are assigned to the red and

blue processors, respectively, is perfectly balanced. Yet, the blue

processor will need to wait for all the computations on the red

processor to finish before it can begin the computation of any blue

nodes at all. Thus even though this partitioning satisfies the balance

constraint, we are in fact unable to parallelize the workload between

the red and blue processors at all.

This suggests that in order to ensure parallel execution in hy-

perDAGs, we require a more refined approach for our balance

constraint.

5.1 Layer-wise constraints
One natural idea is to divide a given algorithm into “phases”, and

ensure that the workload is balanced in each phase separately.

In the simplest case, this corresponds to dividing the nodes of a

hyperDAG into layers, i.e. disjoint sets 𝑉1, . . . ,𝑉ℓ such that ℓ is the

length of the longest path in the DAG, and for each directed edge

(𝑢, 𝑣) with 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉𝑗 , we have 𝑖 < 𝑗 . We illustrate such a

layering in Figure 5. We can then define a layer-wise version of the

partitioning problem where the balance constraint needs to hold in

each layer separately (while our goal is still to minimize the cost of

the cut as before).

Definition 5.1. In the layer-wise balanced hyperDAG partitioning
problem, a partitioning is only feasible if each layer is balanced, i.e.

if for all 𝑗 ∈ [ℓ], 𝑖 ∈ [𝑘], we have |𝑃𝑖 ∩𝑉𝑗 | ≤ (1 + 𝜖) · |𝑉𝑗 |
𝑘

.

5

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

𝐺1 𝐺2

Figure 4: The limits of having a single balance constraint
for hyperDAGs:while the above partitioning is perfectly bal-
anced, it does not provide any parallelization opportunities
in fact.

In the simplest case, we can create layers by sorting every node

into the earliest possible layer: 𝑉1 contains the source nodes of

the DAG, and then 𝑉𝑖 (for 𝑖 ≥ 2) is the set of nodes that have all

their predecessors contained in

⋃𝑖−1
𝑗=1 𝑉𝑗 ; this indeed divides the

DAG into layers 𝑉1, . . . ,𝑉ℓ . However, in general, there are multiple

different ways to divide the DAG into layers; for example, in the

DAG in Figure 5, the lowermost node can be sorted either into layer

𝑉2,𝑉3 or𝑉4. Hence we can also define a more general, flexible layer-
ing version of the partitioning problem, where our goal is twofold:

we first need to select a valid layering of the DAG as discussed

above, and we then need to find a layer-wise balanced partitioning

according to these layers, with the final goal of minimizing the cost.

With these layer-wise constraints, the partitioning problem turns

out to be even harder: it is already NP-hard to distinguish between

an optimal cost of 0 and 𝑛1−𝛿 (for any 𝛿 > 0).

Theorem 5.2. It is NP-hard to approximate the layer-wise bal-
anced partitioning problem to any finite factor, both in the fixed and
in the flexible layering case.

Proof (sketch). The proof consists of several technical steps;

these are discussed in detail in Appendices D and E. The main ideas

behind the proof are as follows:

• Our DAG construction consists of several connected compo-

nents, each having a carefully designed number of nodes in

each layer. In order to obtain a partitioning of cost 0, all of

these components need to be monochromatic.

• Besides the main components, we also add 𝑘 “control com-

ponents”, and use auxiliary layers at the end of the DAG to

ensure that these all receive different colors. These control

components are then used to add a desired number of nodes

of fixed colors to any layer, and hence, intuitively, to ensure

that specific layers must contain at least/at most a specific

number of nodes of given colors.

• At the core of our construction, there is a reduction from

the well-known graph coloring problem, using the above

tools to convert the coloring problem to this multi-constraint

partitioning setting.

In the resulting DAG, a layer-wise partitioning of cost 0 exists if

and only if the original graph has a valid 3-coloring. Moreover, our

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5

Figure 5: An example for dividing a DAG into layers.

DAG is designed to allow only one possible layering, so this settles

the proof for both the fixed and the flexible layering case. □

A slightly different version of this proof also shows that in the

flexible layering case, this hardness result already applies separately

to the subproblem of finding the best layering of the DAG, i.e. the

layering where the optimum cost is smallest. In other words, even if

we have an oracle that returns the optimal partitioning for a specific

fixed layering of the DAG, the optimum is still not approximable to

any finite factor.

5.2 Schedule-based constraints
We have seen that layer-wise constraints (instead of a single con-

straint) allow us to exclude solutions where computations in a

hyperDAG are in fact not parallelized. Unfortunately, the layer-

wise approach can run into a different problem: it may impose a

condition that is too strict, also excluding some solutions that are

in fact perfectly parallelized.

In particular, consider a DAG with two distinct paths of length 3

from a single source node to a single sink node, and then let us split

both the first node in the upper path and the second node in the

lower path into a larger set of 𝑏 nodes, as sketched in Figure 6. With

layer-wise constraints (and a sufficiently small 𝜖), we are forced to

partition both of these sets in an (almost) balanced way, since they

contain almost all the nodes in the given layer. Hence whichever

color we choose for the successor of these sets, we will have a cost

of Θ(𝑏). In contrast to this, if we were to simply color the upper

branch red and the lower branch blue (and the source and sink

node with an arbitrarily chosen color), then we have near-perfect

parallelization, and a cut cost of only 2 altogether.

In general, the only straightforward way to develop an exact

metric of parallelization is to consider a concrete scheduling of the

DAG, which assigns the nodes not only to processors, but also to

time steps. A detailed discussion of scheduling problems is beyond

the scope of this paper; in the rest of the section, we briefly show

how scheduling can be used to develop a more accurate balance

constraint for partitioning, and we also discuss the limits of this

approach.

Definition 5.3. Given a DAG and a fixed constant 𝑘 , a scheduling
is an assignment of the nodes to processors 𝑝 : 𝑉 → [𝑘] and to

time steps 𝑡 : 𝑉 → Z+ such that

6

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

Figure 6: The limits of layer-based balance constraints. A
layer-wise balanced partitioning has to split the large sets
both in the upper and the lower branch, resulting in a large
cost. On the other hand, coloring the upper branch red and
the lower branch blue provides near-perfect parallelization
at a cost of only 2.

• for all 𝑢, 𝑣 ∈ 𝑉 we have either 𝑝 (𝑢) ≠ 𝑝 (𝑣) or 𝑡 (𝑢) ≠ 𝑡 (𝑣)
(the scheduling is correct),

• for all (𝑢, 𝑣) ∈ 𝐸, we have 𝑡 (𝑢) < 𝑡 (𝑣) (the precedence con-
straints are satisfied).

The goal is then to minimize the makespan max𝑣∈𝑉 𝑡 (𝑣) of the
scheduling, i.e. to execute the computations as fast as possible

(without considering communication costs).

When compared to 𝑛, this optimal makespan essentially allows

us to measure the parallelizability of the DAG. For example, if our

DAG is simply a directed path, then the best makespan is 𝑛 (the

DAG is not parallelizable at all); on the other hand, if it consists of 𝑘

disjoint DAG components of equal size, then the best makespan is

𝑛
𝑘
(the DAG is perfectly parallelizable). As such, it is a natural idea

to use this metric to define a more sophisticated, schedule-based

balance constraint on our hyperDAGs, where a given partitioning

is feasible if it can be relatively well parallelized compared to the

best possible parallelization of the DAG.

More formally, given a DAG, let 𝜇 denote the minimal makespan

in general (i.e. over all 𝑝 ′, 𝑡 ′ such that (𝑝 ′, 𝑡 ′) is a valid schedule),

and let 𝜇𝑝 denote the minimal makespan for a fixed partitioning 𝑝

(i.e. over all 𝑡 ′ such that (𝑝, 𝑡 ′) is a valid schedule).

Definition 5.4. In a schedule-based balance constraint, we say that
a partitioning 𝑝 : 𝑉 → [𝑘] is feasible if 𝜇𝑝 ≤ (1 + 𝜖) · 𝜇.

This schedule-based constraint provides a much more sophisti-

cated condition of sufficient parallelization in hyperDAGs. On the

other hand, the approach has strong limitations in practice; we dis-

cuss these in Appendix F in detail. In particular, the DAG scheduling

problem (computing 𝜇) is not known to be polynomially solvable

except for a few special cases, such as for 𝑘 = 2, or for special classes

of DAGs such as out-trees, level-order DAGs or bounded-height

DAGs [13, 15, 16, 22]. Moreover, maybe more surprisingly, we show

that evaluating the quality of a given partitioning (computing 𝜇𝑝)

is an even harder problem which remains NP-hard even in these

very special cases.

Theorem 5.5. Computing 𝜇𝑝 is already NP-hard for 𝑘 = 2, even
if the inputs are restricted to out-trees, level-order DAGs or bounded-
height DAGs.

This provides an unusual situation in these special cases: we can

efficiently compute the parallelizability of the DAG in general, but

we cannot compute how parallelizable our own solution is, and hence
we cannot verify if it satisfies a schedule-based balance constraint.

This suggests that such a schedule-based constraint is not a viable

approach in practice, even for the simplest case of 𝑘 = 2.

6 MULTI-CONSTRAINT PARTITIONING
The layer-wise balance constraints in our hyperDAGs are in fact

a special case of a natural generalization of the partitioning prob-

lem, where instead of having only a single balance constraint for

the whole set 𝑉 , we have separate balance constraints for smaller

subsets of nodes.

This problem might be of independent interest in several ap-

plications. For instance, as another (more practical) approach to

ensure sufficient parallelization in hyperDAGs, one might decide to

heuristically decompose the hyperDAG into relatively independent

“regions” (preferably larger than layers but smaller than the entire

graph, such as e.g. the sets 𝐺1 and 𝐺2 in Figure 4), and enforce a

balance constraint on each region separately. To our knowledge,

similar multi-constraint problems have only been studied on simple

graphs [29] or in particular applications [38] before.

Definition 6.1. In the multi-constraint partitioning problem, our

input also contains disjoint subsets 𝑉1, . . . ,𝑉𝑐 ⊆ 𝑉 . We say that

a partitioning P = {𝑃1, . . . , 𝑃𝑘 } of 𝑉 is feasible if it satisfies the

balance constraint for all subsets, i.e. for all 𝑗 ∈ [𝑐], 𝑖 ∈ [𝑘], we
have |𝑃𝑖 ∩𝑉𝑗 | ≤ (1 + 𝜖) · |𝑉𝑗 |

𝑘
.

The simplest cases to analyze in terms of hardness are the two

extremes of 𝑐 . That is, when we only have 𝑐 = 𝑂 (1) constraints,
then the problem still remains in XP, and a simple reduction allows

us to carry over some of the known approximation algorithms on

standard partitioning to this multi-constraint case, although in a

significantly weaker form. On the other hand, when we have 𝑐 ≥ 𝑛𝛿

for some constant 𝛿 > 0, the problem becomes significantly harder

both in terms of approximability and parameterized complexity.

Lemma 6.2. For 𝑐 ∈ 𝑂 (1) constraints, there exists a reduction
from multi-constraint bisection to the standard bisection problem (see
Appendix D.1 for details), and the partitioning problem is still in XP
(with respect to 𝐿).

Lemma 6.3. If we have 𝑐 ≥ 𝑛𝛿 constraints for some constant 𝛿 > 0,
then no polynomial-time approximation exists for the partitioning
problem to any finite factor, and the problem is para-NP-hard (with
respect to 𝐿).

Between the two cases when 𝑂 (1) < 𝑐 < 𝑛𝛿 , the question is

not so straightforward. However, with a stronger complexity as-

sumption (the Strong Exponential Time Hypothesis, SETH), we can

also show a hardness result here for any algorithm running in sub-

quadratic time. This is indeed a relevant observation, since having

quadratic running time is often already prohibitive in practice.

7

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

Theorem 6.4. For multi-constraint partitioning with 𝑐 = 𝜔 (log𝑛),
no finite factor approximation algorithm is possible in subquadratic
time (i.e. 𝑛2−𝛿 for some 𝛿 > 0) if SETH holds.

Proof (sketch). The proof uses a reduction from the so-called

Orthogonal Vectors Problem (OVP): given a set of𝑚 binary vectors

𝑎1, ..., 𝑎𝑚 , the goal is to decide whether any two of these vectors are

orthogonal (i.e. their dot product is 0). It is known that for vectors

of dimension 𝐷 = 𝜔 (log𝑚), this cannot be decided in 𝑂 (𝑚2−𝛿)
time unless SETH is falsified [21].

The main idea of the construction is to have a separate node

𝑣𝑖
(𝑗)

representing the 𝑗-th dimension of the 𝑖-th vector for each

𝑖 ∈ [𝑚], 𝑗 ∈ [𝐷], and a further “anchor” node 𝑢𝑖 for each vector. For

each fixed 𝑖0 ∈ [𝑚], we add a hyperedge containing the node 𝑢𝑖0 ,

and all nodes 𝑣𝑖0
(𝑗)

such that the 𝑗-th coordinate of 𝑎𝑖 is 1.

Then through a series of technical steps, we create balance con-

straints that fulfill the following properties. Firstly, for each fixed

𝑗0 ∈ [𝐷], we add a dimension-wise balance constraint which ensures

that at most one of the nodes 𝑣𝑖
(𝑗0)

can be red. Furthermore, we

also add a single balance constraint on the anchor nodes, ensuring

that at least two of the nodes 𝑢𝑖 need to be red.

Assume we want to find a valid multi-constraint partitioning of

cost 0 in the resulting construction. This requires us to color two of

the anchor nodes 𝑢𝑖1 and 𝑢𝑖2 red; however, then for all entries that

are 1 in the chosen vectors, the corresponding nodes 𝑣𝑖
(𝑗)

must also

be red. However, such a solution can only satisfy the dimension-

wise balance constraints if there is no dimension 𝑗 where both

vectors have an entry of 1, i.e. if they are orthogonal. □

7 HIERARCHICAL COST FUNCTION
The simplicity of the partitioning problem makes it a very popu-

lar model to analyze the parallel execution of computations. On

the other hand, due to this simplicity, the model cannot capture

one of the most prominent characteristics of modern computing

architectures, namely non-uniformmemory access: transferring data
between different pairs of processing units can have very different

costs in practice. This is usually due to the hierarchical structure of

these architectures: we often have several cores within the same

processor, several processors attached to the same RAM, and then

several of these computers connected over a network. Modern

architectures even expose such hierarchical structure within sin-

gle processors. In such an architecture, the communication cost

between two cores heavily depends on the highest level of the hier-

archy that the data has to cross: sending data between two cores

on the same processor is a relatively fast operation, while sending

data to another core through the top-level network connection is

drastically slower.

As such, it is a natural goal to extend our analysis of partitioning

problems to such a hierarchical setting. Formally, we will model

these architectures by a rooted tree of depth 𝑑 , with the leaves of

the tree corresponding to the compute units. We assume that each

level of this tree has a fixed branching factor 𝑏𝑖 , i.e. every node on

the 𝑖-th level (from the top) has exactly 𝑏𝑖 children; this implies that

we partition our hypergraph into 𝑘 =
∏𝑑

𝑖=1 𝑏𝑖 sets. Furthermore,

assume we have a set of constant cost parameters 𝑔1, . . . , 𝑔𝑑 such

that if two computing units have their lowest common ancestor in

1𝒈2
𝒈1

Figure 7: Illustration of communication costs in the hierar-
chical setting: the cost of transferring a variable depends on
the level of the hierarchy that the data has to cross.

level 𝑖 of the tree, then transferring a variable between the parts

has a cost of 𝑔𝑖 (as illustrated in Figure 7). We assume the 𝑔𝑖 are

monotonically decreasing, and for simplicity, we normalize them

to ensure 𝑔𝑑 = 1.

Definition 7.1. In the hierarchical partitioning problem, we have

constant parameters 𝑏1, . . . , 𝑏𝑑 such that

∏𝑑
𝑖=1 𝑏𝑖 = 𝑘 . Our goal is to

partition𝑉 into 𝑘 sets 𝑃1
(𝑑) , . . . , 𝑃𝑘

(𝑑)
such that |𝑃 𝑗 (𝑑) | ≤ (1+𝜖) · 𝑛

𝑘
for all 𝑗 ∈ [𝑘]. However, we now also need to organize these parts

into a hierarchy, i.e. for all 𝑖 ∈ {2, . . . , 𝑑}, we partition the classes

𝑃 𝑗
(𝑖)

into

∏𝑖−1
ℓ=1 𝑏ℓ distinct sets of size 𝑏𝑖 each to form the (𝑖 − 1)-th

level parts 𝑃 𝑗
(𝑖−1)

. For a hyperedge 𝑒 , let 𝜆𝑒
(𝑖)

denote the number

of 𝑖-th level parts that 𝑒 intersects (and for simplicity, let 𝜆𝑒
(0)

:= 1).

The cost induced by 𝑒 is the defined as

𝑑∑︁
𝑖=1

𝑔𝑖 · (𝜆𝑒(𝑖) − 𝜆𝑒
(𝑖−1)) ,

and the total cost of a partitioning is again the sum of this cost over

all hyperedges 𝑒 ∈ 𝐸.

For example, if 𝑒 intersects all the 𝑘 = 4 parts in a 2-level hier-

archy with 𝑏1 = 𝑏2 = 2, then regardless of which part the variable

is stored in, the cost of transferring it to the other three parts is

𝑔1 + 2 · 𝑔2 = 𝑔1 + 2: we need to move the variable once over the

top level, and twice over the bottom level of the hierarchy. The

formula indeed equals to this for 𝜆𝑒
(1) = 2 and 𝜆𝑒

(2) = 4. Note that

the standard partitioning problem is obtained as a special case of

this setting when our hierarchy has depth 𝑑 = 1.

This hierarchical cost function results in a more complex version

of the partitioning problem, where the role of different parts is not

symmetric anymore. We briefly discuss some key properties of this

more realistic model below, with the technical details deferred to

Appendix G. Besides this, Appendix I also provides a brief discussion

of two more questions that arise naturally regarding our results

on this hierarchical model: (i) how they carry over to hyperDAGs

and/or the multi-constraint setting from previous sections, and (ii)

how they can be generalized to cost functions that are inspired not

by a tree, but by a different (arbitrary) processor topology.

7.1 Recursive approach
A natural solution idea for partitioning is to recursively split𝐺 into

smaller and smaller parts. Even in the regular 𝑘-way partitioning

8

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

Figure 8: Construction for Lemma 7.2. Large and small squares correspond to blocks of size 𝑛
6
and 𝑛

12
, respectively. Recursive

bipartitioning (left side) first makes an optimal split of cost 0 along the vertical axis; however, in the next recursive step, it
needs to split one of the blocks to fulfill the balance constraint, resulting in a cost of Θ(𝑛). On the other hand, direct 𝑘-way
partitioning (right side) can provide a solution of cost 𝑂 (1) only.

problem, such a recursive approach is very commonly used in

heuristics: we can repeatedly split each part into two further parts,

until the number of parts reaches 𝑘 .

This recursive method also provides a natural solution approach

for our hierarchical partitioning problem: we can first try to split

𝐺 cleverly into 𝑏1 parts, then split each of these into 𝑏2 further

parts, and so on, forming the entire hierarchy of 𝑘 parts in such a

recursive way. Moreover, the approach is even more intuitive in

this hierarchical case: since the cuts on the highest level induce a

much larger cost, it seems reasonable to first minimize the number

of these cuts, and only then move on to the lower levels.

It has already been observed before that such a recursive ap-

proach is not always optimal [5, 48]; however, we can show in a

simple example that it can even be a linear factor away from the

optimum cost.

Lemma 7.2. The solution returned by recursive partitioning can be
a factor Θ(𝑛) off the optimum cost, both for regular and hierarchical
partitioning, even if each of the recursive steps is optimal separately.

Proof (sketch). Let 𝑏1 =𝑏2 = 2, and consider the hypergraph

sketched in Figure 8, consisting of 9 densely connected blocks and

only a few hyperedges between these blocks. Assume that the larger

blocks in the figure each consist of
𝑛
6
nodes, while the smaller blocks

each consist of
𝑛
12

nodes.

In an optimal recursive partitioning, the first step will split this

hypergraph into two parts of equal size along the vertical axis,

without cutting any hyperedges (see the left side of the figure).

However, in the next step, the recursive approach needs to split both

sides into two further parts; with a small enough 𝜖 in the balance

constraint, this forces us to split one of the densely connected blocks

on the left side, resulting in a cost of Θ(𝑛).
In contrast to this, there exists a direct 4-way partitioning of the

hypergraph where only 𝑂 (1) hyperedges are cut (right side of the
figure). This solution has a factor Θ(𝑛) smaller cost than the recur-

sive solution, not only under the regular (cut-net or connectivity)

cost metrics, but also according to our hierarchical cost function,

since the coefficients 𝑔𝑖 are constants. □

7.2 Hierarchy-agnostic partitioning
Another natural idea in this setting is to apply a regular partitioning

algorithm that does not consider the underlying processor hierarchy

at all. More specifically, given an input hypergraph, we can use the

following two-step method to obtain a hierarchical partitioning:

(i) first find a good regular 𝑘-way partitioning of the hypergraph,

(ii) then assign these 𝑘 parts to the 𝑘 leaf positions in the hierarchy

in a clever way.

For the analysis of this two-step method, we will assume that both

steps happen optimally: we first find an optimal (regular) parti-

tioning of the hypergraph, and then we also assign the 𝑘 parts to

hierarchy positions in an optimal way. This allows us to study a

fundamental question: what happens if we have a good partition-

ing algorithm, but we disregard the hierarchical nature of modern

computing architectures in the partitioning step?

On the one hand, it is easy to show that the optimal solution

with this two-step method is at most a factor 𝑔1 worse than the

true optimum for hierarchical cost. Intuitively, this is because an

optimal algorithm for standard partitioning can only misjudge the

real (hierarchical) cost of each hyperedge by a
𝑔1
𝑔𝑑

= 𝑔1 factor.

