Check for
Updates

Narrow Escape Problem in Synaptic Molecular Communications

Caglar Koca’

Meltem Civas’

Ozgur Akan' T

* Internet of Everything (IoE) Group
Electrical Engineering Division, Department of Engineering
University of Cambridge, CB3 0FA, Cambridge
United Kingdom
{ck542,0ba21}@cam.ac.uk
TKog University Center for neXt-generation Communications (CXC)
Department of Electrical and Electronics Engineering
Kog University, 34450, Istanbul
Turkey
{mcivas16,akan}@ku.edu.tr

ABSTRACT

The narrow escape problem (NEP) is a well-known problem with
many applications in cellular biology. It is especially important to
understand synaptic molecular communications. Active regions
of synapses, also known as apposition zones, are connected to
synaptic cleft through narrow slits, from which neurotransmitters
can escape to or return from the cleft into the apposition zones.
While neurotransmitters leakage into the cleft might be desired for
the reuptake process, escaping neurotransmitters might trigger an
undesired, i.e., false-positive or action potential in the post-synaptic
terminal.

Obtaining analytic solutions to NEPs is very challenging due
to its geometry dependency. Slight alterations in either or both
shape or the size of the hole and the outer volume may cause
drastic changes in the solution. Thus, we need a simulation-based
approach to solve NEPs. However, NEP also requires the size of
the hole to be much smaller than the dimensions of the volume.
Combined with the requirement for Brownian motion, where the
step size is much smaller than the dimensions of the volume, sim-
ulations can be prohibitively long, even for modern computers.
Therefore, in this work, we suggest a simulation algorithm that
simultaneously satisfies the NEP and Brownian motion simulation
requirements. Our simulation framework can be used to quantify
the neurotransmitter leakage within synaptic clefts.

CCS CONCEPTS
« Computing methodologies — Modeling methodologies.

KEYWORDS

Narrow escape problem, Molecular communication, Synaptic com-
munication, Brownian motion, Brownian motion simulation

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

NANOCOM °22, October 5-7, 2022, Barcelona, Spain

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9867-1/22/10.
https://doi.org/10.1145/3558583.3558856

ACM Reference Format:

Caglar Koca' Meltem Civas? Ozgur Akan't. 2022. Narrow Es-
cape Problem in Synaptic Molecular Communications. In The Ninth Annual
ACM International Conference on Nanoscale Computing and Communication
(NANOCOM °22), October 5-7, 2022, Barcelona, Spain. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3558583.3558856

1 INTRODUCTION

Synaptic communication (SC), which is the transmission of informa-
tion in nerve endings through information-carrying neurotransmit-
ter molecules, is one of the most ubiquitous branches of molecular
communication (MC) [6]. One bottleneck of MC is that molecules in
MC remain active for a long time in the channel, unlike electromag-
netic (EM) communication, where EM waves passively dissipate at
the end of their time slot. Two immediate problems rising from this
phenomenon are intersymbol interference (ISI), where remaining
molecules interfere with the next transmission, or cross-talk, where
molecules leak out to other transmitting sites and interfere with
their transmission. In this work, we develop a simulation frame-
work to find a solution to the levels of cross-talk within a synapse
due to the neurotransmitter spillage.

There are numerous studies in the literature studying ISI in MC,
and SC [12-14]. The cross-talk is also modeled with an information
communication theoretic (ICT) perspective [16, 26]. While it is
possible to have inter-synaptic cross-talk, existing ICT literature
mostly focuses on intra-synaptic cross-talk due to peri-synaptic
astrocytes enveloping the entire synapse [18]. The experimental
works and the ICT models agree that the impact of cross-talk should
be minimum [1].

