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ABSTRACT
As IoT devices are becoming widely deployed, there exist many
threats to IoT-based systems due to their inherent vulnerabilities.
One effective approach to improving IoT security is to deploy IoT
honeypot systems, which can collect attack information and re-
veal the methods and strategies used by attackers. However, build-
ing high-interaction IoT honeypots is challenging due to the het-
erogeneity of IoT devices. Vulnerabilities in IoT devices typically
depend on specific device types or firmware versions, which en-
courages attackers to perform pre-attack checks to gather device
information before launching attacks. Moreover, conventional hon-
eypots are easily detected because their replying logic differs from
that of the IoT devices they try to mimic. To address these problems,
we develop an adaptive high-interaction honeypot for IoT devices,
called HoneyIoT. We first build a real device based attack trace col-
lection system to learn how attackers interact with IoT devices. We
then model the attack behavior through markov decision process
and leverage reinforcement learning techniques to learn the best
responses to engage attackers based on the attack trace. We also
use differential analysis techniques to mutate response values in
some fields to generate high-fidelity responses. HoneyIoT has been
deployed on the public Internet. Experimental results show that
HoneyIoT can effectively bypass the pre-attack checks and mislead
the attackers into uploading malware. Furthermore, HoneyIoT is
covert against widely used reconnaissance and honeypot detection
tools.
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1 INTRODUCTION
Internet of Things (IoT) are being widely deployed in a variety of
consumer, enterprise, and military settings such as home automa-
tion, smart manufacturing, autonomous driving, smart city, and
military operations. However, there exist many threats to IoT de-
vices due to their inherent vulnerabilities [1–4], which are caused
by outdated or broken security modules, improper patch manage-
ment, insufficient access control, and inadequate physical security.
Many recent attacks [5, 6] utilize these security vulnerabilities to
compromise and infect IoT devices. Therefore, there is a pressing
need to understand the dynamic threat landscape for IoT devices
in order to improve their overall security.

Honeypot is a valuable security tool that has been widely used
by security practitioners to gain insight into the dynamic threat
landscape. They are decoy systems designed to attract, engage
and deceive potential attackers through vulnerable services in a
monitored and controlled environment. Typically, they consist of
virtual systems that closely mimic real production environments to
effectively engage attackers. A successful honeypot can efficiently
attract attackers through different vulnerabilities, evade reconnais-
sance and honeypot detection tools, provide seemingly genuine
responses, and collect any attack traces left by the attackers for
future analysis. As such, honeypots have the potential to be applied
to improve IoT security.

Applying honeypot technology to the IoT domain presents sig-
nificant challenges. This is primarily due to the heterogeneity of
IoT devices, which means that vulnerabilities can vary significantly
depending on the specific device brand, model, or firmware version.
As a result, attackers typically perform various pre-attack checks
to gather information about the target device before launching at-
tacks. For instance, Nmap [7] is a widely used reconnaissance tool
that can perform port scans and identify devices based on probing
results. Additionally, attackers can use honeypot detection tools
such as HoneyScore [8] or HoneypotHunter [9] to determine if a
device is a honeypot during their pre-attack checks. Traditional
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Figure 1: Attacks against IoT devices

IoT honeypots [10] are often limited in terms of interactions due
to their fixed replying logic, which makes it difficult for them to
deceive attackers during pre-attack checks.

To address these issues, we first need to learn how an attacker
interacts with real IoT devices. In order to model the attacker be-
havior, we collect attack traces by exposing vulnerable IoT devices
to attackers directly. The collected attack traces contain the attack
behavioral information such as what IoT device the attacker is
targeting, when they send specific pre-attack checks, and what
responses can better lead to vulnerability exploitation or malware
uploads. Since the attack trace is too complicated to extract mean-
ing information purely based on heuristic based method or human
analysis, we model the attack behavior through markov decision
process (MDP) and leverage reinforcement learning techniques to
learn the best responses to engage the attackers based on the col-
lected trace. In addition, differential analysis techniques are used to
mutate the response values in certain fields (e.g., date, time, sensor
values, etc.) in order to generate more authentic and convincing
responses.

The main contributions of this paper are as follows:
• We propose HoneyIoT, an adaptive high-interaction honey-
pot for IoT devices through reinforcement learning.

• We develop techniques to model the interactions between
attackers and honeypot as a markov decision process base
on the collected attack trace and leverage reinforcement
learning to engage attackers.

• We identify the mutation fields in the response through
differential analysis and update them in real time to provide
high fidelity responses.

• We evaluate the effectiveness and robustness of HoneyIoT by
deploying the system on the public Internet. Our evaluation
results show that HoneyIoT is covert against widely used
reconnaissance and honeypot detection tools, and it can
mislead attackers into uploading malware.

2 BACKGROUND
In this section, we provide background information about the evolv-
ing threat landscape for IoT devices and explain why we need to
build a more deceptive and interactive IoT honeypot.

IoT devices have long been valuable targets to attackers due to
their inherent vulnerabilities [1–4]. For example, the storm of Mirai
botnet [5] has overwhelmed several high-profile targets since late
2016. The original Mirai botnet compromises IoT devices through
brute-force login against the telnet port. After a successful login,
Mirai bots try to perform a series of operations to infect target

devices and corral them into a botnet. The Mirai botnet was able
to infect hundreds of thousands of IoT devices, which were used
to perform DDos attacks against different targets. However, with
the upgrading of IoT devices over recent years, simple brute-force
login attacks against telnet ports are no longer effective. Some IoT
device manufactures choose to use random default passwords to
mitigate password cracking, and others choose to disable telnet and
ssh services to avoid being discovered by the Mirai botnet.

Meanwhile, the attack against IoT devices is evolving. Instead of
password cracking, attackers nowadays are targeting various types
of vulnerabilities on IoT devices. For example, by exploiting the
Remote Code Execution (RCE) vulnerabilities, attackers can inject
malicious code to corral the target devices into their botnet. Since
the vulnerabilities usually depend on the type, brand, and model of
the target IoT devices, attackers nowadays tend to perform several
pre-attack checks on the device before injecting malicious code to
increase the attack success rate.