Lemma 7.3. The two-step method is a 𝑔1-approximation.

On the other hand, it turns out that in unfortunate cases, the

difference can indeed be in the magnitude of a factor𝑔1. This carries

an important conceptual message: if we ignore the fact that the true

nature of the cost function is hierarchical in practice, then even by

finding the optimal partitioning, we might still be a large constant

factor away from the actual optimum cost.

Theorem 7.4. The two-step method can be a factor 𝑏1−1
𝑏1

·𝑔1 worse
than the optimum.

Proof (sketch). On a high level, the proof requires a star-shaped

construction where a large block 𝐴 is densely connected to (𝑘 − 1)
smaller blocks 𝐵𝑖 , which can either all fit into a single part, or into

separate parts (sketched in Figure 9). The construction is carefully

designed such that placing each 𝐵𝑖 in a separate part has slightly

smaller standard cost, so this solution is preferred by the two-step

9

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

𝐴

𝐵1 𝐵2

𝐵3

𝐴

𝐵1

𝐵2

𝐵3

remaining
blocks

remaining
blocks

optimum for regular partitioning
(but high hierarchical cost)

suboptimal for regular partitioning
(but low hierarchical cost)

Figure 9: Overview of the construction of Theorem 7.4 for 𝑘 = 4. Block 𝐴 is connected by a large number of hyperedges to
blocks 𝐵1, 𝐵2 and 𝐵3 (we will refer to these as 𝐴 ↔ 𝐵𝑖 hyperedges). In the regular optimum, the blocks 𝐵𝑖 are each placed in
a separate part (since the 𝐴 ↔ 𝐵𝑖 hyperedges are cut anyway, and the 𝐵𝑖 have connections to other blocks not shown in the
figure). This results in a large hierarchical cost: many of the 𝐴 ↔ 𝐵𝑖 hyperedges induce a cost of 𝑔1. On the other hand, if we
place all 𝐵𝑖 in the same part, then the 𝐴 ↔ 𝐵𝑖 hyperedges all induce a cost of 𝑔2 only.

method. However, the hierarchical cost of this solution is much

higher, since the parts containing the 𝐵𝑖 are scattered across the

hierarchy, so many of the connections between blocks incur a cost

of 𝑔1. On the other hand, if the 𝐵𝑖 are all placed into the same part,

and this is a sibling of the part containing𝐴 on the lowest hierarchy

level, then the same connections only incur a cost of 𝑔𝑑 , so there is

indeed a solution with a significantly lower hierarchical cost. □

Note that
𝑏1−1
𝑏1

≥ 1

2
even for the simplest case of 𝑏1 = 2, and

as 𝑏1 grows larger, it approaches 1, matching the upper bound of

Lemma 7.3. We also note that this theorem only holds for small 𝜖

values, i.e. when we are not allowed to leave any of the parts empty.

7.3 Complexity
Finally, it is also natural to wonder how this hierarchical cost func-

tion affects the hardness of the partitioning problem. On the one

hand, the problem does become significantly more technical in

this hierarchical setting in practice; on the other hand, it does not

change much from a complexity-theoretic perspective. In particular,

we can make the following simple observations:

• The hardness results for standard partitioning, e.g. Theorem

4.1, also carry over in a straightforward way to this more

complex hierarchical setting.

• Due to Lemma 7.3, any 𝛼-approximation algorithm for stan-

dard partitioning also provides an 𝑂 (𝛼)-approximation for

the hierarchical setting (as long as we have 𝑘,𝑔1 ∈ 𝑂 (1)).
• Even with this more complex cost function, the partitioning

problem still remains in the parameterized complexity class

XP with respect to 𝐿.

The two-step method, on the other hand, raises a more interest-

ing question if we consider its second step as a separate hierarchy
assignment problem. That is, given an already fixed 𝑘-way partition-

ing of the hypergraph, our goal is to assign the 𝑘 fixed parts to the

𝑘 available positions in the hierarchy optimally, i.e. such that the

total hierarchical cost is minimized.

Note that with our assumption so far that 𝑘 ∈ 𝑂 (1), the num-

ber of possible solutions to this problem is only a function of 𝑘 ,

and hence also a constant; as such, the problem is trivial from a

complexity-theoretic perspective. However, the problem becomes

more interesting if we briefly explore the case when 𝑘 is a variable

part of the input. This setting might be relevant in applications

where the partitioning task is severely time-critical, and hence in-

stead of using a fixed architecture, we e.g. decide to increase 𝑘

proportionally to the hypergraph size.

We conclude the paper by briefly analyzing the complexity of

this hierarchy assignment problem in the simplest case of only

𝑑 = 2 levels. In this case, one can essentially contract each of the 𝑘

partitions into a single node, and express the hierarchy assignment

problem as a specific kind of partitioning task on the resulting

contracted hypergraph (which might contain multiple copies of

some hyperedges). Our results (discussed in Appendix H) show

that this two-level hierarchy assignment problem is polynomially

solvable for 𝑏2 = 2, but already NP-hard if 𝑏2 = 3.

Theorem 7.5. Consider the hierarchy assignment problem with
only 𝑑 = 2 levels.

• for 𝑏2 = 2, the problem is solvable in polynomial time,

• for 𝑏2 = 3, the problem is already NP-hard.

10

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

REFERENCES
[1] Joël Alwen, Susanna F De Rezende, Jakob Nordström, and Marc Vinyals. 2017.

Cumulative space in black-white pebbling and resolution. In 8th Innovations in
Theoretical Computer Science Conference (ITCS).

[2] Konstantin Andreev andHarald Räcke. 2006. Balanced Graph Partitioning. Theory
of Computing Systems 39, 6 (2006), 929–939.

[3] Benny Applebaum, Boaz Barak, and Avi Wigderson. 2010. Public-Key Cryptog-

raphy from Different Assumptions. In Proceedings of the 42nd ACM Symposium
on Theory of Computing (STOC). ACM, 171–180.

[4] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander flows, geometric

embeddings and graph partitioning. J. ACM 56, 2 (2009), 1–37.

[5] Rob H Bisseling. 2020. Parallel Scientific Computation: A Structured Approach
Using BSP. Oxford University Press.

[6] Jeremiah Blocki, Ling Ren, and Samson Zhou. 2018. Bandwidth-hard functions:

Reductions and lower bounds. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1820–1836.

[7] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian

Schulz. 2016. Recent advances in graph partitioning. Algorithm Engineering
(2016), 117–158.

[8] Ümit Çatalyürek, Karen Devine, Marcelo Faraj, Lars Gottesbüren, Tobias Heuer,

Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel

Seemaier, and Dorothea Wagner. 2023. More Recent Advances in (Hyper)Graph

Partitioning. Comput. Surveys 55, 12, Article 253 (2023).
[9] Karthekeyan Chandrasekaran and Chandra Chekuri. 2020. Hypergraph k-cut

for fixed k in deterministic polynomial time. In 61st IEEE Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 810–821.

[10] Chandra Chekuri and Shi Li. 2020. On the Hardness of Approximating the k-Way

Hypergraph Cut problem. Theory of Computing 16 (2020), 1–8.

[11] Eden Chlamtáč, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George

Rabanca. 2018. The Densest k-Subhypergraph Problem. SIAM Journal on Discrete
Mathematics 32, 2 (2018), 1458–1477.

[12] Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. 2017. Minimizing the

Union: Tight Approximations for Small Set Bipartite Vertex Expansion. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
881–899.

[13] Edward G Coffman and Ronald L Graham. 1972. Optimal scheduling for two-

processor systems. Acta informatica 1, 3 (1972), 200–213.
[14] Erik D. Demaine and Quanquan C. Liu. 2018. Red-Blue Pebble Game: Complexity

of Computing the Trade-Off between Cache Size and Memory Transfers. In

Proceedings of the 30th Symposium on Parallelism in Algorithms and Architectures
(SPAA). ACM.

[15] Danny Dolev and Manfred K Warmuth. 1984. Scheduling precedence graphs of

bounded height. Journal of Algorithms 5, 1 (1984), 48–59.
[16] Danny Dolev and Manfred K Warmuth. 1985. Profile scheduling of opposing

forests and level orders. SIAM Journal on Algebraic Discrete Methods 6, 4 (1985),
665–687.

[17] Uriel Feige, Robert Krauthgamer, and Kobbi Nissim. 2000. Approximating the

minimum bisection size. In Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing (STOC). ACM, 530–536.

[18] Andreas Emil Feldmann and Luca Foschini. 2012. Balanced Partitions of Trees and

Applications. In 29th International Symposium on Theoretical Aspects of Computer
Science (STACS) (LIPIcs, Vol. 14). 100–111.

[19] Jörg Flom and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
[20] Harold N Gabow. 1982. An almost-linear algorithm for two-processor scheduling.

J. ACM 29, 3 (1982), 766–780.

[21] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. 2018.

Completeness for First-Order Properties on Sparse Structures with Algorithmic

Applications. ACM Transactions on Algorithms 15, 2 (2018), 1–35.
[22] MR Garey, DS Johnson, RE Tarjan, and M Yannakakis. 1983. Scheduling opposing

forests. SIAM Journal on Algebraic Discrete Methods 4, 1 (1983), 72–93.
[23] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman.

[24] Olivier Goldschmidt and Dorit S. Hochbaum. 1994. A polynomial algorithm

for the k-cut problem for fixed k. Mathematics of operations research 19 (1994),

24–37.

[25] Mohammad Taghi Hajiaghayi, Theodore Johnson, Mohammad Reza Khani, and

Barna Saha. 2014. Hierarchical graph partitioning. In 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 51–60.

[26] Bruce Hendrickson. 1998. Graph partitioning and parallel solvers: Has the

emperor no clothes?. In International Symposium on Solving Irregularly Structured
Problems in Parallel. Springer, 218–225.

[27] Bruce Hendrickson and Tamara G Kolda. 2000. Graph partitioning models for

parallel computing. Parallel Comput. 26, 12 (2000), 1519–1534.
[28] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multi-

level hypergraph partitioning: Applications in VLSI domain. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 7 (1999), 69–79.

[29] George Karypis and Vipin Kumar. 1998. Multilevel algorithms formulti-constraint

graph partitioning. In Proceedings of the 1998 ACM/IEEE Conference on Supercom-
puting (SC). IEEE, 28–28.

[30] Timon E. Knigge and Rob H. Bisseling. 2020. An improved exact algorithm and

an NP-completeness proof for sparse matrix bipartitioning. Parallel Comput. 96
(2020), 102640.

[31] Richard Earl Korf. 2009. Multi-way number partitioning. In 21st International
Joint Conference on Artificial Intelligence (IJCAI).

[32] Robert Krauthgamer and Uriel Feige. 2006. A Polylogarithmic Approximation of

the Minimum Bisection. SIAM Rev. 48 (2006), 99–130.
[33] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. 2009. Partitioning graphs

into balanced components. In Proceedings of the 20th annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA). SIAM, 942–949.

[34] Tom Leighton and Satish Rao. 1999. Multicommodity max-flowmin-cut theorems

and their use in designing approximation algorithms. J. ACM 46, 6 (1999), 787–

832.

[35] Pasin Manurangsi. 2017. Almost-Polynomial Ratio ETH-Hardness of Approxi-

mating Densest k-Subgraph. In Proceedings of the 49th Annual ACM Symposium
on Theory of Computing (STOC). ACM, 954–961.

[36] PaulineMarkenscoff and Yong Yuan Li. 1993. Scheduling a computational DAG on

a parallel systemwith communication delays and replication of node execution. In

Proceedings of the 7th International Parallel Processing Symposium. IEEE, 113–117.

[37] David A Papa and Igor L Markov. 2007. Hypergraph Partitioning and Clustering.

Handbook of Approximation Algorithms and Metaheuristics (2007).
[38] Filip Pawłowski, Rob H. Bisseling, Bora Uçar, and A. N. Yzelman. 2020. Combi-

natorial Tiling for Sparse Neural Networks. In IEEE High Performance Extreme
Computing Conference (HPEC). 1–7.

[39] Daniël M Pelt and Rob H Bisseling. 2015. An exact algorithm for sparse matrix

bipartitioning. J. Parallel and Distrib. Comput. 85 (2015), 79–90.
[40] Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel Seemaier. 2021.

Multilevel Acyclic Hypergraph Partitioning. In Proceedings of the Symposium on
Algorithm Engineering and Experiments (ALENEX). 1–15.

[41] Harald Räcke. 2008. Optimal hierarchical decompositions for congestion min-

imization in networks. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC). 255–264.

[42] Harald Räcke, Roy Schwartz, and Richard Stotz. 2018. Trees for Vertex Cuts,

Hypergraph Cuts and Minimum Hypergraph Bisection. In 30th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). ACM, 23–32.

[43] Harald Räcke and Richard Stotz. 2016. Improved Approximation Algorithms for

Balanced Partitioning Problems. In 33rd International Symposium on Theoretical
Aspects of Computer Science (STACS) (LIPIcs, Vol. 47). 58:1–58:14.

[44] Huzur Saran and Vijay V. Vazirani. 1995. Finding k Cuts within Twice the Optimal.

SIAM J. Comput. 24 (1995), 101–108.
[45] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter

Sanders, and Christian Schulz. 2016. K-way hypergraph partitioning via n-level

recursive bisection. In Proceedings of the 18th Workshop on Algorithm Engineering
and Experiments (ALENEX). 53–67.

[46] Ravi Sethi. 1976. Scheduling graphs on two processors. SIAM J. Comput. 5, 1
(1976), 73–82.

[47] Aleksandar Trifunović and William J Knottenbelt. 2008. Parallel multilevel

algorithms for hypergraph partitioning. J. Parallel and Distrib. Comput. 68, 5
(2008), 563–581.

[48] Albert-Jan Yzelman. 2016. Sparse computations and Multi-BSP. SIAM Workshop
on Scientific Computation (2016).

11

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

A FUNDAMENTAL PROPERTIES OF THE
PARTITIONING PROBLEM

We begin with some straightforward observations on the partition-

ing problem that will often prove useful during our proofs.

From 𝝐 = 0 to 𝝐 > 0. Firstly, we establish a close relation between

the partitioning problem for general 𝜖 ≥ 0 and for 𝜖 = 0, showing

that the latter is the hardest case of the problem in some sense. For

convenience, in the special case of 𝜖 = 0, we will refer to a balanced

partitioning as a 𝑘-section, and to the partitioning problem as the

𝑘-section problem (similarly to the notion of bisection for 𝑘 = 2).

Lemma A.1. Given a polynomial algorithm for the 𝑘-section prob-
lem, this also provides a polynomial algorithm for the balanced parti-
tioning problem with any 𝜖 > 0.

Proof. Consider an instance of the partitioning problem for

some 𝜖 > 0, and let us add 𝜖 · 𝑛 new isolated nodes to the graph.

With this the new number of nodes is 𝑛′ = (1 + 𝜖) · 𝑛, so it fulfills

𝑛′

𝑘
= (1 + 𝜖) · 𝑛

𝑘
. We claim that there is a 𝑘-section of cost 𝐿 in this

new hypergraph if and only if there is a 𝜖-balanced partitioning of

cost 𝐿 in the original hypergraph. Indeed, any 𝑘-section has parts

of size
𝑛′

𝑘
in the new graph, so restricting it to the original graph

implies that the balance constraints are satisfied. On the other hand,

any 𝜖-balanced partitioning in the original graph can be extended

to a 𝑘-section if we color the isolated nodes appropriately, i.e. such

that each color occurs
𝑛′

𝑘
times altogether. □

This reduction shows that any 𝛼-approximation for 𝑘-section

also provides an 𝑂 (𝛼)-approximation for the problem with any

𝜖 > 0. This e.g. implies that the 𝑂 (
√
𝑛)-approximation of Räcke,

Schwartz and Stotz [42] for the bisection problem can also be ex-

tended to any 𝜖 > 0 value.

Corollary A.2. For 𝑘 = 2 and any 𝜖 > 0, there is a polynomial-
time 𝑂 (

√
𝑛)-approximation algorithm to the partitioning problem.

Choice of 𝝐 . Furthermore, recall that the only strict restriction for

𝜖 we introduced was 𝜖 < (𝑘 − 1), which ensures (1 + 𝜖) · 𝑛
𝑘
< 𝑛;

otherwise, the optimum is always the trivial partitioning that places

the entire graph into the same part. However, note that if we have

a high number of processors 𝑘 , then large 𝜖 values are still often

unrealistic, even when 𝜖 < (𝑘−1); in particular, it means that many

of the processors can remain unused in an optimal solution.

Lemma A.3. There exists an optimal partitioning where less than
2𝑘
1+𝜖 of the parts are non-empty.

Proof. Assume we have at least 𝑝0 ≥ 2𝑘
1+𝜖 non-empty parts,

and consider the two smallest ones 𝑃1, 𝑃2; then we must have

|𝑃1 | + |𝑃2 | ≤ 2 · 𝑛
𝑝0

≤ (1 + 𝜖) · 𝑛
𝑘
. This means that we can merge 𝑃1

and 𝑃2 into the same part and still satisfy the balance constraint.

Merging can only reduce the cost or leave it unchanged, so the

solution remains optimal. □

This means that already for 𝜖 = 1, one of our processors will

remain idle, and the usage of the computational resources further

decreases for even larger 𝜖 . On the other hand, with a small enough

𝜖 , the balance constraint is already strict enough to ensure that

every part is non-empty.

Lemma A.4. Having 𝜖 < 1

𝑘−1 ensures that every part is non-empty.

Proof. Such a small 𝜖 implies that (𝑘 − 1) · (1 + 𝜖) · 𝑛
𝑘
< 𝑛, i.e.

(𝑘 − 1) parts of maximal size are still not enough to cover the entire

graph. □

Blocks. One of the fundamental tools in our construction is a block
of a specific size 𝑏 ≥ 2. A block 𝐵 consists of 𝑏 nodes 𝑣1, . . . , 𝑣𝑏 ,

and 𝑏 distinct hyperedges of size (𝑏 − 1) each, such that the 𝑖-th

hyperedge contains every node from 𝐵 except for 𝑣𝑖 . The main role

of blocks in our construction is to behave as basic building blocks

that are essentially unsplittable.

Lemma A.5. If a block 𝐵 of size 𝑏 intersects with more than one
partition, then the given partitioning has cost at least (𝑏 − 1).

Proof. Consider a color (say, red) that appears at least two times

in 𝐵, and a node 𝑣 ∈ 𝐵 that has a different color from this (say, blue).

All the (𝑏 − 1) hyperedges containing 𝑣 have both a blue and a red

node in them, so they each induce a cost of 1 at least. On the other

hand, if no color appears twice in 𝐵 at all, then each hyperedge

induces a cost of at least 1. □

In our constructions, we usually select 𝑏 such that (𝑏 − 1) is
larger than the cost of some trivial partitionings that are straight-

forward to find in our construction. This will imply that any rea-

sonable algorithm must color each of the blocks in the hypergraph

monochromatically (if this is possible at all): otherwise, we can triv-

ially improve the solution, by simply replacing it with an arbitrary

partitioning that does not split any of the blocks.

With a slight abuse of terminology, we will sometimes also use

the word block to refer to the slightly different gadgets that serve

the same purpose (they are suboptimal to split) in special classes of

hypergraphs, e.g. hyperDAGs.

Number of hyperedges. Note that when we express our positive

results as a function of 𝑛, this is a slight abuse of notation. That is,

we implicitly assume that the hypergraph has reasonable size, i.e.

the number of hyperedges is polynomial in 𝑛; otherwise, it might

not even be possible to read the input in time that is polynomial

in 𝑛. For larger hypergraphs, we can reinterpret these results such

that the corresponding running time is a function of the input size

(in bits, in a classical complexity-theoretic sense) instead of the

number of nodes to extend our claims to this case.

Non-integer thresholds. When discussing our constructions, it is

often convenient to assume that the threshold (1 + 𝜖) · 𝑛
𝑘
of the bal-

ance constraint is an integer value. As such, we sometimes omit the

corresponding floor function when providing a high-level overview

in our proofs.

We mentioned in Section 3 that the constraints are sometimes

relaxed to a looser threshold of ⌈(1+𝜖) · 𝑛
𝑘
⌉ to ensure that a feasible

partitioning always exists. Note that such a relaxation is rarely nec-

essary: if we have 𝜖 > 0, then ⌊(1+𝜖) · 𝑛
𝑘
⌋ ≥ 𝑛

𝑘
is already ensured for

𝑛 ≥ 𝑘
𝜖 = 𝑂 (1), so this mostly plays a role in the 𝑘-section problem

when 𝜖 = 0. Most of our proofs are straightforward to adapt to this

slightly different problem definition with the relaxed constraint.

This question is most relevant in the context of the layer-wise con-

straints for hyperDAGs: in computational DAGs, we can easily have

some very small layers where this relaxation is indeed necessary.

Alternatively, we could also modify the problem formulation in the

12

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

layer-wise case, and decide to ignore these degenerate layers, only

imposing a balance constraint on layers above a specific size.

B DETAILED DISCUSSION OF HYPERDAGS
This section discusses the hyperDAG representation of computa-

tional DAGs in more detail. Recall that given a DAG 𝐺 , our hyper-

DAG has a hyperedge for every node 𝑢, containing both 𝑢 and all

the immediate successors of 𝑢. For simplicity, we disregard hyper-

edges of size 1, i.e. we do not add a hyperedge for 𝑢 if 𝑢 does not

have any outgoing edges; such degenerate hyperedges do not have

any effect on the partitioning problem anyway. This means that

our resulting hyperDAG has exactly 𝑛 − |𝑉𝑠𝑖𝑛𝑘 | hyperedges, where
𝑉𝑠𝑖𝑛𝑘 ⊆ 𝑉 denotes the sink nodes of the computational DAG.