The existing ICT literature treats the spillover as an extra noise
factor. Since only few, if any, neurotransmitters escape into the
active zones, signal-to-spillover noise ratio is very high. Concur-
rently, the synaptic capacity is only marginally reduced due to
the spillover. However, these works do not consider the stochastic
nature of synaptic communications. SC is equipped with many
correction mechanisms to reduce the randomness, including multi-
ple vesicle release cites, multiple synapses between neurons and
molecular reuptake [20]. Thus, for a healthy neuron, we expect the
impact of the cross-talk to be rare. However, if some neurological
condition affects the molecular reuptake, the effects of randomness
are amplified. Many neurological conditions arise from problems

https://doi.org/10.1145/3558583.3558856
https://doi.org/10.1145/3558583.3558856
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558583.3558856&domain=pdf&date_stamp=2022-10-03

Figure 1: Two depictions of NEP of 50 iterations in 2D. The
space step is too large to satisfy the BM simulation require-
ment. We kept the space step too large for visualisation pur-
poses.

with the neurotransmitter reuptake, showing the importance of
studying the rare events in SC [3, 5, 7, 19].

Intra-synaptic cross-talk happens when neurotransmitters re-
leased for an active zone escape into another active zone. Since the
boundaries of the active zones are narrow, the narrow escape prob-
lem (NEP) becomes a good candidate for finding the probability of
the undesired activation. NEP is a boundary value problem where a
particle, whose movement is modelled as Brownian motion (BM), is
confined in a volume with a very narrow opening, i.e., a hole, from
which it can escape. A NEP demonstration is presented in Fig. 1.

The solutions to NEP are highly dependent on the geometry,
making analytic solutions hard, even impossible [8, 22]. Simulation-
approach is commonly used in MC when analytic solutions are not
readily available [10, 11]. Similarly, simulation-based solutions are
developed for NEP as well [9, 21].

NEP dictates that the dimensions of the hole be much smaller
than the dimensions of the volume. BM simulations require that
the chosen step size be much smaller than all dimensions of the
volume, including the hole, making simulations to be prohibitively
long. Thus, we have to choose the simulation step size adaptively
to prevent the simulations from taking forever. There are numerous
application-specific simulation algorithms that adaptively change
the step size in BM simulations [4, 17]. However, there is still not a
detailed simulation framework directly for the narrow escape. The
most recent solutions for the narrow escape choose a constant step
size, 1000 times smaller than the radius of a circular hole. While
this choice satisfies the simulation requirements, such a simulation
would be prohibitively long for practical runs [9].

In this work, we provide an adaptive simulation framework for
NEP targeted toward estimating the spillover rate into the active
zones. Our framework compartmentalizes the volume and calcu-
lates the effective step length. The compartmentalization takes the
shape of the hole into account in step length calculations.

The rest of this paper is organized as follows. Sec. 2 offers back-
ground on narrow escape problem. Sec. 3 outlines the errors in BM
simulations. Sec. 4 presents our simulation algorithm in detail. Sec.
5 includes our discussion and results. Sec. 6 concludes this paper.

2 NARROW ESCAPE PROBLEM

NEP is an exit problem, also called a hitting problem in BM, where
a hitting, or escape happens only through a hole, which is narrow
compared to the rest of the simulation domain [25].

NEP is also a type of mean first passage time (MFPT) problem
[15]. MFPT is essential for both biological systems and MC.

We can characterize NEP as a boundary value problem with
hybrid boundary conditions. Most simulated volume obeys the
reflecting boundary conditions, while only the hole satisfies the
absorbing boundary conditions. Therefore, it is extremely hard to
solve analytically.

NEP is solved for several different geometries [23-25]. The gen-
eral solution is of the form

14

T~ oD 1)

where 7, |[V|, H, and D are the mean escape time, the size of the vol-

ume, the size of the hole, and the diffusion coefficient, respectively

[25]. For a rectangular [V| = a X b, a hole of length H/2 situated in

one of the corners of V, r becomes
2|V a 2 &b 2 H 4

T_E logﬁ+log;+a+2ﬁ +O(E,ﬁ):|, (2)

where f§ = e (2) is the closest expression to an exact solution

even though the geometry is perfectly symmetrical. Thus, using
simulations is a powerful approach to solve NEP.

3 BROWNIAN MOTION DISCRETIZATION
ERROR

Discretization of BM has been studied for several decades. The
primary motivation behind these studies is that many BM prob-
lems do not have an analytic solution. As a result, computational
approaches are relied upon. However, computational resources are
not infinite; thus, we need to choose the largest step size for the
acceptable discretization errors.

