
A Numerical Library and Its Support

TONY F. CHAN
California Institute of Technology

WILLIAM M. COUGHRAN, JR., and ERIC H. GROSSE
Stanford University

and

MICHAEL T. HEATH
Oak Ridge National Laboratory

Reflecting on four years of numermal consultmg at the Stanford Lmear Accelerator Center, we pomt
out solved and outstandmg problems m selecting and mstalhng mathematical software, helpmg users,
maintaining the hbrary and momtormg its use, and managing the consulting operatmn

Key Words and Phrases. hbrary management and orgamzatmn, mathematmal software, numerical
analysis
CR Categories: 4.6, 5 1

W h e r e no counse l is, t h e people fall: b u t in t h e m u l t i t u d e of
counse l lo rs t h e r e is safety.

Proverbs 11:14

1. INTRODUCTION

The final delivery system, a routine library with its supporting services, is an area
of mathematical software that has received comparatively little attention in the
literature (although the papers by Barinka [2] and Cody [5] do discuss some
relevant points). By summarizing our experience in setting up and running a
numerical program library, we hope to warn those embarking on such a course
elsewhere of the amount of effort required to succeed and to describe to those
already working in the area how we have tackled various problems.

Historically, people at Stanford wanting numerical help came to the Numerical
Analysis Group within the Computer Science Department. Professor George

Permission to copy without fee all or part of this material ~s granted provided that the copras are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
pubhcatlon and its date appear, and notme is given that copying is by permission of the Association
for Computmg Machinery To copy otherwise, or to repubhsh, requires a fee and/or specific
permlssmn.
This research was supported in part by the U.S. Department of Energy under Contract EY-76-S-03-
0326 PA #30.
Authors ' present addresses' T F. Chan, Department of Computer Scmnce, Yale University, New
Haven, CT 06520; W.M. Coughran, Jr., and E H Grosse, Department of Computer Scmnce, Stanford
University, Stanford, CA 94305; M T Heath, Computer Sciences Dwlslon, Oak Ridge National
Laboratory, P.O. Box X, Oak Ridge, TN 37830
© 1980 ACM 0098/3500/80/0600-0135 $00.75

ACM Transactions on Matheraatmal Software, Vol. 6, No 2, June 1980, Pages 135-145

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355887.355888&domain=pdf&date_stamp=1980-06-01

136 T.F. Chan, W. M. Coughran, Jr., E. H. Grosse, and M. T. Heath

Forsythe, the original leader of the research group, encouraged software work in
general and numerical consulting in particular. Eventually, however, the load
became heavy enough that the campus computing service was asked to make
more formal arrangements, and soon the computing centers on campus and at
the associated Stanford Linear Accelerator Center (SLAC) agreed to support
Ph.D. students in a part-time consulting capacity. For the first year or so at
SLAC, most effort was devoted to selection of good software and writing of high-
level documentation. This led to a high-quality library, but one that was not
heavily used. So a second phase began, publicizing the library and improving the
user interface. With the success of that effort, we entered a third, more stable,
stage in which actual contact with the users and their problems was emphasized.
Expansion and revision of selected areas continues, in order to meet needs better
and to generate the enthusiasm without which the library would wither.

The SLAC consulting operation may be broken down into four main activities:
providing software, advising on problem formulation and library use, maintaining
and monitoring, and managing the operation.

2. PROVIDING SOFTWARE

One of the most exciting opportunities presented by the growth of computers is
the transfer of research results from one field to another via general purpose
software. Program libraries are becoming a main channel between numerical
analysis and applications.

Libraries have been in use since the earliest days of computing for a number of
good reasons:

(1) duplication of effort is reduced,
(2) well-tested, well-tuned routines are used,
(3) dangers are flagged,
(4) state-of-the-art algorithms are available,
(5) storage and compilation costs are reduced,
(6) implementation details are done correctly,
(7) elapsed time to get a working program is reduced.

In the computing center environment, a well-designed library is particularly
important, since few users are willing to put much initial effort into an unfamiliar
algorithm. Also, consultants can quickly answer common, easy questions by
pointing to a routine.

Unfortunately, we found that existing libraries had serious flaws. They were
slow to incorporate advances in the state of the art because of their desire for a
systematic collection, their administrative organization, or their relative isolation
either from users or researchers. Their documentation tended to overwhelm users
with a multitude of choices and did not provide much guidance in how to make
those choices. Despite this, the documentation was so massive that only a couple
of reference copies could be kept, which was inconvenient for users housed in the
various scattered buildings. Some of the routines were mediocre, hurting the
credibility of the entire package. Finally, and perhaps most fundamentally, the
large size of the libraries prevented familiarity, even by experts, with much of the
library.