We point out that a similar approach to convert computational

DAGs to hypergraphs has already been suggested in the work of

Hendrickson and Kolda [27]; in this approach, the hyperedge cor-

responding to a node 𝑢 contains both the immediate predecessors

and the immediate successors of𝑢. However, the hyperedges in this

model do not corresponds to specific units of data, and as such, the

cut size can significantly overestimate the actual communication

costs, similarly to models with simple graphs. In particular, con-

sider a DAG with (𝑘 − 1) source nodes and𝑚 sink nodes, where

every source has a directed edge to every sink. Assume the sinks

are all red, and each source takes a different one of the other (𝑘 − 1)
colors. In this case, each hyperedge corresponding to a sink node

will induce a connectivity cost of (𝑘 − 1), and hence the total cost is
at least𝑚 · (𝑘 −1). In contrast to this, the actual cost of data transfer

(accurately modeled by our hyperDAGs) is only (𝑘 − 1): the value
of every source node needs to be transferred to the red processor.

B.1 Characterization of hyperDAGs
Recall that if the generating node of each hyperedge is specifically

marked (i.e. we knowwhich hyperedge corresponds to which node),

then we can easily check if a hyperDAG corresponds to a valid

computational DAG: we simply convert each hyperedge back into

directed edges, and verify whether the resulting directed graph is a

DAG.

On the other hand, if the generating nodes are unknown, then

it is not so straightforward to decide whether a hypergraph can

be obtained as a hyperDAG. We have seen a simple example in

Figure 2 for a hypergraph that cannot be obtained as a hyperDAG

from any computational DAG. In fact, one can observe that Figure

2 does not satisfy several necessary conditions for hyperDAGs. For

instance, any hyperDAG must have at least one node of degree

1, since any source node of the original DAG becomes a degree-1

node after the transformation. Also, any hyperDAG must satisfy

|𝐸 | ≤ 𝑛 − 1: each hyperedge must have a distinct generator node,

and the DAG must also have a sink node that does not generate a

hyperedge.

Furthermore, even if a hypergraph can be obtained as a hyper-

DAG, it might be obtained in multiple different ways, i.e. the same

hyperDAG might correspond to several non-isomorphic compu-

tational DAGs. E.g. if we consider a hypergraph on 3 nodes with

two distinct hyperedges of size 2, then this can be obtained from

two different computational DAGs: a directed path of length 2, or a

DAG with two source nodes and a single sink.

For a complete characterization of hyperDAGs (i.e. a necessary

and sufficient condition), the key concept is that of potential source

nodes, i.e. nodes of degree 1: we need to have such a node in every

induced subgraph. By induced subgraph in a hypergraph, we mean

a subset of nodes 𝑉0 ⊆ 𝑉 and the hyperedges 𝑒 ∈ 𝐸 such that

𝑒 ⊆ 𝑉0.

Lemma B.1. A hypergraph𝐺 is a hyperDAG if and only if every
induced subgraph of 𝐺 has a node of degree at most 1.

Proof. One direction of this lemma is straightforward: every

subgraph of a hyperDAG corresponds to a subgraph in the origi-

nal computational DAG. However, if a node 𝑢 has degree ≥ 2 in a

hyperDAG, then one of the two adjacent hyperedges provides an

incoming edge to 𝑢 in the original DAG, and hence 𝑢 cannot be a

source node of the subDAG. As such, if we have a subgraph in our

hypergraph where all nodes have degree ≥ 2, then the correspond-

ing subDAG can have no source nodes, which is a contradiction.

On the other hand, if the property is satisfied, then we can always

create a corresponding computational DAG iteratively. In each step,

let us select a node of degree 1 in our hypergraph, and make it

the generating node of its (only) incident hyperedge. We can then

remove both the node and the hyperedge from our hypergraph (and

additionally any other nodes that have degree 0 after this step). The

property in the lemma ensures that we can always find a node of

degree 1 in this process, since otherwise the remaining set of nodes

would form an induced subgraph with all degrees ≥ 2. The directed

graph obtained from this process is indeed a DAG, since the order

of removing the nodes is a valid topological ordering. □

In fact, this also provides an efficient algorithm to recognize

whether 𝐺 is a hyperDAG; intuitively, we can greedily remove

degree-1 nodes and their incident hyperedges, and𝐺 is a hyperDAG

if and only if we can do this (i.e. always find a degree-1 node) until

all hyperedges are removed.

Lemma B.2. It can be decided in linear time whether a hypergraph
𝐺 is a hyperDAG.

Proof. This iterative node removal also gives a simple polyno-

mial time algorithm to recognize if a hypergraph is a hyperDAG

(or find a violating subset). If the iterative process fails to finish,

then the hypergraph induced by the remaining nodes has degrees

≥ 2, and hence our original hypergraph is not a hyperDAG.

The above algorithm can indeed be executed in time that is linear

in the input size (the number of pins 𝜌) with the appropriate data

structure. Consider a linked list representation of the incident edges

for each node 𝑣 ∈ 𝑉 . For each hyperedge 𝑒 ∈ 𝐸, we maintain a list

of pointers to the list items that represents 𝑒 in the incidence list

of each 𝑣 ∈ 𝑒 ; this allows us to delete a hyperedge 𝑒 in 𝑂 (|𝑒 |) time.

Furthermore, consider a vector with indices from 0 to Δ where

the 𝑖-th entry maintains all the nodes of degree 𝑖 as a linked list;

this allows us to find a node of degree 1 in 𝑂 (1) time in each step.

Finally, for each 𝑣 ∈ 𝑉 , we have a distinct pointer to the list item

in the corresponding degree list that represents 𝑣 ; this allows us to

update the degrees in 𝑂 (1) time.

Using this structure, we can find a potential source in 𝑂 (1) time

in each step, identify the incident hyperedge 𝑒 , and remove 𝑒 from

the incidence list of each other node (also updating the degrees).

13

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

Whenever no nodes of degree 1 remain, we can check whether any

hyperedges have remained in the hypergraph to conclude whether

we have a valid hyperDAG. The process removes each hyperedge at

most once, so the running time is linear in the number of pins. □

Note that the iterative process also shows that the 𝑖-th smallest

degree in a hyperDAG is at most 𝑖 . As such, for the densest possible

hyperDAG on 𝑛 nodes 𝑣1, . . . , 𝑣𝑛 , we need to add a hyperedge for

all 𝑖 ∈ {1, . . . , 𝑛 − 1} which contains the nodes {𝑣𝑖 , . . . , 𝑣𝑛}. This
results in a degree sequence of (1, 2, . . . , 𝑛 − 2, 𝑛 − 1, 𝑛 − 1).

B.2 HyperDAG partitioning is NP-hard
Finally, we also prove for completeness that the partitioning prob-

lem remains NP-hard if the inputs are restricted to hyperDAGs.

Note that this claim seems like a weaker version of Theorem 4.1.

However, strictly speaking, it is still an independent statement that

does not follow directly from Theorem 4.1, since in contrast to the

theorem, this claim also holds without assuming ETH.

Lemma B.3. The partitioning problem is still NP-complete if we
restrict the input to hyperDAGs.

Proof. Consider an instance𝐺 (𝑉 , 𝐸) of the partitioning problem
for general hypergraphs, and assume we want to decide if there

exists a cut of cost 𝐿 in this hypergraph. In case of hyperDAGs, the

role of our block gadgets will be fulfilled by the densest possible

hyperDAGs (i.e. a hyperDAG of degree sequence (1, 2, . . . ,𝑚−1,𝑚−
1)) discussed before. We replace each original node 𝑣 ∈ 𝑉 by such

a “hyperDAG block” on𝑚 nodes for some large parameter𝑚. In

case of each hyperedge 𝑒 ∈ 𝐸, for all nodes 𝑣 ∈ 𝑒 , we only include

the last node of the hyperDAG block corresponding to 𝑣 . Finally,

in each hyperedge 𝑒 , we insert an extra node (let us call it a light
node). Note that this is indeed a hyperDAG: the light nodes can be

chosen as the generator nodes for each original hyperedge 𝑒 ∈ 𝐸,

and the hyperDAG blocks have designated generator nodes for each

hyperedge. The new number of nodes is 𝑛′ =𝑚 · |𝑉 | + |𝐸 |.
Assume that our original balance constraint is 𝜖 > 0. Then we

will define a new balance constraint parameter such that (1 + 𝜖 ′) ·
𝑛′

𝑘
=𝑚 · ⌊(1 + 𝜖) · |𝑉 |

𝑘
⌋ + |𝐸 |, i.e. we select

𝜖 ′ =
(1 + 𝜖) ·𝑚 · |𝑉 | + 𝑘 · |𝐸 |

𝑚 · |𝑉 | + |𝐸 | − 1 ;

this indeed provides an 𝜖 ′ > 0 if we have 𝜖 > 0, assuming that𝑚

is chosen large enough such that𝑚 > (𝑘 − 1) · |𝐸 |
𝜖 · |𝑉 | . Intuitively,

this ensures that (i) we can only put (1 + 𝜖) · |𝑉 |
𝑘

hyperDAG blocks

into any partition, and (ii) we can put the light nodes in any of the

parts.

If we have a solution to the original partitioning problem, then

a solution of the same cost also exists in our derived problem: we

can place place the entire hyperDAG block of each node 𝑣 into the

original part containing 𝑣 , and we can then place the light node

of a hyperedge 𝑒 into any part that intersects 𝑒 . This satisfies the

balance constraint, and each hyperedge induces the same cost as in

our original partitioning.

On the other hand, assume there is a partitioning of size at most

𝐿 in our derived hyperDAG. Note that 𝐿 ≤ (𝑘 − 1) · |𝐸 |, otherwise
the problem is trivial. Let us define an𝑚0 large enough such that

𝑚0 > 𝐿 · |𝑉 | + |𝐸 |. We then select𝑚 =𝑚0 + 𝐿 for our parameter𝑚.

We claim that the last𝑚0 nodes of every block must be in the same

partition: these𝑚0 nodes induce (𝑚0−1) edges already, so splitting
them to multiple parts would induce a cost at least (𝑚0 − 1) > 𝐿.

Now consider the partitioning in the original hypergraph where

each 𝑣 ∈ 𝑉 is placed in the same part as the last𝑚0 nodes of the

corresponding block in our hyperDAG; the cost of this solution

is at most as much as the cost of the original partitioning in our

hyperDAG. Furthermore, the solution also satisfies the balance

constraint in our original hypergraph. Assume for contradiction

that the balance constraint is violated, i.e. there are at least ⌊(1+𝜖) ·
|𝑉 |
𝑘
⌋ + 1 nodes in a partition. This implies that our hyperDAG also

had at least (⌊(1 + 𝜖) · |𝑉 |
𝑘
⌋ + 1) ·𝑚0 nodes in a partition. However,

recall that𝑚0 =𝑚 − 𝐿 and𝑚 > 𝐿 · (|𝑉 | + 1) + |𝐸 |, so we have

(⌊(1 + 𝜖) · |𝑉 |
𝑘

⌋ + 1) ·𝑚0 > ⌊(1 + 𝜖) · |𝑉 |
𝑘

⌋ ·𝑚 +𝑚 − (|𝑉 | + 1) · 𝐿 >

> ⌊(1 + 𝜖) · |𝑉 |
𝑘

⌋ ·𝑚 + |𝐸 | = (1 + 𝜖 ′) · 𝑛
′

𝑘
,

which contradicts the fact that our hyperDAG partitioning was

balanced.

Since hypergraph partitioning is NP-hard for any 𝜖 ′ > 0, this

completes the reduction for any 𝜖 > 0. Note that𝑚 = 𝑂 (|𝐸 | · |𝑉 |),
so the number of nodes in our hyperDAG constructions is only

𝑛′ =𝑚 · |𝑉 | + |𝐸 | = 𝑂 (|𝐸 | · |𝑉 |2).
To extend the proof to 𝜖 = 0, we can apply the approach discussed

in Lemma A.1. □

C PROOF OF THE MAIN THEOREM
We present the proof of Theorem 4.1 in three separate parts. We

first discuss the proof for general hypergraphs. We then show how

to convert the construction first into a hypergraph with Δ = 2, and

then into a hyperDAG. Also, we first assume for convenience that

𝑘 = 2, and we discuss the generalization to 𝑘 ≥ 3 after the proof.

C.1 Theorem 4.1: general case
We prove Theorem 4.1 through the following reduction.

Lemma C.1. If there exist a polynomial-time approximation algo-
rithm for the 𝜖-balanced hypergraph partitioning problem to a factor
𝛼 (𝑛) (some function of 𝑛), then there also exists a polynomial-time
approximation algorithm for the S𝑝ES problem to a factor 𝛼 (𝑐0 · 𝑛3),
for some constant 𝑐0.

Proof. The main idea of the reduction has been outlined in

Section 4. Assume we have an instance of S𝑝ES, i.e. a graph𝐺 (𝑉 , 𝐸)
(with 𝑛 = |𝑉 |) and an integer 𝑝 . We then create a block 𝐵𝑒 for each

𝑒 ∈ 𝐸, and a node 𝑏𝑣 for each 𝑣 ∈ 𝑉 . We set the size each block 𝐵𝑒
to a parameter𝑚 ≥ 𝑛 + 1; as such, splitting any of the blocks has a

cost of at least 𝑛.

To model the structure of the original graph, for each 𝑣 ∈ 𝑉 , we

add a hyperedge that contains (i) the node 𝑏𝑣 , and (ii) for all 𝑒 ∈ 𝐸

such that 𝑒 is incident to 𝑣 , it contains an arbitrary node from the

group 𝐵𝑒 . We will refer to these kind of hyperedges as the main
hyperedges.

Finally, we create two more even larger blocks 𝐴, 𝐴′
to establish

the role of the two colors. For each original node 𝑣 ∈ 𝑉 , we add𝑚

14

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

distinct hyperedges that contain (i) an arbitrary node from 𝐴, and

(ii) the node 𝑏𝑣 . As such, in order to have a cut cost below𝑚, we

will need to ensure that all the nodes 𝑏𝑣 have the same color as 𝐴.

We choose the sizes of𝐴 and𝐴′
carefully, such that the following

two conditions hold. Firstly, wewill ensure that |𝐴|+|𝐴′ | > (1+𝜖)·𝑛′
2

for our final number of nodes 𝑛′ = |𝐴| + |𝐴′ | + |𝐸 | ·𝑚 + 𝑛. This

implies that𝐴 and𝐴′
will receive different colors in any reasonable

solution; let us define the color of 𝐴 as blue, and the color of 𝐴′
as

red. Furthermore, we also ensure that |𝐴′ | + 𝑝 ·𝑚 = (1 − 𝜖) · 𝑛′
2
;

intuitively speaking, this means that we need to color at least 𝑝 of

the groups 𝐵𝑒 red in order to satisfy the balance constraint.

Altogether, the hypergraph ensures that in any reasonable so-

lution (with cost below𝑚), the blocks are all uncut, the nodes 𝑏𝑣
are all blue, and at least 𝑝 of the groups 𝐵𝑒 are red; hence only

the main hyperedges can be cut. Since 𝑏𝑣 is blue, each main hy-

peredge is cut exactly if at least one of the groups 𝐵𝑒 of the edges

incident to 𝑣 is colored red. As such, the problem corresponds to

choosing at least 𝑝 edges of the original graph (to color red) such

that the number of nodes covered by these edges is minimal, which

completes the reduction. Note that 𝑛′ ≤ 𝑂 (1) · 𝑛2 ·𝑚 = 𝑂 (𝑛3),
so an 𝛼 (𝑛′)-approximation for partitioning would also provide an

𝛼 (𝑐0 · 𝑛3)-approximation for S𝑝ES.

For a more formal description of the reduction, let OPT𝑆𝑝𝐸𝑆 and

OPT𝑝𝑎𝑟𝑡 denote the optimum of the original S𝑝ES and the derived

hypergraph partitioning problem, respectively. One can observe

that OPT𝑆𝑝𝐸𝑆 = OPT𝑝𝑎𝑟𝑡 . Indeed, if we take any S𝑝ES solution and

color the corresponding 𝐵𝑒 red, we get a balanced partitioning with

the same cost. On the other hand, in any partitioning that colors𝐴′

and 𝑝 edge gadgets red (and everything else blue), we have a cost of

at most 𝑛 < 𝑚. Hence the optimal partitioning must be reasonable:

it cannot split any of the blocks, it must color all the 𝑣𝑏 blue, and at

least 𝑝 of the 𝐵𝑒 red. Given such an optimum, taking 𝑝 of the red

edges (corresponding to the red 𝐵𝑒) provides an S𝑝ES solution with

at most the same cost.

Assume we have an algorithm that returns a partitioning of cost

at most 𝛼 (𝑛′) · OPT𝑝𝑎𝑟𝑡 . If this solution has cost larger than 𝑛,

we can replace it by any reasonable solution (selecting 𝑝 arbitrary

edges); if the number of red 𝐵𝑒 is larger than 𝑝 , we can recolor some

of them to blue. These steps do not increase the cost or violate the

balance constraint. We can then convert the partitioning into an

S𝑝ES solution of the same cost, i.e. cost at most 𝛼 (𝑛′) · OPT𝑝𝑎𝑟𝑡 ≤
𝛼 (𝑐0 · 𝑛3) · OPT𝑆𝑝𝐸𝑆 .

It remains to discuss the size of 𝐴 and 𝐴′
in more detail. Let

𝑠 = |𝐸 | · 𝑚 + 𝑛, and let us select 𝑛′ large enough such that 𝑠 <

(1 − 𝜖) · 𝑛′
2
. This already implies |𝐴| + |𝐴′ | > (1 + 𝜖) · 𝑛′

2
, and also,

note that 𝑛′ = 𝑂 (𝑠) = 𝑂 (𝑛3). Furthermore, we need to select |𝐴′ |
such that 𝑝 ·𝑚 ≤ (1−𝜖) · 𝑛′

2
− |𝐴′ | < (𝑝 +1) ·𝑚 holds, e.g. by setting

|𝐴′ | = ⌊(1 − 𝜖) · 𝑛′
2
⌋ − 𝑝 ·𝑚. Finally, let |𝐴| = 𝑛′ − 𝑠 − |𝐴′ |. □

Theorem 4.1 follows easily from this reduction.

Proof of Theorem 4.1. Given a 𝑛1/(log log𝑛)
𝛿′
-approximation

algorithm for partitioning for some constant 𝛿 ′, Lemma C.1 gives a

𝑐0 · 𝑛3/(log log𝑐0 ·𝑛
3)𝛿′

-approximation for S𝑝ES. However, we know

that there is no 𝑛1/(log log𝑛)
𝛿
-approximation for S𝑝ES for a specific

𝛿 > 0 if ETH holds [35]. If we select 𝛿 ′ > 𝛿 , then we have

𝑐0 · 𝑛3/(log log𝑐0 ·𝑛
3)𝛿′ < 𝑛4/(log log𝑛)

𝛿′
< 𝑛1/(log log𝑛)

𝛿

for 𝑛 large enough. This contradicts to the inapproximability result

on S𝑝ES. □

C.2 Conversion to Δ = 2

When adjusting the construction to Δ = 2, the key challenge is to

achieve the functionality of the blocks in this case. That is, we need

to develop densely interconnected subgraphs that have degree ≤ 2,

but still induce a large cost in case they are split.

Definition C.2. A grid gadget is an ℓ × ℓ grid of nodes, where

nodes in each row and column form a hyperedge (of size ℓ).

Lemma C.3. Consider a 2-way (not necessarily balanced) parti-
tioning of a grid gadget. If there are at least 𝑡0 occurrences of the less
frequent color in the grid, then the cut cost is at least

√
𝑡0.

Proof. Assume the minority color is red, and let ℎ𝑐 and ℎ𝑟 be

the number of columns and rows that are entirely red, respectively.

Note that ℎ𝑐 + ℎ𝑟 < ℓ , since red is the minority color.

If ℎ𝑐 ≥ 1 and ℎ𝑟 ≥ 1, then all other (i.e. not entirely red) rows

and columns contain a blue node, so they are cut; the number of cut

hyperedges is then 2ℓ − (ℎ𝑐 + ℎ𝑟) ≥ ℓ ≥ √
𝑡0. If ℎ𝑐 ≥ 1 and ℎ𝑟 = 0,

then all rows have blue node, so they are cut; the number of cut

hyperedges is again at least ℓ ≥ √
𝑡0. The same holds if ℎ𝑐 = 0 and

ℎ𝑟 ≥ 1.

Finally, if ℎ𝑐 = 0 and ℎ𝑟 = 0, then each row or column containing

a red node is cut. To minimize the number of rows/columns with a

red node, we can place them in a

√
𝑡0 ×

√
𝑡0 square shape; this way

the number of cut hyperedges is 2 · √𝑡0. □

In our construction, wewill replace all the blocks by a grid gadget.

Consider the number of nodes of the minority color in each of the

grid gadgets, and let 𝑡 denote the sum of these (i.e. the total number

of minority nodes) over all the grid gadgets. It follows easily that

the cut cost in our construction is at least

√
𝑡 .

Lemma C.4. Given several grid gadgets with a total of 𝑡 minority
nodes, the cut cost is at least

√
𝑡 .

Proof. Let the number of minority nodes be 𝑡1, 𝑡2, . . . in the

different grids. According to Lemma C.3, the total cut cost is at

least

√
𝑡1 +

√
𝑡2 + With 𝑡1 + 𝑡2 + . . . = 𝑡 , this is minimized if we

have all the minority nodes in a single grid (𝑡1 = 𝑡 , 𝑡2 = 0, . . .) since

the square root function is concave. This induces a cost of at least√
𝑡1 =

√
𝑡 . □

This implies that similarly to before, we can assume that any

reasonable partitioning of our construction has 𝑡 ≤ 𝑛2; otherwise

it induces a cost of more than 𝑛, and hence we can replace it with

any reasonable solution that colors each grid monochromatically.