The maximum discretization error for a BM, B(t), within 0 <
t' <tis

en() = max (B(t') — Bar(t))) ~ +[20%AtIn (i))
0<t'<t At

where o2 is the volatility or variance of B(t) and At is the time step
of the discretization [2]. Since we are more interested in BM as a
measure of molecular movement, we replace o with 2D, where D
is the diffusion constant. Thus, (4) becomes

t
t) = B(t)) = Bar(t)) ~ \[4DAtIn (). @
ent (1) o?ﬁ'ﬁt((t") = Bar (1)) (% 4)
For B to move within the next time step almost surely, we choose

las
[= V2DAt. (5)

Substituting (5) into (4) gives us the relation between the space
step and the discretization error, i.e.,

ens(H) ~ V2 ln(é). ©)

One important implication of (3) is that errors tend to increase
relatively slowly with ¢, i.e.,

d 4DAt
—ene(t) =

- ()
dt 2t,[4DAtIn (4)
Similarly,
enr(at) _ (In(at/Ar)\'/? @
ear(t) ~ \ In(t/Ar) ’

where a > 1. (7) and (8) both implies that as long as the order of
t is known and a At is chosen accordingly, we do not need to fine
tune the At value.

The discretization error in simulation of reflecting BM, B(¢) for
fixed ¢ with n time steps is

BB ~ By 0] =~y 1 [5. ©)
~ 0.58264 % = 0.5826 V2DAt, (10)

where {(.) is the Riemann Zeta function, D is diffusion coefficient
and At = % is the simulation time step [2]. Substituting (5) to (10),
the expected error becomes

E|B(t) — By/p(t)| = 0.58261. (11)

(11) implies that the expected discretization error is approxi-

mately half of the discretization length. In fact, both (6) and (11)

implies that BM errors are proportional to [. While it is not possible

to compare them as one is the maximum error, and the other is the

expected error; however, we deduce that discretization errors are
on the order of 1.

4 A SIMULATION FRAMEWORK FOR THE
NARROW ESCAPE PROBLEM

As we state in Sec. 1, simulating NEP is particularly challenging
due to the length requirements for the step size. In this section,
we first present the mathematical description of the problem and
the flow of the algorithm. Then, we describe the modules of our
algorithm for NEP simulations. Throughout this section, we use a
variety of symbols in our calculations. Even though we explain all
symbols inline, we also present them in Table 1.

4.1 NEP Simulation Framework
We know that for an accurate BM simulation, the step size, [, should

be much smaller than the dimension of the simulated volume, V,
ie.,

| < min(V;) (12)
where [is given by (5), and V; are the lengths of the dimensions of
a cuboid V, i.e., |V| = V] X V3 X V3, for 3D.

Since D is a macroscopic parameter, we adjust time step, At, to
satisfy (12). As a result, lower [implies lower At.

Assume that there is a narrow hole, H, on dV, i.e., the surface
enclosing V. By definition of NEP as discussed in Sec. 2, H, the
largest dimension of H, needs to satisfy

H < min(V;). (13)

When the Brownian particle, P, is in the vicinity of the hole, H
becomes part of the geometry of the volume. Accordingly, we need
to satisfy (12) for h, as well as for min(V;), turning (12) into,

| < h < min(V;), (14)

where h is the smallest dimension of H.

As we present in Sec. 3, the discretization errors are proportional
to I. As (7) and (8) shows, the errors accumulate slowly during
the simulation. However, if P exits H due to the error, it ends the
simulation prematurely. Thus using a small / is especially important
for NEP simulations.

Satisfying (14) requires further adjustment on At, which might
cause the simulations to run prohibitively long. To mitigate this
problem, we first assert that H is not part of the geometry for the
entire V. The effect of on the simulation depends entirely on the
distance between P and H, d(H, P). Accordingly, we can relax
the first part of (14), i.e.,

| < d(H,P), (15)

as long as h < d(H, P). This allows us to compartmentalize the
volume depending on the distance from H.