Figure 1 shows a typical attack process against IoT devices. The
attacker first uses some reconnaissance tools such as Mass scan
[11] or IoT search engine [12] to locate the victim device. Then, the
attacker scans and probes the open ports of the target device to
gather more information. The responses from the remote host can
be used to match known fingerprints of existing honeypots [13–16].
For example, many open-source honeypots offer a limited set of
hard-coded banners or static http responses which can be used as
fingerprints to identify the remote hosts. During these pre-attack
checks, if the attacker observes any honeypot fingerprint, or finds
out inconsistency between the simulated device and the provided
service, he will suspect that he is interacting with a honeypot. The
attacker will either evade these honeypots by blacklisting their IP
addresses, or takes down these honeypots through DDos attacks.
The responses can also be used to identify the service running on
the remote host, which can further be leveraged to pinpoint the
type of the victim IoT device [17]. For example, if the port scan
results indicate that the target is providing a video streaming service
through real time streaming protocol (RTSP) on port 554, and a
Web server for camera control on port 80, the target device is most
likely an IoT camera. After identifying the remote host, the attacker
can speculate the types of vulnerabilities existing on the target
IoT device and then launch the exploitation attack. If the attack
is successful, the attacker may launch various types of follow-up
attacks such as uploading malware or paralyzing the device.

Honeypots have been used to defend against attacks on IoT
devices. Conventional IoT honeypots mainly focus on emulating
specific protocols such as telnet or ssh [10, 18]. The attacker may
notice that certain service is missing and suspect that he is not
interacting with a real IoT device. In addition, the honeypot only
provides limited level of interaction to attackers with some fixed re-
plying logic (i.e., fixed answer to various requests). Such behavioral
fingerprints may have been recorded by the scanners [7, 11] used by
the attackers to identify the honeypots. Therefore, conventional IoT
honeypots are not effective against the latest attackers. There is a
strong need to build adaptive high-interaction IoT honeypot which
can interact with the attackers, bypass their pre-attack checks, and
mislead them to upload their malicious codes.
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Figure 2: Attack trace collection based on real IoT devices

3 ATTACK TRACE COLLECTION
In this section, we present a system to collect attack traces, which
can help us learn how the attackers interact with real IoT devices.
We also show some analysis results based on the attack traces and
generate attack graphs for IoT devices.

3.1 Real-Device Based Attack Trace Collection
We build a system to collect attack traces based on the interactions
between attackers and real IoT devices. As shown in Figure 2, the
system consists of a frontend virtual machine running on AWS, a
backend server for traffic forwarding and preliminary traffic analy-
sis, and a few IoT devices including various models of IoT cameras,
routers and smart plugs. The detailed list of IoT devices and their
corresponding vulnerabilities are shown in Table 1. The system
interacts with the attacker by forwarding the received packet to
one of the IoT devices to learn what the attacker will do next. Based
on the attacker’s request, the corresponding IoT device sends the
necessary files or responses so that the attacker can continue to
interact with the corresponding IoT device. This process continues
until the attacker uploads some exploit code or stops interacting
with the IoT devices. Our system maintains the log traces and may
have to be rebooted in some cases to recover from the attacks. Then,
a new cycle starts which may select a different IoT device for a
different attacker. By doing this, our system can obtain different
attacker traces, targeting different kinds of IoT devices, or targeting
different kinds of protocols. We use the open source project SysFlow
[19] to monitor the traffic between the attacker and the IoT devices
and perform event-driven analysis to classify requests. We filter out
any commands containing download instructions such as Wget or
Curl, and forward them to a crawler in a sandbox to automatically
collect malware from the attacker’s control and command server.

3.2 Preliminary Analysis on Attack Traces
Our attack trace collection system was deployed on AWS from June
17 to September 1, 2022. During this period, the attack trace was
collected to model the attack behavior and gain insights on how to
effectively engage with attackers. An initial analysis of the trace
indicates that it encompasses all known remotely exploitable CVEs
associated with these IoT devices. In order to better understand the
attacker behavior against IoT devices through the attack traces, we
generate attack graphs for IoT devices based on the interactions
between the attackers and the IoT devices. Figure 3 shows two
attack graphs against TPlink NC220 cameras and Reolink cameras

Device Model Manufacture Device Type Vulnerability ID
NC220 TP-Link Camera CVE-2020-12109, etc
RLC-410W Reolink Camera CVE-2021-44402, etc
E1 Zoom Reolink Camera CVE-2021-40149
Home YI Camera CVE-2018-3928, etc
DS-2CD2183G Hikvision Camera CVE-2021-36260
Insight Wemo Smart Plug CVE-2018-6692
Mini Wemo Smart Plug CVE-2018-6692
HS103-P4 TPlink Smart Plug CVE-2019-15745
ISP5 iHome Smart Plug RCE 1

ISP6 iHome Smart Plug RCE 1

VMB3000 Netgear Router CVE-2019-3949, etc
DGN2220 Netgear Router CVE-2020-35577, etc
TL-WR840N TP-Link Router CVE-2018-14336, etc
DIR-3040 D-Link Router CVE-2021-21819, etc
WS5200 Huawei Router CVE-2019-5268, etc
WS7200 Huawei Router N/A

Table 1: IoT devices used in our attack trace collection sys-
tem

over HTTP ports. As the whole graph is way too big, we only show
a partial attack graph emphasizing specific vulnerabilities exploited
and the attack behavior.

In the attack graph, a node represents the attacker’s action such
as probing a directory, accessing a resource, exploiting a certain
vulnerability or uploading a malware. For example, the node with ‘/’
indicates that the attacker probes the root directory. The node with
‘/favicon.ico’ indicates that the attacker tries to access the favicon
file which is usually a small icon indicating the device type or man-
ufacturer. The node with ‘CVE-2020-12109’ means that the attacker
exploits a specific vulnerability with Common Vulnerabilities and
Exposures (CVE) ID 2020-12109, i.e., a publicly disclosed IoT secu-
rity flaw on TPlink web camera where no format check is enforced
when the attacker sends malicious HTTP request through ‘/set-
sysname.fcgi’. The edges connecting two nodes indicate that some
attackers have taken another action after receiving the previous
response from the IoT device.