As a next step, we define extended grids. Given an ℓ×ℓ grid gadget,
we add ℓ0 so-called outsider nodes to the grid (for some ℓ0 ≤ ℓ), and

include the 𝑖-th outsider node in the hyperedge corresponding to

the 𝑖-th row. Note that each node still has degree at most 2 after this,

and our observations about minority-colored nodes in the original

ℓ × ℓ part of the grid also remain true.

15

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

Lemma C.5. Consider an extended grid where red is the minority
color in the original ℓ × ℓ part of the grid, and every outsider node has
degree at most 2. If we recolor the entire extended grid to blue, then
the total cost does not increase.

Proof. After recoloring, all the hyperedges within the grid will

be uncut. The only (originally uncut) hyperedges that can become

cut in the process are the hyperedges incident to outsider nodes

that were originally red. Since the outsider nodes also have degree

at most 2, they are incident to at most one hyperedge besides the

grid row that they are contained in.

Let ℎ𝑐 and ℎ𝑟 again be the number of columns and rows in the

original part of the grid that are entirely red. Similarly to the proof

of Lemma C.3, if we have either ℎ𝑐 ≥ 1 or ℎ𝑟 ≥ 1, then the number

of conflicts is at least ℓ . This implies that recoloring the entire grid

to blue decreases the total cost by at least ℓ , while it introduces at

most ℓ0 ≤ ℓ new conflicts.

On the other hand, let ℎ𝑐 = ℎ𝑟 = 0, and consider a red outsider

node 𝑣 . Since no row of the grid is entirely red, the row containing

𝑣 is cut. Hence recoloring each such row to blue decreases the cost

by 1, and increases the cost (through the other hyperedge incident

to 𝑣) by at most 1. □

Lemma C.6. If stated with 𝛼 (𝑐0 · 𝑛4) instead of 𝛼 (𝑐0 · 𝑛3), Lemma
C.1 also holds when restricted to hypergraphs of degree at most 2.

Proof. We replace each block in our construction with an ex-

tended grid. For each 𝐵𝑒 , we use an extended grid of size ℓ × ℓ ,

where we set ℓ = 2 · 𝑛, and we add 2 outsider nodes. Both outsider

nodes will represent one endpoint of the original edge 𝑒 .

We turn𝐴 into an extended grid of size ℓ𝐴 with 𝑛 outsider nodes,

each representing one of the nodes 𝑣 ∈ 𝑉 , and taking the role of

the original 𝑏𝑣 . For each 𝑣 ∈ 𝑉 , we add a hyperedge containing 𝑏𝑣
and all the outsider nodes in the incident 𝐵𝑒 that represent 𝑣 as an

endpoint. Note that each node has degree exactly 2 this way.

Finally, we turn 𝐴′
into a grid gadget of size ℓ𝐴′ . Note that alto-

gether we have 𝑛′ = ℓ𝐴
2+ℓ𝐴′2+𝑛+ |𝐸 | · (ℓ2+2). We select ℓ𝐴 and ℓ𝐴′

such that ℓ𝐴
2 + ℓ𝐴′2− 𝑡 > (1+𝜖) · 𝑛′

2
. This implies that𝐴 and𝐴′

will

again have a different majority color, otherwise either the balance

constraint is violated, or we have at least 𝑡 minority-colored nodes

altogether, so the solution has unreasonably high cost. Furthermore,

we need to ensure that ℓ𝐴′2 + 𝑝 · (ℓ2 + 2) = ⌈(1 − 𝜖) · 𝑛′
2
⌉. For this,

let again 𝑠 = |𝐸 | · (ℓ2 + 2) + 𝑛 and select 𝑛′ large enough to ensure

𝑠 < (1− 𝜖) · 𝑛′
2
; this already provides the appropriate values for ℓ𝐴

2

and ℓ𝐴′2. Assume for convenience that the resulting ℓ𝐴
2
and ℓ𝐴′2

are square numbers (we discuss this technicality after the proof).

Note that 𝑠 ≤ 𝑛2 · 𝑂 (𝑛2) + 𝑛 = 𝑂 (𝑛4) and |𝐴|, |𝐴′ | ∈ 𝑂 (𝑠), so the

total number of nodes is 𝑛′ = 𝑂 (𝑛4) in this case.

Given a solution to S𝑝ES, we can easily convert it into a parti-

tioning of the same cost: we color 𝐴′
and the extended grids of the

𝑝 chosen edges red, and everything else blue. This only cuts the

main hyperedges that contain a node 𝑏𝑣 with at least one incident

red edge.

On the other hand, given a valid partitioning, we can also turn

it into an S𝑝ES solution with at most the same cost. Recall that we

have 𝑡 ≤ 𝑛2, otherwise we can switch to an arbitrary reasonable

solution (with 𝑝 arbitrarily chosen red edges). One can observe that

there must be at least 𝑝 grids 𝐵𝑒 where the majority color is red;

otherwise, we have at most ℓ𝐴′2 red nodes in 𝐴′
, at most ℓ2 + 2 red

nodes in the red-majority 𝐵𝑒 , at most 𝑛 + 2 · |𝐸 | red outsider nodes,

and at most 𝑡 red nodes as minority-colored nodes in the remaining

grids. As such, the total number of red nodes is at most

ℓ𝐴′2 + (𝑝−1) · (ℓ2 +2) +𝑛+2 · |𝐸 | +𝑡 ≤ ℓ𝐴′2 + (𝑝−1) · (ℓ2 +2) +4 ·𝑛2 .

This is less than the required number of red nodes (1 − 𝜖) · 𝑛′
2
=

ℓ𝐴′2 + 𝑝 · (ℓ2 + 2), since we have ℓ2 + 2 > 4𝑛2 due to ℓ = 2𝑛.

Hence there are at least 𝑝 grids 𝐵𝑒 with red majority. This means

that we can recolor each extended grid to the majority color, since

having𝐴′
and at least 𝑝 of the 𝐵𝑒 red already ensures that we satisfy

the balance constraint. Furthermore, Lemma C.5 shows that recol-

oring all extended grids to the majority color does not increase the

cost. Hence the resulting solution corresponds to an S𝑝ES solution

of at most the original cost, completing the reduction. □

Theorem 4.1 then naturally extends to this case of degree at most

2.

We point out that this method also shows the bound for the

special class of SpMV hypergraphs studied in [30]. Besides having

degree exactly 2, these hypergraphs also have a “bipartite property”

on their hyperedges: the hyperedges can be partitioned into two

classes 𝐸1, 𝐸2 such that any two hyperedges in the same class are dis-

joint. Our construction also satisfies this property: the hyperedges

describing grid rows are class 1, and the remaining hyperedges

(describing grid columns or main hyperedges) are class 2. The grids

themselves are then bipartite by design, and the main hyperedges

always intersect with row hyperedges of the grids only.

Note that we assumed for convenience that the resulting values

ℓ𝐴
2
and ℓ𝐴′2 are squares of integers, which is rarely the case. To

overcome this, one can first select 𝑛′ explicitly such that ℓ𝐴
2 =

⌊(1 + 𝜖) · 𝑛′

𝑘
⌋ − (|𝐸 | − 𝑝) · (ℓ2 + 2) − 𝑛 is a square number (we

increment our original candidate for 𝑛′ until this is fulfilled; note
that since

1+𝜖
𝑘

< 1, the corresponding ℓ𝐴
2
is also incremented by at

most 1 in each step, so we can find such a square number without

changing the magnitude of 𝑛′). We then set |𝐴′ | = 𝑛′ − ℓ𝐴
2 − 𝑠

even if this is not a square number by modifying the grid gadget

of 𝐴′
: we add an outsider node to a sufficient number of rows and

columns to increase the size of the ℓ𝐴′ × ℓ𝐴′ square grid to the

required |𝐴′ | (this is always possible since we can add up to 2 · ℓ𝐴′

outsider nodes). These extra outsider nodes are colored red in any

reasonable solution, otherwise it can be easily improved.

C.3 Conversion to a hyperDAG
It only remains to further adjust the construction in order to ensure

that it is a hyperDAG. This is rather straightforward. We only need

to add one more outsider node to the extended grids 𝐴 and 𝐴′
; this

does not affect the proof discussed above.

In order to show that the resulting construction is a hyperDAG,

we only need to select a distinct generator node for every hyper-

edge without creating cycles; we discuss such an assignment. For

the main hyperedges, we select the corresponding node 𝑏𝑣 as the

generating node. In each of the extended grids, we first select an

outsider node: the newly added node for𝐴 and𝐴′
, and an arbitrary

one of the two outsider nodes in case of all 𝐵𝑒 . We make this chosen

16

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

outsider node the generator of the row hyperedge that it is con-

tained in. Then we select every other node in the same row as the

generator node of the column hyperedge it is contained in. Finally,

we consider the first column hyperedge of the grid, and in every

row (except for the already processed row where the generator is

the outsider node), we select the first node of the row as the gener-

ator node of this row hyperedge. One can check that this selection

of generator nodes indeed produces a hyperDAG, i.e. there are no

directed cycles in the resulting DAG structure.

C.4 Generalization to 𝑘 ≥ 3

The same reduction approach also generalizes to 𝑘 ≥ 3 colors.

Following the same idea, we ensure that ⌊(1 + 𝜖) · 𝑛′

𝑘
⌋ = |𝐴| +

(|𝐸 | − 𝑝) ·𝑚 + 𝑛, i.e. besides 𝐴 and its outsider nodes we can only

color (𝐸 − 𝑝) edge blocks blue, so the remaining blocks need to

attain a different color. Note that there is no motivation to color

the remaining edge blocks with multiple colors: in any such case,

we can recolor them all to red without increasing the cost.

If we have 2 · 1+𝜖
𝑘

> 1, then it is not even required to add

further nodes to the construction: the entire construction can be

colored by two colors, so we can recolor any solution such that all

the remaining (non-blue) nodes are red. Otherwise, let 𝑘0 be the

smallest integer such that 𝑘0 parts can cover the whole hypergraph,

i.e. 𝑘0 = ⌈ 𝑘
1+𝜖 ⌉, and let us develop (𝑘0−1) components of equal size

in the remaining graph. That is, let𝑇0 =
1

𝑘0−1 · (1−
1+𝜖
𝑘

) ·𝑛′, and first
select |𝐴′ | such that |𝐴′ | + 𝑝 ·𝑚 = 𝑇0, and then add (𝑘0 − 2) further
blocks of size 𝑇0 each. The same reduction proof still holds for this

construction: for any partitioning solution, we can (i) recolor edge

blocks blue until |𝐸 | − 𝑝 of them are blue, and then (ii) recolor the

remaining edge gadgets and𝐴′
red, and the 𝑖-th extra block to color

𝑖 , without increasing the cost in either step. Note that these changes

only increase the size of the construction by a factor 𝑘 ∈ 𝑂 (1) at
most.

The adjustment to Δ = 2 and hyperDAGs also carries over to

this case. Lemma C.3 and C.4 also apply if we define minority

color as any color that occurs at most
1

2
· ℓ2 times in the grid;

we always have such a color unless the grid is monochromatic.

Lemma C.5 holds for recoloring the grid to the most frequent color

(with ℎ𝑟 and ℎ𝑐 denoting the number of rows/columns that are

monochromatic with any other color). This allows us to use the

same proof approach as in LemmaC.6. In particular, in a partitioning

of reasonable cost, blue can only be the most frequent color in at

most (|𝐸 | − 𝑝) edge grids, otherwise the number of blue nodes is

at least |𝐴| + (|𝐸 | − 𝑝 + 1) · (ℓ2 + 2) − 𝑡 , which is larger than the

threshold since (ℓ2 + 2) ≥ 𝑛 + 2 · |𝐸 | + 𝑡 . We can then again recolor

𝐴 and the blue-majority 𝐵𝑒 to blue, and 𝐴′
and all other 𝐵𝑒 to red

without increasing cost, thus obtaining an S𝑝ES solution of at most

the original cost.

C.5 Different complexity-theoretic
assumptions

Note that different inapproximability results are known for S𝑝ES

based on different complexity-theoretic assumptions.We nowquickly

outline the main idea of these assumptions, and discuss the slightly

stronger versions of Theorem 4.1 that they imply. The discussed

form of Theorem 4.1 is based on ETH, which intuitively states that

if 𝑠3 denotes the infimum of values 𝛿 such that 3-SAT can be solved

in time 𝑂 (2𝛿 ·𝑛), then we have 𝑠3 > 0.

Gap-ETH essentially states that it is not even possible in subex-

ponential time to decide whether a 3-SAT formula is satisfiable or

whether only a (1 − 𝛿) fraction of its clauses can be satisfied for

some 𝛿 > 0. This assumption implies that S𝑝ES cannot be approx-

imated to any 𝑛𝑓 (𝑛) factor, where 𝑓 denotes a function such that

𝑓 (𝑛) = 𝑜 (1) [35]. This provides an inapproximability result of the

same factor to our partitioning problem.

There are also several complexity assumptions for the hyper-

graph version of S𝑝ES, the so-called Minimum 𝑝-Union (M𝑝U)

problem [11]: given a hypergraph, our goal is to select 𝑝 hyper-

edges such that their union is as small as possible. Note that while

this is a more general problem, our reduction in Lemma C.1 is in fact

straightforward to extend to this case: now each block 𝐵𝑒 will have

not two, but up to 𝑛 incident main hyperedges. Furthermore, in the

extension to Δ = 2, this implies that each grid 𝐵𝑒 will have up to 𝑛

outsider nodes; however, this does not affect the proof of Lemma

C.6 significantly. In particular, if we add exactly 𝑛 outsider nodes to

each 𝐵𝑒 for simplicity, then we need to replace (ℓ2 + 2) by (ℓ2 + 𝑛)
when adjusting the size of blocks in our construction. Furthermore,

if we note that having at least 𝑡0 minority-colored outsider nodes

already induces a cost of at least 𝑡0 (i.e. either the given row is cut,

or it is monochromatic, and then similarly to Lemma C.3, the cost

is at least ℓ anyway), then the number of minority-colored outsider

nodes over all grid gadgets can also be upper bounded by 𝑡 .

The work of [3] introduces a more complex cryptographic as-

sumption that specific kinds of one-way functions (or alternatively,

pseudo-random generators) exist. This implies the inapproximabil-

ity of M𝑝U to a factor 𝑛𝛿 for a given 𝛿 > 0. Due to our reduction

from M𝑝U, this again provides the same 𝑛𝛿 -factor bound for the

partitioning problem.

Finally, the Hypergraph Dense vs. Random Conjecture states

that we are unable to distinguish a random and an adversarially

created hypergraph (of specific densities) in polynomial time; this

shows the inapproximability of M𝑝U to a 𝑛1/4−𝛿 factor for any

𝛿 > 0 [12]. In this case, it becomes significant that our reduction in

Lemma C.1 increases the number of nodes to 𝑂 (𝑛3) (or 𝑂 (𝑛4) in
case of Δ = 2): we only get a contradiction to this result if we have

a partitioning algorithm of factor 𝑛1/12−𝛿 for general hypergraphs,

or of factor 𝑛1/16−𝛿 when Δ = 2. As such, the inapproximability

results in this case are somewhat weaker than the baseline M𝑝U

result.

C.6 Parameterized complexity
We now briefly discuss the partitioning problem from a parameter-

ized complexity perspective, with respect to the allowed cost 𝐿 as

a parameter. We briefly summarize the intuitive properties of the

parameterized complexity classes that we will mention; for more

details, we refer the reader to [19].

• The class W[1] is essentially the set of problems that can be

represented by a combinatorial circuit of weft at most 1. The

clique problem (deciding whether a clique of size 𝐿 exists

in a graph) is a well-known example of a W[1]-complete

problem.

17

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

• The class XP is essentially the set of problems that can be

solved in time 𝑛𝑓 (𝐿) for some computable function 𝑓 (𝐿).
This implies that a polynomial algorithm exists for each

fixed 𝐿, but the exponent depends on 𝐿.

• The class para-NP is defined through non-deterministic algo-

rithms. For our purposes, it suffices to know that a problem

is para-NP-hard if there exists a fixed 𝐿 ∈ 𝑂 (1) such that the

problem is already NP-hard for 𝐿.

Proof of Lemma 4.3 (W[1]-hardness). The W[1]-hardness of

the problem follows directly from the reduction from S𝑝ES, which is

known to beW[1]-hard (it is a generalization of the clique problem).

Note that the parameter remains unchanged in our reduction. □

Proof of Lemma 4.3 (containment in XP). To show contain-

ment in XP, note that if the cost is at most 𝐿, then the number of cut

hyperedges is at most 𝐿. For a simple approach, we can consider all

the possible subsets 𝐸0 of at most 𝐿 hyperedges that are cut in a solu-

tion; the number of such subsets is

(|𝐸 |
0

)
+
(|𝐸 |
1

)
+ . . .+

(|𝐸 |
𝐿

)
≤ 𝐿 · |𝐸 |𝐿 .

For each such subset of hyperedges 𝐸0, and then each hyperedge

𝑒 ∈ 𝐸0, we can consider all the 2
𝑘 − 1 possible subsets of the 𝑘

colors, and assume that only (some of) these colors appear in 𝑒 . We

will call the combination of these assumptions a configuration: a set
𝐸0 of at most 𝐿 hyperedges, and for each 𝑒 ∈ 𝐸0 a subset of the 𝑘

colors that can appear in 𝑒 . Note that the number of cases for each

possible 𝐸0 is still only 2
𝑘𝐿
, so the total number of configurations

we have to consider is at most 𝐿 · |𝐸 |𝐿 · 2𝑘 ·𝐿 ≤ 𝑛𝑓 (𝐿) . Hence if we
can check in polynomial time for each configuration whether a

solution exists, then the problem is indeed in XP.

Firstly, observe that the cost corresponding to each configuration

can be easily computed: in case of cut-net cost, each hyperedge 𝑒 ∈
𝐸0 induces a cost of 1, and for connectivity cost, each 𝑒 induces a cost

of (𝜆𝑒−1) if 𝜆𝑒 colors can appear in 𝑒 . Note that his cost is somewhat

pessimistic if not all the permitted colors appear in 𝑒 ; however, we

find the solutions for such cases in the simpler configuration where

the colors are not even allowed. As such, we can consider this cost

for each configuration, and immediately exclude the configurations

where this cost is larger than 𝐿. For the remaining configurations,

we have to decide whether a corresponding partitioning exists.

To analyze a given configuration, we can simply remove the

hyperedges 𝐸0 and consider the remaining hypergraph. Note that

according to our assumptions, none of the hyperedges in this re-

maining hypergraph is cut; as such, we can essentially contract

each connected component into a single node, since these nodes

need to be placed into the same part anyway. Each such contracted

component has two crucial properties for our problem. Firstly, the

number of nodes 𝑎𝑖 in the component, since the components will

need to be separated into parts such that the corresponding sum of

sizes satisfies the balance constraint. Furthermore, each component

has a list of possible colors that are allowed in this component,

obtained as the intersection of the allowed color set for each 𝑒 ∈ 𝐸0
that intersects this component. For example, if some nodes of the

component are originally contained in two removed hyperedges

𝑒, 𝑒 ′ ∈ 𝐸0, and (in the current configuration) 𝑒 is allowed to contain

the colors red and blue, while 𝑒 ′ is allowed to contain the colors red

and green, then since the component has to be monochromatic, the

only possible color for this component is red. If any of the compo-

nents has no valid color at all, then we can immediately conclude

that the current configuration is not feasible.

These steps reduce the analysis of the current configuration to

the following problem. We are given a set of integers 𝑎1, . . . , 𝑎ℎ (ℎ

being the number of components), such that

∑ℎ
𝑖=1 𝑎𝑖 = 𝑛, and a

nonempty subset of feasible colors for each integer. Canwe partition

the numbers into the 𝑘 (numbered) parts such that (i) each 𝑎𝑖 is in

a part that is feasible for 𝑎𝑖 , and (ii) the sum of numbers in each

subset is at most (1 + 𝜖) · 𝑛
𝑘
?

Fortunately, this problem can be solved by a dynamic program-

ming approach (somewhat similarly to the 𝑘-way number par-

titioning problem [31]). We create a table 𝜏 with 𝑘 + 1 dimen-

sions, with the first 𝑘 dimensions (with indices from 0 to 𝑛) de-

scribing the number of nodes we have in the specific color, and

the last dimension (indices from 0 to ℎ) used to iterate through

the connected components. We initialize each cell of the table to

false, except 𝜏 (0, 0, . . . , 0) =true. Cell 𝜏 (𝑠1, . . . , 𝑠𝑘 , 𝑖) of the table
indicates whether it is possible to place the first 𝑖 items into the

parts such that the number of nodes of color 𝑗 is exactly 𝑠 𝑗 for

all 𝑗 ∈ [𝑘]. We can then fill out this table with a simple recur-

rence relation: if 𝜏 (𝑠1, . . . , 𝑠𝑘 , 𝑖) =true, then for each color 𝑗 ∈ [𝑘]
such that number 𝑎𝑖+1 is feasible for color 𝑗 , we can also set cell

𝜏 (𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗 +𝑎𝑖+1, 𝑠 𝑗+1, . . . , 𝑠𝑘 , 𝑖+1) to true. Note that the num-

ber of cells in the table is polynomial in 𝑛, and we only execute

constantly many operations for each cell; as such, the table can

indeed be filled in polynomial time. In the end, we can scan the

filled table, and if we have 𝜏 (𝑠1, . . . , 𝑠𝑘 , ℎ)=true for any cell where

𝑠 𝑗 ≤ (1 + 𝜖) · 𝑛
𝑘
for all 𝑗 ∈ [𝑘], then the desired partitioning indeed

exists. □

D MULTI-CONSTRAINT PARTITIONING
We now present the proofs for our claims in Section 6. Note that in

contrast to the ordering in the main part of the paper, we discuss

these proofs before the layer-wise claims in Section 5.1, since many

of the techniques in this section can then be conveniently adapted

to the layer-wise setting.