Algorithm 1 presents our approach to NEP simulations. To walk
through the algorithm 1, we elaborate on some key points. Line
11 initializes a flag variable, f, which is used to break the main
loop when the particle escapes. Line 14 chooses a space step from L,
depending on the output of the dist(.) module, which is discussed in

Table 1: Definition of symbols used in Sec. 4.

Variable Symbol
Volume \%4
Dimensions of V Vi

Hole H
Particle P
Largest dimension of H H
Smallest dimension of H h

P(j) = [x(j). y(j), z())]T

Location of P at iteration j

Intersection of trajectory of P

with the plane of H Py = [Py, Pry, Pt
Centre of H He = [Hex, Hey, Hez) T
Expected simulation time T

Number of iterations n

ith compartment of V Vi

Simulation space step in V* l;

Space step set L

Expected time spent in V? T

Closest distance between P and H | d(P, H)

Algorithm 1 Brownian Motion for NEP in dD

1: Inputs:
2: T: maximum simulation time,
3: L: set of space steps,
4: D: diffusion constant,
5. V: simulation volume,
6
7

: H: hole, or absorbing boundary,
. R: initial point
8: Initialise:
9. P(0) =R
10 t=0
1: f=1
122 i=1
13: while [(t < T) and f] do
14: d=dist(P(i—1),H)
15: I=L[d]
16: At = lz/ZD
172 @ = [Uniform([0,1)) - 0.5]¢

-

18: a — [x 4
llall2
19: P =P(i-1)+a
20: te—t+At
21: if out_volume
22: if escape(P(i—1),P(i))
23: fe0
24: return ¢
25: else
26: P(i)) « R{P(i)}
27: ie—i+1

28: return 0

Sec. 4.4. Line 15-17 creates a new vector with length [to illustrate the
motion of # in the next time step. Line 21 calls the out_volume(.)
function, which returns 1 if P is out of V. If it is out of V, escape(.)
module we present in Sec. 4.2 determines whether the particle
escaped through H, and we break the main loop by changing f
to 0 in line 23. Otherwise, P is reflected back to V with R{}. If the
particle is still in V when t exceeds the predetermined simulation
time, Algorithm 1 returns 0.

Algorithm 1 has two challenges. Firstly, constantly measuring
dist(H,P) increases the computational burden, even if it does
not increase the computational complexity. Secondly, calculating
dist(H, P) is not necessarily simple. A successful estimation of
dist(H, P) is the central point in our algorithm.

4.2 Escape Module

The escape module calculates if the particle leaves the volume in
the last iteration. Thus, it uses the current and last position of #.
Shortly, it uses linear interpolation to check if the line # traversed
in the last time step coincides with H. Note that we only need to
check if P leaves through H if P is outside V. Checking whether
isin V is easier as it only requires 2d comparisons. To find whether
is in V, we need a simple comparison routine which returns 1

only if any of the coordinates of P (j) is outside V, i.e.,

d

in_volume(P(j)) = Z = (0 < P(j) £ V), (16)
i=1

where — stands for the Boolean NOT operation.

As with any BM simulation, we assume that moves in a straight
line between these points. Thus, escape(.) checks if the straight
line intersects H, i.e.,

escape(P(j - 1,P(]) = {; FPUmDPOINHE0.
(17)
(17) has two stages. In the first stage, we determine the point, Py,
the intersection of the trajectory of # and the surface that H lies.
In the second stage, we check if Py is on H.
In 2D, assuming H lies on x = V; line, where V7 is the dimension
of V in the direction of H, one way to find Py is

O il LSRR EVUEE T
where P (j) = [x(j), y(j)]T and Py = [V3, Pry]. Similarly, in 3D, we
also need Pr,. We find Py, by replacing y(j) and y(j — 1) of (18)
with z(j) and z(j — 1), assuming H is located at x = V; plane.

