
ar
X

iv
:2

30
4.

09
84

4v
1

 [
cs

.D
C

]
 1

9
A

pr
 2

02
3

Coloring Fast with Broadcasts

Maxime Flin

Reykjavik University

maximef@ru.is

Mohsen Ghaffari

MIT

ghaffari@mit.edu

Magnús M. Halldórsson

Reykjavik University

mmh@ru.is

Fabian Kuhn

University of Freiburg

kuhn@cs.uni-freiburg.de

Alexandre Nolin

CISPA

alexandre.nolin@cispa.de

Abstract

We present an Oplog3 lognq-round distributed algorithm for the
p∆`1q-coloring problem, where each node broadcasts only oneOplog nq-
bit message per round to its neighbors. Previously, the best such
broadcast-based algorithm required Oplog nq rounds. If ∆ P Ωplog3 nq,
our algorithm runs in Oplog˚ nq rounds. Our algorithm’s round com-
plexity matches state-of-the-art in the much more powerful CONGEST
model [Halldórsson et al., STOC’21 & PODC’22], where each node
sends one different message to each of its neighbors, thus sending up
to Θpn lognq bits per round. This is the best complexity known, even
if message sizes are unbounded.

Our algorithm is simple enough to be implemented in even weaker
models: we can achieve the same Oplog3 lognq round complexity if each
node reads its received messages in a streaming fashion, using only
Oplog3 nq-bit memory. Therefore, we hope that our algorithm opens
the road for adopting the recent exciting progress on sublogarithmic-
time distributed p∆ ` 1q-coloring algorithms in a wider range of (the-
oretical or practical) settings.

http://arxiv.org/abs/2304.09844v1

Contents

1 Introduction 1

1.1 Our Results . 2
1.2 Technical Contributions . 3

1.2.1 Previous Algorithms & Challenges 3
1.2.2 Our Algorithm . 4

1.3 Related Work . 6
1.4 Organization of the Paper . 7

2 Preliminaries 7

2.1 Sparse-Dense Decomposition 8
2.2 Distributed Coloring with Slack 10
2.3 Concentration Inequalities . 12

3 Algorithm and Analysis 12

3.1 Step 1: Setting up . 14
3.2 Step 2: Synchronized Color Trial 16
3.3 Step 4: Coloring Put-Aside Sets 18
3.4 Proof of Theorem 1 . 21

4 Synchronized Color Trial in BCONGEST 21

5 Coloring in Streaming-Congest 30

5.1 Computing Prefix Sums . 31

A Colorful Matching 37

B Reducing Put-Aside Sets 38

1 Introduction

The coloring problem and its distributed motivations. Our focus is
on ∆` 1-coloring: the problem of assigning one color from t1, . . . ,∆` 1u to
each node, such that no two neighboring nodes have the same color. Here
∆ denotes the maximum degree of the graph. Coloring plays a pivotal role
in distributed systems, as a clean way to divide access to non-shareable
resources, resolve contention, and break symmetries. For instance, it is par-
ticularly important in wireless networking, for frequency allocation or chan-
nel assignment. A characteristic of wireless communication is that nodes
broadcast their messages (reception is constrained by interference from other
broadcasts).

Distributed models. The coloring problem has been studied extensively
in distributed computing [PS97, Joh99, SW10, FHK16, BEPS16, HSS18,
CLP20, GGR21, HKMT21, GK21, HKNT22, HNT22]. Indeed, this problem
was the subject of the celebrated paper by Linial [Lin92], which introduced
the LOCAL model of distributed computing. In this model, n processors
form a graph G “ pV,Eq where an edge exists only between processors that
can communicate. The resulting graph is called the communication graph G

and is the one to be colored. Per round, each node can send one unbounded-
size message to each of its neighbors. The variant where the message sent
to each neighbor is bounded to Oplog nq bits is known as the CONGEST

model [Pel00].

Distributed coloring. Classic distributed algorithms for coloring [Lub86,
Joh99] achieved complexity Oplog nq in the CONGEST model. There has
been exciting recent progress on sublogarithmic time algorithms [BEPS16,
HSS18, CLP20, GGR21, HKMT21, GK21, HKNT22, HNT22], and the state
of the art round complexity is Oplog3 log nq rounds. This is also the best
known in the more relaxed LOCAL model, which allows unbounded mes-
sage sizes. However, unlike the earlier algorithm of [Joh99], these faster
algorithms make some nodes send one different message to each of their
neighbors. Thus, each node may send up to Θpn log nq bits in one round.
The research question at the core of this paper is to understand the extent
to which one can compute a coloring fast if we constrain the set of outgoing
messages. Specifically,

Can we compute a p∆ ` 1q-coloring as fast as in the CONGEST

model if, in each round, each node must transmit the same Oplog nq-
bit message to all its neighbors?

1

To the best of our knowledge, with this restriction, the best round com-
plexity known in general graphs remains the classic Oplog nq bound [Lub86,
Joh99, BEPS16].

1.1 Our Results

We give a fast ∆ ` 1-coloring algorithm in the broadcast congest model
(or BCONGEST) where, per round, each node broadcasts one Oplog nq-bit
message to all of its neighbors.

Theorem 1. Let G “ pV,Eq be any n-node graph with max-
imum degree at most ∆. There is a distributed Oplog3 log nq-
round algorithm that ∆`1-colors G with high probability, where
each node broadcasts one Oplog nq-bit message in each round.
If ∆ P Ωplog3 nq, the algorithm runs in Oplog˚ nq rounds.

As a side remark, we note that the Oplog nq complexity was the best
bound known for general graphs even in the much more relaxed broadcast
congested clique model, in which each node can send a Oplog nq bit mes-
sage to all other nodes. To emphasize, in this model, the communication
graph is a complete graph and every two nodes are neighbors. The coloring
is still with respect to the input graph G. This model is also sometimes
known as the shared blackboard model with simultaneous messages and the
distributed sketching model [DKO14, AKO20, AKZ22]. Our Oplog3 log nq-
round complexity improves nearly exponentially over existing algorithms in
this model.1

Even more basic models? The overarching goal in our work is not tied
to any particular model. We would like to develop a distributed algorithm
that assumes the least provided power from the theoretical model. The hope
is that this makes the algorithm applicable in a wider range of (theoretical
or practical) settings. To that end, we point out that our algorithm is basic
enough to be implemented even with limited memory per node, with only
small additional changes. Notice that a node may receive many messages
from its neighbors, up to Ωpn log nq bits overall in one round. In general,
receiving so many bits would necessitate a significant memory for the node,
and it also can complicate the task of simulating this algorithm in virtual

1If we increase the size of the message sent by each node in this BCC model from
Oplog nq to Oplog3

nq bits, then a celebrated work of Assadi, Khanna, and Chen [ACK19]
provides a one round algorithm.

2

graphs. 2 We show that our algorithm can be adapted to work with the
same round complexity when each node processes its incoming messages in
a streaming fashion, using only polyplog nq memory. We refer to this model
as BCStream. See Section 5 for a formal definition of the model.

Theorem 2. There is a distributed Oplog3 log nq-round algo-
rithm in BCONGEST for ∆ ` 1-coloring graphs with high prob-
ability, even if each node reads its received messages through a
stream and only has polyplog nq memory.

1.2 Technical Contributions

1.2.1 Previous Algorithms & Challenges

We summarize the key concepts in previous fast coloring algorithms and
emphasize the parts that do not work in the BCONGEST model.

A basic primitive in randomized coloring algorithms is a random color
trial : each node selects a color from its palette (its set of available colors)
uniformly at random and keeps the color if none of its neighbors picked
the same. The (permanent) slack of a node is the excess number of colors
in its palette compared to its degree. Sufficient slack speeds up coloring
dramatically: each node can try multiple colors in each round, resulting in
a Oplog˚ nq-round coloring algorithm called MultiTrial [SW10]. As a color
requires up to Oplog nq bits to describe, trying more than a constant number
of them is infeasible with Oplog nq bandwidth. A solution by [HNT22] was to
use pseudorandomness: say each v tries a set of colors Xv , then v broadcasts
a hash function hv which each neighbor u of v uses to reply hvpXuq. A color
that collides under hv with none of its neighbors is safe to adopt. However,
this approach requires individual responses hvpXuq from each neighbor u.
Therefore it does not work with single-message broadcasts.

Challenge 1: How can we perform MultiTrial with Oplog nq-bit
broadcasts? The previous approaches [SW10, HNT22] require
either large messages or individual responses.

2For instance, consider a frequent scenario in distributed graph algorithms: a virtual
graph is formed by contracting low-depth clusters of the network, each forming one node
of the virtual graph. Two clusters are neighbors if they contain adjacent network nodes.
Usually, the communications of each cluster should be sent along a low-depth tree that
spans the nodes of the cluster. If all the Ωpn log nq bits should be delivered to the cluster
center, this can require Ωpnq rounds, even for low-depth clusters.

3

Slack can be generated for nodes with a sparse neighborhood, i.e., with
Ωp∆2q missing edges. The more difficult task in distributed ∆ ` 1-coloring
algorithms is to color the dense nodes. They can be partitioned into dense
clusters called almost-cliques. The second key concept for fast coloring is to
synchronize the colors tried within each almost-clique, in the following sense:
the color suggested to each node should be random from the viewpoint of the
nodes outside the almost-clique, but there should be no conflicts between
nodes inside the almost clique. The earlier version of synchronized color
trial (SCT for short) involved gathering all the information of the almost-
clique for centralized processing [HSS18, CLP20], requiring high bandwidth.
A simpler form of SCT of [HKNT22] has a leader node permute its own
palette and distribute the colors to the other nodes of the almost-clique.
This still requires different messages to be sent along the different edges
from the leader, making it incompatible with BCONGEST.

Challenge 2: How can we synchronize color trials with Oplog nq-
bit broadcasts? The previous approaches [HSS18, CLP20, HKNT22]
require either centralization or a node sending up to Ωp∆q mes-
sages.

Finally, MultiTrial requires ℓ “ Ωplog1`Ωp1q nq slack in order to fully color
the graph with high probability. This is solved in [HKNT22] by putting aside
mutually non-adjacent sets of ℓ nodes in very dense cliques, to be colored at
the very end. [HKNT22] colors put-aside sets by gathering all their relevant
information (list of uncolored neighbors and palette) and broadcasting the
coloring from a leader node.

Challenge 3: How can we color the put-aside sets with Oplog nq-
bit broadcasts? The previous approach [HKNT22] does not work
as they require full information gathering and dissemination.

Observe that Challenges 1 and 3 can easily be solved by increasing the
bandwidth to a small polyplog nq. On the other hand, Challenge 2 seems to
require greater effort to implement with the broadcast constraint, even with
polyplog nq bandwidth.

1.2.2 Our Algorithm

In this section, we give an overview of our solutions to each of the challenges
described earlier.

Multi-Color Trial. A subset of a known universe can be sampled pseu-
dorandomly in BCONGEST [HN23]. The problem is that when MultiTrial is

4

applied after SCT, each node has a different palette, which is unknown to its
neighbors. We solve this by reserving a subset of the color space for use by
MultiTrial. Namely, each node v reserves the subset rxpvqs “ t1, 2, . . . , xpvqu,
where xpvq is a function of v’s neighborhood density. Both slack generation
and the synchronized color trial within v’s almost-clique are restricted to us-
ing colors outside rxpvqs. The key is then to show that: a) using the colors
r∆` 1szrxpvqs suffices for these steps, and b) enough colors in rxpvqs remain
unused (by neighbors of v) for MultiTrial to succeed.

Synchronized Color Trial. Our solution for the synchronized color trial of
an almost-clique K is to use the clique palette of K: the set of colors not used
by nodes in K. We randomly permute this set, in a distributed manner, and
assign each color to a single uncolored node of K. This introduces two types
of errors: a) not all nodes receive a color to try, and b) nodes can receive non-
usable colors (as a node’s neighbors outside of K might already be using its
assigned color). However, the errors are within acceptable bounds, and we
are still able to show that after SCT, each node has an uncolored degree that
is at most proportional to its slack, allowing for fast mop-up by MultiTrial.