D.1 With 𝑂 (1) constraints: approximation
We first consider the multi-constraint partitioning problem in the

case when the number of constraints is only 𝑐 ∈ 𝑂 (1). For this
setting, we show that there is a natural reduction from the multi-

constraint 𝑘-section problem to the original (single-constraint) ver-

sion of 𝑘-section. Unfortunately, this reduction increases the size of

the graph to 𝑛′ ≈ 𝑛 (𝑐+1) ; as such, it does not allow us to extend the

strongest known upper bounds (e.g. the𝑂 (
√
𝑛)-approximation algo-

rithm of [42]) to the multi-constraint case. However, we will show

that we can still use this method to establish some non-trivial upper

bounds for specific kinds of hypergraphs in the multi-constraint

case.

Note that in contrast to most of our results, this reduction only

considers the 𝑘-section problem: our proof approach is not straight-

forward to generalize to 𝜖 > 0 values, and the corresponding upper

bounds from [42] are only stated for the bisection problem anyway.

Our reduction from the multi-constraint case to the standard

partitioning problem is as follows.

18

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

Lemma D.1. If there is a polynomial-time approximation algo-
rithm for the 𝑘-section problem to a factor 𝛼 (𝑛) (some function of 𝑛),
then for any 𝑐 ∈ 𝑂 (1), there also exists a polynomial-time approx-
imation algorithm for the 𝑐-constraint case of 𝑘-section to a factor
𝑂 (𝛼 (𝑛 (𝑐+1))).

Proof. Assume we have an 𝛼 (𝑛)-approximation for the stan-

dard 𝑘-section problem; we show how to solve 𝑘-section with 𝑐

constraints. Given an instance of the 𝑐-constraint problem on a

hypergraph 𝐺 (𝑉 , 𝐸) with 𝑛 nodes and balance constraint classes

𝑉1, . . . ,𝑉𝑐 , we first add (𝑘 − 1) · |𝑉 \ ∪𝑐
𝑖=1

𝑉𝑖 | isolated nodes to the

graph; these will ensure that the nodes that are not included in

any balance constraint can be sorted into any part of our choice in

the single-constraint case. Also, we assume for convenience that

|𝑉𝑖 | is divisible by 𝑘 for each 𝑖 ∈ [𝑐] (otherwise either no solution

exists, or in the relaxed version of the problem where parts of size

⌈ |𝑉𝑖 |
𝑘

⌉ are allowed, we can add at most (𝑘 − 1) more isolated nodes

to each 𝑉𝑖). Let us denote the new number of nodes in our hyper-

graph after the addition of all these isolated nodes by 𝑛0; note that

𝑛0 ≤ 𝑘 · 𝑛 = 𝑂 (𝑛).
We consider each constraint class𝑉𝑖 with 𝑖 ∈ [𝑐], and we replace

each node in𝑉𝑖 by a block of size𝑚𝑖 . As in our previous proofs, we

will ensure that splitting any of the blocks results in an unreasonably

high cost (the design of our blocks is somewhat more technical in

this case; we defer the discussion of this to the end of the proof).

Apart from replacing our nodes with large blocks, our original

hyperedges remain unchanged; as such, any solution that does not

cut a block has the same cost as the same coloring of original nodes

(instead of blocks) in the original hypergraph.

Let us select𝑚𝑖 = 𝑛0
𝑖
as the size of our blocks; note that this

ensures𝑚𝑖 = 𝑛0 ·𝑚𝑖−1. Since 𝑐 ∈ 𝑂 (1), this means that the size of

our new hypergraph is altogether

𝑛′ ≤ 𝑛0 ·𝑚𝑐 = 𝑛0
(𝑐+1) ≤ 𝑘 (𝑐+1) · 𝑛 (𝑐+1) = 𝑂 (𝑛 (𝑐+1)) .

Now let us consider the balance constraints. First, note that any

valid partitioning in the initial hypergraph also provides a valid

partitioning after this transformation, since the nodes in a specific

balance constraint are increased to the same size, and the extra

isolated nodes can always be colored in the appropriate way. For the

opposite direction, assume that a partitioning (with monochromatic

blocks) fulfills the single balance constraint in the transformed

hypergraph; we claim that the corresponding partitioning fulfills

each balance constraint 𝑉𝑖 separately. Consider an induction in 𝑖 ,

going from 𝑐 to 1, and assume that balance constraints 𝑉𝑐 , . . .𝑉𝑖+1
are already fulfilled; this means that each of these sets contain an

identical number of nodes from each part, so by removing them

all, the node set of the transformed hypergraph remains balanced.

Recall that each block generated from 𝑉𝑖 has size𝑚𝑖 , whereas the

total number of remaining nodes besides 𝑉𝑖 is at most (𝑛0 − 1) ·
𝑚𝑖−1 < 𝑚𝑖 (assuming |𝑉𝑖 | ≥ 1). Assume that the blocks of 𝑉𝑖 are

not colored in a balanced way, and hence there is a color with at

most
|𝑉𝑖 |
𝑘

− 1 blocks from 𝑉𝑖 . However, then the total number of

remaining nodes of this color is at most(
|𝑉𝑖 |
𝑘

− 1

)
·𝑚𝑖 + (𝑛0 − 1) ·𝑚𝑖−1 <

|𝑉𝑖 |
𝑘

·𝑚𝑖 .

As we still have at least |𝑉𝑖 | ·𝑚𝑖 nodes remaining in the graph, this

contradicts the fact that the single balance constraint is satisfied in

our transformed graph.

This shows that as long as no blocks are cut, the solutions in the

original and transformed hypergraphs are in a 1-to-1 correspon-

dence with identical cost. As such, any 𝛼 (𝑛)-approximation for

the standard 𝑘-section problem also provides an approximation for

the 𝑐-constraint 𝑘-section problem to an 𝛼 (𝑛′) = 𝛼 (𝑘 (𝑐+1) · 𝑛 (𝑐+1))
factor.

It remains to discuss a technical detail about our blocks. Note

that our smallest blocks have size 𝑛0 ≤ 𝑘 · 𝑛; since the number of

hyperedges can be larger than this, this does not necessarily ensure

that all blocks are unsplit in an optimal solution. As such, we require

a more complex block gadget for the case when we have |𝐸 | = 𝜔 (𝑛)
in our input hypergraph. Recall our assumption that the number of

hyperedges is polynomial in 𝑛, i.e. |𝐸 | ≤ 𝑛ℎ for some small constant

ℎ; this implies that the cost of any solution (that does not split

blocks) is also at most (𝑘 − 1) · |𝐸 | ≤ 𝑘 ·𝑛ℎ . As such, in this case, we

will define a block on 𝑏 nodes to contain every possible subset of at

least (𝑏 −ℎ − 2) nodes as a hyperedge. This implies that every node

𝑣 in any of our blocks has a degree of at least

(𝑏−1
ℎ+1

)
, since this is the

number of subsets of size (𝑏 − ℎ − 2) containing 𝑣 . Since we have
𝑚𝑖 ≥ 𝑛0, this means that regardless of howwe split a block, we incur

a cost of at least

(𝑛0−1
ℎ+1

)
. As

(𝑛0−1
ℎ+1

)
= Θ(𝑛 (ℎ+1)) ≥ 𝑘 · 𝑛ℎ for 𝑛 large

enough, this implies that any solution splitting a block is suboptimal.

Note that even with these more complex blocks, the number of

hyperedges in our constructions is at most𝑂 (𝑛′ ·𝑚𝑐
(ℎ+2)), i.e. still

polynomial in 𝑛. □

If we combine this reduction with the 𝑂 (
√
𝑛)-approximation

from [42], then we only get an approximation with a 𝑂 (𝑛 (
𝑐+1
2
))

factor. This is larger than 𝑛 already for 𝑐 = 2, so this upper bound is

only meaningful in hypergraphs where the number of hyperedges

is significantly higher than 𝑛. Alternatively, the work of [42] also

provides a 𝑂 (𝑛𝛾)-factor approximation algorithm for hypergraphs

where either (i) every hyperedge has size at most𝑂 (𝑛𝛾), or (ii) every
hyperedge has size at least Ω(𝑛 (1−𝛾)). In this case, our reduction

provides an approximation of a 𝑂 (𝑛𝛾 · (𝑐+1)) factor for the multi-

constraint problem; if 𝛾 is small, then this can be significantly lower

than 𝑛 for several 𝑐 values. As such, the reduction indeed allows us

to establish some upper bounds on restricted classes of hypergraphs.

D.2 With 𝑂 (1) constraints: parameterized
complexity

We now show that with 𝑐 = 𝑂 (1) constraints, the partitioning

problem remains within XP in terms of the allowed cost 𝐿.

Proof of Lemma 6.2, second part. For this, we require a more

sophisticated version of the dynamic programming approach dis-

cussed in Lemma 4.3. We again check every configuration where at

most 𝐿 hyperedges are cut, and contract the connected components

of the remaining hypergraph into integers 𝑎𝑖 .

For each of configuration, we need to check if there is a feasible

partitioning of the numbers 𝑎𝑖 that satisfies all the 𝑐 balance con-

straints. For this, we modify our original dynamic programming

approach to a table that has 𝑐 · 𝑘 + 1 dimensions: the last dimension

19

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

again iterates over the numbers (indices from 0 to ℎ), whereas the

first 𝑐 ·𝑘 dimensions each correspond to a combination of a balance

constraint and a color (with indices from 0 to the size of the balance

constraint). For 𝑗 ∈ [𝑘], 𝑗 ′ ∈ [𝑐], there is a dimension that de-

scribes the number of nodes of color 𝑗 in constraint 𝑉𝑗 ′ ; that is, we

set 𝜏 (𝑠1 (1) , . . . , 𝑠1 (𝑐) , 𝑠2 (1) , . . . , 𝑠2 (𝑐) , . . . , 𝑠𝑘 (1) , . . . , 𝑠𝑘 (𝑐) , 𝑖) to true
if there exists a feasible partitioning of the first 𝑖 integers such that

for all 𝑗 ∈ [𝑘], 𝑗 ′ ∈ [𝑐], the number of nodes of color 𝑗 in balance

constraint𝑉𝑗 ′ is exactly 𝑠 𝑗
(𝑗 ′)

. We can fill out this table in the same

way as before: if a given cell 𝜏 (𝑠1 (1) , . . . , 𝑠𝑘 (𝑐) , 𝑖)=true, then we

consider the (𝑖 + 1)-th component and all the feasible colors 𝑗 ∈ [𝑘]
for this component, and we also set 𝜏 (𝑠1 (1) , . . . , 𝑠1 (𝑐) , . . . , 𝑠 𝑗 (1) +
𝐼1, . . . , 𝑠 𝑗

(𝑐) +𝐼𝑐 , . . . , 𝑠𝑘 (1) , . . . , 𝑠𝑘 (𝑐) , 𝑖+1) to true, where 𝐼 𝑗 ′ denotes
the intersection size of this (𝑖 + 1)-th component with balance con-

straint 𝑉𝑗 ′ . A given configuration is valid if there is a true cell

𝜏 (𝑠1 (1) , . . . , 𝑠𝑘 (𝑐) , ℎ) in the end such that 𝑠 𝑗
(𝑗 ′) ≤ (1 + 𝜖) · |𝑉𝑗′ |

𝑘
for

all 𝑗 ∈ [𝑘], 𝑗 ′ ∈ [𝑐]. Note that the size of the table is 𝑂 (𝑛𝑐 ·𝑘+1), so
each configuration can be checked in polynomial time. □

D.3 General tools for our negative results
We continue by discussing a lemma which will be useful in several

proofs in the rest of the section. For simplicity, we first state the

lemma for the simplest case of 𝑘 = 2. Assume that we have a specific

number of fixed red and blue nodes in our construction, i.e. nodes

for which the rest of the construction ensures that they always take

the colors red and blue, respectively. Our lemma states that one

can easily fill up a balance constraint set (for any 𝜖 ≥ 0) with the

appropriate number of fixed red and blue nodes in order to achieve

a desired behavior on a specific set 𝑆 .

Lemma D.2. Assume we have a set of nodes 𝑆 and an integer
0 ≤ ℎ ≤ |𝑆 |. We can form a set 𝑉0 consisting of 𝑆 and a specific
amount of fixed red and blue nodes such that |𝑉0 | = 𝑂 (|𝑆 |), and the
balance constraint is satisfied in 𝑉0 if and only if

• at most ℎ nodes in 𝑆 are colored red (in case of 𝜖 > 0),

• exactly ℎ nodes in 𝑆 are colored red (in case of 𝜖 = 0).

Proof. Let 𝑚 = |𝑉0 | be the size of the balance constraint we

create. First consider 𝜖 > 0. In order to fit the set 𝑆 into 𝑉0 ap-

propriately, we need to ensure that
𝜖
2
· 𝑚 > ℎ, and also that(

1 − 1+𝜖
2

)
·𝑚 > |𝑆 | −ℎ; since 𝜖 is a constant, this is indeed possible

with a choice of𝑚 = 𝑂 (|𝑆 |). We then add a set 𝑅0 of ⌊ 1+𝜖
2

·𝑚⌋ − ℎ

fixed red nodes to 𝑉0; note that since
𝜖
2
·𝑚 > ℎ, we have |𝑅0 | ≥ 𝑚

2
,

so the the balance constraint can never be violated by having too

many blue nodes. Finally, we add a set 𝐵0 of𝑚 − |𝑆 | − |𝑅0 | fixed
blue nodes to𝑉0. This ensures that the balance constraint is fulfilled

exactly if at most ℎ of the nodes in 𝑆 are red.

For the special case of 𝜖 = 0, we ensure that
𝑚
2

> ℎ and
𝑚
2

>

|𝑆 | − ℎ, and select an even𝑚 value. We then set |𝑅0 | = 𝑚
2
− ℎ and

|𝐵0 | = 𝑚
2
− (|𝑆 | − ℎ). The constraint is fulfilled exactly if ℎ nodes

in 𝑆 are red. □

Naturally, the same argument holds for the color blue, and hence

also the variant where the constraint holds if at least ℎ nodes are

colored red/blue.

Note that the lemma is slightly different for the special case of

bisection, where wemust require that exactlyℎ nodes are red.When

discussing our constructions, we will often focus on the general

case of 𝜖 > 0, but our proof techniques also carry over naturally for

this special case. In particular, by adding ℎ further isolated nodes

to 𝑆 in the beginning, we can also turn the “exactly” constraint of

𝜖 = 0 to an “at most” constraint: whenever the number of red nodes

in the original part of 𝑆 is less than ℎ, we can color some of the

isolated nodes red instead to ensure that the number of red nodes

in 𝑆 is exactly ℎ.

In many of our constructions, we will explicitly add fixed blocks
to have the sufficient number of fixed nodes. That is, assume we

want to decide if there is a multi-constraint partitioning with cost

0 in a given construction. We can add two large blocks of𝑚0 nodes

each, both contained in a single hyperedge of size 𝑚0, and we

combine the two blocks together in a separate balance constraint.

This implies (for any 𝜖) that the union of the two blocks must have

both a red and a blue node. Hence the only way to partition the

blocks without incurring any cost is to color one of the blocks red,

the other one blue; w.l.o.g. let us define the color red as the color of

the first block. We can use the nodes in the two blocks as fixed red

and blue nodes in order to apply Lemma D.2 on specific subsets of

nodes. Note that the total size of our input sets 𝑆 is at most 𝑛, so

the number of required fixed nodes is at most𝑂 (𝑛); as such, adding
the fixed blocks does not change the magnitude of the number of

nodes in the graph.

In the proof of Theorem 5.2, we will also require a slightly dif-

ferent variant of Lemma D.2 where 𝑉0 already contains initially a

predetermined number𝑚0 of occurrences of both colors besides

𝑆 , and we again add further fixed red and blue nodes to the set 𝑉0
besides these 2 ·𝑚0 + |𝑆 | original nodes. The lemma easily extends

to this case: we simply need to select 𝑚 large enough such that

|𝑅0 | ≥ 𝑚0 and |𝐵0 | ≥ 𝑚0, and consider these original nodes as part

of the fixed node set of the given color.

Finally, we point out that similarly to Lemma D.2, we present

our constructions in the rest of this section specifically for the case

of 𝑘 = 2 colors for simplicity. However, the same proof techniques

can be generalized to an arbitrary 𝑘 ∈ 𝑂 (1) number of colors; we

discuss this briefly after the proofs in Appendix D.6.

D.4 With 𝑛𝛿 constraints
Now let us consider multi-constraint partitioning when 𝑐 ≥ 𝑛𝛿 for

some 𝛿 > 0.

Proof of Lemma 6.3. We provide a reduction from 3-coloring

in this case; assume we have a graph𝐺 (𝑉 , 𝐸) that we need to color

with colors 𝑖 ∈ {1, 2, 3}. For each node 𝑣 ∈ 𝑉 with degree 𝑑𝑒𝑔𝑣 , we

create 3 · 𝑑𝑒𝑔𝑣 nodes altogether: for each edge 𝑒 ∈ 𝐸 incident to

𝑣 and each color 𝑖 ∈ [3], we create a separate node labeled 𝑤𝑣,𝑒,𝑖 .

Furthermore, for each node 𝑣 ∈ 𝑉 and each color 𝑖 ∈ [3], we create
two further nodes 𝑤̂𝑣,𝑖,1 and 𝑤̂𝑣,𝑖,2. For every node 𝑣0 ∈ 𝑉 and fixed

color 𝑖0, we add a hyperedge of size (𝑑𝑒𝑔𝑣 + 2) which contains all

the 𝑤𝑣0,𝑒,𝑖0 for all 𝑒 ∈ 𝐸 incident to 𝑣 , plus the nodes 𝑤̂𝑣0,𝑖0,1 and

𝑤̂𝑣0,𝑖0,2.

For each node 𝑣0 ∈ 𝑉 , we introduce two balance constraints:

one constraint to ensure that at most one of the 3 nodes 𝑤̂𝑣0,𝑖,1 (for

𝑖 ∈ [3]) are red, and another constraint to ensure that at least one

20

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

of the 3 nodes 𝑤̂𝑣0,𝑖,2 (for 𝑖 ∈ [3]) are red. We can indeed do this

according to Lemma D.2. Finally, for each edge 𝑒0 = (𝑢, 𝑣) ∈ 𝐸 and

each color 𝑖0, we create a separate balance constraint for the nodes

of 𝑤𝑢,𝑒0,𝑖0 and 𝑤𝑣,𝑒0,𝑖0 , ensuring in a similar fashion that at most

one of these two nodes can be red.

To obtain a valid partitioning of the hypergraph with cost 0,

each hyperedge needs to be monochromatic. This means that we

need to select exactly one of the three colors for each node 𝑣 , i.e.

color the nodes𝑤𝑣,𝑒,𝑖 and 𝑤̂𝑣,𝑖 red for exactly one 𝑖 ∈ [3] in case of

every 𝑣 . Furthermore, the balance constraints on the edges ensure

that if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 and 𝑣 must have different colors. Hence

a valid partitioning exists if and only if the graph is 3-colorable.

The number of balance constraints is 2 · 𝑛 + 3 · |𝐸 |, which we can

upper bound by 𝑛3 for 𝑛 large enough; let us add further isolated

nodes to the graph until the number of nodes is 𝑛̂ = 𝑛3/𝛿 . This
ensures that the number of constraints is indeed less than 𝑛̂𝛿 for

any desired constant 𝛿 ∈ (0, 1), but the size 𝑛̂ of the construction is

still polynomial in 𝑛.

This shows that it is already NP-hard to decide whether the

optimal partitioning has cost 0 or larger. Hence we cannot have

a finite-factor approximation to the problem in polynomial time

(unless P=NP), and the problem is para-NP-hard in terms of the

allowed cost. □

D.5 With 𝜔 (log𝑛) constraints
Finally, we consider the case when the number of balance con-

straints is at least slightly larger than logarithmic, i.e. in 𝜔 (log𝑛).
For this case, we show that in subquadratic time (i.e. 𝑛2−𝛿) no fi-

nite approximation ratio is achievable unless we falsify SETH. We

apply SETH through the Orthogonal Vectors Problem (OVP): given

a set of𝑚 binary vectors 𝐴 of dimension 𝐷 = 𝜔 (log𝑚), we need to

decide if there are 𝑎1, 𝑎2 ∈ 𝐴 such that 𝑎1 ◦𝑎2 = 0, where ◦ denotes
a vector dot product. It is known that this cannot be decided in

𝑂 (𝑚2−𝛿) time for any 𝛿 > 0, assuming that SETH holds [21].

Proof of Theorem 6.4. Given an instance of OVP, we create a

gadget on 𝐷 + 1 nodes for each vector 𝑎𝑖 ∈ 𝐴: 𝐷 distinct nodes 𝑣𝑖
(𝑗)

that correspond to the dimensions 𝑗 ∈ [𝐷], and an anchor node 𝑢𝑖 .

Furthermore, we add a hyperedge that contains 𝑢𝑖 and every 𝑣𝑖
(𝑗)

that corresponds to a coordinate of value 1, i.e. all 𝑗 ∈ [𝐷] such
that 𝑎𝑖

(𝑗) =1.
As discussed before, we add two fixed blocks of 𝑚0 = 𝑂 (𝑚)

nodes each that are guaranteed to take the colors red and blue,

respectively. We also add a balance constraint that contains every

anchor node 𝑢𝑖 , and ensures that at least two of the anchor nodes

𝑢𝑖 need to be red to fulfill the constraint; this is possible according

to Lemma D.2 with the appropriate number of fixed nodes.

Finally, for each of the dimensions 𝑗 ∈ [𝐷], we add a balance

constraint which contains the nodes 𝑣𝑖
(𝑗)

for every 𝑖 ∈ [𝑚]. We

again use Lemma D.2 to ensure that each of these dimension-wise

constraints is satisfied exactly if we have at most 1 red node among

the 𝑣𝑖
(𝑗)

.