Determining whether P; € H depends on the exact geometry
of H. In 2D, for H centered at H. = [V1, Hey] and of length H,
Pre H if

H
IPry — Hey| < . (19)

In 3D, for H centered at He = [V1, Hey, Hez] and of radius H/2
for circular hole, P; € H if

2
(Pry = Hey)® + (Prz — Hez)* < (g) . (20)

Similarly, for an elliptical hole of semimajor axis H/2 and semimi-
nor axis h/2, Pr € H if

PIy_Hcy 2 Pr, — He, 2
(HJ2)+(h2)Sl’ 1)

and for a rectangular hole of size H X h, P; € H if

H h
(|P1y _Hcyl < 5) &(|PIZ _ch| < E) (22)

For (21) and (22), we assume that H is aligned with the coordi-
nate axes, and the longer dimension falls on the y axis. If is not
aligned, we can rotate the coordinate system to ensure that H is
aligned with the coordinate axes.

Note that escape(.) routine calls (18) and one of (19, 20, 21, 22).
Therefore, calling escape(.) at each iteration increases the compu-
tational burden, even though it does not increase the computational
complexity. Thus, we do not call escape(.) at each iteration, but
only when there is a possibility that may escape. We detail our
approach in Sec. 4.3.

Figure 2: Possible compartmentalization of a 2D volume into
six compartments, with a zoomed view in the vicinity of the
hole. We depict the hole located at the boundary as the pro-
truding shaded white rectangle for visualization purposes.

4.3 Compartmentalization

As described in Sec. 4.1, we choose a space step, [depending on the
distance between # and . Rather than finding the exact distance,
we compartmentalize V, and find which compartment % lies at a
given time. Then, depending on the compartment, we assign an
appropriate [value for the next iteration. A possible compartmen-
talization of a 2D volume is presented in Fig. 2.

We use two principles in compartmentalization:

e Transition between compartments is possible only for ad-
jacent compartments, and escape is only possible from the
innermost compartment.

e Compartmentalization is smooth, i.e., changes in [should not
be abrupt.

The first principle ensures that $ might escape when we model
its movement with an [that satisfies (14). The second principle is
to increase the computational performance.

To this end, we divide V into V = V1+V2+. . .+ V¥ compartments
with space steps L = [I1, 1o, ..., Ii], with

h<bh<---<lI (23)

and [; satisfying (14).

Due to the first principle, for i < k, the width of V* should be at
least [;11. For a 2D V, assuming Vi are concentric rectangles, we
find V¥ using

i
VE= (H+2a1) X @iy =) V7! (24)
i=
= (H +2aiy1) X aiy1 — (H + 20;) X o1 (25)
= Hlj+1 + 4ajlivg + 20[1»2 (26)

where V0 = 0 and

Ylioifi>1,
@ =12’ (27)
0 ifi=1.

We also depict /; and «; in Fig. 3.
We know that (24) is valid as long as H + 2¢; is smaller than
the length of V in that direction. As we see from Fig. 2, for the 5th

Figure 3: Possible compartmentalization of a 3D volume and
illustration of /; and «;. Here, we only show the plane on
which the hole is located. The hole is depicted as a shaded
white rectangle.

compartment, this assumption is not valid. For these compartments,
Vi is approximately
Vix Vl’i. (28)
Xit+1
The outermost compartment, 6'h in Fig. 2, is the remaining
volume:

v":v-ZV,-. (29)

For a 3D V, V! are concentric cuboids rather than rectangles.
Thus, we find (24) for 3D as

1
V= [(H +2a;) x (h+2a) X ai] —ZVH. (30)
j=1

Having too many compartments might introduce too many over-
heads and slow the simulation. Since I; in each V! must satisfy (23),
following (24), |V#|s become too large compared to ;, reducing the
computational performance.

Similarly, having too few of them is detrimental to the simula-
tion efforts. We illustrate this using a two-element set, L = [I3, 2],
where [; satisfies (14). Due to the first principle we outline in this
section, the compartment which we use I as the space step has
dimensions (H + 2l3) X I; thus number of steps within this com-

partment is proportional to (%)2 Consequently, the simulation
time is decoupled from the size of V. However, we either choose a
small I, for V2, or I is designated to a large compartment, which
deteriorates the simulation performance.