To learn the clique palette ΨpKq in an almost-clique K, we randomly
assign nodes of K into groups such that: a) every node is adjacent to at
least one node of each group, and b) each group is connected and has a low
diameter. Each group is tasked with learning a part of the clique palette,
which it teaches to the rest of the almost-clique K.

We also randomly assign nodes into groups to randomly permuteK. The
random assignment roughly positions each node within the output permuta-
tion π. Each group, of much smaller size than K, then randomly permutes
its members. The small size of each group, combined with relabeling its
members with smaller IDs, makes the description of a permutation of its
members fit within small bandwidth.

Coloring Put-Aside Sets. The put-aside set PK of an almost-clique K

has no edges to the put-aside sets in other almost-cliques. As such, coloring
PK can be done purely withinK. Our algorithm first reduces the size of each
PK to sublogarithmic. Then, it gathers information about what remains of
each PK . One randomized color trial reduces |PK | by a constant factor with
probability 1 ´ e´Θp|PK |q. We compress the equivalent of Oplog log nq itera-
tions of this process into Op1q rounds by sampling the colors of all iterations
in advance and sending them all at once. To reach sublogarithmic size with
high probability, we run Oplog log nq independent iterations in parallel. We
avoid congestion issues by using few colors per iteration and by representing
colors with few bits.

5

1.3 Related Work

Distributed ∆ ` 1-Coloring. The best round complexity of random-
ized LOCAL p∆ ` 1q-coloring, as a function of only the number of nodes
n, progressed from Oplog nq in the 80’s [Lub86, ABI86, Joh99], through
Op

?
log nq [HSS18], to a recent Oplog3 log nq [CLP20]. The more recent

work [HSS18, CLP20] made heavy use of both the large bandwidth and
the multiple-message transmission feature of the LOCAL model. A crucial
concept in these algorithms is shattering. For coloring, shattering means
coloring almost all the nodes such that each connected component of the
set of nodes that remain uncolored has size at most polyplog nq. A similar
concept was used originally by Beck [Bec91]. The idea was introduced to the
distributed setting in [BEPS16]. The dominating factor in the time complex-
ity is the deterministic complexity of solving (a variant of) the problem on
polylogarithmic-sized problems. As there are now polylogarithmic-time al-
gorithms for deterministic coloring [RG20], with the fastest being Oplog3 nq
[GK21], the randomized complexity is currently Oplog3 log nq [CLP20]. An
Oplog5 log nq-round CONGEST algorithm was given in [HKMT21], improved
to Oplog3 log nq in [HKNT22]. These algorithms still require transmitting
different messages to all Ωp∆q neighbors of a node.

Many distributed p∆`1q-coloring algorithms work immediately in BCONGEST,
including the folklore Oplog nq-round randomized algorithms [Joh99] and the
randomized part of [BEPS16]. The best deterministic algorithms known for
small values of ∆, with complexity Õp

?
∆q ` Oplog˚ nq [FHK16, Bar16,

MT22] use the full power of the LOCAL model, however. The Oplog3 nq-
round deterministic algorithm of [GK21] also works in CONGEST, but it is
sensitive to the palette size. When ∆ ď polyplog nq, [GK21] with the shat-
tering of [BEPS16] colors in Oplog3 log nq. Otherwise, if ∆ " polyplog nq,
dependency on the palette size can be resolved by relabeling the palette,
using network decomposition [GGR21], as shown for coloring in [HKMT21].
Hence, there is a Oplog ∆`polyplog log nqq-round BCONGEST algorithm for
p∆ ` 1q-coloring.

While most known algorithms which work in BCONGEST were published
as CONGEST algorithms, without making explicit that they also work with
broadcast communication, explicit mentions of BCONGEST are becoming
more and more frequent in recent years [CM19, PP19, FdV22].

Distributed Sketching and Broadcast Congested Clique. The palette
sparsification theorem of [ACK19] shows that even if each node uniformly
samples Oplog nq colors, the graph can still be ∆ ` 1-colored while restrict-

6

ing each node to use only a sampled color. This has led to a (one-pass)
streaming algorithm for ∆` 1-coloring using Opn polyplog nqq space. It was
recently shown that the actual coloring can also be computed distributively,
in Oplog2 ∆ ` log3 log nq rounds of CONGEST [FGH`23]. We utilize several
technical lemmas from the work of [FGH`23], while the actual results are
almost completely unrelated.

Palette sparsification is a one round/pass form of distributed sketching
(or shared blackboard), a technique of considerable current interest [AGM12,
AKM22, AKZ22]. The nomenclature that is closer to our setting is the
broadcast congested clique [DKO14, JN18, BMRT20]. Whereas there are no
non-trivial lower bounds in the Congested Clique model for problems related
to coloring, there is a recent Ωplog log nq-round lower bound for the Maximal
Independent Set problem in the broadcast congested clique [AKZ22].

1.4 Organization of the Paper

After preliminary definitions and results in Section 2, we formally describe
our algorithm in Section 3 and give a proof of Theorem 1. Section 4 details
the BCONGEST implementation of the synchronized color trial. We explain
how to modify our algorithm for the BCStream model in Section 5.

2 Preliminaries

Notation. For any integer k ě 1, we denote the set t1, 2, . . . , ku by rks.
For any tuple px1, x2, . . . , xkq, we shall write xďi for px1, . . . , xiq. Likewise,
let xăi “ px1, . . . , xi´1q.

The communication network is G “ pV,Eq, we denote by n “ |V | its
number of vertices, for each v P V we call dpvq its degree and ∆ the maximum
degree of G. For a vertex v P V , we denote by NGpvq “ tu P V, uv P Eu its
neighbors in G. We assume nodes have Oplog nq-bit unique identifiers named
IDpvq. In the BCONGEST model, nodes of G communicate by broadcasting
Oplog nq-bit messages in synchronous rounds.

A partial coloring is a function C : V Ñ r∆ ` 1s Y tKu such that for any
edge uv P E, its endpoints receive different colors Cpuq ‰ Cpvq unless Cpvq
or Cpuq is K – which stands for “not colored”. With respect to any partial
coloring C, we shall write pdpvq for the uncolored degree of v, i.e., its number
of uncolored neighbors with respect to C. More generally, for any S Ď V , we
write pS to denote the set of uncolored nodes in S (with respect to a partial
coloring). Our algorithm computes a monotone sequence of coloring, that
is, once we fix Cpvq, it never changes.

7

When we say an event happens with high probability, or w.h.p. for short,
we mean with probability 1´n´c for any suitably large constant c ą 0. We
implicitly choose the constant c large enough to union bound over polyno-
mially many events.

2.1 Sparse-Dense Decomposition

The sparsity counts the number of missing edges in the neighborhood of a
node, with the important detail that if a node has degree less than ∆, each
“missing” neighbor counts as ∆ missing edges.

Definition 2.1 (Sparsity). The sparsity ζv of v P V is

ζv :“
1

∆

ˆˆ
∆

2

˙
´ mpNpvqq

˙
,

where mpNpvqq is the number of edges induced by Npvq. Node v is ζ-sparse
if ζv ě ζ and ζ-dense if ζv ď ζ.

We decompose the graph between locally sparse nodes and dense clusters
called almost-cliques. Almost-cliques can be thought of as graphs that are
ε-close to ∆-cliques, in a property-testing meaning. Such decomposition is
ubiquitous in randomized coloring [Ree98, HSS18, ACK19, CLP20, AA20,
HKMT21].

Definition 2.2. For ε P p0, 1{3q, an ε-almost-clique decomposition is a
partition of V pGq in sets Vsparse,K1, . . . ,Kk such that

1. nodes in Vsparse are Ωpε2∆q sparse,

2. for all i P rks, almost-clique Ki satisfies:

(a) |Ki| ď p1 ` εq∆,

(b) |Npvq X Ki| ě p1 ´ εq∆ for all v P Ki, and

(c) |Npvq X Ki| ď p1 ´ ε{2q∆ for all v R Ki.

Definition 2.3 (External and Anti-Degrees). For a node v P K and some
almost-clique K. We call ev “ |NpvqzK| its external degree and av “
|KzNpvq| its anti-degree. We shall denote by eK “ ř

vPC ev{|K| the av-
erage external degree and aK “

ř
vPK av{|K| the average anti-degree.

Property 2c is not typically included in prior work (e.g., [ACK19, HKMT21]).
It was used recently in [AKM22, FHM23]. We use it solely to prove Lemma 2.4.
We call anti-edge a missing edge between two nodes, i.e., an edge in the com-
plement graph.

8

Lemma 2.4. Let K be any almost-clique. Every v P K is pε{2 ¨ evq-sparse.

Proof. Fix v P K. We count the number of anti-edges in pNpvq X Kq ˆ
pNpvqzKq. Let u P NpvqzK be an external neighbor of v. By Property 2c
of Definition 2.2, vertex v can have at most p1 ´ ε{2q∆ neighbors in K.
Moreover, v has at least p1 ´ εq∆ neighbors in K (by Property 2b). Hence,
there are at least ε∆{2 anti-edges between u and Npvq X K. Overall, the
number of anti-edges between external and internal neighbors is at least
ev ¨ ε∆{2.

The first CONGEST algorithm to compute almost-clique decompositions
in Op1q rounds (when ∆ P Ωplog2 nq) was given by [HKMT21]. It was then
improved by [HNT22] to arbitrary ∆ in the CONGEST model. [FGH`23]
gives a simpler implementation of [HNT22] that works in BCONGEST and
BCStream.

Lemma 2.5 ([FGH`23]). For any ε P p0, 1{20q, there exists an algorithm
computing an ε-almost-clique decomposition in Opε´4q rounds of BCONGEST
with high probability.

Colorful Matching. In a ∆ ` 1-clique, the colors used in the clique are
exactly the colors used in the neighborhood of each node. An almost-clique
can have size larger than ∆`1. Thus, an almost-clique with uncolored nodes
might actually have an empty clique palette. To solve this issue, [ACK19]
introduced the idea of colorful matching.

Definition 2.6 (Colorful Matching). A colorful matching in a clique K

(with respect to a partial coloring C) is a matching of anti-edges in K (edges
in the complement graph) such that 1) endpoints of each anti-edge receive
the same color, and 2) each anti-edge has a different color.

Intuitively, if one contracts anti-edges of the colorful matching, one re-
duces the size of the almost-clique while maintaining a proper coloring. If
the matching is large enough, the number of unused colors in K is greater
than the number of uncolored nodes.

Definition 2.7 (Clique Palette). For each K, let the clique palette ΨpKq “
r∆ ` 1szCpKq be the set of colors not used in K.

Claim 2.8. Let K be an almost-clique and M a colorful matching in K.
Then, for all v P K

|ΨpKq| ě | pK| ` 1 ` ev ´ av ` |M | .

9

Proof. The clique palette loses at most one color per colored node but saves
one for each anti-edge in the colorful matching; hence, |ΨpKq| ě ∆ ` 1 ´
p|K| ´ | pK|q ` |M |. On the other hand, observe that ∆ ě |Npvq X K| ` ev
and |K| “ |Npvq X K| ` av. The claim follows.

By computing a matching of size ΘpaKq, the clique palette always con-
tains colors for each node in pK. Computing a colorful matching of size
ΘpaKq can be done in Op1q rounds as the clique contains ΘpaK∆q anti-
edges and by trying colors, we expect ΘpaKq edges to join the matching. A
minor difference between our setting and the one of [FGH`23] is that when
they compute the colorful matching, almost-cliques are fully uncolored. On
the contrary, our algorithm colors a constant fraction of each almost-clique
to produce slack (Lemma 2.12). In Appendix A, we show that we loose only
small fraction of the anti-edges in the clique when doing so; hence, that it
does not impede the colorful matching algorithm.