From the attack graph, we can see that the attacker conducts
various types of pre-attack checks to gather information from the
remote host before launching attacks. The attacker may choose
different follow up attacks based on the responses from the IoT
devices. For example, as shown in Figure 3(a), some of the attackers
first access the favicon file to identify that this is a TPlink camera,
by matching the MD5 hash of favicon or by analyzing its image.
Then, they decide to exploit the ‘CVE-2020-12109’ vulnerability by
sending various requests. On the other hand, if the attacker notices
that the remote host is not a TPlink camera (the MD5 has does not
match), he may not proceed with follow up attacks. As shown in
Figure 3(b), the attack trace collected in the Reolink camera does not
have such attack behavior because the favicon of Reolink camera
is different from the favicon of TPlink camera.

The collected attack trace contains valuable attacker behavioral
information which can be used to answer questions such as what
IoT device the attacker is targeting, when the attacker sends spe-
cific pre-attack checks, and which response can better lead to a
vulnerability exploitation or malware upload. The answers to these
questions are critical to build high-interaction honeypots for IoT
devices. In order to effectively learn the attack behavior through
these collected attack traces, HoneyIoT leverages reinforcement
learning techniques.
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(a) (b)

Figure 3: Partial Attack graph against HTTP port: (a) TPlink TC220 camera (b) Reolink Camera

4 ADAPTIVE HIGH-INTERACTION
HONEYPOT FOR IOT DEVICES

In this section, we introduceHoneyIoT, an adaptive high-interaction
honeypot for IoT devices. We first formulate the interactions be-
tween honeypots and attackers as a Markov Decision Process
(MDP), and then leverage reinforcement learning to build an agent
which can adaptively interact with the attacker by selecting proper
responses. We also propose a differential analysis based content
mutationmethod to effectively update some fields of the response at
run time. At last, we present the general system design of HoneyIoT.

4.1 Problem Formulation
After taking a close look at the collected attack traces, we notice
that there is a strong correlation between the attacker’s requests
and the responses from the IoT devices. As discussed in Section 3.2,
some of the attacker’s request packets look for the type and model
information of the target device, and others try to collect the service
and protocol information of that device. These packets together
can be classified as "pre-attack checks", which are used to identify
the target IoT device. Since attackers performing different pre-
attack checks may be targeting different IoT devices and expecting
different responses, our honeypot should adaptively choose the
responses which can better mislead the attackers to perform follow-
up attacks. In HoneyIoT, we formulate the interactions between the
honeypot and the attacker as a MDP and leverage reinforcement
learning algorithms to select the proper responses.

In a typical MDP, the agent interacts with the outside world
called environment through a series of actions. At each step, the
agent observes the environment state and takes an action. As a
result of the action, the environment makes corresponding changes
and transits to another state. Meanwhile, the agent may receive
a reward generated by the environment. The agent will continue
this process, and get accumulated rewards after every action until
the session is over. The agent seeks to maximize the accumulated
rewards by taking proper actions.

As shown in Figure 4, in our case, the honeypot is the agent that
interacts with the environment containing different attackers. At
each step, the honeypot agent observes the environment state by
analyzing the attacker’s request packet. The agent then takes an
action to choose a proper response to fulfill the attacker’s request.

Figure 4: Reinforcement learning model

After receiving the response, the attacker may send another request
that will cause the agent to enter a new state or terminate the
session by stopping sending any requests. A reward is collected
whenever the attacker tries to exploit a vulnerability, upload a
malware or terminate the attack session. In the following subsection,
we describe the state space, the action space, the state transition
probabilities, and the reward function of our MDP model in detail.

4.2 MDP Model Formulation
State Space. The state of MDP model should represent the current
situation of the reinforcement learning agent. In our case, it should
contain the interactions between the attacker and the honeypot. In
order to clearly represent the attacker’s session history, we define
the state as a series of packets received from the attackers. Let 𝑠𝑐
denote the state space, and 𝑠𝑐 = 𝐻 (𝑝1, 𝑝2, . . . , 𝑝𝑐 ), where 𝑠𝑐 denotes
the state space, and 𝑝𝑖 denotes the 𝑖𝑡ℎ request packets received from
the attacker. However, directly using the packets from the attack
trace may lead to sparse state space since the same type of request
packets from different attackers may only vary slightly. To address
this problem, some states may be aggregated, i.e., request packets
with the same path and query strings are represented by a single
state. In addition, we manually add a terminating state if no new
packet is received from the attacker after a certain amount of time
to indicate the end of the session.

Action Space. Each response from the IoT device is labeled as a
discrete action for the honeypot agent. That is, 𝑎 ∈ 𝐴 = {𝑞1, 𝑞2, · · · },
where 𝐴 is the action space which is a set of all possible responses
from IoT devices, and 𝑞𝑖 denotes a specific response from certain
IoT devices. Since some IoT devices may not be able to respond
to certain requests as they do not provide certain services, only a
subset of actions is available at a given state in our MDP model.
Therefore, the action space for our MDP model is essentially a
multi-discrete action space. When a specific action is taken by the
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Figure 5: Comparison of different learning algorithms

honeypot agent, the corresponding response will be rewritten (i.e.
the date value) and forwarded to the attacker in order to provide a
real-time high-fidelity response. The details on packet modification
will be discussed in Section 4.3.