4.4 Dist Module

In the previous section, we introduce the compartmentalization
process. In this section, we describe the dist(.) module, which
estimates the distance between # and H and assigns # into a
compartment.

dist(.) routine, if very intricately designed, becomes computa-
tionally heavy. Since it is called at each iteration, we prefer dist(.) to
estimate rather than determine the exact distance. This is especially

important if H is not circular or rectangular. For example, solving
the distance from a point to an ellipse requires solving a 4th degree
polynomial. To avoid making dist(.) heavier than it needs to be,
we avoid obtaining exact distances.

To reduce the computational burden, we call dist(.) module
partially. Once we know P is in V%, due to the first principle we
state in Sec. 4.3, P is in one of VI, Vi~ Vi*! Hence, we can check
if P is in V' and V1. We do not use V=1, per our discussion in
Sec. 4.3, i.e., the closer P i to H, the heavier dist(.) needs to be.
Regardless, we know that £ is in Vi=1ifitis notin V! or Vi*1,

We separate the dist(.) module into three subroutines: fast_check,
regular_check and slow_check. fast_check is called when % is far
from H. When P approaches H, we call a heavier and more precise
regular_check. Finally, we call slow_check when % is in the vicinity
of H. We describe these subroutines in order.

4.4.1 fast_check subroutine. In dD space, H is d — 1D, so we can
choose our coordinate systems such that there is one dimension,
orthogonal to H. Choosing the orthogonal dimension as x, as we
do in Sec. 4.2 for dist(H,P) > H,

dist(H,P) = V; — x(i). (31)

(31) is the fastest way to estimate the position of P; therefore,
we name this subroutine as fast_check. However, since it does not
use any information on other dimensions, it is only applicable to
the outermost compartments.

4.4.2 regular_check subroutine. As P approaches H, more intri-
cate details of H need to be taken into account. To this end, we set
rectangles for a 2D V as illustrated in Fig. 2 and cuboids for a 3D
V. We describe this process in detail in Sec. 4.3. H is necessarily a
line in 2D, and we do not need to make any adjustments. However,
in 3D, to obtain cuboid compartments, we extend non-rectangular
H to a H X h rectangle, i.e., the smallest rectangle, that H can fit
into. Then, for © to be in Vi, the following should be satisfied.

Vi—aiy1 > x>V —aj, (32a)
Hey+H/2+a; >y > Hey—H/2 - a, (32b)
He,+h/2+a; >z > He, —h/2—a, (32¢)

where (32c¢) is used only for 3D.

Note that this subroutine involves six comparisons. After com-
partments are finalized, the comparison limits do not change during
the simulation. Therefore, it is still very robust.

4.4.3 slow_check subroutine. We design the slow_check routine to
make small adjustments for innermost compartments. The corners
of the innermost compartments are larger than necessary. Thus,
we can round the corners using quarter circles in 2D or one-eighth
spheres in 3D. We can make these adjustments only if the projection
of on the line (or plane in 3D) that H is located is outside H.
Since we are looking for projection of #, x coordinate does not
come into play.

slow_check subroutine is responsible for the round corners of V1
and V2 in Fig. 2. To do so, slow_check anticipates which side of H P
lies in and calculates d? (7, P) and compares it with al.zﬂ. Note that

Figure 4: 2D demonstration of NEP using the compartmen-
talization in Sec. 4.3.

Figure 5: 3D demonstration of NEP using the compartmen-
talization in Sec. 4.3 extended to 3D.

we use d?(.) rather than d(.) to avoid using the computationally
heavy sqrt(.) function.

slow_check consumes higher resources than other subroutines,
and depending on the choice of L, it might not be necessary. There-
fore, the depth to which slow_check is used, if it is used at all, should
be application-specific.

5 SIMULATION RESULTS

In the previous section, we provide the details of our simulation
framework. In this section, we demonstrate our framework and
compare its results with the literature values presented in Sec. 2.

Fig. 4 and 5 are our demonstrations in 2D and 3D respectively.
In both figures we see that as $ approaches #, we use a smaller
space step for increased accuracy.

We illustrate the performance of our simulation framework in
2D with V =g x g, H =¢/500,D = 0.2 and L = {(55)|1 < i < 6}
in Fig. 6. The start point is chosen as a random point with x,y €
[q/4,3q/4] and H islocated at the corner. We obtain the theoretical
result is using (2).