Lemma 2.9 ([FGH`23]). Let β ă 1{p18εq be a constant. There exists a
Opβq-round algorithm called Matching that computes a colorful matching of
size β ¨ aK with probability 1 ´ n´ΘpCq in every clique K with aK ě C log n.
Furthermore, at most 2β ¨aK nodes are colored in each almost-clique during
this step.

2.2 Distributed Coloring with Slack

Definition 2.10 (Palette). The palette Ψpvq of node v, with respect to a
partial coloring, is the set of colors not used by its neighbors.

Definition 2.11 (Slack). The slack sHpvq of a node v in a subgraph H is
the difference between the size of its palette and its uncolored degree in this
graph: sHpvq “ |Ψpvq| ´ pdHpvq. When H is clear from context, we simply
write spvq.

There are three ways a node can receive slack: if it has a small degree
originally, if two neighbors adopt the same color, or if an uncolored neighbor
is inactive (does not belong to H). We consider the first two types of slack
permanent because a node never increases its degree, and nodes never change
their adopted color. On the other hand, the last type of slack is temporary :
if some previously inactive neighbors become active, the node will lose the
slack that those inactive neighbors were providing before. Elkin, Pettie,
and Su [EPS15] observed that by trying random colors, nodes would receive
slack proportional to their sparsity.

10

Lemma 2.12 (Slack Generation, [EPS15, Lemma 3.1]). Let v be a ζ-sparse
node for some ζ. Suppose each node of G independently decides w.p. ps “
1{200 to try a uniform color in r∆ ` 1s. Then, w.p. 1 ´ e´Θpζq, v has slack
spvq ě γ ¨ ζ where γ ą 0 is a (small) universal constant.

Trying Colors From Lists. When we say a node tries a random color, we
mean that it broadcasts a color uniformly sampled from some set (usually
from its palette) and adopts the color if none of its neighbors with smaller
ID tried the same color. It is known that nodes with Ωplog nq uncolored
neighbors see a constant fraction of them get colored when they try random
colors, w.h.p. [BEPS16]

Lemma 2.13. Let H be a vertex-induced subgraph and Lpvq Ď Ψpvq for
each v. Suppose there exists a globally known constant α ą 0 such that every
uncolored v satisfies |Lpvq| ě α ¨ pdpvq ě C log n. If nodes independently call
TryColor w.p. pt “ α{3 and samples a uniform color in Lpvq, then, w.p.
1´n´ΘpCq, the uncolored degree of every node has decreased by a factor 2{3.

Trying multiple colors to take advantage of extra colors (i.e., slack) was
proposed originally by [SW10]. It is a key component of all recent fast
randomized coloring algorithms [CLP20, HKNT22, HNT22]. A small tweak
suffices to bring the technique to BCONGEST.

Lemma 2.14 (Multi-Color Trial, [HN23, HKNT22]). Let H be a vertex-
induced subgraph of G. Suppose that for each v P H, there is a Lpvq list of
colors satisfying

1. Lpvq is known by each u P NHpvq,
2. |Lpvq X Ψpvq| ě 2pdHpvq, and
3. |Lpvq X Ψpvq| ě pdHpvq ` C log1.1 n for some constant C ą 0.

There exists an algorithm coloring every node of H in Oplog˚ nq rounds of
BCONGEST with probability 1 ´ n´ΘpCq.

Lemma 2.14 is a mere reformulation of [HKNT22, Lemma 1] with the
notable exception that it works in BCONGEST because of the additional
Property 1. This allows the use of representative sets [HN23]. At a high
level, the technique is to save on the bandwidth necessary to send Θplog nq
random colors by instead sending a pseudorandom sample. In BCStream, it
can be implemented with Oplog3 nq memory but requires more work. We
refer interested readers to [HN23, Section 7]. The main idea is that a set of
Θplog nq random colors can be represented by a random walk on an implicit
expander graph.

11

2.3 Concentration Inequalities

We use the following variants of Chernoff bounds for dependent random
variables. The first one is obtained, e.g., as a corollary of Lemma 1.8.7 and
Theorems 1.10.1 and 1.10.5 in [Doe20].

Lemma 2.15 (Martingales). Let tXiuri“1 be binary random variables, and
X “ ř

iXi. Suppose that for all i P rrs and px1, . . . , xi´1q P t0, 1ui´1 with
PrpX1 “ x1, . . . ,Xr “ xi´1q ą 0, PrpXi “ 1 | X1 “ x1, . . . ,Xi´1 “ xi´1q ď
qi ď 1, then for any δ ą 0,

Pr

ˆ
X ě p1 ` δq

rÿ

i“1

qi

˙
ď exp

ˆ
´minpδ, δ2q

3

rÿ

i“1

qi

˙
. (1)

Suppose instead that PrpXi “ 1 | X1 “ x1, . . . ,Xi´1 “ xi´1q ě qi, qi P p0, 1q
holds for i, x1, . . . , xi´1 over the same ranges, then for any δ P r0, 1s,

Pr

ˆ
X ď p1 ´ δq

rÿ

i“1

qi

˙
ď exp

ˆ
´δ2

2

rÿ

i“1

qi

˙
. (2)

Talagrand Concentration Bound. A function fpx1, . . . , xnq is c-Lipschitz
iff changing any single xi affects the value of f by at most c, and f is r-
certifiable iff whenever fpx1, . . . , xnq ě s for some value s, there exist r ¨ s
inputs xi1 , . . . , xir¨s such that knowing the values of these inputs certifies
f ě s (i.e., f ě s whatever the values of xi for i R ti1, . . . , ir¨su).

Lemma 2.16 (Talagrand’s inequality [Tal95, DP09]). Let tXiuni“1 be n in-
dependent random variables and fpX1, . . . ,Xnq be a c-Lipschitz r-certifiable
function; then for t ě 1,

Pr
´
|f ´ Erf s| ą t ` 30c

a
r ¨ Erf s

¯
ď 4 ¨ exp

ˆ
´ t2

8c2rErf s

˙

3 Algorithm and Analysis

In this section, we describe our algorithm and give the main technical ideas
behind Theorem 1. Algorithm 1 gives a high-level description of our algo-
rithm.

The main technical contribution is a Oplog˚ nq-round algorithm for color-
ing graphs with ∆ P Ωplog3 nq. For low-degree graphs, a Oplog3 log nq-round
algorithm is known [BEPS16, GK21]. We conjecture that our algorithm ac-
tually shatters the graph in Oplog˚ nq rounds when ∆ “ Oplog3 nq. If this

12

was to be true, [BEPS16] would no longer be required for small ∆. This
would make any improvement to the deterministic complexity of pdeg`1q-
list-coloring, including beyond oplog nq, carry over to our algorithm.

Algorithm 1. High Level Description of our Algorithm.
Parameters: Let C “ Op1q be a large enough constant,

ℓ “ C log1.1 n , ε “ 10´5 and β “ 401 . (3)

1. Setting up. Compute an ε-almost-clique decomposition Vsparse,K1, . . . ,Kk.
Compute outliers OK and inliers IK “ KzOK in each clique K (see
Definition 3.1), as well as put-aside sets PK (see Lemma 3.4). We de-
fine a value xpKq “ ΘpaK ` eK ` log nq for each clique (see Eq. (5)).
By extension, let xpvq “ xpKq for each v P K.

Cliques are categorized as full, open, or closed (Definition 3.3). The
following three steps aim at generating slack for each type:

(i) Slack Generation: each node tries a color in r∆ ` 1szrxpvqs w.p.
ps “ 1{200.

(ii) Colorful Matching : by trying colors in r∆ ` 1szrxpKqs for Opβq
rounds, we color βaK pairs of anti-edges in each K.

(iii) Put-Aside Sets: we find in each full clique sets PK Ď IK of size
Θpℓq such that PK has no edge to PK 1 for all K ‰ K 1.

Each sparse node has Ωp∆q permanent slack from the slack genera-
tion step; hence, we color them in Oplog˚ nq rounds with MultiTrial.
We color outliers OK with colors from r∆`1szrxpKqs with MultiTrial

using the Ωp∆q temporary slack provided by inactive inliers.

2. Synchronized Color Trial. In each clique, we compute the clique
palette ΨpKq and sample a permutation π of pKzPK . Each node
v P pKzPK tries the πpvq-th color of ΨpKq. In open cliques (see
Definition 3.3), we run an extra Op1q rounds of TryColor using only
colors from r∆ ` 1szrxpKqs.

3. Completing the Coloring. Uncolored nodes satisfy

|rxpvqs X Ψpvq| ě 2pdpvq .

13

Put-aside sets ensure that every node has slack Ωpℓq; hence, inliers
are colored in Oplog˚ nq rounds by MultiTrial.

4. Coloring Put-Aside Sets. We color put-aside sets in two steps:
first, we reduce their size toOplog n{ log log nq by running non-adaptive
randomized color trial. Then, each node sends |PK |`1 colors from a
polyplog nq-sized set of colors. This takes Op1q rounds: Oplog n{ log log nqˆ
Oplog log nq bits to send.

The key technical idea is to reserve colors t1, 2, . . . , xpKqu in each clique,
where xpKq is an integer that depends on the density of K (see Eq. (5)).
It is straightforward to see that reserve colors rxpKqs are not used during
Steps 1 and 2. The value of xpKq is chosen to be greater than nodes’ degrees
at the end of Step 2. This allows using lists Lpvq :“ rxpvqs for the MultiTrial

in Step 3.

3.1 Step 1: Setting up

Assume we have an ε-almost-clique decomposition Vsparse, K1, . . . , Kk (see
Definition 2.2). Sparse nodes can be colored in Oplog˚ nq rounds [HN23],
so we focus our attention on almost-cliques. We call outliers the (possibly
empty) set of nodes in each clique whose external degree or anti-degree
derives more than a constant factor from the average.

Definition 3.1 (Inliers/Outliers). For each K, we define its set of outliers
as

OK “ tv P K : ev ě 30eK or av ě 30aKu . (4)

We call the remaining uncolored nodes IK “ pKzOK inliers.

In each clique, outliers represent only a small fraction of the vertices;
hence, can be colored beforehand with the temporary slack provided by
their Ωp∆q uncolored neighbors in IK .

Claim 3.2. For each K, after generating slack and computing a colorful
matching, w.h.p. |IK | ě 0.9∆.

Proof. By Markov inequality, outliers represent at most a 1{15 fraction of
K. Furthermore, nodes get colored during slack generation w.p. at most
ps “ 1{200 (see Lemma 2.12). By Chernoff, w.h.p., at most a 1{100 fraction
of K gets colored. The colorful matching comprises 2βaK ď 103ε∆ ď ∆{100
nodes by our choice of ε. Therefore, |IK | ě p1´ 1{15´ 1{100´ 1{100q|K| ě
0.9∆ by our choice of ε (Eq. (3)).

14

We classify cliques in three categories, depending on the degree nodes
have after Step 2. Each type of clique receives slack from different sources:
full cliques from put-aside sets, open cliques from the slack generation step,
and closed cliques from the colorful matching.

Definition 3.3 (Full/Open/Closed Cliques). For each i P rks, we say that
K “ Ki is:

• full if aK ` eK ă ℓ, where ℓ is defined in Eq. (3),

• open if K is not full and 2aK ă eK , and

• closed if K is neither full nor open.

We denote by Kfull (respectively Kopen and Kclosed) the set of full cliques
(respectively open and closed cliques).

In each clique, we reserve xpKq colors depending on the clique’s density.
We will ensure that rxpKqs Ď ΨpKq until we color inliers with MultiTrial

(Step 3). For a clique K, define

xpKq “

$
’&
’%

200ℓ if K P Kfull

400aK if K P Kclosed

γε{8 ¨ eK if K P Kopen

, (5)

where γ is the constant from Lemma 2.12. By extension, we write xpvq “
xpKq for each v P K.