State Transition Probabilities. In our model, the state tran-
sition probability (Equation 1) can be described as a transition
function 𝑇 (𝑠, 𝑎, 𝑠 ′) where 𝑠 is the current state of the environment,
𝑎 is the action taken by the agent, and 𝑠 ′ is the next state of the
environment. In our case, the next state 𝑠 ′ = 𝐻 (𝑝1, . . . , 𝑝𝑐 , 𝑝𝑐+1)
refers to the packet received after taking action 𝑎 at the current
state 𝑠 = 𝐻 (𝑝1, . . . , 𝑝𝑐 ). To better model the attacker’s behavior, we
utilize the attack trace collected through our system. We calculate
the percentage of the occurrences of (𝑠, 𝑎, 𝑠 ′) over the occurrences
of all combinations containing the current state 𝑠 and action 𝑎. The
percentage is then used as the state transition probability.

𝑇
(
𝑠, 𝑎, 𝑠 ′

)
= 𝑃

(
𝑆𝑡 = 𝑠 ′ | 𝑆𝑡−1 = 𝑠, 𝑎𝑡 = 𝑎

)
=

𝐶 (𝑠, 𝑎, 𝑠 ′)∑
𝑥 ∈𝑆

𝐶 (𝑠, 𝑎, 𝑥)
(1)

Reward Function. Since the ultimate goal of our honeypot is
to mislead the attacker to upload the malicious code, we should
in general reward the responses that lead to a real attack while
punishing those that cause the attacker to end the current session.
Typically, an attacker will exploit a vulnerability before uploading
malware, so we assign a moderate reward for vulnerability exploita-
tion, while reserving the highest reward for uploading malicious
code. The intermediate reward reflects the potential progress we
make when selecting a response in a given state.

In our context, the reward function can be described as 𝑅 (𝑠, 𝑎, 𝑠 ′),
where 𝑠 is the current state of the environment, 𝑎 is the action that
our honeypot agent takes and 𝑠 ′ is the next state of the environment.
In particular, we set the intermediate reward 𝑅 (𝑠, 𝑎, 𝑠 ′) for each
valid state transition to 0 unless the last packet in the next state 𝑠 ′
is vulnerability exploitation, malware upload or terminating state.
If the attacker terminates the session without sending any malware
download command or exploiting any vulnerabilities, we assign
a negative reward. If any vulnerabilities are exploited, we add a
positive intermediate reward. If the attacker uploads malware, we
assign a large positive reward to this session.

Algorithm Selection. In recent years, many reinforcement
learning algorithms such as Proximal Policy Optimization (PPO)
[20], Deep Q Network (DQN) [21] and Advantage Actor Critic
(A2C) [22] have been proposed. In particular, PPO is a policy based

method. A reinforcement learning policy is a mapping from the
current environment observation to a probability distribution of
the actions to be taken. In PPO, we build and update a policy to
maximize the long-term reward while learning. DQN is a value
based method where we store and update the value function for
each state and action pair, and use the value function to deduce the
best action at a given state. A2C is a hybrid of policy based method
and value based method. It consists of a policy based actor which
controls how the agent acts, and a value based critic that measures
the effectiveness of the agent’s action.

In order to choose the most suitable algorithm for HoneyIoT, we
first turn the collected attack trace into the MDP model defined in
section 4.2 and then use the Open AI Gym environment [23] and
stable baseline3 [24] to test the effectiveness of different reinforce-
ment learning algorithms. For comparison purposes, we also set up
the baseline approach where no reinforcement learning algorithm
is used. The baseline agent chooses each valid candidate response
with equal probability. In our setting, a positive reward of 5 and 1
is given when the agent receives a malware upload or vulnerability
exploitation in an attack session, and a negative reward of -1 is
given otherwise. In order to minimize the variance, we evaluate the
reward over 100 random attack sessions multiple times for different
RL algorithms with different training times. The results in Figure
5 show that PPO has the fastest convergence rate and the best av-
erage reward compared to other algorithms. Therefore, HoneyIoT
uses PPO as the learning algorithm.

4.3 Differential Analysis based Content
Mutation against Fingerprinting Attacks

Although the reinforcement learning model can select a valid re-
sponse when receiving the request, the attackers may still be able to
detect the honeypot through fingerprinting attacks. Fingerprinting
attacks [13–16] have long been an effective tool to detect and label
honeypots. They have been widely applied in cyber attacks mainly
because they can greatly improve the success rate of intrusion. In a
typical fingerprinting attack, the attacker first collects information
from remote hosts through active probing or passive eavesdrop-
ping. The attacker then uses some heuristic rules [17, 25] to match
the responses with existing fingerprint database and analyzes the
inconsistency. Most of the existing open-source honeypots are not
effective against fingerprint attacks [14] due to their open nature.
For example, Dionaeca can be identified through its fixed banner
information, Cowrie can be detected through its error messages and
Glastopf can be identified by analyzing its HTTP responses. With-
out proper content mutation, the attacker may identify the fixed
replying logic of the remote host through fingerprinting attacks
and detect the honeypot.

To address these fingerprinting attacks, we need to provide re-
sponses that are unique to different attackers and follow the internal
logic of IoT devices.We need tomodify the packet selected by the RL
model before returning it to the attacker. However, it is a challenge
to locate the field that needs to be updated and figure out how we
should update these values. As IoT devices from different manufac-
tures have different internal logic, generating responses by reverse
engineering each IoT device can be time-consuming. To address this
problem, we apply differential analysis based method to analyze
the responses and extract their mutation fields and mutation logic.
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Differential analysis has been applied to IoT security and privacy
analysis domain as it can help researchers glean valuable insight by
analyzing closely related inputs. For example, IotSpotter [26] uses
differential analysis to identify IoT-specific libraries among different
mobile apps. Continella et al. [27] proposed a privacy leak detec-
tion method for mobile apps by analyzing the difference among
the network traces which are generated based on users’ requests
containing various private information (e.g. location). However,
none of them has been applied to IoT honeypot design.

We identify themutation fields by leveraging differential analysis
techniques as follow. Based on the collected trace, we find responses
generated by the same request (i.e., with the same request path and
query string) to the same IoT device at different time. By compar-
ing these responses, we find that some fields do not change (e.g.,
static web content) and some fields change (e.g., date, time, sensor
readings). The fields that change are the mutation fields.