Clear from Fig. 6 that our framework offers similar results to
the theoretical values. The discrepancy between simulation results
and theoretical results is higher in smaller volumes. We believe

1.8 °
—— Theoretical
= e Simulation
o
—
X
(0]
£
|_
(0]
(o}
(]
(@]
(]
L
6 7 8 9

Base of Square (q)

Figure 6: Simulation vs. theoretical results for NEP for a 2D
rectangular volume.

this is due to the corners constituting a larger area compared to
the total area for smaller q. Corners trap # and thus increasing the
simulated escape time. To improve our algorithm, we need to reduce
the step size around the other features of the area. Accordingly,
we need to use distance to edges and corners of the area with the
proximity to the # to determine the space step. We believe such
an improvement will reduce the probability of entrapment around
the corners, increasing the correlation between the theoretical and
simulation results.

6 CONCLUSION

In this work, we present a novel simulation framework for NEP
specifically designed for rectangular and cuboid volumes. Particle
motion at respective scales follows BM. However, BM simulations
introduce additional challenges to the solution of NEP as the simu-
lation step size is required to be much smaller than the hole size,
resulting in enormous computation time. The proposed adaptive
simulation framework, which dynamically selects simulation step
sizes, is much faster than existing approaches based on constant
step size. As a future improvement, we plan to apply smaller space
steps around the corners to increase the accuracy as the corners
appear to increase the escape time. We believe our work improves
the understanding of SC dynamics by quantifying the escaping
neurotransmitters into the apposition zones.

ACKNOWLEDGMENTS

This work was supported in part by the AXA Research Fund (AXA
Chair for Internet of Everything at Ko¢ University) and Huawei
Graduate Research Scholarship.

REFERENCES

[1] Nina Arnth-Jensen, Denis Jabaudon, and Massimo Scanziani. 2002. Cooperation
between independent hippocampal synapses is controlled by glutamate uptake.
Nature Neuroscience 5, 4 (2002), 325-331. https://doi.org/10.1038/nn825

[2] Soren Asmussen, Peter Glynn, and Jim Pitman. 1995. Discretization error in
simulation of one-dimensional reflecting Brownian motion. The Annals of Applied
Probability 5, 4 (1995), 875-896.

B3

—_
o

jpry
&

=
2

)
=

[21]

[22]

(23]

[24

[25

[26

Richard J. Bridges and C. Sean Esslinger. 2005. The excitatory amino acid
transporters: Pharmacological insights on substrate and inhibitor specificity
of the EAAT subtypes. Pharmacology & Therapeutics 107, 3 (2005), 271-285.
https://doi.org/10.1016/j.pharmthera.2005.01.002

Poria Hasanpor Divshali, Matti Laukkanen, R Bhandia, AA VanderMeer, E Widl,
C Steinbrink, A Kulmala, and K Méki. 2019. Smart grid co-simulation by devel-
oping an FMI-compliant interface for PSCAD. In 25th International Conference on
Electricity Distribution (CIRED 2019). 849.

Xiao-xia Dong, Yan Wang, and Zheng-hong Qin. 2009. Molecular mechanisms of
excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases.
Acta Pharmacologica Sinica 30, 4 (2009), 379-387.

Alireza Ghasempour. 2015. Using a genetic-based algorithm to solve the schedul-
ing optimization problem for long-range molecular communications in nanonet-
works. In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC). IEEE, 1825-1829.

Christof Grewer and Thomas Rauen. 2005. Electrogenic glutamate transporters
in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on
synaptic signaling. The Journal of membrane biology 203, 1 (2005), 1-20.

David Holcman and Zeev Schuss. 2014. The narrow escape problem. siam
REVIEW 56, 2 (2014), 213-257.

Aoife Hughes, Richard] Morris, and Melissa Tomkins. 2021. PyEscape: a narrow
escape problem simulator package for Python. Journal of Open Source Software 5,
47 (2021), 2072.

Caglar Koca, Meltem Civas, and Ozgur B Akan. 2021. Evolutionary Game Theo-
retic Resource Allocation Simulation for Molecular Communications. ITU Journal
on Future and Evolving Technologies 2, 3 (2021).