Put-Aside Sets. Recall that to color in Oplog˚ nq rounds with MultiTrial,
nodes need slack at least ℓ “ Θplog1.1 nq (Lemma 2.14, Property 3). Nodes
from very dense cliques do not receive enough permanent slack from the slack
generation phase. Following [HKNT22, Section 5.4], we overcome this issue
by putting aside sets of Θpℓq nodes in each very dense clique to provide
temporary slack. These sets remain uncolored until the very end of the
algorithm. These are necessary only in very dense cliques, whose nodes
have Opℓq external neighbors. It allows us to find put-aside sets such that
no edge connects sets from different cliques. The lack of connections allows
us to color each set independently at the very end. See [HKNT22, Lemma
5] for a proof of Lemma 3.4.

Lemma 3.4 (Put-Aside Sets). There exists a Op1q-round BCONGEST algo-
rithm finding subsets PK Ď IK of size 201ℓ in each almost-clique K P Kfull,
such that PK has no edges to other PK 1 for K 1 ‰ K.

15

3.2 Step 2: Synchronized Color Trial

The idea of the following Lemma 3.5 (which is a reformulation of [HKNT22])
is to distribute a set of colors to nodes in the clique. Each color has a unique
recipient. This avoids in-clique conflicts, and a node can only fail to adopt
the color it received due to its external neighbors. Therefore, the expected
number of nodes to fail is

ř
vPK Opev{∆q “ OpeKq.

Lemma 3.5 ([HKNT22, Section 5.5]). Let x be an integer, K be a clique,
and S “ pKzPK be such that 0.75∆ ď |S| ď |ΨpKq| ´ x. Suppose π is a
uniform permutation of r|S|s. If for each i P r|S|s the i-th node in S tries
the πpiq-th color in the set ΨpKqzrxs, then w.h.p. the number of nodes to
remain uncolored is 8maxt6eK , C log nu. This holds even if the random bits
outside of K are chosen adversarially.

Lemma 3.6 shows that each clique has enough colors, even if when we
reserve xpKq colors.

Lemma 3.6. For all K, |ΨpKq| ´ xpKq ě | pKzPK |.

Proof. We consider each type of clique separately. In a full clique K, recall
that we computed a set of put-aside nodes PK of size 201ℓ “ Θplog1.1 nq
that must remain uncolored (Lemma 3.4). The set S of nodes to try a color
during the synchronized color trial is |S| “ | pKzPK | ě 0.75∆ (by of Claim 3.2
and ∆ " ℓ). The number of colors used in K is bounded by the number
of colored nodes; hence, |ΨpKq| ě ∆ ´ p|K| ´ | pK|q. Since each full clique
has size at most ∆ ` ℓ, we infer |ΨpKq| ě | pK| ´ ℓ. Put-aside sets have size
|PK | “ 201ℓ, so

| pKzPK | “ | pK| ´ 201ℓ ď |ΨpKq| ´ 200ℓ “ |ΨpKq| ´ xpvq . (by Eq. (5))

Suppose thatK is open, i.e. aK ď eK{2 (Definition 3.3). By summing on
each v P K over the bounds ∆ ě |KXNpvq|`ev and |K| “ |K XNpvq|`av ,
we get ∆ ´ |K| ě eK ´ aK ě eK{2. By our choice of xpKq,

|ΨpKq| ´ xpKq ě | pK| ` eK{2 ´ xpKq ě | pK| .

Suppose now that K is closed. Denote by t the number of nodes colored
during the slack generation step or as outliers. In closed clique, we compute
a colorful matching of size βaK . Hence |ΨpKq| ě ∆´ t´βaK . On the other
hand, each edge in the matching colors two nodes. Therefore, the number

16

of uncolored nodes is

| pK| ď |K| ´ t ´ 2βaK

ď p∆ ´ t ´ βaKq ´ pβ ´ 1qaK (because |K| ď ∆ ` aK)

ď |ΨpKq| ´ xpKq . (by definition of β, Eq. (3))

We now claim that each node has enough slack after SCT. Details of its
implementation and related proofs are postponed to a later section (Section 4,
Lemmas 4.2 and 4.5).

Lemma 3.7. At the end of Step 2, w.h.p. each v P pK satisfies |rxpvqs X
Ψpvq| ě 2pdpvq.

Proof. By Lemma 3.6, cliques carry more colors than nodes they try to
color during SCT, and by Lemma 3.5, at most OpeK ` log nq nodes remain
uncolored per clique. Simple counting shows the following claim.

Claim 3.8. After the synchronized color trial, every uncolored v P K satis-
fies

• 2pdpvq ` ev ď xpvq if v P Kfull Y Kclosed, and

•
pdpvq ď 80eK if K P Kopen.

Proof. Let v P K and assume first K P Kfull. Since only inliers remain to
be colored, ev ď 30eK ď 30ℓ (by Eq. (4)) and after the synchronized color
trial at most 48ℓ nodes remain uncolored in K (by Lemma 3.5). Overall,
pdpvq ď 80ℓ and 2pdpvq ` ev ď 200ℓ “ xpvq (by Eq. (5)). If K R Kfull,
by a similar argument pdpvq ď ev ` 50eK ď 80eK . If K P Kclosed, then
pdpvq ď 80eK ď 160aK because eK ď 2aK . Hence, 2pdpvq ` ev ď 400aK “
xpvq. Claim 3.8

Observe that, since xpvq has the same value for each v P K, and colors
from rxpKqs are not used to color nodes ofK, the only reason some c P rxpvqs
might not belong to Ψpvq is if it is used by an external neighbor of v. For
all v P K with K P Kfull Y Kclosed, Eq. (6) follows from Claim 3.8:

|rxpvqs X Ψpvq| ě xpvq ´ ev ě 2pdpvq . (6)

For v P K with K P Kopen, we need Op1q additional rounds of TryColor
to ensure Eq. (6). However, we need to preserve rxpKqs Ď ΨpKq. Thus,
nodes of K try random colors in Ψpvqzrxpvqs. We now show it is enough to
reduce the uncolored degree.

17

Let v P K for any K P Kopen. By Claim 3.8, pdpvq ď 80eK ; we show that
|Ψpvq| ´ xpvq ě ΩpeKq. By Lemma 2.13, even when using only colors from
Ψpvqzrxpvqs, after one call to TryColor the uncolored degree of each node
decreases by a constant factor. After Op1q rounds, with high probability,
the uncolored degree of each v verifies the desired equation.

Claim 3.9. For each v P K, ∆ ´ dpvq ` ev ě eK{2.

Proof. Since ∆ ě |K X Npvq| ` ev and |K| “ |K X Npvq| ` av, we have
∆ ě |K| ` ev ´ av. We must have |K| ď ∆ ´ eK{2 for, otherwise, summing
on all v P K, we get aK ě |K| ´ ∆ ` eK ą eK{2. Now, for v P K, we have
|Npvq X K| ď |K| ď ∆ ´ eK{2. The claim follows. Claim 3.9

If ev ď C log n, by Claim 3.9, spvq ě ∆ ´ dpvq ě eK{2 ´ C log n ě eK{3
because eK ě ℓ{2 " C log n. If ev ě C log n, vertex v receives γε{2 ¨
ev permanent slack from the slack generation step w.p. 1 ´ n´ΘpCq (by
Lemma 2.12). Overall, nodes use lists of size

|Ψpvq| ´ xpvq ě ∆ ´ dpvq ` γε{2 ¨ ev ´ xpvq
ě γε{2 ¨ p∆ ´ dpvq ` evq ´ xpvq (γε{2 ă 1)

ě γε{4 ¨ eK ´ xpvq (by Claim 3.9)

ě γε{8 ¨ eK . (by Eq. (5))

By Lemma 2.13 with α “ γε{640, after TryColor the uncolored degree of
each node reduces by a constant factor with high probability. Lemma 3.7

3.3 Step 4: Coloring Put-Aside Sets

Our goal, in this section, is to reduce the size of put-aside sets toOplog n{ log log nq.
Once this is achieved, coloring their remaining nodes only takes Op1q rounds,
as the next lemma shows.

Lemma 3.10. Suppose all nodes are colored except put-aside sets PK in
each K P Kfull of size Oplog n{ log log nq. Then, w.h.p. we can complete the
coloring in Op1q rounds of BCONGEST.

Proof. Recall that no edges exist between put-aside sets. Hence, we color
each put-aside set independently. We can assume without loss of generality
that |ΨpKq| “ Oplog3 nq. Indeed, since nodes have Oplog1.1 nq external and
anti-degree, any D Ď ΨpKq of size Θplog3 nq works as replacement for the

18

clique palette when ΨpKq is larger. Nodes use Algorithm 2 to learn ΨpKq
in Op1q rounds (Lemma 4.2).

Therefore, describing a color c P ΨpKq takes Oplog log nq bits. If aK ě
C log n, the clique palette has enough colors for every node, i.e., |ΨpKq X
Ψpvq| ě |PK | ` 1. If aK ă C log n, lists Lpvq “ ΨpKq Y CpKzNpvqq have
|PK | ` 1 colors (Claim 2.8 with an empty matching and av extra colors).
Since lists have size |PK | ` 1 “ Oplog n{ log log nq and each color takes
Oplog log nq bits, nodes can broadcast their list in Op1q rounds. Nodes com-
plete the coloring without additional communication, simulating a greedy
sequential algorithm with the lists.

The following technical claim (which is a direct application of Chernoff)
allows us to assume we have global communication within almost-clique if
the number of messages to send is small enough. In particular, nodes can
learn all the identifiers from PK , therefore relabel nodes with Oplog log nq-
bit.

Claim 3.11 (Many-to-All Broadcast). Let K be an almost-clique with Op∆{ log nq
nodes with an Oplog nq-bit message to send to everyone in K. Suppose each
node with a message broadcasts it, before each node in K broadcasts Op1q
messages it received, picked randomly. Then, w.h.p., all messages are re-
ceived by every node in K.

The key difficulty in coloring put-aside sets lies in reducing their sizes
to Oplog n{ log log nq. We use a procedure CompressTry, which simulates
a sequential algorithm where nodes of the put-aside set, in the order of
their IDs, each perform Oplog n{ log log nq times a non-adaptive TryColor

with slack z. The following technical lemma analyzes the performance of
CompressTry. We defer the exact description of CompressTry and proof of
Lemma 3.12 to Appendix B.

Lemma 3.12. Let K P Kfull and fix a set S Ď pK of size Oplog1.1 nq. Fur-
thermore, suppose each v P S has a list Lpvq of at most C log1.1 n colors
known to every u P S, and such that |Lpvq X Ψpvq| ě |S| ` z for a fixed
z ě C log n{ log log n. Then, w.p. 1 ´ e´z ´ 1{polypnq, CompressTry col-
ors all but z nodes in S. Furthermore, CompressTry uses Oplog n{ log log nq
bandwidth.

Lemma 3.13 shows how we use CompressTry to reduce the size of the
put-aside sets. In cliques with colorful matching, nodes have aK P Ωplog nq
slack; CompressTry directly reduces PK to Oplog n{ log log nq nodes by using
the clique palette. In cliques where aK ă C log n, we first put-aside Oplog nq

19

nodes to reduce PK to Oplog nq using the clique palette. Then, nodes add
colors used by their anti-neighbors to their list, and CompressTry finishes to
reduce PK to Oplog n{ log log nq.

Lemma 3.13. There is a Op1q-round BCONGEST algorithm reducing the
number of uncolored nodes in PK to Oplog n{ log log nq with high probability.

Proof. For cliques such that aK ě C log n, Lemma 3.12 allows us to directly
reduce PK to a set of size z :“ C log n{ log log n. This is because, in such
cliques, we compute a colorful matching of size βaK ě aK ` av, for each v P
PK (which are inliers). Therefore, using lists Lpvq :“ ΨpKq, by Claim 2.8,
|Lpvq X Ψpvq| ě |PK | ` aK ě |PK | ` z. Note that the clique palette can be
publicly learned in Op1q rounds by Lemma 4.2. CompressTry succeeds only
w.p. 1´e´z , but by repeating independently log log n times, the probability
that at least one instance succeeds is 1 ´ e´z log logn “ 1 ´ n´C . Overall, we
need log log n ˆ Oplog n{ log log nq “ Oplog nq bandwidth.