Since different attackers may send the same request to the same
IoT device at different time, the response from the IoT device can
be directly used for differential analysis. For some rare request that
is only sent by few attackers, we replay the attack request offline
towards the IoT device multiple times to collect enough responses
for differential analysis. We then extract the responses and use the
Needleman-Wunsch algorithm [28] to identify the mutation fields.
These mutation fields can be classified into three categories based
on the cause of the mutation:

• Timing: The mutation field is affected by the current time
of the IoT device. These mutation fields are usually in HTTP
headers, device diagnostic logs, or user interface.

• System: The mutation field is determined by the system and
physical status of the IoT device such as the pan and tilt angle
of an IoT camera, the temperature value of a thermostat, the
switch status (on, off) of a smart plug, etc.

• Random: The mutation field does not have a determined
value. These mutation fields may be session identifiers, en-
cryption value, or random values caused by the software
non-determinism.

For different categories of mutation fields, we have different
rules on updating their values to provide high-fidelity responses.
First, since the collected responses may be weeks before the real
HoneyIoT deployment, we need to update the time related mutation
fields to avoid inconsistency. In general, we generate some simple
heuristic rules for time related requests to rewrite these mutation
fields. For example, we replace the date field of the HTTP header
with the current server time and change the time related themes in
the user interface accordingly.

Second, for system category, since the physical or system status
of the IoT device may change over time, we need to provide different
system values to the attackers at different time. The system value
should be bounded by the physical capability of the IoT device (e.g.,
pan and tilt angle of a camera) or the environment (e.g., temperature
of a thermostat). Since the values generated by the IoT devices in
the past are valid, we store these valid system values in a database.
At run time, HoneyIoT will randomly select a system value from
the database to rewrite the corresponding mutation field.

Third, for mutation fields that do not have a determined value,
the attacker will not be able to detect the inconsistency as long

Figure 6: An example of using differential analysis to update
the mutation field
as we replace it with a different random value. For HoneyIoT, we
record the features (e.g., length, maximum, minimum) of these
random values, and then generate random values based on these
features for the corresponding mutation field.

Figure 6 shows how to update the mutation fields with a sim-
ple example based on attacks against an NC220 web camera. This
"/getvideoctrls.fcgi" request allows the attacker to acquire video
control related information, which is determined by the orientation
of the camera. As shown in the figure, there are three mutation
fields, time related mutation field “date", system related fields “Pan"
and “Tilt". For the time related field “date", we rewrite it with the
current time of the HoneyIoT server.The “Pan" and “Tilt" fields
represent the horizontal and vertical angles of the IoT camera. As
they are related to the physical orientation of the device, we classify
them as the system category and store them in a database. At run
time, HoneyIoT selects 75 for “Pan" and 88 for “Tilt".

By employing differential analysis based content mutation, Hon-
eyIoT can effectively mitigate fingerprinting attacks and mislead
attackers to launch followup attacks and upload malware. As fu-
ture work, we aim to enhance the content mutation module by
conducting more in-depth analysis of the correlations among differ-
ent mutation fields, with the aim of generating more realistic and
consistent responses that can better deceive evolving attackers.

4.4 System Design
As shown in Figure 7, HoneyIoT consists of two main components:
the frontend and the reinforcement learning agent.

The frontend is a virtual machine which opens some ports to
provide services similar to a real IoT device. It needs to parse and
analyze attackers’ request packets efficiently. Once the frontend re-
ceives an attacker’s request packet, it extracts the crucial attributes
of the data (i.e. source IP, target port, request path, query string,
etc) and forwards them to the reinforcement learning agent. If any
malware downloading command (e.g., wget) is detected, the fron-
tend forwards the command to a separate crawler in a sandbox.
The crawler will parse the obtained command and establish a sepa-
rate outbound connection to the attackers’ Command and Control
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Figure 7: HoneyIoT system structure

(C&C) server and automatically collect malware for further analysis.
The frontend is also responsible for assembling and rewriting the
response selected by the reinforcement learning agent. As discussed
in the previous section, HoneyIoT will use different logic to mutate
the value based on the type of mutation field in the response. For
system value, HoneyIoT randomly selects a valid value from the
database to rewrite the field. For timing value, HoneyIoT combines
the session information and heuristic rules to generate the mu-
tation value. For mutation field that does not have a determined
value, HoneyIoT uses some random number and string generator
to rewrite the value. Some HTTP header information will also be
updated in order to ensure the fidelity of the packet.

The reinforcement learning agent is responsible for emulating
IoT devices by selecting a proper response based on the attacker’s
request. Upon receiving the attacker’s request from the frontend,
the reinforcement learning agent updates the state by appending
the packet to the attacker’s session history. It then takes an action
by fetching a specific IoT device’s response from the response data-
base following the reinforcement learning algorithm and updates
the reward based on the reward function. During the interaction
process, HoneyIoT also logs all attack traffic for further analysis.

5 PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of HoneyIoT and
compare it to other IoT honeypots in various aspects.

5.1 Experiment Setup
We have implemented HoneyIoT and deployed it on the public
Internet. Specifically, it runs on AWS using t2.small instance with
2G memory and one vCPU core. The frontend is mainly written
in python and shell scripts. It opens ports identical to the real IoT
devices it tries to emulate. For example, to emulate an IoT camera,
the frontend opens the HTTP port 80, HTTPS port 443, RTSP port
554 and RTMP port 1935.We notice that different brands andmodels
of IoT devices usually open some device specific ports providing
services like mobile app control or firmware update. The frontend
also opens these ports as there are attack traces collected over them.

Upon receiving a request from an attacker, HoneyIoT processes
the request and forwards it to the RL Agent. After the RL Agent
chooses a valid response, the frontend rewrites the corresponding
mutation field based on their categories (in Section 4.3). We imple-
ment a separate crawler module to automatically collect malware
from the attacker’s control and command server once the frontend
receives a downloading command. The malware sample is uploaded
to VirusTotal[29] for malware classification and analysis.