In the resulting graph, we need to color at least two of the anchor

nodes red (and in fact, coloring more of them red is pointless: we

can then simply recolor arbitrary ones to blue without violating any

constraints). If we want to avoid a cut hyperedge, a red anchor node

𝑢𝑖 also means that 𝑣𝑖
(𝑗)

has to be red for every 𝑗 where 𝑎𝑖
(𝑗) = 1.

This is only possible if the corresponding two vectors 𝑎𝑖1 and 𝑎𝑖2
are orthogonal, i.e. if for all 𝑗 ∈ [𝐷] we have either 𝑎𝑖1 (𝑗) = 0 or

𝑎𝑖2
(𝑗) =0; otherwise the corresponding dimension-wise constraint

is violated.

As such, achieving a cut cost of 0 is only possible if there exist

two orthogonal vectors in 𝐴. On the other hand, if two orthogonal

vectors 𝑎𝑖1 , 𝑎𝑖2 exist, then the optimum is indeed 0: we can color

the nodes connected to 𝑢𝑖1 and 𝑢𝑖2 red, and all other nodes in the

vector gadgets blue, satisfying all constraints. Hence if an algorithm

can approximate the optimal cut to any finite factor, then it can

also decide whether the optimum is 0 or not, and thus solve OVP.

It remains to show that a runtime of𝑂 (𝑛2−𝛿) is also subquadratic
in 𝑚, i.e. it translates to a runtime of 𝑂 (𝑚2−𝛿′) for some 𝛿 ′ > 0.

Note that the number of nodes in the graph is 𝑛=Θ(𝑚 ·𝐷), and the
number of balance constraints is 𝑐 = 𝐷 + 2. Hence our runtime of

𝑂 (𝑛2−𝛿) translates to 𝑂 (𝑚2−𝛿 · 𝐷2−𝛿); to ensure that this is below

𝑂 (𝑚2−𝛿′) for some 𝛿 ′ < 𝛿 , we only need 𝐷2−𝛿 ≤ 𝑚𝛿−𝛿′
. This

indeed holds for𝑚 large enough if we have e.g. 𝐷 ≤ poly log𝑚,

which is already sufficient for the OVP hardness result. As such,

a finite-factor approximation in 𝑂 (𝑛2−𝛿) time for the partitioning

problem would provide an algorithm for OVP in 𝑂 (𝑚2−𝛿′) time,

which contradicts SETH.

Note that for any dimension function 𝐷 = 𝑔(𝑚) ∈ 𝜔 (log𝑚)
covered by the OVP hardness result, our construction only requires

𝑐 = 𝐷 + 2 ≈ 𝑔(𝑚) ≤ 𝑔(𝑛) constraints, and hence the reduction

works for any number of constraints 𝑐 ∈ 𝜔 (log𝑛). □

We note for a larger additive difference between the two cases,

we can connect the same nodes in the vector gadgets by multiple

different hyperedges (each containing a separate auxiliary node).

D.6 Generalization for 𝑘 ≥ 3

We now outline how to generalize the negative-result constructions

in this section to the case of arbitrary 𝑘 ∈ 𝑂 (1).
In order to apply Lemma D.2 in a setting with 𝑘 ≥ 3, we also need

to add a specific fixed block of each extra color to our construction.

In case of 𝜖 ≥ 0, we can apply the same idea as in Lemma D.2 for

an extension of this approach. We now ensure |𝑆 | < 𝜖 · 𝑚
𝑘

and

|𝑆 | < (1 − 1+𝜖
𝑘

) ·𝑚. We add ⌊(1 + 𝜖) · 𝑚
𝑘
⌋ − ℎ fixed red nodes to 𝑉0

first. We then distribute the remaining fixed nodes equally among

the other (𝑘 − 1) colors, i.e. if𝑚0 = ⌈(1− 1+𝜖
𝑘

) ·𝑚⌉ − (|𝑆 | −ℎ), then
we add ⌊ 𝑚0

𝑘−1 ⌋ or ⌈
𝑚0

𝑘−1 ⌉ fixed nodes for each of the remaining colors.

This ensures that the constraint is only satisfied if we have at most

ℎ red nodes in 𝑆 , and we can also never have too many nodes of

the remaining colors, since
𝑚0

𝑘−1 + |𝑆 | ≤ 𝑚
𝑘
+ |𝑆 | ≤ (1 + 𝜖) · 𝑚

𝑘
.

For 𝜖 = 0, we can again ensure that𝑚 is divisible by 𝑘 , and we

add
𝑚
𝑘
− ℎ fixed red nodes,

𝑚
𝑘
− (|𝑆 | − ℎ) fixed blue nodes, and

𝑚
𝑘

fixed nodes of the remaining colors. This ensures that the constraint

is only satisfied if it has exactly ℎ red and |𝑆 | − ℎ blue nodes; this

version of the lemma suffices for our purposes when 𝜖 = 0.

Generalizing the fixed-color block gadget to 𝑘 ≥ 3 is also not

straightforward: e.g. for 3 large blocks of𝑚0 nodes each with 𝑘 = 3

and 1 ≤ 𝜖 < 2, it could happen that two of the blocks are red,

one is blue, and the third color is not used at all. In order to force

the presence of all colors, we use a slightly different gadget. We

21

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

once again create 𝑘 large blocks of𝑚0 nodes each, each connected

by a hyperedge, but now we apply more sophisticated balance

constraints. That is, for each block 𝑖 ∈ [𝑘], we create a balance

constraint on 𝑚 nodes that contains ⌊ 1+𝜖
𝑘

· 𝑚⌋ nodes of block 𝑖

and a single node of all other blocks (i.e. we select 𝑚 such that

⌈𝑚 · (1 − 1+𝜖
𝑘

)⌉ = 𝑘 − 1). Since all nodes of block 𝑖 must receive the

same color to avoid a cut, none of the other blocks included in this

balance constraint can have the same color as the nodes in block 𝑖 .

As such, these constraints indeed ensure that all the 𝑘 blocks attain

a different color. For 𝜖 = 0, this modification is not required at all.

Now assumewe have a construction designed for𝑘 = 2 where we

need to decide if the optimum cost is 0. Given fixed-colored nodes of

each color, we can easily modify the construction to ensure that all

nodes in the original part of the construction are indeed red or blue,

and hence it has the same behavior even for 𝑘 ≥ 3. We simply insert

(𝑘−2) extra nodes𝑢1, . . . , 𝑢𝑘−2 into each hyperedge, corresponding
to the remaining (𝑘 − 2) colors. Then for each 𝑖 ∈ [𝑘 − 2], we
combine the nodes 𝑢𝑖 over all hyperedges into a single balance

constraint, and ensure with Lemma D.2 that there are at most 0

nodes of extra color 𝑖 in this set of nodes. If we have a cut cost of 0,

then all the nodes in any hyperedge must have the same color; due

to these balance constraints on the extra nodes, this color must be

either red or blue for each hyperedge of our original construction.

Note that if a node 𝑣 of the original construction is not contained

in any hyperedge, we can create a similar hyperedge containing

only 𝑣 and the extra nodes. The method only increases the size of

the hypergraph by a factor of at most 𝑘 ∈ 𝑂 (1), and it only adds

(𝑘 − 2) ∈ 𝑂 (1) new balance constraints.

Note that applying the same method for 𝜖 = 0 is again a bit of a

special case; here we only create a single extra node 𝑢 for all the |𝐸 |
hyperedges, and combine this in a balance constraint with |𝐸 | fixed
nodes of each of the (𝑘 −2) new colors, plus |𝐸 | isolated nodes. This
ensures that the extra nodes cannot take any of the new colors, but

each of them can be red or blue independently (if the balance is

then fixed through an appropriate coloring of the isolated nodes).

Finally, note that if we ensure that 𝑆 only contains red and blue

nodes, then we can also again apply the “at least” variant of Lemma

D.2 by requiring that 𝑆 contains at most (|𝑆 | − ℎ) blue nodes.

E LAYER-WISE BALANCE CONSTRAINTS
E.1 Proof of Theorem 5.2
As for Theorem 5.2, note that we have already shown a similar result

for multi-constraint partitioning in Lemma 6.3. We now show how

to extend this construction to the case of hyperDAGs, ensuring

that every balance constraint in this construction corresponds to a

separate layer, and hence they translate to layer-wise constraints.

Proof of Theorem 5.2. Consider our hypergraph representa-

tion𝐺 (𝑉 , 𝐸) of the graph coloring problem from the proof of Lemma

6.3, and let 𝑛0 = |𝑉 | + |𝐸 |. We convert this into a computational

DAG as follows. We begin with 𝑛0 distinct directed paths of length

𝑐 + 𝑂 (1); each of their first 𝑐 layers will correspond to a balance

constraint, while the last𝑂 (1) layers will be used to ensure that the
paths fulfill some basic properties. The 𝑛0 paths each correspond

to either a node or a hyperedge in the original hypergraph.

Besides this, we also add (𝑘 − 1) ·𝑛0 extra directed paths (we will
call them filler paths) of the same length 𝑐 +𝑂 (1). These extra paths
will play no active role in our DAG; we will use them to ensure that

the number of connected components colored with each color is

identical. Finally, we add 𝑘 more directed paths of the same length

(called control paths), which will be used as a resource of fixed nodes
for the 𝑘 distinct colors.

As the main idea of the construction, we will replace specific

layers of the directed paths by adding blocks of a specific size𝑚:

that is, we replace the original node in layer 𝑖 of the path by 𝑚

distinct nodes which all have an incoming edge from the (𝑖 − 1)-th
node of the same directed path (if it exists), and all have an outgoing

edge to the (𝑖 + 1)-th node of the same directed path. As a technical

detail, note that whenever we replace both the 𝑖-th and (𝑖 + 1)-th
layer node in the path by a block, then we add a separate edge from

every node in the 𝑖-th layer to every node in the (𝑖 + 1)-th layer.

We will then use these blocks in the specific layers of the DAG to

enforce the desired balance constraints over the different connected

components.

We begin by ensuring that each of the 𝑘 control paths has a

different color, following the ideas discussed for fixed nodes in

Appendix D.6. In particular, we dedicate a specific layer at the end

of the paths to each color 𝑗 ∈ [𝑘], and we create blocks in this layer

as follows. We add a block of size𝑚1 on the control path of color

𝑗 , and blocks of size 𝑚2 on the remaining (𝑘 − 1) control paths,
such that the total size of the layer is (the 𝑘 blocks and the original

nodes in the 𝑘 · 𝑛0 paths) is𝑚0 = 𝑚1 + (𝑘 − 1) ·𝑚2 + 𝑘 · 𝑛0. For
the threshold 𝑇 = 1+𝜖

𝑘
·𝑚0, we ensure that𝑚1 + 𝑘 · 𝑛0 ≤ 𝑇 , but

𝑚1 +𝑚2 > 𝑇 . This means that none of the other control paths can

have the same color as control path 𝑗 , while placing no restriction

on the remaining 𝑘 ·𝑛0 components. For a concrete choice of values

that fulfill these properties in case of 𝜖 > 0, let us select 𝜖 ′ ∈ (0, 𝜖)
such that 𝜖 ′ < 1

𝑘−1 · (1−
1+𝜖
𝑘

), and select𝑚0 such that 𝜖
′ ·𝑚0 = 𝑘 ·𝑛0.

We can then choose𝑚1 = 𝑇 −𝜖 ′ ·𝑚0 and𝑚2 =
1

𝑘−1 · (𝑚0 −𝑇). Note
that we have𝑚2 ≤ 𝑚1, so the constraints in these layers is indeed

satisfied if all the control paths have a different color.

For the special case of 𝜖 = 0, it suffices to have a single layer with

a block of size𝑚1 =
𝑛0

𝑘
+1 on each control path; then the size of the

layer is𝑚0 = 𝑘 ·𝑚1 +𝑛0 = 2 · 𝑛0 + 𝑘 . In this case, two control paths

of the same color would already add up to 2 ·𝑚1 >
2·𝑛0

𝑘
+ 1 =

𝑚0

𝑘
nodes.

Having these constraints ensures that all control paths have a

different color. We can then use them to provide fixed nodes for

the rest of our balance constraints by placing blocks of specific size

in the control-path components in specific layers.

As a next step, we use further balance constraints to ensure that

among the remaining 𝑘 · 𝑛0 connected components, we have 𝑛0
occurrences of each color. Using fixed nodes generated with the

control paths, we can easily ensure this according to Lemma D.2.

For 𝜖 > 0, we use 2𝑘 layers to ensure that the number of occurrences

of a specific color 𝑗 ∈ [𝑘] among these paths is both at least 𝑛0 and

at most 𝑛0. For 𝜖 = 0, the situation is even simpler: a single layer

without blocks already ensures that each color occurs exactly 𝑛0
times. Note that this still allows us to color the path corresponding

to each original node and hyperedge as desired, since we can always

22

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

color the filler paths appropriately to obtain 𝑛0 instances of each

color.

Finally, tomodel the actualmulti-constraint construction𝐺 (𝑉 , 𝐸),
we assign each of the first 𝑐 layers to one of our original balance

constraints𝑉𝑖 . In each layer 𝑖 ∈ [𝑐], we consider all the components

that correspond to a node 𝑣 ∈ 𝑉𝑖 , and we add a block of size𝑚 = 2 in

layer 𝑖 of the component of 𝑣 (i.e. a single node besides the original

node of the path in this layer). We then use our control paths to

enforce the original balance constraints in these |𝑉𝑖 | extra nodes in
each layer: we add the appropriate block sizes to each control path

to ensure (according to Lemma D.2) that the extra set𝑉𝑖 has at least

(or at most) the given number of nodes from the desired color. Note

that besides the |𝑉𝑖 | extra nodes, this layer already contains 𝑘 ·𝑛0+𝑘
nodes by default in the different connected components, with 𝑛0 +1
occurrences of each color. We design the fixed sets enforcing the

balance constraints such that they also contain these nodes (as per

the discussion after Lemma D.2).

We then consider each hyperedge 𝑒 ∈ 𝐸, and for every node

𝑣 ∈ 𝑒 , we draw an edge from an arbitrary node of the component of

𝑣 to an arbitrary node (in a subsequent layer) of the component of

𝑒 . Hence in order to achieve a cost of 0, we not only have to color

every component in a monochromatic fashion, but we now also

have to assign the same color to the components that are connected

by a hyperedge, i.e. every connected component of the original

hypergraph 𝐺 .

The resulting construction enforces the original balance con-

straints on the different connected components: the constraint in

a given layer of the DAG is satisfied if and only if the extra nodes

in the corresponding layer satisfy the original balance constraint

𝑉𝑖 in 𝐺 . As such, there exists a layer-wise partitioning with cost

0 if and only if the input graph of the construction from Lemma

6.3 is 3-colorable. This completes our reduction, showing that it is

also NP-hard to decide whether the optimum is 0 in this layer-wise

setting. □

Note that this construction also ensures that every node of the

DAG is contained in a directed path of maximal length; as such,

there is only one valid layering of the DAG. This means that the

hardness result holds even in the flexible layering case, for any

fixed layer-selection strategy.

E.2 Finding the best layering
Now consider the problem of choosing the best layering separately.

We discuss a different construction to show that in the flexible

case, it is even hard to find the best assignment to layers; in other

words, if the cost of each possible layering is defined as the optimal

partitioning cost in the multi-constraint setting with this layering,

then finding the best layering (even without the partitioning part)

is already a hard problem in itself.

Note that even in this flexible layering setting, we only consider

layerings where the number of layers is equal to the length of the

longest path in the DAG. As such, the nodes that can be sorted into

multiple layers are exactly those that are not contained in any path

of maximal length.

Theorem E.1. The best layering of a DAG cannot be approximated
to any finite factor in polynomial time.

To prove this claim, we first begin with a new variant of Lemma

D.2, adapted for the case when we have a variable number of nodes

in the set 𝑆 , but they are guaranteed to all be red.

Lemma E.2. Consider a set 𝑆 (of variable size) that only contains
red nodes, and an integer ℎ ≥ 1. Let 𝐹 𝑗 be sets of fixed nodes of color
𝑗 ∈ [𝑘], and let𝑚 𝑗 = |𝐹 𝑗 |. Then there exist positive integers𝑚 𝑗 such
that the set 𝑉0 :=

⋃𝑘
𝑗=1 𝐹 𝑗 ∪ 𝑆 satisfies the balance constraint

• if and only if |𝑆 | ≤ ℎ (in case of 𝜖 > 0),

• alternatively, if and only if |𝑆 | ≥ ℎ (in case of 𝜖 > 0, assuming
that we have some upper bound ℎ0 on |𝑆 |),

• if and only if |𝑆 | = ℎ (in case of 𝜖 = 0).

Proof. Assume w.l.o.g. that 𝑗 = 1 is the index of the color red,

and consider the case of 𝜖 > 0 first with the |𝑆 | ≤ ℎ condition.

We first select a large enough integer𝑚 such that
𝑚+ℎ
𝑘 ·𝑚+ℎ ≤ 1+𝜖

𝑘
holds; this is indeed possible with 𝜖 > 0. We set 𝑚 𝑗 := 𝑚 for

all 𝑗 ∈ [𝑘]. We then gradually increment 𝑚1 until the inequal-

ity
𝑚1+ℎ

(𝑘−1) ·𝑚+𝑚1+ℎ ≤ 1+𝜖
𝑘

still holds; since we have
1+𝜖
𝑘

< 1 and

lim𝑚1→∞
𝑚1+ℎ

(𝑘−1) ·𝑚+𝑚1+ℎ = 1, there exists a maximal integer𝑚1 for

which this inequality still holds. This specific𝑚1 (and𝑚 𝑗 =𝑚 for

all other 𝑗) indeed satisfies our requirements: the balance constraint

is still satisfied if |𝑆 | = ℎ, but for |𝑆 | = ℎ+1, the constraint is violated
since

𝑚1+ℎ+1
(𝑘−1) ·𝑚+𝑚1+ℎ+1 > 1+𝜖

𝑘
.

For 𝜖 > 0, we can also have the alternative variant of this lemma

where the balance constraint is satisfied if and only if |𝑆 | ≥ ℎ;

however, in this case, we also need an external upper bound ℎ0
on the size of 𝑆 , since a large enough 𝑆 will always mean that

the number of red nodes is too high. This upper bound ℎ0 comes

naturally when we apply the lemma in Theorem E.1: we can simply

use the total number of nodes that allow a flexible layering at all.

Assuming that we always have |𝑆 | ≤ ℎ0, we can also create a

constraint that is satisfied only if |𝑆 | ≥ ℎ. For this, let us select a

parameter𝑚 that ensures𝑚 > ℎ and𝑚 > ℎ0. We then select an

integer𝑚2 such that

1 + 𝜖

𝑘
· ((𝑘 − 2) ·𝑚 + ℎ) <

(
1 − 1 + 𝜖

𝑘

)
·𝑚2 ≤ 1 + 𝜖

𝑘
· (𝑘 − 1) ·𝑚 ;

such an integer indeed exists. We also ensure with the choice of𝑚2

that we have𝑚2 ≥ 𝑚; this is always possible, since𝑚2 =𝑚 is still

allowed by the upper bound above. The above relations then imply

that

𝑚2

(𝑘 − 1) ·𝑚 +𝑚2

≤ 1 + 𝜖

𝑘
<

𝑚2

(𝑘 − 2) ·𝑚 +𝑚2 + ℎ
.

We then select𝑚 𝑗 =𝑚 for all 𝑗 ∈ {3, . . . , 𝑘}. It remains to choose

an appropriate value for𝑚1; we claim that there exists an𝑚1 ∈
{0, 1, . . . ,𝑚 − ℎ} that fulfills the desired properties. Indeed, there

must exist a smallest integer𝑚′
that satisfies

𝑚2

(𝑘−2) ·𝑚+𝑚2+𝑚′ ≤ 1+𝜖
𝑘

,

and due to our inequalities above, we have ℎ < 𝑚′ ≤ 𝑚. We can

then set𝑚1 =𝑚′ − ℎ to satisfy the lemma: then having𝑚1 + ℎ red

nodes in the constraint is still acceptable, but having only𝑚1+(ℎ−1)
red nodes violates it, since the number of nodes of color 2 grows

too large. Note that our choices ensure that𝑚2 ≥ 𝑚 𝑗 for all 𝑗 ≠ 2,

so no other color can violate the constraint.

23

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

Finally, for the case of 𝜖 = 0, we can simply select𝑚1 = 1 and

𝑚 𝑗 = ℎ + 1 for all other 𝑗 ∈ {2, . . . , 𝑘}.
Note that the sizes of the fixed sets is again in the magnitude of

𝑂 (ℎ) (or 𝑂 (ℎ0)). □

With this we can already move on to the DAG layering problem.

Proof of Theorem E.1. We show a reduction from the 3-partition

problem, which is known to be NP-hard: given a set of positive

integers 𝑎1, . . . , 𝑎3𝑡 such that 𝑏 := 1

𝑡 · (∑3𝑡
𝑖=1 𝑎𝑖) is an integer and

we have
𝑏
4
< 𝑎𝑖 <

𝑏
2
for all 𝑖 ∈ [3𝑡], can we partition the numbers

into 𝑡 distinct triplets such that the sum of each triplet is 𝑏? The

problem is known to be strongly NP-hard, i.e. NP-hard even if the

input is in a unary encoding.

Given an instance of 3-partition, we create a hyperDAG that can

only be partitioned with cost 0 if the 3-partition problem is solvable.

Our DAG consists of 𝑘 independent connected components, with

each of them being a single directed path of the same length 2𝑡+𝑂 (1)
initially. We use the same technique as in the proof of Theorem 5.2

to ensure (using the layers at the end of the path) that each of these

components has to receive a different one of the 𝑘 colors.

The general idea is again to use each of the components to

generate a desired number of fixed nodes in each layer; that is, as in

Theorem 5.2, the components will have a specific number of nodes

in each layer 𝑖 , and every node in the 𝑖-th layer will always have

an edge to every node in the (𝑖 + 1)-th layer. As such, there is only

one possible layering for these parts of the components.