Henceforth, we assume that aK ă C log n. The main difference is that we
do not have a colorful matching, so the clique palette does not approximate
Ψpvq well. We settle this in two steps.

From Oplog1.1 nq to Oplog nq. Let S Ď PK be an arbitrary subset of PK

of 31C log n nodes. By Claim 2.8, |ΨpKq X Ψpvq| ě |PK | ´ av ě |PKzS| `
C log n. Therefore, CompressTry with lists Lpvq “ ΨpKq and z “ C log n
reduces PK w.h.p. to size 32C log n (the C log n nodes left uncolored in
PKzS by CompressTry and the 31C log n uncolored nodes of S).

From Oplog nq to Oplog n{ log log nq. Now, instead of using only the
clique palette, we augment lists with colors of anti-neighbors. Let Lpvq :“
ΨpKq Y CpKzNpvqq. Since we are adding av colors to each list, Claim 2.8,
even with an empty matching, gives us, |LpvqXΨpvq| “ |ΨpKqXΨpvq|`av ě
|PK |. If we now put-aside a set S Ď PK of z :“ C log n{ log log n nodes, lists
Lpvq verify |Lpvq X Ψpvq| ě |PKzS| ` z. To conclude, it remains to explain
how nodes learn lists Lpvq.

Since aK ă C log n, each node has at most 30C log n anti-neighbors
in the clique. If we relabel nodes of PK using identifiers in r|PK |s (with
Claim 3.11), every u P K can describe the set PKzNpvq with a bit-map in
one Oplog nq-bit message. Note that only Oplog2 nq nodes will need to send
a bit-map, i.e. at most Oplog nq per node in PK . By Claim 3.11, all messages
can be disseminated in Op1q rounds to all nodes in K. Thus, all lists are
known and we make log log n independent calls to CompressTry.

20

3.4 Proof of Theorem 1

By Lemma 2.5, we can compute the almost-clique decomposition in Op1q
rounds. By aggregation on a depth-2 BFS tree, nodes in each clique can
count aK and eK , thus know to which category their clique belongs to, as well
a their value of xpKq. Then, with w.p. ps every node decides independently
to try a color in r∆`1szrxpvqs (for consistency, let xpvq “ 0 for all v P Vsparse).
Finally, in each clique with aK ě C log n, we compute a colorful matching
of size βaK (by Lemma 2.9). By Lemma 3.4, we compute put-aside sets PK

in Op1q rounds.

Sparse Nodes & Outliers. Each v P Vsparse has permanent slack Ωp∆q
(by Lemma 2.12 and because they are Ωp∆q-sparse). Hence, we color Vsparse

in Oplog˚ nq rounds of MultiTrial (by Lemma 2.14). Since nodes know aK
and eK , they can tell if they are outliers. Outliers have slack p0.9 ´ εq∆ ě
∆{2 from inactive inliers neighbors (Claim 3.2). Contrary to sparse nodes,
we must avoid coloring outliers of K with colors from rxpKqs. By def-
inition xpKq “ 103ε∆ (Eq. (5)); by our choice of ε, outliers have slack
p1{2 ´ 103εq∆ ě ∆{3 even when trying colors from r∆ ` 1szrxpKqs. By
Lemmas 2.13 and 2.14, outliers are colored in Oplog˚ nq rounds with high
probability.

Inliers. Henceforth, we condition on the success of Steps 1 and 2 in ev-
ery clique. By Lemma 3.7, each inlier satisfies |Lpvq X Ψpvq| ě 2pdpvq
with Lpvq :“ rxpvqs. To run MultiTrial, we need lists to intersect the
palette on at least Ωpℓq “ ΩpC log1.1 nq colors (Lemma 2.14, Property 3).
If v is in a open or closed clique, then aK or eK is greater than ℓ{2 and
|Lpvq X Ψpvq| ě xpvq ´ ev ě pdpvq ` Ωpℓq (by Eq. (5)). On the other hand,
if v is in a full clique, then av ď 30aK ď 30ℓ (by Eq. (4) and Lemma 3.4).
Therefore, v has at least |Npvq X PK | ě ℓ temporary slack from inactive
put-aside neighbors (by Lemma 3.4). Finally, it suffices to broadcast xpvq
for all neighbors of v to learn Lpvq. Therefore, lists Lpvq :“ rxpvqs verify
all properties requires to run MultiTrial in BCONGEST (Lemma 2.14). With
high probability, all nodes are colored in Oplog˚ nq rounds – except put-aside
sets. By Lemmas 3.10 and 3.13, we can color put-aside sets in Op1q rounds.

Theorem 1

4 Synchronized Color Trial in BCONGEST

At its core, synchronized color trial is simply about creating a random bijec-
tion between (most of) a set of colors and (most of) the uncolored nodes of

21

a clique. Our implementation uses the clique palette as a set of colors and
randomly permutes the nodes. The order of each node in the permutation
tells it which color to take in the clique palette. This entails two difficulties.
Firstly, to make use of its order in the sampled permutation, each node needs
to know the matching color in the clique palette. We show that Op1q rounds
of BCONGEST suffice for all nodes to learn their clique palette. The second
issue is sampling the permutation, and entails a more involved process. For
simplicity, we describe first a Oplog log nq-round permutation sampling pro-
cedure, which suffices for Theorems 1 and 2. We then explain how to reduce
it down to Op1q rounds with a slightly more involved procedure.

We will need the following technical lemma.

Lemma 4.1. Let K be an almost-clique and an integer k ď ∆{pC log nq
for some large enough C ą 0. Suppose each v P K samples tpvq P rks
uniformly at random. Then, with high probability, for each i P rks, the set
Ti “ tv P K : tpvq “ iu satisfies that for any u,w P K, |Ti XNpuqXNpwq| ě
pC{4q log n. We say that Ti 2-hop connects K in that each pair of nodes in
K has a common neighbor in Ti.

Note that since Ti Ď K, each Ti also 2-hop connects itself, thus has
diameter 2.

Proof. Fix an index i P rks. Each node joins Ti w.p. 1{k independently from
other nodes. For each pair u,w P K, in expectation, Ti X Npuq X Npwq
has size µ “ |Npuq X Npvq|{k ě p1 ´ 2εq∆{k ě pC{2q log n. By a classic
Chernoff bound, Prp|Ti XNpuq XNpwq| ď µ{2q ď expp´µ{12q ď 1{polypnq.
By union bound, w.h.p., we have |Ti XNpuqXNpwq| ě ∆{p4kq for all i P rks
and u,w P K.

Learning the clique palette. We learn the clique palette by dividing the
color space into Op∆{ log nq contiguous subpalettes. Given a 2-hop connect-
ing set of nodes to handle each subpalette – with a trivial construction due
to Lemma 4.1 – each node learns ΨpKq in Op1q rounds. Recall that CpSq
denotes the set of colors currently assigned to a set S of nodes.

Algorithm 2. Procedure LearnPalette, in almost-clique K.
Parameters: Let C “ Op1q be a large enough constant, k “ t∆{pC log nqu.

Assume K to be split into k 2-hop connecting sets T1, . . . , Tk. Let
Ri :“ t1` tpi´ 1q ¨ p∆` 1q{ku, ti ¨ p∆` 1q{kuu, i.e., R1, . . . , Rk partition

22

the color space r∆ ` 1s.

1. Each v encodes Rtpvq XCpNpvq XKq into a C log n-sized bit-map and
broadcasts it.

2. For each i P rks, each v P K combines the bit-maps received from its
neighbors in Ti, i.e., computes

ď

uPNpvqXTi

ˆ
Ri X CpNpuq X Kq

˙

and takes it for Ri X CpKq.

Lemma 4.2. Let K be an almost-clique of palette ΨpKq. LearnPalette has
each v P K learn ΨpKq in Op1q rounds of BCONGEST.

Proof. In ∆ ` 1-coloring, learning ΨpKq is equivalent to learning the used
colors CpKq. LearnPalette requires Op1q rounds of BCONGEST, as each node
in K only sends one C log n-bit message. Let us consider a color c P CpKq,
a node v P K, and argue that v learn c. Let Ri be such that c P Ri, and
u P K a node with color c. Since Ti 2-hop connects K, there exists a node
in Ti X Npuq X Npvq. Such a node contains c in the bitmap it computes in
Step 1 of LearnPalette, and v receives this bitmap in Step 2. As this works
for every c P CpKq and v P K, all v P K learn CpKq.

Sampling the permutation. At a high level, the Oplog log nq algorithm
for permuting the nodes presented in this section has the nodes undergo two
shuffling steps. Nodes first undergo a “rough shuffling”, which puts them
into buckets, roughly positioning them in the permutation. Each group then
does a “fine shuffling” to give each node its exact position.

An important step in both our Oplog log nq and our Op1q implementation
is giving nodes Oplog log nq-bit labels unique within their buckets. Using the
smaller labels instead of the original node IDs allows each bucket to save a
multiplicative Θplog n{ log log nq factor when describing a permutation of its
elements.

Algorithm 3. Procedure Relabel, in 2-hop connected set of nodes T Ď
V , for subset S Ď T .
Parameters: Let C “ Op1q be a large enough constant, x :“ rC log n{ log log ns.

23

1. Each v P S samples and broadcasts x labels in r|S|2 log ns, picked
u.a.r. and independently.

2. Each v P T broadcasts an x-sized bit-map indicating, for each j P rxs,
whether multiple nodes in S X Npvq have the same jth label.

3. If for a minimum j P rxs, all nodes in S have distinct jth labels, S
uses them as new labels.

Lemma 4.3. Suppose S has size polyplog nq. Relabel succeeds at relabeling
S in Op1q BCONGEST rounds, w.h.p.

Proof. First, note that Op1q BCONGEST rounds suffice to compute |S| for
Step 1, as T is 2-hop connected. Since |S|2 log n P polyplog nq, each label
sent by a node v P S during Step 1 is representable with Oplog log nq bits.
Thus, x P Oplog n{ log log nq labels can be transmitted in Op1q rounds.

As T 2-hop connects itself (a fortiori S), two nodes of S with a common
jth label are necessarily detected by a common neighbor during Step 2.
Taking the AND of all x-sized bitmaps sent in this step, the nodes in T all
learn for which j P rxs it holds that all nodes of S picked distinct jth labels.

We now analyze the probability that the relabeling succeeds, i.e., that a
j P rxs as used in Step 3 exists. For each j P rxs, each jth sampled label in
S has probability less than 1{p|S| log nq of conflicting with one of the other
|S|´1 jth labels. Hence, by union bound, the jth labels have a collision with
probability at most 1{plog nq. Having x independent samples implies success
with probability at least 1 ´ plog nq´x “ 1 ´ 2´x log logn “ 1 ´ 2´C logn “
1 ´ n´C , i.e., w.h.p.

Algorithm 4. Procedure Permute, in almost-clique K, on subset S Ď
K of the nodes.
Parameters: Let C “ Op1q be a large enough constant,

k :“ t∆{pC log nqu, and x :“ rC log n{ log log ns .

1. Rough bucketing. Each v P K independently picks a random
tpvq P rks u.a.r.
For each i P rks, let Ti :“ tv P K : tpvq “ iu and Si :“ Ti X S.

2. Counting buckets. For each i P rks, the nodes in Ti compute and
broadcast |Si|.

24

3. Relabeling. Within each Ti, i P rks, use Relabel on Si.

4. Permuting within buckets. Within each Ti, the maximum ID

node gathers the new labels of Si, picks a random permutation ρi of
Si, and sends it to Ti, all along a BFS tree.

5. Output. Each v P Si takes πpvq :“ ρipvq ` ř
jăi|Sj| as its index in

the output π.