Caglar Koca, Meltem Civas, Selin Merve Sahin, Onder Ergonul, and Ozgur B
Akan. 2021. Molecular Communication Theoretical Modeling and Analysis of
SARS-CoV2 Transmission in Human Respiratory System. IEEE Transactions on
Molecular, Biological and Multi-Scale Communications 7, 3 (2021), 153-164.
Murat Kuscu and Ozgur B Akan. 2016. On the physical design of molecular
communication receiver based on nanoscale biosensors. IEEE Sensors Journal 16,
8 (2016), 2228-2243.

Murat Kuscu and Ozgur B Akan. 2018. Maximum likelihood detection with
ligand receptors for diffusion-based molecular communications in Internet of
bio-nano things. IEEE transactions on nanobioscience 17, 1 (2018), 44-54.

Murat Kuscu and Ozgur B Akan. 2019. Channel sensing in molecular communica-
tions with single type of ligand receptors. IEEE Transactions on Communications
67,10 (2019), 6868-6884.

AE Lindsay, T Kolokolnikov, and JC Tzou. 2015. Narrow escape problem with a
mixed trap and the effect of orientation. Physical Review E 91, 3 (2015), 032111.
Sebastian Lotter, Arman Ahmadzadeh, and Robert Schober. 2020. Synaptic chan-
nel modeling for DMC: Neurotransmitter uptake and spillover in the tripartite
synapse. IEEE Transactions on Communications 69, 3 (2020), 1462-1479.

Silong Lu, Fred] Molz, and Hui Hai Liu. 2003. An efficient, three-dimensional,
anisotropic, fractional Brownian motion and truncated fractional Levy motion
simulation algorithm based on successive random additions. Computers & geo-
sciences 29, 1 (2003), 15-25.

Maiken Nedergaard and Alexei Verkhratsky. 2012. Artifact versus reality—how
astrocytes contribute to synaptic events. Glia 60, 7 (2012), 1013-1023.

Sinead M O’Donovan, Courtney R Sullivan, and Robert E McCullumsmith. 2017.
The role of glutamate transporters in the pathophysiology of neuropsychiatric
disorders. npj Schizophrenia 3, 1 (2017), 1-14.

Hamideh Ramezani, Caglar Koca, and Ozgur B Akan. 2017. Rate region analysis
of multi-terminal neuronal nanoscale molecular communication channel. In 2017
IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 59-64.
Zeev Schuss. 2012. The narrow escape problem—a short review of recent results.
Journal of Scientific Computing 53, 1 (2012), 194-210.

Zeev Schuss, Amit Singer, and David Holcman. 2007. The narrow escape problem
for diffusion in cellular microdomains. Proceedings of the National Academy of
Sciences 104, 41 (2007), 16098-16103.

Amit Singer, Zeev Schuss, and David Holcman. 2006. Narrow escape, Part II: The
circular disk. Journal of statistical physics 122, 3 (2006), 465-489.

A Singer, Z Schuss, and David Holcman. 2006. Narrow escape, Part III: Non-
smooth domains and Riemann surfaces. Journal of statistical physics 122, 3 (2006),
491-509.

Amit Singer, Zeev Schuss, David Holcman, and Robert S Eisenberg. 2006. Narrow
escape, part L. Journal of Statistical Physics 122, 3 (2006), 437-463.

Mladen Veleti¢ and Ilangko Balasingham. 2018. Capacity estimation in MIMO
synaptic channels. In Proceedings of the 5th ACM International Conference on
Nanoscale Computing and Communication. 1-6.

https://doi.org/10.1038/nn825
https://doi.org/10.1016/j.pharmthera.2005.01.002

	Abstract
	1 Introduction
	2 Narrow Escape Problem
	3 Brownian Motion Discretization Error
	4 A Simulation Framework for the Narrow Escape Problem
	4.1 NEP Simulation Framework
	4.2 Escape Module
	4.3 Compartmentalization
	4.4 Dist Module

	5 Simulation Results
	6 Conclusion
	Acknowledgments
	References