In our implementation of the RL agent, we use stable baseline3
[24] to generate the RL model. As discussed in Section 4.2, we
choose PPO as the RL algorithm in our model. We also implement
a log module to store the interactions between the RL agent and
the attackers for further analysis. The interaction log contains
information such as the attacker’s IP address, the request packets
and reinforcement learning model’s action at each step, etc.

We compare HoneyIoT with the following IoT honeypots:
Our Baseline: It is identical to HoneyIoT except that it does not

use any RL algorithm. Instead, we implement a simple heuris-
tic algorithm to let our baseline honeypot select responses
based on the MDP model directly. In the algorithm, each
response has an equal probability to be chosen regardless of
the attacker’s session history.

Existing Honeypot:We deploy an existing open-source honey-
pot called Snare & Tanner [30], because it can effectively
mimic the Web service of IoT devices opened on HTTP ports.
Since the majority of the vulnerabilities of the emulated IoT
devices are over HTTP ports, Snare & Tanner can, at some
degree, emulate these IoT devices.

5.2 Evaluation Results
We trained the HoneyIoT agent using our collected attack trace
and then deployed HoneyIoT, Our Baseline, and Snare & Tanner
on AWS for two month (Oct. 2022- Dec. 2023) to evaluate their
performance. In particular, we build HoneyIoT-camera based on
the attack trace of five different cameras (as shown in Table 1) and
present the basic statistics in Section 5.2.1. Besides IoT camera, we
also apply the idea of HoneyIoT to other IoT devices to test the
extensibility of HoneyIoT. Specifically, we used the attack traces
of six routers and five smart plugs to build HoneyIoT-router and
HoneyIoT-smartplug and present their results in Section 5.2.2. In the
remaining subsections, we evaluate the performance of HoneyIoT
in terms of covertness and scalability.

5.2.1 Basic Statistics. As shown in Table 2, HoneyIoT-camera re-
ceived 29,467 attack sessions, 2963 vulnerability exploitations, and
467 malware uploads from the attackers. Our baseline honeypot
received 26,301 attack sessions, 843 vulnerability exploitations, and
92 malware uploads. Snare & Tanner received 28,660 attack ses-
sions, 731 vulnerability exploitations and collected 14 malware. In
order to estimate the capability of engaging attackers, we calcu-
late the attack-session length by counting the request packets sent
by attackers during each attack session. For better estimation, we
excluded those sessions done by massive scanners which only per-
form a probe and then leave. The average session length is 7.57, 4.97,
and 4.02 for HoneyIoT-camera, our baseline honeypot and Snare &
Tanner, respectively. These results indicate that HoneyIoT is more
effective in engaging and misleading the attackers to upload their
malicious code compared to our baseline and the existing honeypot.

Figure 8 shows the vulnerability exploitation distribution of dif-
ferent honeypots. HoneyIoT-camera can successfully interact with
the attackers and mislead them to exploit different vulnerabilities
of all five IoT cameras, while our baseline honeypot and snare &
tanner only mislead attackers to the vulnerabilities of Reolink E1
zoom, TPlink NC220 and Hikvision cameras. In fact, most of the
attacks collected by our baseline honeypot and snare & tanner are
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Table 2: Basic Statistics

HoneyIoT-camera Our Baseline Existing Honeypot
(Snare & Tanner)

Attack Sessions 29467 26301 28660
Average Session Length 7.57 4.97 4.02
Vulnerability Exploit 2963 843 731
Malware Collected (Total) 467 92 14

Figure 8: Vulnerability exploitation distribution

through a vulnerability with CVE ID 2021-40149 on the Reolink E1
Zoom camera. It is a simple exploitation where attackers can obtain
the SSL private key of the camera by launching a directory traversal
attack. As shown in Figure 3(b), compared to other sophisticated
remote code execution attacks, this exploitation usually has a very
short attack path and thus does not require pre-attack checks. These
results indicate that HoneyIoT-camera can effectively emulate the
vulnerabilities of different IoT cameras and mislead attackers.

Figure 9 shows the malware collected by HoneyIoT-camera, our
baseline honeypot, and snare & tanner, which are identified through
a malware analysis website called VirusTotal [29]. Most of the mal-
ware collected by the HoneyIoT-camera can be classified as Mirai
botnet and it’s variants. In particular, HoneyIoT-camera collected
467 botnet malware samples, where 24 are classified as Mozi [6], 65
are classified as Hajime and 206 are classified as Mirai. Other than
the botnet malware, HoneyIoT-camera also collected 119 miner
malware that aim to mine cryptocurrency through the infected
devices. Other 53 files collected from the attackers cannot be identi-
fied by VirusTotal, and thus we categorize them as “other" malware.
Although our baseline honeypot caught 92 malware and Snare &
Tanner caught 14 malware, they are mostly in the category of Mirai.
These results demonstrate that HoneyIoT can effectively mislead
different attackers to upload their malicious codes.

5.2.2 Extensibility. In order to evaluate whether HoneyIoT can be
extended for emulating other types of IoT devices besides IoT cam-
eras, we trained reinforcement learning models (called HoneyIoT-
router andHoneyIoT-smartplug) using the attack trace of six routers
and six smart plugs (as shown in Table 1) and deployed them on
AWS. Within two months, the HoneyIoT-router received 40,531
attack sessions, 3675 vulnerability exploitation, collected 780 mal-
ware, and the average session length was 8.12. HoneyIoT-smartplug
received 22,104 attack sessions, 1973 vulnerability exploitation, col-
lected 186 malware, and the average session length was 6.97.