Lemma 4.4. With high probability, Permute outputs a permutation of S in
Oplog log nq rounds. For each permutation π of S, the probability of sampling
π is bounded by 1

p1´1{ polypnqq¨|S|!
Proof. By Lemma 4.1, the sets Ti computed in Step 1 2-hop connect K,
w.h.p., and in particular have diameter 2. Assuming this holds, Step 2 only
takes Op1q rounds using a aggregation and dissemination on the depth-2
BFS tree within each Ti. This allows each v P Si to compute

ř
jăi|Sj | for

the last step of the algorithm.
In addition, it also holds w.h.p. that each Si Ď Ti has size Oplog nq.

Assuming this holds, running Relabel in Step 3 only requires Op1q rounds
per Lemma 4.3, and it succeeds w.h.p. Finally, the process takes Oplog log nq
rounds due to Step 4, during which a leader node within each Ti broadcasts
Oplog nq labels of Oplog log nq bits each.

We now argue the approximate uniformity of the sampling. Consider
the random process in which each node in S picks a random ordered bucket
independently and u.a.r, and then each bucket is permuted uniformly at
random. Let µ be the distribution of the permutation generated by this
process. Clearly, µ is the uniform distribution. Permute is the same as this
process, except it does not output anything if some high probability event E
does not hold. More precisely, the high probability event E corresponds to
all buckets being 2-connected, all buckets being of Oplog nq size, and Relabel

succeeding. Let µ1 be the distribution µ conditioned on E holding, and µ2 be
µ conditioned on E not holding. Distribution µ1 is the output distribution of
Permute, and we have µ “ p1´1{polypnqqµ1`p1{polypnqqµ2. Thus, for each
permutation π, µ1pπq ď µpπq{p1´1{polypnqq “ 1{pp1´1{polypnqq|S|!q.

Reducing the complexity to a constant. Our Op1q implementation
improves on the running time by splitting buckets from the first “rough
shuffling” into sub-buckets, and arguing that most such buckets satisfy prop-
erties allowing them to use a leader to permute themselves as in Algorithm 4,
while buckets that fail this second sub-bucketing are few enough that they
can be efficiently permuted with the help of the whole almost-clique.

25

Lemma 4.5. There is an algorithm simulating the permutation sampling
step of the synchronized color trial in Op1q rounds of BCONGEST.

A key ingredient in the improved version of our algorithm is strengthen-
ing the properties satisfied by buckets. We will aim for the random subsets
of almost-cliques formed to themselves have the properties almost-cliques.
Let a k-bucketing t of a set of nodes K be an assignment of a value tpvq P rks
to each node v P S, defining sets Ti :“ tv P K : tpvq “ iu for each i P rks. In
our improved Op1q algorithm, we also perform a second k1-bucketing t1 of
each set Ti, defining sets Ti,i1 :“ tv P Ti : t

1pvq “ i1u for each pi, i1q P rksˆrk1s.

Definition 4.6 (Almost-clique-like, almost-clique-preserved). For a set of
nodes K,

• For ε P p0, 1{2q, K is said to be ε-almost-clique-like (ε-AC-like) if @v P
K, |Npvq X K| ě p1 ´ εq|K|.

• For integers i, k with i ď k, a k-bucketing of K is said to ε1-almost-
clique-preserve (ε1-AC-preserve) its ith bucket Ti iff @i P rks,@v P K,
|Npvq XTi| P p1˘ ε1q|Npvq XK|{k. The bucketing is said to be ε1-almost-
clique-preserving (ε1-AC-preserving) if it ε1-AC-preserves its k buckets.

Lemma 4.7. Let ε, ε1 be two positive constants s.t. ε ` ε1 ă 1{2. Let K be
ε-AC-like, and let T be an ε1-AC-preserved bucket of a k-bucketing of K.
Then, T has size |T | P p1 ˘ 2pε ` ε1qq|K|{k and is 2pε ` ε1q-AC-like.

Proof. For each v P K, the bounds on |K|, |Npvq XT |, and |Npvq XK| from
K being ε-AC-like and T being ε1-AC-preserved yield:

p1´ε1qp1´εq |K|

k
ď p1´ε1q |Npvq X K|

k
ď |Npvq X T | ď p1`ε1q |Npvq X K|

k
ď p1`ε1q |K|

k
.

Counting edges between T and K two ways gives:

ÿ

vPK
|Npvq X T | “

ÿ

vPT
|Npvq X K| .

The combination of p1 ´ εq|T | ¨ |K| ď ř
vPT |Npvq X K| ď |T | ¨ |K| (from

K being ε-AC-like) with the previous bounds on |Npvq XT | gives as bounds
on |T |:

p1´ ε´ ε1q |K|

k
ď p1´ ε1qp1´ εq |K|

k
ď |T | ď 1 ` ε1

1 ´ ε
¨ |K|

k
ď p1` 2ε` ε1q |K|

k
,

26

where ε` ε1 ă 1{2 was used in the last inequality. Thus, for each v P K,

|NpvqXT | ě p1´ε1qp1´εq |K|

k
ě p1 ´ ε1qp1 ´ εq2

1 ` ε1 |T | “ p1 ´ ε1q2p1 ´ εq2
1 ´ ε12 |T | ě p1´2ε´2ε1q|T | .

Note that if ε ` ε1 ă 1{4 the sets Ti defined by an ε1-AC-preserving
bucketing within an ε-AC-like setK 2-hop connectK, i.e., @i P rks,@tu, vu Ď
K, |Npuq X Npvq X Ti| ě p1 ´ 4ε ´ 4ε1q|Ti| ą 0.

Lemma 4.8. Let ε, ε1 be two positive constants s.t. ε ` ε1 ă 1{2. Let K be
ε-AC-like and k an integer. Consider a k-bucketing of K picked uniformly
at random. For each i P rks, the probability that the ith bucket fails to be
ε1-AC-preserved is at most 2|K| expp´ε12|K|{p6kqq.

Proof. The lemma follows from applying a Chernoff bound (Lemma 2.15)
at each v P K.

In one of the last steps of our Op1q-round Permute algorithm, we perform
a second bucketing within previously formed buckets and argue that only a
few buckets from this second bucketing are not ε2-AC-preserved.

Algorithm 5. Procedure Permute, in almost-clique K, on subset S Ď
K of the nodes.

Parameters: Let C “ Op1q be a large enough constant,

ε1 :“ 1{24´ε, ε2 :“ 1{12, k :“ t∆{pC log nqu, and k1 :“ rC log log ns .

1. Rough bucketing. Each v P K independently picks a random
tpvq P rks u.a.r.
For each i P rks, let Ti :“ tv P K : tpvq “ iu and Si :“ Ti X S.

2. Counting rough buckets. For each i P rks, the nodes in Ti com-
pute and broadcast |Ti| and |Si|.

3. Relabeling. Within each Ti, i P rks, use Relabel on Si.

4. Within each Ti, i P rks,

(a) Fine bucketing. Each v P rTis picks a random bucket t1pvq P rk1s.
For each pi, i1q P rks ˆ rk1s, let Ti,i1 :“ tv P Ti : t

1pvq “ i1u and
Si,i1 :“ Ti,i1 X S.

27

(b) Counting fine buckets. Compute and broadcast all |Ti,i1 | and
|Si,i1 | for i1 P rk1s.

(c) For each i1 P rk1s, if Si,i1 is ε2-AC-preserved in Ti,

then Permute within fine bucket. The maximum ID node of
Ti,i1 aggregates the Oplog log nq-bit labels of Si,i1 , picks u.a.r. a
permutation ρi,i1 of Si,i1 , sends it to Ti,i1 .

else each v P Si,i1 joins the set R, to be permuted in the next
step.

5. Permuting leftover fine buckets.

(a) Each v P R picks a random C log n-bit rpvq, broadcasts the tuple
pIDv, tpvq, t1pvq, rpvqq.

(b) Nodes in K use Many-to-All Broadcast to disseminate the tuples
from R to all of K.

(c) For each pi, i1q P rks ˆ rk1s s.t. Si,i1 Ď R, nodes in Si,i1 order
themselves according to their rpvq’s. Let ρi,i1 be the resulting
permutation of Si,i1 .

6. Output. @i, i1, v P Si,i1 takes index πpvq :“ ρi,i1pvq `
ř

jăi|Sj | `ř
j1ăi1 |Si,j1| in output.

Proof of Lemma 4.5. First, our Op1q Permute procedure has an output dis-
tribution close to uniform follows from the same argument that showed this
property for our Oplog log nq Permute procedure.

By Lemma 4.8, Step 1 (rough bucketing) produces an ε1-AC-preserving
bucketing with probability at least 2|K| expp´ε12|K|{p6kqq ď n´Ωpε12Cq, i.e.,
w.h.p. We condition on this high-probability event.

The rough bucketing being ε1-AC-preserving, by Lemma 4.7, each Ti is
2pε ` ε1q-AC-like, with 2pε ` ε1q “ p1{12q. Each Ti thus has diameter 2 and
can efficiently count itself and its subset Si in Op1q rounds during Step 2.
Since every node in K is adjacent to a node in Ti, all of K learns all |Si|,
i P rks.

Relabeling works as in the previous Oplog log nq-round algorithm. Con-
sider now the second bucketing of Step 4a. As each Ti,i1 and Si,i1 are of size
at most Oplog nq, and there are k1 P Oplog log nq values to count in Step 4b,
describing all those values only requires Oplog2 log nq bits. Counting all of
them within Ti by aggregation along a BFS tree can be done in Op1q rounds,
and disseminating all values back to Ti is similarly fast.

28

Within each Ti in which the second bucketing succeed, Step 4c finishes
to permute its elements in Op1q rounds, since the maximum ID node within
each Ti,i1 only has to send Oplog n{ log log nq labels of size Oplog log nq in an
1{3-AC-like, and thus low diameter, set Ti,i1 .

We finish by arguing that permuting the elements in R within their Si,i1

groups can be done in Op1q rounds, w.h.p. By Claim 3.11, if R contains
at most Op∆{ log nq nodes, Many-to-All-Broadcast succeeds in sharing all
of R’s tuples in Op1q rounds, w.h.p. The rest of the proof is devoted to
showing that R contains Op∆{ log nq nodes, w.h.p.

For each i, i1 P rks ˆ rk1s, let Xi,i1 be the indicator random variable for
the i1th bucket in Ti not being ε1-AC-preserved. For each i P r|K|s, let Yi be
the random variable for the bucket choice of the ith node in K. Finally, let
fpY1, . . . , Y|K|q “ řk

i“1

řk1

i1“1 Xi,i1 be the total number of buckets which are
not ε1-AC-preserved.

From Lemma 4.8, we obtain a bound on each ErXi,i1s. Each Ti has size
|Ti| P p1 ˘ 1{2qC log n, yielding for the aggregate f :

Erf s “
kÿ

i“1

k1ÿ

i1“1

ErXi,i1s ď k ¨ k1 ¨ 4pC log nq ¨ e´ε22C logn{p12k1q

“ 4∆ ¨ log log n ¨ e´C logn{p123 log lognq .

For n large enough, or C set to a sufficiently large constant, this yields
Erf s ď ∆{p2 ¨ 302c2 log4 nq where c :“ 2C log n. Changing the value of each
random variable Yi affects at most two buckets. Therefore f is 2-Lipschitz.
Furthermore, f is c-certifiable, as it suffices to reveal the set Ti to show that
one of its buckets is not ε1-AC-preserved. Applying Talagrand’s inequality
(Lemma 2.16) with a deviation of t “ C∆{ log2 n, we get that:

Prpf ą 4C∆{ log2 nq ď Pr
´
f ą Erf s ` t ` 30c

a
r ¨ Erf s

¯

(because t ě Erf s, 30c
a

2Erf s)

ď 4 ¨ exp
ˆ

´ t2

16c2 Erf s

˙

ď 4 ¨ exp
ˆ

´ C2∆2{ log4 n
16 ¨ c2 ¨ ∆{c2 log4 n

˙

ď 4 ¨ expp´∆{16q ! 1{polypnq .