However, in one of the components (the “red component”), we

also add further nodes called group gadgets. For each integer 𝑎𝑖 of

the 3-partition problem, we create (i) a set of 𝑎𝑖 nodes called the

first-level group of this integer, and (ii) a set of 𝑎𝑖 ·𝑚 nodes (for

a large parameter𝑚 > 𝑡 · 𝑏) called the second-level group of this

integer. The nodes in the first-level group of 𝑎𝑖 have no incoming

edges, but each of them has an outgoing edge to every node in the

second-level group of 𝑎𝑖 . The nodes in the second-level group of

𝑎𝑖 all have an outgoing edge to one of the nodes in the (2𝑡 + 1)-st
layer of the red component, i.e. the (2𝑡 + 1)-st node in the original

directed path.

We select the sizes of the layers in each component to provide

the appropriate number of fixed nodes (according to Lemma E.2) to

ensure the following: in every odd-numbered layer, the number of

extra red nodes (sorted into this layer from the group gadgets) is at
most 𝑏, whereas in every even-numbered layer, the number of extra

red nodes is at least 𝑏 ·𝑚. E.g. for the simplest case of 𝜖 = 0, every

other component has 𝑏 and𝑚 ·𝑏 nodes in every odd and even layer,

respectively (besides the single original node of the main path in

each component).

To fulfill the balance constraints, we need to ensure that each

odd layer of the red component has at most 𝑏 nodes, and every even

layer has at least 𝑏 ·𝑚 nodes. We show that this is only possible

by grouping the integers into groups of sum 𝑏 (which are then

unavoidably triplets, since
𝑏
4
< 𝑎𝑖 < 𝑏

2
). In particular, consider

levels 𝑗 and (𝑗 + 1) for some odd 𝑗 , and assume in an inductive

fashion that for every 𝑎𝑖 , either all the nodes of the first- and second-

level groups of 𝑎𝑖 have already been sorted into previous layers, or

none of them. Note that the total size of all first level groups is only

𝑡 · 𝑏 < 𝑚, so we need second-level groups in order to place𝑚 · 𝑏

nodes into layer (𝑗 + 1). However, in order to place nodes of the

second-level group of 𝑎𝑖 into layer (𝑗 +1), we need to ensure that all
nodes in the first-level group of 𝑎𝑖 are already placed into layer 𝑗 . In

particular, in order to have second level groups of total size 𝑏 ·𝑚 in

layer (𝑗+1), we need to place a set of first-level groups in layer 𝑗 that
have total size 𝑏 at least. On the other hand, the balance constraint

ensures that the maximal number of nodes we can place into layer

𝑗 is 𝑏. Hence the only way to place the appropriate number of

nodes into layers 𝑗 and (𝑗 + 1) is to select a triplet of integers 𝑎𝑖
that sum up to exactly 𝑏, place all the nodes from the first-level

groups of these integers into layer 𝑗 , and place all the nodes from

the second-level groups of these integers into layer (𝑗 + 1).
This shows that a layer-wise balanced partitioning with optimal

cost 0 only exists in this hyperDAG if the corresponding 3-partition

problem is solvable. □

F BRIEF DISCUSSION OF DAG SCHEDULING
This section discusses the DAG scheduling problem and its appli-

cation for developing a more sophisticated balance constraint in

hyperDAGs.

The basic DAG scheduling problem (see Definition 5.3) has been

studied extensively for decades; however, for any constant 𝑘 ≥ 3,

it is still a longstanding open problem whether it is solvable in

polynomial time or NP-hard. On the other hand, it is known that the

best makespan can be found in polynomial time for𝑘 = 2 [13, 20, 46].

Furthermore, the problem can also be solved in polynomial time

for any constant 𝑘 ∈ 𝑂 (1) in some special classes of DAGs; some

examples are the following:

• Chain graphs: DAGs conisisting of several dijoint directed

paths, i.e. DAGs where every node has indegree at most 1

and outdegree at most 1 [22].

• Out-trees: DAGs where every node has indegree at most 1,

but arbitrary outdegree [22]. Note that chain graphs are a

special class of out-trees.

• Level-order DAGs: DAGs where in every connected compo-

nent, the nodes are organized into layers in a way such that

every node in layer 𝑗 has an edge to every node in layer

(𝑗 + 1) [16].

• Bounded-height DAGs: DAGs where the longest directed path
has length 𝑂 (1) [15].

As discussed in Section 5.1, the optimal makespan 𝜇 of the sched-

uling problem essentially measures how parallelizable a given DAG

is. As such, this concept allows for the more sophisticated, schedule-

based balance constraint of definition 5.4.

However, if we apply this kind of balance constraint, then in

order to decide whether a candidate solution (a specific partitioning

of the hyperDAG) is feasible, we also need to be able to compute

𝜇𝑝 , i.e. solve a different version of the scheduling problem where a

fixed partitioning 𝑝 : 𝑉 → [𝑘] is already part of the input, and we

only want to find an assignment to time steps 𝑡 : 𝑉 → Z+ for this

partitioning that minimizes the makespan.

Unfortunately, it turns it that the fixed-partitioning version of the

scheduling problem is even harder; in particular, it remains NP-hard

even in the special cases where the basic DAG scheduling problem

24

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

is polynomially solvable, e.g. for 𝑘 = 2, or the very restricted DAG

classes listed above. This shows that the schedule-based constraint

is not a viable approach in practice, even for 𝑘 = 2 or this spe-

cial classes of DAGs, since we cannot even decide the feasibility

of a solution in polynomial time (unless we change the partition-

ing problem significantly, requiring the output to also contain an

explicit schedule).

Proof of Theorem 5.5 for out-trees and level-order DAGs.

We again show a reduction from the 3-partition problem discussed

in Theorem E.1.

Consider a main path of 2 · 𝑡 ·𝑏 nodes of alternating color blocks:

it begins with 𝑏 blue nodes, then 𝑏 red nodes, then 𝑏 blue nodes

again, and so on. Furthermore, for each 𝑎𝑖 , we create a smaller path

of length 2𝑎𝑖 , beginning with 𝑎𝑖 red nodes, and then having 𝑎𝑖 blue

nodes. Consider an upper bound of 𝐿 = 2 · 𝑡 · 𝑏 = 𝑛
2
on the allowed

makespan, i.e. we need to decide if the DAG can be parallelized

flawlessly.

In order to achieve this, each time step needs to execute one

node from the main path (since it has length
𝑛
2
) and one node from

one of the smaller paths, and these two nodes need to have different

colors. This implies that we need to process the smaller paths by

always computing 𝑏 red and then 𝑏 blue nodes alternatingly. In

our DAG, it is only possible to process 𝑏 blue nodes between steps

𝑏 + 1 and 2𝑏 if in the first 𝑏 steps we have processed the small paths

corresponding to a set 𝐴1 of numbers that sum up to 𝑏. Due to

𝑏
4
< 𝑎𝑖 <

𝑏
2
, it is guaranteed that 𝐴1 consists of exactly 3 numbers.

Since the three small paths are entirely processed by step 2𝑏, we can

continue the same argument inductively, and show that we need

to have another triplet of such items between steps 2𝑏 + 1 and 4𝑏,

4𝑏 + 1 and 6𝑏, and so on. Conversely, given a partitioning into such

triplets, this strategy indeed gives a scheduling with makespan
𝑛
2
,

so solving this scheduling problem would also provide a solution

to 3-partition.

The construction outlined above is already a level-order DAG: in

every connected component, each node of layer 𝑗 is predecessor to

every node of layer (𝑗 + 1). It is also an example for a chain graph.

If we add a common source node to this construction (of any color,

and increase the upper limit on 𝐿 by 1), we also obtain an out-tree.

This is also an example for some more general classes of graphs

(such as e.g. opposing forests). □

We provide a slightly different construction for the case of bounded-

height DAGs.

Proof of Theorem 5.5 for bounded-height DAGs. We provide

a reduction from the clique problem. Given a graph 𝐺 (𝑉 , 𝐸) and a

desired clique size 𝐿, let us create a blue node for each node 𝑣 ∈ 𝑉 ,

and also create a red node representing every edge 𝑒 ∈ 𝐸. We draw

an edge from the node representation of 𝑣 to the node represen-

tation of 𝑒 if and only if 𝑒 is incident to 𝑣 . Finally, we add another

four-layer component 𝐶 where each node is always a predecessor

of every node in the next layer. The four layers have (i) 𝐿 red nodes,

(ii)

(𝐿
2

)
blue nodes, (iii) |𝑉 | − 𝐿 red nodes, and (iv) |𝐸 | −

(𝐿
2

)
blue

nodes, respectively. The resulting DAG has height 4 = 𝑂 (1), and
altogether |𝑉 | + |𝐸 | nodes of both colors.

Note that we cannot compute more than one node of 𝐶 in any

step, since there are no two different-colored nodes in 𝐶 that are

not connected by a directed path. Hence for flawless parallelization

(a makespan of |𝑉 | + |𝐸 |), we need to compute exactly one node of𝐶

in each step, since𝐶 contains |𝑉 | + |𝐸 | nodes. This implies that with

the processor not working on 𝐶 , we need to compute a blue node

outside of𝐶 in the first 𝐿 steps, and then a red node outside of𝐶 in

the next

(𝐿
2

)
steps. This is possible if and only if there exists a clique

of size 𝐿 in our original graph. After processing the clique, we can

compute first the |𝑉 | − 𝐿 blue nodes representing the remaining

nodes and then the |𝐸 | −
(𝐿
2

)
red nodes representing the remaining

edges in any order. □

G HIERARCHICAL PARTITIONING
G.1 Recursive partitioning
The recursive approach has already been outlined in Section 7. In

case of standard partitioning, this allows us to follow a recursive bi-

partitioning method instead of finding a 𝑘-way partitioning directly,

whereas in the hierarchical case, it allows for a 𝑑-step approach,

splitting each current part into 𝑏𝑖 further parts in balanced way in

each step 𝑖 ∈ [𝑑].
The counterexample of Lemma 7.2 shows, however, that this

recursive approach can be a Θ(𝑛) factor off the optimum in un-

fortunate cases. This even holds in the hierarchical setting, where

finding a good cut in the upper levels of the tree is even more im-

perative: since the parameters 𝑔𝑖 are constants, the construction

still shows a difference of a Θ(𝑛) factor in this case. The construc-

tion itself has mostly been discussed in Section 7 already, and its

technical details are identical to our previous proofs: the squares

represent blocks on ℎ nodes and ℎ hyperedges, so splitting any of

them induces a cost of (ℎ − 1) at least. In our current setting, we

have ℎ = Θ(𝑛).
One can generalize this example to any hierarchy parameters

𝑏1, . . . , 𝑏𝑑 ; let 𝑏
′ = 𝑏2 · . . . · 𝑏𝑑 . We create (𝑏 ′ + 1) distinct larger

blocks of size
𝑛

𝑏1 · (𝑏′+1) , connected by a chain of single edges as in

Figure 8, and (𝑏1 − 1) further chains that each consist of 𝑏 ′ · (𝑏 ′ + 1)
smaller blocks of size

𝑛
𝑏1 ·𝑏′ · (𝑏′+1) . A recursive approach will split

the construction into the 𝑏1 different chains on the highest level;

however, since the first chain of (𝑏 ′ + 1) large blocks will need

to be split to 𝑏 ′ parts ultimately, one of the blocks will be cut in

case of 𝜖 ≈ 0, resulting in a cost of Θ(𝑛). On the other hand, we

can combine each large block with a smaller block into a part

of size
𝑛

𝑏1 · (𝑏′+1) + 𝑛
𝑏1 ·𝑏′ · (𝑏′+1) =

𝑛 (𝑏′+1)
𝑏1 ·𝑏′ · (𝑏′+1) = 𝑛

𝑘
, and combine

(𝑏 ′ + 1)-tuples of the remaining smaller blocks into groups of size

(𝑏 ′ + 1) · 𝑛
𝑏1 ·𝑏′ · (𝑏′+1) = 𝑛

𝑘
; this is a balanced partitioning with cost

𝑂 (1).

G.2 Two-step method
Let us now discuss our claims regarding the two-step method. We

first show that if both steps are executed in an optimal way, then

the final cost is at most a factor
𝑔1
𝑔𝑑

= 𝑔1 away from the optimal

hierarchical cost.

Proof of Lemma 7.3. Let 𝑂𝑃𝑇cut denote the optimum cost of

the standard partitioning problem (with the connectivity metric),

and𝑂𝑃𝑇hier denote the optimum for the hierarchical cost function.

Since every intersection with a new part within a hyperedge comes

25

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

at a cost of at most 𝑔1, the solution of our two-step method has

cost at most 𝑔1 · 𝑂𝑃𝑇cut. Assume for contradiction that the cost

of the solution returned by the two-step method is larger than

𝑔1 ·𝑂𝑃𝑇hier; this implies 𝑂𝑃𝑇hier < 𝑂𝑃𝑇cut. However, this is not

possible, since the solution 𝑂𝑃𝑇hier directly provides a solution of

the same (or smaller) cost if we evaluate it according to the standard

cost function. □

However, there exists a construction where this difference is indeed

in the magnitude of 𝑔1. We show this for 𝜖 = 0 below, and then

provide a discussion of extending the approach to other 𝜖 values.

Proof of Theorem 7.4. Let 𝜖 = 0, and let us use𝑇 to denote the

number of nodes that fit into a single part of our construction, i.e.

𝑇 = 𝑛
𝑘
for the final size 𝑛 of our hypergraph. We once again use

blocks of 𝑏 nodes as a building block; for 𝑏 large enough, splitting

any of these blocks results in a very high cost. Our construction

will consist of the following blocks:

• a single block 𝐴 on 𝑇 nodes,

• blocks 𝐵1, . . . , 𝐵𝑘−1 on
𝑇
𝑘−1 nodes each,

• blocks 𝐶1, . . . ,𝐶𝑘−2 on 𝑇 − 𝑇
𝑘−1 = 𝑘−2

𝑘−1 ·𝑇 nodes each,

• a single block 𝐷 on
𝑇
𝑘−1 nodes,

• blocks 𝐸1, . . . , 𝐸𝑘−3 on
𝑇
𝑘−1 nodes each.

We then add single edges between these blocks (i.e. hyperedges of

size 2 connecting two arbitrary nodes of two distinct blocks) in the

following way:

• for 𝑖 ∈ [𝑘 − 1], we draw𝑚 distinct edges from 𝐴 to 𝐵𝑖 (for

some large parameter𝑚),

• for 𝑖 ∈ [𝑘 − 2], we draw a single edge from 𝐵𝑖 to 𝐶𝑖 ,

• we draw a single edge from 𝐵𝑘−1 to 𝐷 .

With this, we essentially obtain a “star-like” construction where

almost all the edges go between the block 𝐴 and the blocks 𝐵𝑖 .

However, 𝐴 is already large enough to fill an entire part itself, so

each of these edges will be cut in any solution (that does not split

blocks).

Intuitively, the optimal solution in the hierarchical setting is to

place all the 𝐵𝑖 in the same partition; this would mean that the two

parts can be assigned to bottom-level siblings in the hierarchy tree,

so all of these cut edges only induce a cost of 𝑔𝑑 = 1. After this, the

remaining edges are cut anyway, so we simply need to place the

remaining blocks into parts such that each of them has size 𝑇 .

This is indeed the optimum for hierarchical cost: we have (i) one

part with𝐴, (ii) one part with 𝐵𝑖 for all 𝑖 ∈ [𝑘 −1], (iii) 𝑘 −3 distinct

parts, containing 𝐶𝑖 and 𝐸𝑖 for 𝑖 ∈ [𝑘 − 3], and (iv) a single last

part containing 𝐶𝑘−1 and 𝐷 . All of these parts have size 𝑇 exactly.

The (𝑘 − 1) ·𝑚 edges between the first two parts have cost 𝑔𝑑 = 1,

and the remaining 𝑂 (𝑘) edges have cost at most 𝑔1, so in total the

hierarchical cost is (𝑘 − 1) ·𝑚 +𝑂 (𝑘). However, the number of cut

edges altogether is (𝑘 − 1) ·𝑚 + (𝑘 − 1).
On the other hand, in a standard 𝑘-way partitioning, the edges

between 𝐴 and 𝐵𝑖 are cut anyway, so in order to minimize the cost,

an algorithm will ensure that the remaining (𝑘 − 1) edges (between
the 𝐵𝑖 and𝐶𝑖) are uncut. That is, in the standard optimum, we have

(i) one part with 𝐴, (ii) 𝑘 − 2 distinct parts, containing 𝐵𝑖 and𝐶𝑖 for

𝑖 ∈ [𝑘 − 2], and (iii) a single part containing 𝐵𝑘−1, 𝐷 , and all the 𝐸𝑖
for 𝑖 ∈ [𝑘 − 3]. All these parts have size 𝑇 exactly, so the solution

satisfies the balance constraint.

The standard cost in this case is only (𝑘 − 1) ·𝑚, so this is the

optimal solution for the standard 𝑘-way partitioning problem. How-

ever, now 𝐴 and all the 𝐵𝑖 are in different parts; hence regardless of

the way we develop the hierarchy in the second step, we will have

𝑚 edges going from the part of 𝐴 to all the other (𝑘 − 1) parts in
the hierarchy. This means that at least

𝑏1−1
𝑏1

· 𝑘 ·𝑚 of our edges will

induce a cost of 𝑔1. In fact, if the branching factors in the hierarchy

are 𝑏1, . . . , 𝑏𝑑 , then the exact hierarchical cost will be(
𝑏1 − 1

𝑏1
· 𝑘 · 𝑔1 +

𝑏2 − 1

𝑏2
· 𝑘

𝑏1
· 𝑔2 + . . .

)
·𝑚 =

=

𝑑∑︁
𝑖=1

©­«𝑔𝑖 · 𝑏𝑖 − 1

𝑏𝑖
·

𝑑∏
𝑗=𝑖

𝑏 𝑗
ª®¬ ·𝑚 .

For the simplest case of 𝑏1 = . . . = 𝑏𝑑 = 2, this evaluates to

𝑚 · (𝑘
2
·𝑔1 + 𝑘

4
·𝑔2 + . . . + 1 ·𝑔𝑑). Recall that the optimal hierarchical

cost is (𝑘 − 1) · 𝑚 + 𝑂 (𝑘) ≤ 𝑘 · 𝑚 for 𝑚 large enough; as such,

the solution returned by the two-step method is at least a factor

𝑏1−1
𝑏1

· 𝑔1 larger.
As for the technical choice of our parameters: firstly, we need

to ensure that𝑚 ≥ 𝑔1 · 𝑘 = 𝑂 (1). Furthermore, we need to ensure

that none of the blocks are split in a reasonable solution, i.e. 𝑏 − 1 >

𝑔1 ·(𝑚+1)·(𝑘−1); with this, splitting a single block already has larger
cost than the maximum cost induced by all of our (𝑚 + 1) · (𝑘 − 1)
edges altogether. □

Recall that as 𝑏1 grows larger, this ratio approaches the upper

bound of Lemma 7.3. We also note that the construction of Theorem

7.4 can also be extended to hyperDAGs by replacing each block

with a larger hyperDAG of maximal density, following similar ideas

as in the proof of Lemma B.3.

We note that it is only straightforward to generalize Theorem

7.4 to a setting where the balance constraint ensures that all of the

parts are non-empty, i.e. 𝜖 < 1

𝑘−1 . For any such 𝜖 , we can indeed

generalize the idea above by setting |𝐴| = (1 + 𝜖) · 𝑛
𝑘
, introducing

𝑇 ′
:=

𝑛−|𝐴 |
𝑘−1 , and setting |𝐵𝑖 | = |𝐷 | = |𝐸𝑖 | = 𝑇 ′

𝑘−1 and |𝐶𝑖 | = 𝑘−2
𝑘−1 ·𝑇

′
.

If 𝜖 is larger, then the same technique only guarantees a smaller

factor of difference. In particular, for general 𝜖 , we need at least

⌈ 𝑘
1+𝜖 ⌉ parts to cover the whole graph, and hence we can leave

ℎ∅ = 𝑘 − ⌈ 𝑘
1+𝜖 ⌉ parts empty; then the same construction approach

provides an example for a factor (𝑏1−1
𝑏1

· 𝑘 − ℎ∅) · 𝑔1 · 1

𝑘−ℎ∅
of

difference.

G.3 Observations on complexity
Note that the hardness result in our main theorem also carries over

easily to the case of this more complex cost function. In particular,

recall that in the generalization of the proof to 𝑘 ≥ 3 colors, the rel-

evant part of the construction can also be colored with at most two

colors. As such, if we consider this construction in the hierarchical

setting, then any partitioning can be modified (without increasing

cost) such that we only use red and blue in the relevant part of

the construction, and these two colors are siblings in the bottom

26

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

level of the tree. The cut cost in this construction is identical in the

standard and the hierarchical setting, so our reduction also applies

to the hierarchical case.

Also, any 𝛼-approximation of the regular partitioning problem

provides an 𝑂 (𝛼) approximation in the hierarchical setting due to

Lemma 7.3: we can use the approximation algorithm in the first

step of our two-step method, and then find the optimum hierarchy

assignment for this partitioning (this second step only needs 𝑂 (1)
time as long as 𝑘 ∈ 𝑂 (1)). This provides a solution with cost that is

at most 𝛼 · 𝑔1 = 𝑂 (𝛼) times the optimum.

The parameterized complexity of the problem also remains un-

changed.

Lemma G.1. Even with the hierarchical cost function, the partition-
ing problem is in XP (with respect to the allowed cost as a parameter).