As shown in Figure 10(a), HoneyIoT-router successfully misleads
attackers to exploit the vulnerabilities of all emulated routers except

Figure 9: Malware uploaded

Huawei WS7200, probably because it has no publicly exposed vul-
nerability. After analyzing the log, we notice that the reinforcement
learning model avoids using the response of Huawei WS7200 in
most cases as it does not provide positive rewards. On the other
hand, HoneyIoT-smartplug successfully misleads attackers to ex-
ploit the vulnerabilities of all six simulated smart plugs as shown
in Figure 10(b),

Figure 11(a) shows the malware collected by HoneyIoT-router.
For the 780 collected malware, 4 are classified as mozi, 94 are clas-
sified as Gafgyt, 57 are classified as hajime, 362 are classified as
Mirai, 184 are classified as miner, and 79 cannot be identified by
VirusTotal. Figure 11(b) shows the malware collected by HoneyIoT-
smartplug, where 17 are classified as Gafgyt, 24 are classified as
hajime, 72 are classified as Mirai, 51 are classified as miner, and
22 cannot be identified by VirusTotal. Currently, HoneyIoT relies
solely on VirusTotal to perform malware classification and analysis.
Although most of the collected malware samples can be identified
by VirusTotal, some files cannot be identified by it. Some of them
are essentially empty files with randomly generated file names pos-
sibly due to the failure of attacker’s control and command server.
Other files may represent new malware (e.g., 0-day malware) that
require further investigation. These results together demonstrate
that HoneyIoT can emulate the vulnerabilities of different routers
and smart plugs, and can collect various types of malware from
attackers. In other words, HoneyIoT can be extended to effectively
emulate other types of IoT devices.

We also deployed HoneyIoT-camera, HoneyIoT-router, and Hon-
eyIoT -smartplug at three different locations (Virginia, Paris, Tokyo),
and performed analysis on the collected malware based on the geo-
graphic locations. As shown in Figure 12, HoneyIoT placed in US
collected most malware regardless of the device it emulates. In par-
ticular, HoneyIoT-camera placed in US, France, and Japan collected
467, 322 and 370 malware, HoneyIoT-router placed in the US, France,
and Japan collected 780, 732 and 695 malware. HoneyIoT-smartplug
placed in the US, France, and Japan collected 186, 147 and 162 mal-
ware. The performance difference among Honeypots deployed at
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(a) HoneyIoT-router (b) HoneyIoT-smartplug

Figure 10: Vulnerability exploitation distribution

(a) HoneyIoT-router (b) HoneyIoT-smartplug

Figure 11: Malware collected

different locations is mainly due to the behavioral difference among
different groups of attackers. The attackers can hand-craft their
mass-scanners to restrict the scanning area with the goal of reduc-
ing the overall scanning time and targeting specific devices that
are widely used in a given region.

In addition, we notice that the types of malware collected by
these three types of honeypots have certain degree of overlaps.
This phenomenon indicates that some malware is independent of
the compromised IoT device type. In other words, some attackers
essentially treat IoT devices as general light-weight linux machines.
In this sense, for the purpose of malware collection, it is possible to
obtain all types of popular malware over the public Internet just by
emulating a potentially small subset of vulnerable IoT devices that
are attractive to the attackers. In the future, we will further extend
HoneyIoT to other types of IoT devices and try to locate this subset.

5.2.3 Covertness. In this subsection, we evaluate whether Hon-
eyIoT is covert against widely used reconnaissance and honeypot
detection tools. The Shodan honeyscore[12] is a well-known tool
to check whether a remote host is a honeypot or not. Given an IP
address, the Shodan honeyscore calculates the probability of the
host to be a honeypot, in the range of 0.0 to 1.0, where 0.0 means
that the host is definitively a real system, and 1.0 means that the
host is a honeypot. The honeyscore is calculated by an undisclosed
machine learning classification algorithm. According to Shodan, the
honeyscore is affected by arguments such as the number of opened
network ports, fingerprints of known honeypots, past records of
the host IP address, and interactions with the host. Therefore, we
are interested in finding out the capability of HoneyIoT in dealing
with this state-of-the-art reconnaissance tool.

After the deployment of HoneyIoT on AWS, we wait for two
weeks and then use Shodan API to acquire the honeyscores of
HoneyIoT by providing their IP addresses. For comparison, we
use T-pot [31], an all-in-one honeypot platform to deploy different
open-source honeypots and collect their honeyscores. Specifically,
Dionaea is a medium interaction honeypot that mimics multiple

Figure 12: Malware collected based on geographic location

Figure 13: Honey Score for existing honeypots and Hon-
eyIoT

service including ftp, upnp and mqtt, Glutton emulates vulnerable
ssh servers, and Conpot is designed for emulating Industrial Control
System (ICS). In particular, we configure T-pot so that only one
specific open-source honeypot runs at one time. To reduce variation
errors, we deployed multiple instances for each type of honeypot on
different locations for two weeks before collecting the honeyscores
of these honeypots via Shodan API.

As shown in Figure 13, HoneyIoT has honeyscore of 0 which
indicates that Shodan treats HoneyIoT as a real IoT device. On
the other hand, the existing open-source honeypots all have hon-
eyscores higher than 0. Dionaea, Glastopf, Conpot and Snare &
Tanner have honeyscores of 0.35, 0.3, 0.5 and 0.1. These results
demonstrate that HoneyIoT is effective at maintaining covertness
against state-of-the-art reconnaissance and honeypot detection
tools.

5.2.4 Scalability. Compared to real-device based honeypot which
requires physical IoT devices [32, 33] whenever the honeypot is ac-
tive, HoneyIoT offers a more flexible approach. Physical devices are
only required during the attack trace collection phase, after which
HoneyIoT can model IoT devices using the collected attack trace
and use the trained model to interact with the attacker. Training the
reinforcement learning model is a time-consuming but one-time
job. In our case, it took us approximately two hours to process the
attack trace and train HoneyIoT-camera with our server, which has
an AMD Ryzen 7 5800 CPU and an RTX 3090 GPU.