(since ∆ P Ωplog3 nq)

29

Therefore, with high probability, at most Op∆{ log2 nq buckets join R.
Each has size Oplog nq, so R contains at most Op∆{ log nq nodes, w.h.p.

5 Coloring in Streaming-Congest

Definition 5.1. We define BCStream to be the BCONGEST model in which,
per round, each node receives the messages from its neighbors in a streaming
fashion, using Oplogc nq memory for some fixed c ą 0.

Note that results in BCStream constrain the size of the messages more
than equivalent results in CONGEST or BCONGEST. In the latter models,
the size of the messages can be freely changed between c log n and c1 log n for
two positive constants c and c1 without changing ωp1q asymptotic complexi-
ties. This is because, without a memory constraint, for c ą c1 ą 0, nodes can
simulate an algorithm using c log n-bit messages by buffering the c1 log n-bit
messages received from each neighbor over rc{c1s rounds. Such buffering uses
Θp∆ log nq memory and is impossible in BCStream. In BCStream, having a
T -round algorithm for a given problem means that there exist constants
c ą 0 s.t. given that nodes can send messages of size c log n, they can solve
the problem in T rounds.

Running a randomized color trial remains feasible under BCStream con-
straints. As this consists of the core of our algorithm, most steps carry over
to this model. The technical difficulties to overcome are: (1) (high-degree)
nodes cannot store all colors used in their neighborhood, in order to know
their palette; and (2) dense nodes cannot learn the full clique palette nor
the full permutation π during the synchronized color trial.

Dealing with the first issue is fairly straightforward since in order to
overcome the broadcast constraint, nodes sample colors in publicly known
sets of colors (e.g., r∆ ` 1s or rxpvqs). After sampling colors in such a
set, a node can learn which sampled colors belong to its palette in one
communication round (where each colored node broadcasts its color).

The synchronized color trial (Step 2 of Algorithm 1) requires more care.
Note that a node v merely needs to know its index in the permutation πpvq
and the πpvq-th color in the clique-palette. Lemmas 4.2 and 4.4 are both
based on the idea of “random bucketing”. Let us focus on the permutation
and consider Algorithm 4. As each bucket contains Oplog nq nodes, Relabel
requires only poly log n memory (Algorithm 3). What remains, then, is
to compute the prefix sum

ř
jăi|Sj| counting the number of elements in

buckets of lower indices (Step 5 of Algorithm 4). Compared to BCONGEST,
the challenge is to avoid double counting. Indeed, in Step 2 of Permute,

30

nodes receive Θplog nq times each term |Sj| of the sum.
Computing prefix sums

ř
jăi |Sj | can be done in Oplog log nq rounds of

BCStream. To achieve this, we progressively merge together the Si’s into
larger groups, keeping track of the groups’ sizes as they merge. Say groups
have size z, the main idea is to merge z1{2 groups together. Computing the
size of the result of this merge involves summing z1{2 group sizes. In each
group, nodes choose a term to learn in the sum at random (among the z1{2

terms). In expectation, z1{2 nodes are assigned to each term. Because of
the highly connected structure of almost-cliques, we can elect a unique node
for each term, allowing us to aggregate all values without double counting.
Since the sizes of the groups grow polynomially, after Oplog log nq rounds,
all sums have been computed.

Lemma 5.2. Let Ti be a family of sets such as described in Lemma 4.1.
Suppose nodes of each group Ti knows some value yi ď polypnq. There is a
Oplog log nq-round BCStream algorithm such that w.h.p. all nodes in Ti learnř

jăi yj.

The same idea allows nodes to find the i-th color in the clique palette.
When the only remaining nodes are from the put-aside sets, the algorithm
only requires poly log n memory. Indeed, we can assume the clique palette
has size Oplog3 nq and we sample Oplog3 nq colors at each step of the process.
Observe that the communication procedure described in Claim 3.11 works
in BCStream if nodes know in advance which messages they need to store
(e.g., the i-th color in the clique palette) or if the total number of messages
is poly log n (e.g., when coloring the put-aside sets).

5.1 Computing Prefix Sums

We focus our attention on a clique K. We call a spanning group a subset
T Ď K of size Oplog nq and such that for any pair of vertices u,w P K we
have |T XNpuqXNpwq| ě C log n. Note that the sets Ti produced by each v

sampling a random index i P r∆{p4C log nqs are a family of disjoint spanning
groups, w.h.p. (see Lemma 4.1).

We begin by dividing the tTiuiPrks in ranges of z0 “ C log n groups.
Groups in the same range merge: they learn their prefix sum inside the
range as well as the sum of all yj’s in the group. At this point of the
algorithm, there are no issues of double counting as each node only learns
Oplog nq values determined in advance by its spanning group (Lemma 5.3).

We then runOplog log nq iterations in which we recursively merge groups.

At iteration i, we merge ranges of z
1{2
i groups, where zi is a lower bound

31

on the size of each group. The size of newly formed groups is at least

zi`1 “ z
3{2
i . To compute the prefix sums in Lemma 5.2, nodes learn

ř
j yj

over groups of smaller index within their range, as well as the sum over

all values for its range. Since each range merges z
1{2
i ! zi groups, we can

randomly assign each term of
ř

j yj to a unique node in each group. Since
groups are union of spanning groups Ti, they are well connected and allow
for simple aggregation. This process is formalized in Lemma 5.4.

Lemma 5.3. Let T1, . . . , Tk be a family of spanning groups and let z0 “
C log n. Furthermore, fix some yi for each i P rks and suppose each v P Ti

knows yi. There is a Op1q-round BCStream algorithm such that nodes of Ti

learn all yj for 1 `
Y
i´1
z0

]
z0 ď j ď

Y
i
z0

]
z0.

Proof. Each node must learn z0 ă |Ti| values. If each node in Ti broadcasts
yi, then a node v can receive (and store) its z0 “ Oplog nq values because it
has z0 neighbors in each Ti.

Lemma 5.4. Let K be an almost-clique and S1, . . . , Sm be m disjoint subsets
of K that are union of disjoint spanning groups, and each of size at least
z ě C2 log2 n. Furthermore, fix some yi for each i P rms and suppose each
v P Si know yi. Then, in Op1q rounds of BCStream, w.h.p. nodes of Si can
learn the sums

•

ř
j yj where 1 `

Y
pi´1q
z1{2

]
z1{2 ď j ă i, and

•

ř
j yj where 1 `

Y
pi´1q
z1{2

]
z1{2 ď j ď

Y
i

z1{2

]
z1{2.

Proof. To avoid cumbersome notations, we focus on groups S1, . . . , Sz1{2 . To
prove the lemma, it suffices to repeat the same process in parallel for each
contiguous sub-range of z1{2 indices in rms. In each set Si, nodes sample
a random value rpvq P rz1{2s. We form subsets Ri,j “ tv P Si : rpvq “ ju.
In expectation Er|Ri,j |s “ |Si|{z1{2 ě z1{2 and by Chernoff Bound, w.p.
1 ´ e´Θp?

zq ě 1 ´ n´ΘpCq, all |Ri,j | have size at least z1{2{2. Furthermore,
Ri,j has strong diameter 2. Indeed, for any u,w P Ri,j, they have C log n
neighbors in each spanning group T Ă Si. Since a spanning group T Ď Si

has size Oplog nq, there must be at least z{Oplog nq such groups. Counting
C log n shared neighbors in NpuqXNpwq for each of the z{Oplog nq spanning
group contained in Si, we get that u and w have Ωpzq common neighbors.
Therefore, by Chernoff, w.p. 1 ´ e´Ωp?

zq ě 1 ´ n´ΘpCq, u and w have at
least Ωpz1{2q common neighbor in Ri,j.

If nodes v P Si broadcast yi for each i P rms, because |Si| ě z for
each i P rms, we must have m ď |K|{z ď ∆{pC log nq different messages.

32

Therefore, they are disseminated in Op1q rounds (by Claim 3.11). Node
v P Ri,j for i, j ď z1{2 stores only the value yj.

We now explain how to aggregate these values to compute the sums in
each Si. Elect an arbitrary leader in Si and arbitrary chiefs Ri,j for each
j ď z1{2. Each chief broadcast the ID of one shared neighbor with the leader.
This yields a depth-2 tree, with the leader as root and chiefs as leaves. We
aggregate the desired sums on the tree. Note that the chief in group Ri,j is
the only node in Si to broadcast yj. This avoids double counting. Once the
leader has computed the sums, two rounds of BFS diffuse their values to all
nodes in Si.

Proof of Lemma 5.2. We repeatedly aggregate values of larger and larger
groups of nodes. We define the following sequence:

z0 “ C log n , z1 “ z20 and zi`1 “ z
3{2
i .

Our algorithm starts with spanning groups S0,j :“ Tj and merges T1`pj´1qz0 , . . . , Tj¨z0
together in S1,j . It then merges z

1{2
i groups S

i,1`pj´1qz1{2
i

, . . . , S
i,j¨z1{2

i

into

Si`1,j at each iteration. It maintains the invariant |Si,j| ě zi for all it-
erations i and sets j. By Lemmas 5.3 and 5.4, each iterations takes Op1q
rounds. After Oplog log∆q iterations, we merged all groups. Although we
describe the process computing

řk
j“1 yj, it is not hard to see that group Ti

can also compute the truncated sum
ř

jďi yj.

Acknowledgements. This work was supported by the Icelandic Research
Fund grants 217965 and 2310015-051.

References

[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond
(∆ ` 1) vertex coloring. In APPROX/RANDOM, volume 176
of LIPIcs, pages 6:1–6:22. LZI, 2020. 8

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple
randomized parallel algorithm for the maximal independent set
problem. J. of Algorithms, 7(4):567–583, 1986. 6

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algo-
rithms for p∆ ` 1q vertex coloring. In SODA, pages 767–786.
SIAM, 2019. 2, 6, 8, 9, 37

33

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph
sketches: sparsification, spanners, and subgraphs. In PODS,
pages 5–14. ACM, 2012. 7

[AKM22] Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks’ the-
orem in graph streams: a single-pass semi-streaming algorithm
for ∆-coloring. In STOC, pages 234–247. ACM, 2022. 7, 8

[AKO20] Sepehr Assadi, Gillat Kol, and Rotem Oshman. Lower bounds
for distributed sketching of maximal matchings and maximal
independent sets. In PODC, pages 79–88. ACM, 2020. 2

[AKZ22] Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs com-
munication tradeoffs for maximal independent sets. In FOCS,
pages 1193–1204. IEEE, 2022. 2, 7

[Bar16] Leonid Barenboim. Deterministic (∆ ` 1)-coloring in sublinear
(in ∆) time in static, dynamic, and faulty networks. J. ACM,
63(5):47:1–47:22, 2016. 6

[Bec91] József Beck. An algorithmic approach to the Lovász local
lemma. I. Random Structures & Algorithms, 2(4):343–365, 1991.
6

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes
Schneider. The locality of distributed symmetry breaking. J.
ACM, 63(3):20:1–20:45, 2016. 1, 2, 6, 11, 12, 13

[BMRT20] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan
Todinca. The impact of locality in the broadcast con-
gested clique model. SIAM Journal on Discrete Mathematics,
34(1):682–700, 2020. 7

[CLP20] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆`
1)-coloring via ultrafast graph shattering. SIAM Journal on
Computing, 49(3):497–539, 2020. 1, 4, 6, 8, 11

[CM19] Shiri Chechik and Doron Mukhtar. Reachability and shortest
paths in the broadcast CONGEST model. In DISC, volume 146
of LIPIcs, pages 11:1–11:13. LZI, 2019. 6

[DKO14] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the
power of the congested clique model. In PODC, pages 367–376.
ACM, 2014. 2, 7