Proof. We can follow the same proof approach as in Lemma

4.3: it still holds that if the cost is at most 𝐿, then the number of

cut hyperedges is also at most 𝐿. Hence we again consider every

configuration, i.e. every subset 𝐸0 of at most 𝐿 hyperedges and

every possible subset of the 𝑘 colors appearing in each hyperedge

𝑒 ∈ 𝐸0. Note that we can still compute the cost induced by each

such configuration according to our hierarchical cost function, and

exclude the configurations where this cost is above 𝐿. We can iterate

through the remaining configurations, and check their feasibility

exactly as in Lemma 4.3. □

H THEHIERARCHY ASSIGNMENT PROBLEM
Next we briefly study the second step of the two-step method as

a separate problem: given a fixed partitioning of the hypergraph,

we want to assign the 𝑘 parts to the 𝑘 positions in the hierarchy

optimally, i.e. such that the hierarchical cost is minimized.

H.1 Motivation and general discussion
The first natural question in this hierarchy assignment problem is

the number of possible solutions, i.e. non-equivalent ways to assign

the parts to slots in the hierarchy. A simple combinatorial argument

shows that the number of non-equivalent hierarchy assignments is

𝑓 (𝑘) =
𝑘!

𝑏1! · (𝑏2!)𝑏1 · (𝑏3!)𝑏1 ·𝑏2 · . . .
=

𝑘!∏𝑑
𝑖=1 (𝑏𝑖 !)

∏𝑖−1
𝑗=1 𝑏 𝑗

,

since there are 𝑘! possible permutations in general, but on every

level 𝑖 there are 𝑏1 · . . . ·𝑏𝑖−1 internal nodes of the tree, each of them

with 𝑏𝑖 children, and any permutation of these children provides an

equivalent solution. One can check that for several choices of the

branching factors𝑏1, . . . , 𝑏𝑑 , this function 𝑓 (𝑘) grows exponentially
in 𝑘 ; a more detailed discussion of this formula is beyond the scope

of our paper.

This function 𝑓 (𝑘) can be interpreted as the difference between

the size of the search space (up to symmetries) in the two versions

of the partitioning problem: any regular 𝑘-way partitioning cor-

responds to 𝑓 (𝑘) different solutions in the hierarchical case. This

rapid growth of 𝑓 (𝑘) can have a significant impact in practice; for

example, it means that there are much fewer opportunities for sym-

metry breaking in a branch-and-bound based exploration of the

search space.

Recall that with our previous assumption that 𝑘 ∈ 𝑂 (1), we also
have have 𝑓 (𝑘) ∈ 𝑂 (1), and hence the problem is not interesting

from a complexity-theoretic perspective, since the solution space

has constant size. Hence to study this problem, we briefly explore

the case when 𝑘 is a variable part of the input. This setting might

be realistic in applications where partitioning is time-critical, so

instead of a fixed architecture, we apply more machines for larger

hypergraphs, e.g. by increasing 𝑘 proportionally to 𝑛. These ma-

chines could then be e.g. connected over a network in the highest

hierarchy level, resulting in 𝑏1 ∈ Θ(𝑘) and 𝑏2, . . . , 𝑏𝑑 ∈ 𝑂 (1) for
our problem.

In general, given a hypergraph with its set of nodes already

sorted into 𝑘 parts, we can contract each part into a single node

to obtain a simplified hypergraph 𝐺 ′
on 𝑘 nodes as the new input

of the hierarchy assignment problem. If a hyperedge was uncut in

our partitioning, then it will only contain a single node after this

contraction step; we can remove all such hyperedges for simplicity,

since they have no effect on the cost of our hierarchy assignment.

On the other hand, note that even if two hyperedges are different in

the original hypergraph, it can happen that they contain they same

subset of nodes after the contraction step. As such, the simplified

input to our problem is in fact a multi-hypergraph, i.e. it can contain

multiple copies of the same hyperedge. Alternatively, we can also

represent𝐺 ′
as a simple hypergraph with hyperedge weights𝑤𝑒 ∈

Z+ assigned to each 𝑒 ∈ 𝐸.

H.2 Complexity for two levels
Finally, we briefly study the hardness of the hierarchy assignment

problem for the simplest case of only 𝑑 = 2 levels. In this case, it

turns out that the complexity depends on the choice of the branch-

ing factors 𝑏1 and 𝑏2 (recall that 𝑏1 · 𝑏2 = 𝑘).

Note that with 𝑑 = 2, we only have two levels of the hierarchy:

cuts on the bottom level induce a cost of 1, while cuts on the top

level induce a cost of 𝑔1 > 1. In fact, if a hyperedge 𝑒 contains 𝜆𝑒
(2)

different nodes altogether, then this will in any case induce a cost

of𝑤𝑒 · (𝜆𝑒(2) − 1), plus a further cost of𝑤𝑒 · (𝜆𝑒(1) − 1) · (𝑔1 − 1) for
every data transfer over the higher level. As such, we can subtract

this fixed amount of

∑
𝑒∈𝐸 𝑤𝑒 · (𝜆𝑒(2) − 1) from the cost, and divide

the remaining cost by 𝑔′
1
= (𝑔1 − 1) to obtain a simplified cost

function for the problem. With this, the problem formulation is as

follows: given a multi-hypergraph on 𝑘 nodes, can we partition

the nodes into 𝑏1 sets of 𝑏2 nodes each such that the sum of the

connectivity cost𝑤𝑒 · (𝜆𝑒 − 1) over all hyperedges is minimized?

We separate the two parts of Theorem 7.5 for clarity.

Lemma H.1. Hierarchy assignment is polynomially solvable for
𝑏2 = 2.

Proof. For𝑏2 = 2, our problem can be solved through amaximal

matching. That is, we can create an edge-weighted complete graph

on𝑘 nodeswhere theweight𝑤 (𝑢,𝑣) of each edge (𝑢, 𝑣) is the number

of hyperedges containing both 𝑢 and 𝑣 . In the worst case (if all

nodes of all hyperedges are in different parts), the total cost of a

partitioning is

∑
𝑒∈𝐸 𝑤𝑒 · (|𝑒 | −1). However, if we pair up𝑢 and 𝑣 (as

one of our parts of size 𝑏2 = 2), then this implies that we have saved

a cost of 𝑤 (𝑢,𝑣) compared to this total cost. In general, if we find

a weighted matching of total weight 𝑤0, then the corresponding

27

Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman

partitioning will have a cost of

∑
𝑒∈𝐸 𝑤𝑒 · (|𝑒 | − 1) −𝑤0. As such,

finding the best partitioning is equivalent to finding a maximal-

weight matching, which can be done in polynomial time using

Edmond’s algorithm. □

Lemma H.2. Hierarchy assignment is NP-hard for 𝑏2 = 3.

Proof. For𝑏2 = 3, we present a reduction from the 3-dimensional

matching (3DM) problem: given a tripartite hypergraph 𝑋 ,𝑌 ,𝑍 , and

a set of hyperedges (𝑥,𝑦, 𝑧) ∈ 𝑋 ×𝑌 ×𝑍 of size 3, our task is to find

the largest 3-dimensional matching, i.e. the largest possible subset

of hyperedges that are disjoint. The problem remains NP-hard even

in the special case when |𝑋 | = |𝑌 | = |𝑍 | and the hypergraph is

3-regular, i.e. each node has degree exactly 3 [23].

Given a 3DM problem, we turn this into an instance of hierarchy

assignment with 𝑏2 = 3 on the same set of nodes. If we consider

3DM as a problem where we need to divide the nodes into triplets,

and each triplet has value 1 if it induces a hyperedge and 0 otherwise,

then this is a rather intuitive reduction: both problems require us to

divide the nodes into triplets. As such, we begin by considering the

same set of nodes as in our 3DM problem, and for each hyperedge

(𝑥,𝑦, 𝑧), we add a hyperedge over the same set of nodes (withweight

1) in our hierarchy assignment problem.

There are two challenges to address in order to complete the

reduction. Firstly, we need to restrict the selected triplets to the

tripartite structure, i.e. ensure that the triplets chosen in hierarchy

assignment are always selected from 𝑋 × 𝑌 × 𝑍 . Moreover, we

also need to model the slightly different objective function, i.e. a

different gain value when a triplet𝑉𝑡 intersects a hyperedge 𝑒 . More

specifically, in 3DM, if |𝑉𝑡 ∩ 𝑒 | = 2, then this does not result in any

gain, and we only have a gain of 1 when |𝑉𝑡 ∩ 𝑒 | = 3. In contrast to

this, in hierarchy assignment with 𝑏2 = 3, the saved cost (compared

to the worst-case) is (𝜆𝑒 − 1): there is already a gain of 1 for 𝑒 if

|𝑉𝑡 ∩ 𝑒 | = 2, and a gain of 2 for 𝑒 if |𝑉𝑡 ∩ 𝑒 | = 3.

For the first problem, we can simply consider each triple in

𝑋 × 𝑌 × 𝑍 , and add a hyperedge with a constant weight 𝑤0 that

contains exactly these three nodes. Since the number of triples is in

𝑂 (𝑘3), the new number of hyperedges is still polynomial in 𝑘 . This

already ensures that the optimal triplet assignment satisfies the

tripartite condition: since the input hypergraph of the 3DM problem

is 3-regular, any triplet can only result in a constant gain. Hence

by choosing𝑤0 large enough, we can ensure that any solution that

contains a non-tripartite triplet can be improved by reorganizing

the non-tripartite triplets into arbitrary tripartite triplets. Note that

these auxiliary hyperedges contribute the same total gain to any

feasible (i.e. tripartite) triplet, so they do not influence the optimality

of a solution among the feasible triplets.

It remains to model the cost function of 3DM appropriately.

Recall that in hierarchy assignment, each triplet𝑉𝑡 results in a gain

that we will denote by (1, 2): a gain of 1 for each hyperedge that

contains two nodes of the triplet, and a gain of 2 for each hyperedge

that contains all three nodes of the triplet. To correctly model the

cost of 3D-matching, we would need a gain of (0, 1) instead: 0 for
each hyperedge with two nodes in 𝑉𝑡 , and 1 for each hyperedge

with three nodes in 𝑉𝑡 .

In the 3DM problem, each of the hyperedges has size 3. Note

that if we replace such a size-3 hyperedge by 3 distinct hyperedges

of size 2 (connecting each pair of nodes), then we change this gain

of (1, 2) into a gain of (1, 3): having two nodes of 𝑉𝑡 in an original

hyperedge now provides a gain of 1, and having all three nodes of

𝑉𝑡 in it now provides a gain of 3.

The key observation is that we can obtain our desired gain of

(0, 1) as (1, 3)−(1, 2). That is, for each size-3 hyperedge 𝑒 of the 3DM
problem, we (i) replace the hyperedge by three size-2 hyperedges

connecting each pair of nodes, and (ii) we add a gain of “(−1,−2)”
by adding a hyperedge for every triplet of nodes in the hypergraph

except for 𝑒 . This indeed provides the desired gain. Intuitively, if

we combine only two nodes of 𝑒 in a triplet, then we get a gain of 1

(due to the size-2 edge) and lose an otherwise guaranteed gain of 1

due to the fact that these two nodes have one less size-3 hyperedge

in common. If we combine all three nodes of 𝑒 in a triplet, then we

get a gain of 3 from the three size-2 edges, and lose an otherwise

guaranteed gain of 2 due to the fact that these three nodes do not

form an additionally added size-3 hyperedge.

Note that this is just the intuitive explanation of the construction:

in practice, we can drastically simplify it by decreasing the weight

of each size-3 hyperedge by the same amount. In other words, our

construction is equivalent to the following: (i) we replace each

hyperedge 𝑒 by three size-2 hyperedges connecting each pair of

nodes, and (ii) we add a single size-3 hyperedge for every triplet

of nodes that do not form a hyperedge originally. It is clear that in

this construction, the number of hyperedges is polynomial in 𝑘 .

To compute the total gain of a solution, consider one of the
𝑘
3

triplets we choose. For any two nodes 𝑣1, 𝑣2 in the triplet and a node

𝑢 outside of it, we always have a gain of 1: either if (𝑣1, 𝑣2, 𝑢) was
an hyperedge originally (then we added a size-2 edge (𝑣1, 𝑣2)), or
if it was not (then we added (𝑣1, 𝑣2, 𝑢) as a new hyperedge, which

has two nodes in this triplet). For any three nodes 𝑣1, 𝑣2, 𝑣3 that

were chosen as a triplet, we have a gain of 3 if this was an original

hyperedge (due to the three size-2 edges added), and a gain of

2 if it was not (since we added (𝑣1, 𝑣2, 𝑣3) as a new hyperedge).

As such, the triplet results in a gain of 3 · (𝑘 − 3) + 3 if it is an

original hyperedge, and 3 · (𝑘 − 3) + 2 if not. Finally, we need to

consider the extra hyperedges of weight𝑤0 added for each tripartite

(𝑥,𝑦, 𝑧); if our triplet is tripartite, then these result in a total gain

of 2 ·𝑤0 + 3 · (𝑘
3
− 1) ·𝑤0 = (𝑘 − 1) ·𝑤0. Altogether, this means that

there is a perfect 3D-matching for 𝑋,𝑌, 𝑍 if and only if there exists

a solution with gain of at least
𝑘
3
· (3 · (𝑘 − 3) + 3 + (𝑘 − 1) ·𝑤0) =

(1 + 𝑤0

3
) · 𝑘2 − (2 + 𝑤0

3
) · 𝑘 , i.e. a hierarchy assignment of cost at

most

∑
𝑒∈𝐸 𝑤𝑒 · (|𝑒 | − 1) − (1 + 𝑤0

3
) · 𝑘2 + (2 + 𝑤0

3
) · 𝑘 . □

Note that for 𝑏2 ≥ 3 values, we can extend this approach to show

NP-hardness by introducing auxiliary classes of nodes 𝑍1, 𝑍2, . . . ,

𝑍𝑏2−3, and ensuring with extra hyperedges that the 𝑖-th nodes of 𝑍 ,

𝑍1, 𝑍2, . . . , 𝑍𝑏2−3 always end up in the same 𝑏2-tuple. This works

for 𝑏2 values of smaller magnitudes; from some point, it introduces

too many auxiliary nodes into the graph, and hence a different

approach is needed. In the other extreme, note that for 𝑏2 ∈ Θ(𝑘),
we essentially have a regular 𝑏1-way partitioning problem (with

𝜖 = 0), so NP-hardness follows easily.

28

Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications

I FURTHER DISCUSSION OF THE
HIERARCHICAL SETTING

Finally, we briefly discuss two further questions that arise very

naturally regarding our results on the hierarchical cost model.

I.1 HyperDAGs and multi-constraint
partitioning

Note that we have analyzed the hierarchical cost function in Section

7 for general hypergraphs. It is a natural question how the results

in this section carry over to hyperDAGs or to a multi-constraint

partitioning setting. We provide a brief discussion of this below,

without going into much technical detail.

Firstly, most of the results in Section 7 carry over to hyperDAGs

with relative ease. The positive results (Lemma 7.3, or the first point

of Theorem 7.5) require no modification at all. For Lemma 7.2 and

Theorem 7.4, we need to show that the corresponding example

constructions can also be converted to hyperDAGs; we discuss

this below. The only claim that is not straightforward to adapt to

hyperDAGs is the second point of Theorem 7.5.

For the conversion in Lemma 7.2 and Theorem 7.4, we can es-

sentially apply similar techniques to the NP-hardness proof for

hyperDAGs (Lemma B.3). In particular, both constructions consist

of blocks; we replace each of these blocks by two-level blocks, i.e.

two groups of size 𝑏0 and 𝑏1, respectively (for some 𝑏0, 𝑏1), and 𝑏0
hyperedges that each contain a distinct node of the first group and

all the 𝑏1 nodes of the second group. The idea is then that with 𝑏1
being much larger than 𝑏0, the second group replaces the original

blocks in the constructions, while the nodes in the first group serve

as a generating nodes in order to ensure that our construction is

a hyperDAG. If the further hyperedges connecting the blocks are

disjoint (we can ensure this in both of the constructions), then we

can select an arbitrary generating node for these hyperedges from

the second groups.

In particular, in the construction of Lemma 7.2, we can select

𝑏0 =
𝑛
36

and 𝑏1 =
5𝑛
36

for the larger blocks, and 𝑏0 =
𝑛
72

and 𝑏1 =
5𝑛
72

for the smaller blocks. This implies (1 + 𝜖) · 𝑛
4
< 2 · 5𝑛

36
for 𝜖 < 1

9
,

hence the second recursive step still needs to split one of the blocks

of size
5𝑛
36

on the left side, resulting in a cost of at least
𝑛
36

= 𝑂 (𝑛).
In the construction of Theorem 7.4, we convert each original block

of size 𝑏 into a first group of size 𝑏0 = 1

𝑘2
· 𝑏 and a second group

of size 𝑏1 = 𝑘2−1
𝑘2

· 𝑏; this ensures that even if all the first groups

are combined, they have a total size that is still smaller than any

single second group, i.e.
𝑛
𝑘2

< 𝑘2−1
𝑘2

· 𝑇
𝑘−1 (recall from the proof of

Theorem 7.4 that 𝑇 = 𝑛
𝑘
). This ensures that the second groups can

still only be combined as before in order to form parts of size 𝑇 ,

unless one of the second groups is split (which results in a cost of

at least 𝑏0, which is a significantly larger magnitude than 𝑘 ·𝑚).

Adapting the results to a multi-constraint setting is significantly

simpler. In particular, the negative results in Lemma 7.2 and in The-

orem 7.4 carry over without any changes, since single-constraint

partitioning is a special case of the multi-constraint setting. The

proof of Lemma 7.3 also requires no change. Theorem 7.5 is also

unaffected, since in the hierarchy assignment problem, we already

begin with a fixed partitioning that satisfies the constraint(s).

Finally, the results can also be adapted to the combination of the

two settings, i.e. layer-wise hyperDAG partitioning. When trans-

forming the constructions of Lemma 7.2 and Theorem 7.4 to hyper-

DAGs, we simply need to ensure that the first and second groups of

the blocks end up in the first and second layer of the DAG, respec-

tively; if this holds, then it is sufficient to consider the second layer

for both of the proofs. To achieve this, we only need to consider

the few extra hyperedges that were previously assigned generator

nodes from the second groups for simplicity, add a new artificial

generator node for each of these, and besides, also add a few isolated

nodes to the first layer to ensure that these new artificial nodes can

be sorted into any of the parts as desired.

I.2 Different processor topologies
While the tree-like hierarchy of processors accurately captures the

majority of today’s computing architectures, it is another natural

question to study how an analogue of the hierarchical partitioning

problem would behave if the underlying topology for the connec-

tions between processors was different. As a straightforward gen-

eralization of our setting, we can consider an arbitrary processor

topology represented by a weighted complete graph on 𝑘 nodes

(each node representing a processor), where the weight of the edge

between each pair of nodes describes the cost of communication

between the given two processors. We can assume for simplicity

that the weights in this graph satisfy the triangle inequality. As

a natural generalization of our hierarchical cost function to this

setting, we can interpret the cost incurred by a given hyperedge in

our partitioning as the cost of the smallest subtree (Steiner tree) in

this graph that contains the set of processors which appear in the

hyperedge.

Note that some of our claims, e.g. Lemma 7.2, only use the fact

that the communication cost between any pair of processors is a

constant; as such, these easily carry over to any topology. Lemma

7.3 also carries over if we replace 𝑔1 with the the maximum transfer

cost between any pair of processors in our topology, and we again

assume that the minimum transfer cost is normalized to 1.

Theorem 7.4 is more complicated to adjust to this case. If we

denote the cost of communication between processors 𝑝1 and 𝑝2
by 𝑔𝑝1,𝑝2 , and the set of processors by Υ, then in our construction,

the cost of the regular partitioning optimum will be proportional to

min𝑝∈Υ
∑
𝑝′≠𝑝 𝑔𝑝,𝑝′ (i.e. the smallest possible total distance from

one processor to all others), while the cost of the real hierarchical

optimum will be proportional to (𝑘 − 1) ·min𝑝′≠𝑝 𝑔𝑝,𝑝′ (i.e. (𝑘 − 1)
times the distance between the closest processor pair), plus an

additional constant cost. Theorem 7.4 will then hold with the ratio

of the two expressions above, minus an arbitrarily small 𝛿 > 0.

The analogue of Theorem 7.5 is not straightforward to define

in such a general network topology where we have no concept of

‘levels’. However, it is easy to see that in general topologies, the

hierarchy assignment problem is NP-hard, since the second point

of our original Theorem 7.5 is a special case of this.

29

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Hypergraphs and partitioning
	3.2 HyperDAGs

	4 Inapproximability result
	5 Balance constraints for hyperDAGs
	5.1 Layer-wise constraints
	5.2 Schedule-based constraints

	6 Multi-constraint partitioning
	7 Hierarchical cost function
	7.1 Recursive approach
	7.2 Hierarchy-agnostic partitioning
	7.3 Complexity

	References
	A Fundamental properties of the partitioning problem
	B Detailed discussion of hyperDAGs
	B.1 Characterization of hyperDAGs
	B.2 HyperDAG partitioning is NP-hard

	C Proof of the main theorem
	C.1 Theorem 4.1: general case
	C.2 Conversion to =2
	C.3 Conversion to a hyperDAG
	C.4 Generalization to k 3
	C.5 Different complexity-theoretic assumptions
	C.6 Parameterized complexity

	D Multi-constraint partitioning
	D.1 With O(1) constraints: approximation
	D.2 With O(1) constraints: parameterized complexity
	D.3 General tools for our negative results
	D.4 With n constraints
	D.5 With (logn) constraints
	D.6 Generalization for k 3

	E Layer-wise balance constraints
	E.1 Proof of Theorem 5.2
	E.2 Finding the best layering

	F Brief discussion of DAG scheduling
	G Hierarchical partitioning
	G.1 Recursive partitioning
	G.2 Two-step method
	G.3 Observations on complexity

	H The hierarchy assignment problem
	H.1 Motivation and general discussion
	H.2 Complexity for two levels

	I Further discussion of the hierarchical setting
	I.1 HyperDAGs and multi-constraint partitioning
	I.2 Different processor topologies