At run time, the scalability and deployment cost of HoneyIoT de-
pends mainly on its resource consumption. To evaluate the resource
consumption of HoneyIoT, we collect the average CPU and memory
usage of HoneyIoT in our AWS instance. In our experiment, we
use the AWS T2.small instance which has one vCPU core and 2G
memory. According to AWS, each vCPU core of a T2 instance is
essentially a thread of a 3.3 GHz Intel Xeon Scalable processor. For
comparison, we also deploy several existing open-source honey-
pots including Dionaea, Conpot, and Snare & Tanner on AWS using
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Table 3: Scalability

Honeypot
Average

CPU usage
Average

Memory usage AWS Instance

HoneyIoT-camera 4.2% 174 MB T2.small
HoneyIoT-router 4.7% 187 MB T2.small

HoneyIoT-smartplug 4.1% 157 MB T2.small
Dionaea 23.6% 786 Mb T2.small

Snare & Tanner 7.1% 282 Mb T2.small
Conpot 17.7% 548 Mb T2.small

T2.small instance and monitor the CPU and memory usage of each
honeypot process.

As shown in Table 3, during the interactions with attackers,
the average CPU usage of HoneyIoT-camera is 4.2% and the av-
erage memory usage is 174 MB. HoneyIoT-router and HoneyIoT-
smartplug have similar average CPU and Memory usage. On the
other hand, Snare & Tanner has an average CPU usage of 7.1% and
an average memory usage of 282 MB. Dionaea has an average CPU
usage of 23.6% and an average memory usage of 786 MB. Conpot
has an average CPU usage of 17.7% and an average memory usage
of 548 MB. Dionaea and Conpot have much higher computational
overhead than HoneyIoT mainly because they are not specifically
designed for IoT devices and they emulate functions and services
that are not supported by IoT devices. These results show that
HoneyIoT is lightweight and has good scalability.

6 RELATEDWORK
There has been considerable research on using honeypots [34, 35] to
deceive the attackers. Many open-source or commercial honeypots
have been deployed, especially for computer network services such
as honeyd [36] and nepenthes [37], etc. Recently, due to the wide
adoption of IoT devices, IoT honeypots have also been developed
to increase the overall security of IoT systems.

IoTPOT [10] is the first honeypot specifically designed for IoT de-
vices. It is a low-interaction honeypot focusing on emulating telnet
service which is used by many IoT devices. Hakim et al. [38] intro-
duced U-POT, an IoT honeypot framework specifically designed for
the UPnP (Universal Plug and Play) protocol which is widely used
in smart home such as surveillance cameras, smart bulbs, and smart
switches. It uses device description files to automate honeypots and
provide fake responses. Seamus et al. [18] builds an SSH honeypot
by implementing an interactive shell. They leverage reinforcement
learning to conceal the honeypot characteristics. In HoneyCam
[39], to emulate the video streaming services of IoT cameras, the
authors propose to prerecord 360° video and map the 360° video
to different fields of view based on the attacker’s camera control
commands. These IoT honeypots mainly focused on emulating spe-
cific protocols or services that are widely used by the IoT devices.
However, as discussed in section 2, the attackers nowadays will
perform various pre-attack checks to gather information for follow
up attacks, and can notice that certain services are missing and
suspect that they are not interacting with a real device.

As another approach, researchers leverage firmware images or
real devices to build honeypots for IoT devices. Vetterl et al. pro-
posed Honware [40], a virtual honeypot framework that can emu-
late different IoT devices based on their firmware image. Honey-
Cloud [41] utilizes the firmware image of IoT devices to generate

hardware and software IoT honeypots in order to collect attacks
against Linux-based IoT devices. Guarnizo et al. [32] proposed a
high-interaction IoT honeypot architecture called SIPHON, which
sets up honeypots on the cloud and leverages traffic forwarding
technique to redirect attacker’s commands back to IoT devices in
their lab. Similarly, Tambe et al. [42] uses VPN to integrate the off-
the-shelf IoT devices into a general honeypot architecture. Luo et al.
[43] proposed IoTCandyJar, an intelligent-interaction honeypot that
emulates the request-response pattern of IoT devices. IoTCandyJar
first acquires the attacker’s request packets using low-interaction
honeypots and probes the IoT devices on the public Internet to
collect valid responses for the requests. IoTCMal [33] uses real IoT
devices to engage the attackers. It is a hybrid IoT honeypot which
consists of a low interactive and a high interactive component. The
low interactive component handles the login process and forwards
the attacker’s commands to the high interactive component that
uses real IoT devices. Then, the attackers are essentially interacting
with real IoT devices after the login phase. However, most of the
IoT device manufacturers do not publicize the firmware images of
their products. In addition, always forwarding the attacker traffic
to real IoT devices suffers from scalability issues and cannot be
deployed at a large scale.

Different from the aforementioned existing research, HoneyIoT
does not limit itself to emulating specific protocol or specific IoT
device. Moreover, through reinforcement learning, HoneyIoT can
adaptively interact with the attackers and mislead them to upload
malware.

7 CONCLUSIONS
In this paper, we proposed an adaptive high-interaction honeypot
for IoT devices, called HoneyIoT, which can better engage attackers
leveraging reinforcement learning techniques. To learn how attack-
ers interact with IoT devices, we first build a system for collecting
attack traces from real devices. We model the attack behavior us-
ing a Markov decision process and use reinforcement learning to
determine the best responses to engage attackers based on the
collected traces. We also use differential analysis techniques to
mutate response values in some fields to mitigate fingerprinting
attacks. HoneyIoT has been deployed on the public Internet, and
experimental results demonstrate its effectiveness in evading re-
connaissance and honeypot detection tools, as well as its ability to
mislead attackers into uploading malware.

In the future, we will enhance HoneyIoT’s deception capabilities
by developing more sophisticated reward functions and generat-
ing responses that are more consistent and realistic. Additionally,
we will extend HoneyIoT to emulate a wide variety of IoT devices
and deploy them across various public cloud platforms and en-
terprise networks to collect more malware samples and analyze
attacker behaviors. Our ultimate goal is to leverage the collected
malware samples to detect zero-day attacks before they can be
widely launched.
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