34

[Doe20] Benjamin Doerr. Probabilistic Tools for the Analysis of Random-
ized Optimization Heuristics, pages 1–87. Springer International
Publishing, 2020. 12

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration
of Measure for the Analysis of Randomized Algorithms. Cam-
bridge University Press, 2009. 12

[EPS15] Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ ´ 1)-edge-
coloring is much easier than maximal matching in the dis-
tributed setting. In SODA, pages 355–370. SIAM, 2015. 10,
11

[FdV22] Sebastian Forster and Tijn de Vos. The laplacian paradigm in
the broadcast congested clique. In PODC, pages 335–344. ACM,
2022. 6

[FGH`23] Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian
Kuhn, and Alexandre Nolin. A distributed palette sparsification
theorem. Technical Report 2301.06457, arXiv, 2023. 7, 9, 10, 37

[FHK16] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local
conflict coloring. In FOCS, pages 625–634. IEEE Computer
Society, 2016. 1, 6

[FHM23] Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus.
Fast distributed Brooks’ theorem. In SODA, pages 2567–2588.
SIAM, 2023. 8

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Im-
proved deterministic network decomposition. In SODA, pages
2904–2923, 2021. 1, 6

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed
vertex coloring: Simpler, faster, and without network decom-
position. In FOCS, pages 1009–1020. IEEE Computer Society,
2021. 1, 6, 12

[HKMT21] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and
Tigran Tonoyan. Efficient randomized distributed coloring in
CONGEST. In STOC, pages 1180–1193. ACM, 2021. 1, 6, 8, 9

35

[HKNT22] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and
Tigran Tonoyan. Near-optimal distributed degree+1 coloring.
In STOC, pages 450–463. ACM, 2022. 1, 4, 6, 11, 15, 16

[HN23] Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring
in CONGEST via efficient color sampling. Theor. Comput. Sci.,
948:113711, 2023. 4, 11, 14

[HNT22] Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan.
Overcoming congestion in distributed coloring. In PODC, pages
26–36. ACM, 2022. 1, 3, 9, 11

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Associa-
tion, 58(301):13–30, 1963. 38

[HSS18] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Dis-
tributed (∆ ` 1)-coloring in sublogarithmic rounds. J. ACM,
65:19:1–19:21, 2018. 1, 4, 6, 8

[JN18] Tomasz Jurdziński and Krzysztof Nowicki. Connectivity and
minimum cut approximation in the broadcast congested clique.
In SIROCCO, volume 11085 of LNCS, pages 331–344. Springer,
2018. 7

[Joh99] Öjvind Johansson. Simple distributed ∆` 1-coloring of graphs.
Inf. Process. Lett., 70(5):229–232, 1999. 1, 2, 6

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992. 1

[Lub86] M. Luby. A simple parallel algorithm for the maximal indepen-
dent set problem. SIAM Journal on Computing, 15:1036–1053,
1986. 1, 2, 6

[MT22] Yannic Maus and Tigran Tonoyan. Linial for lists. Distributed
Comput., 35(6):533–546, 2022. 6

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM, 2000. 1

[PP19] Shreyas Pai and Sriram V. Pemmaraju. Connectivity lower
bounds in broadcast congested clique. In PODC, page 256–258.
ACM, 2019. 6

36

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized dis-
tributed edge coloring via an extension of the Chernoff-Hoeffding
bounds. SIAM Journal on Computing, 26(2):350–368, 1997. 1

[Ree98] Bruce A. Reed. ω, ∆, and χ. J. Graph Theory, 27(4):177–212,
1998. 8

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time de-
terministic network decomposition and distributed derandom-
ization. In STOC, pages 350–363. ACM, 2020. 6

[SW10] Johannes Schneider and Roger Wattenhofer. A new technique
for distributed symmetry breaking. In PODC, pages 257–266.
ACM, 2010. 1, 3, 11

[Tal95] Michel Talagrand. Concentration of measure and isoperimetric
inequalities in product spaces. Publications Mathématiques de
l’Institut des Hautes Etudes Scientifiques, 81(1):73–205, 1995.
12

A Colorful Matching

Our context differs from [ACK19, FGH`23] in two ways: some nodes were
already colored by the slack generation step and we must reserve a small set
of Opε∆q colors (Eq. (5)). This turns out not to be an issue as arguments
from [ACK19, FGH`23] only need enough anti-edges and colors.

Concretely, they define a potential function availDpF q as such. Fix an
almost-clique K and a (possibly adversarial) coloring outside K. For a set
of colors D, and some anti-edge e in K, define availDpeq the number of
colors that anti-edge e can adopt in D (without conflicting with colored
neighbors inside or outside K). By extension, for a set F of anti-edges,
define availDpF q “

ř
ePF availDpeq. Lemma 2.9 of [FGH`23] computes a

colorful matching as long as enough anti-edges have enough available colors:

Lemma A.1 (Reformulation of Lemma 2.9). Let β ă 1{p18εq be a constant,
DK Ď r∆ ` 1s and FK the set of anti-edges in K with both endpoints un-
colored. Suppose that for all K, we have aK ě C log n and availDK

pFKq ě
aK∆{3 for any coloring of V zK. Then, there exists a Opβq-round algorithm
called Matching that computes a colorful matching of size β ¨ aK with prob-
ability 1 ´ n´ΘpCq in each almost-clique K. Furthermore, at most 2β ¨ aK
nodes are colored in each almost-clique during this step.

37

The following lemma shows that almost-cliques with aK ě C log n have
a large number of available colors with high probability.

Lemma A.2. For any almost-clique K, let D “ r∆ ` 1szrxpKqs and F be
the set of anti-edges with both endpoints uncolored after slack generation.
With high probability, availDpF q ě aK∆2{3.
Proof. A node gets colored during slack generation w.p. at most ps. Each
time some node v gets colored, av anti-edges are removed from F . Let Xv be
the random variable equal to av if v gets colored and zero otherwise. Notice
that X “ ř

vPK Xv is an upper bound on the number of edges removed from
F : for each edge removed, X is charged by at least one of its endpoints. We
have ErXvs “ psav and Xv ď av. Moreover,

ř
vPK av “ aK |K|; hence, by a

convexity argument,
ř

vPK a2v ď aK |K|
ε∆

¨ pε∆q2 “ 2εaK |K|∆. By Hoeffding
inequality [Hoe63, Theorem 2],

PrpX ą 2ErXsq ď exp

ˆ
´ 2ErXs2ř

vPK a2v

˙

ď exp

ˆ
´2p2sa

2
K |K|2

2εaK |K|∆

˙

“ expp´ΘpaKqq “ n´ΘpCq .

Therefore, w.h.p. at most X ă 2ErXs “ 2psaK |K| anti-edges are re-
moved from F by slack generation. This means that F contains at least
p1{2 ´ 2psqaK |K| ě 0.49aK |K| anti-edges. For each edge, at most 2ε∆ col-
ors are blocked from the outside, at most ∆{100 are blocked by nodes in
K, and at most 103ε∆ are blocked by xpKq (see Eq. (5)). Therefore, for
ε ď 10´5,

availDpF q ě 0.49aK |K| ¨ p1 ´ 2ε ´ 1{100 ´ 103εq∆ ě aK∆2{3 .

B Reducing Put-Aside Sets

Algorithm 6. Procedure CompressTry, in almost-clique K P Kfull, on
uncolored subset S Ď pK of size Op∆{ log nq.

Parameters: Let C “ Op1q be a large enough constant,
k :“

P
C log n{ log2 log n

T
.

Each node v P S has a publicly known list of colors Lpvq of size

38

polyplog nq and an Oplog log nq-bit identifier unique within S. For each
v P S, let S´

v :“ tu P S : IDpuq ă IDpvqu.

1. Each v P S samples k colors c1pvq, . . . , ckpvq in Lpvq X Ψpvq, inde-
pendently and u.a.r., and disseminates them to S by Many-to-All
Broadcast (Claim 3.11).

2. For each v P S, processed in increasing ID order:

If Xv :“ ti P rks : cipvq P ΨpvqzCpS´
v qu ‰ H

then v colors itself with cipvq, where i “ mintXvu. (Cpvq Ð cipvq)
else v stays uncolored. (Cpvq “ K)

Lemma 3.12. Let K P Kfull and fix a set S Ď pK of size Oplog1.1 nq. Fur-
thermore, suppose each v P S has a list Lpvq of at most C log1.1 n colors
known to every u P S, and such that |Lpvq X Ψpvq| ě |S| ` z for a fixed
z ě C log n{ log log n. Then, w.p. 1 ´ e´z ´ 1{polypnq, CompressTry col-
ors all but z nodes in S. Furthermore, CompressTry uses Oplog n{ log log nq
bandwidth.

Proof. Let us first argue about the bandwidth of CompressTry (Algorithm 6).

The procedure has each node in S send k “
Q

C logn

log2 logn

U
colors from publicly

known lists of polyplog nq colors together its Oplog log nq ID. Many-to-All
broadcast (Claim 3.11) disseminates these messages to all of S w.h.p. in only
Op1q rounds, given that |S| ď Op∆{ log nq. Each disseminated message is
of size Opk ¨ log log n ` log log nq “ Oplog n{ log log nq, giving the claimed
bandwidth.

We now argue the success probability of the procedure. Algorithm 6
essentially simulates the following sequential algorithm: nodes of S, in the
order of their IDs, each perform k TryColor, coloring themselves with the
first successful one. They act as if they were connected, never adopting a
color already taken by a node of smaller ID. Colors tried by a node v are
sampled independently in a set which does not depend on any other colors
tried, so can all be sampled in advance.

This is easily simulated in a distributed setting by CompressTry. Once
each node v P S knows the colors and IDs of all other nodes in S, it can
compute the behavior of all the nodes of smaller ID S´

v as they each pick
the first of their tried colors not taken by an earlier node, if it exists. Once
v has computed the colors adopted by nodes in S´

v , it knows whether it can
adopt any of its own colors and potentially color itself.

39

We now bound the probability that more than z nodes in S fail to get
colored. For each v, regardless of the colors adopted and tried by the nodes
of smaller ID S´

v , we have

|Lpvq X ΨpvqzCpS´
v q| ě z .

This means that as an uncolored node v tries its ith color in the sequential
process, regardless of previous TryColor attempts by v or nodes of smaller
ID, it always succeeds with probability at least

Pr
`
cipvq P Lpvq X ΨpvqzCpS´

v q | S´
v

˘
ě z

|Lpvq| ě 1

log log n ¨ log0.1 n
. (7)

Let Xv be the random variable indicating if v failed to adopt any color
by the end of the process. By the chain rule, Eq. (7) implies

Pr
`
Xv “ 1 | N´pvq

˘
“

ˆ
1 ´ 1

log log n ¨ log0.1 n

˙k

ď exp

ˆ
´C log0.9 n

log3 log n

˙
(by definition of k)

ď exp

ˆ
´C log0.1 n

10

˙
:“ p . (for n ą 2)

The expected number of uncolored nodes is Erřv Xvs ď p|S| ď z{4 for large
enough C. We get concentration by the martingale inequality (Lemma 2.15).
The probability that more than z nodes fail to adopt a color is at most
expp´zq (by Eq. (2)).

40

	1 Introduction
	1.1 Our Results
	1.2 Technical Contributions
	1.2.1 Previous Algorithms & Challenges
	1.2.2 Our Algorithm

	1.3 Related Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Sparse-Dense Decomposition
	2.2 Distributed Coloring with Slack
	2.3 Concentration Inequalities

	3 Algorithm and Analysis
	3.1 Step 1: Setting up
	3.2 Step 2: Synchronized Color Trial
	3.3 Step 4: Coloring Put-Aside Sets
	3.4 Proof of Theorem 1

	4 Synchronized Color Trial in BCONGEST
	5 Coloring in Streaming-Congest
	5.1 Computing Prefix Sums

	A Colorful Matching
	B Reducing Put-Aside Sets