ACM Transac t ions on Mathematmal Software, Vol 6, No 2, June 1980

A Numerical Library and Its Support 137

With the exception of special functions, we felt that it should be possible to
cover a large fraction of user needs with a core library consisting of a few dozen
high-quality routines. To deal with less common problems, we collect experimen-
tal routines as well, but even this library is far from the "dumping ground" of
user-supplied codes found at many installations. (Most of the remainder of this
paper is concerned with the small core library rather than the experimental code
collection.)

Routines have been collected from commercial sources (e.g., International
Mathematical and Statistical Libraries (IMSL)), from public or government
distribution sites (e.g., the Argonne Code Center and the National Center for
Atmospheric Research), by participation in software activities (e.g., LINPACK,
a linear system package developed under the auspices of the National Activity to
Test Software (NATS)), from the open literature (e.g., SICIEI, a routine to
compute trigonometric integrals), directly from authors (e.g., SLEIGN, a routine
to solve Sturm-Liouville eigenvalue problems), and from local sources (e.g.,
VARPRO, a routine to solve nonlinear fitting problems). Few codes have been
written directly for the library, since we view the librarian's task as one of
selection, not production. (However, to bide time until LINPACK became avail-
able, a linear least squares routine was prepared.)

Numerical analysts often remark on the difficulty of comparing codes and,
therefore, rarely provide the user with selection guidelines. Our aim is to provide
at least a clear decision procedure for choosing a routine based on characteristics
of the problem which the user understands and, if possible, to select a single
routine [10]. We have based these choices on what limited published comparisons
are available, personal experience, and discussions with the many visitors to the
Numerical Analysis Group at Stanford.

The principal criteria have been ease of use, machine efficiency, coding prac-
tices, and availability. These standards are taken seriously; even if it leaves
noticeable gaps in the library, we keep a code in experimental status until it
measures up. However, we do not require nice but inessential features like
uniformity, so that in practice we find we can install new algorithms in the library
soon after they become available.

SLAC, a government laboratory devoted to high-energy physics, has a fairly
powerful computing facility (currently two IBM 370/168s, a 360/91, and numerous
minicomputers, with a substantial hardware upgrade strongly being considered)
which is made available to researchers with few accounting limits. For these
reasons, the user community is relatively sophisticated and demanding; there is
a consensus that physicist time is more important than machine time.

Consequently, ease of use is our first criterion. By this we mean a clean user
interface for the subroutine, good documentation, a reliable algorithm imple-
mented with safeguards so that (as far as possible) wrong answers are not
computed without warning, and generality and flexibility so that users can
develop familiarity with the routine's behavior and even adapt it to their special
problems.

Besides human efficiency, machine efficiency is also considered. Since the
numerical work is done on large and busy computer systems, time rather than
storage tends to be the main constraint. Even with the heavily increased use of

ACM Transact ions on Mathematmal Software, Vol 6, No 2, June 1980

138 T. F Chan, W. M. Coughran, Jr., E H. Grosse, and M. T. Heath

laboratory minicomputers here, it appears that number crunching will remain on
the central machines.

Some routines were rejected for inclusion in the core library because we did
not feel that their coding style was clear enough for maintenance, or because
they seemed unreasonably long or overly complicated to us.

Obviously, a routine must be available for us to include it. Note, however, that
only importability, not exportability, is required. Thus we even find IBM Assem-
bler Language coding adequate (although personally distasteful except in special
circumstances). In practice we have found our greatest portability problems to be
political rather than technical.

When we receive codes developed as single precision versions, it is necessary to
make a number of changes to generate a double precision version. (It is widely
felt that for a number of computations the single precision of IBM 360/370
equipment is not adequate and double precision should be used in all but the
most stable processes.) However, it is well known that any direct modification of
source leads to the introduction of new errors and we have, therefore, made
increasing use of the AUTODBL precision increase feature of the local compiler
[8]. Besides avoiding introducing errors, we are able to easily install new releases
of routines without having to remodify them.

Any numerical library such as SLAC's tends to become known to outside
agencies. This generates requests for library documentation and actual code.
Providing software to a large number of outside users is an enormous task, so it
has been determined that library documents and locally produced codes can be
disseminated on a very limited basis but most other requests must be politely
refused.

3. ADVISING ON PROBLEM FORMULATION

Good documentation is crucial to the success of a library, and one can greatly
enhance its value by keeping it on-line. First, everyone can get a copy, either
directly at his terminal, or, with only slightly more delay, from a line printer (or
microfiche equivalent). Single reference copies in the consulting office or even
documentation published in book form is simply not good enough for a scattered
and diverse user community. A second important advantage of machine-readable
documentation is ease of maintenance using text editors and formatting programs,
which make continually up-to-date documents possible. (If storage of knowledge
in procedural form is one of the most exciting opportunities presented by
computers, text handling may be one of the most widely useful.)

The Numerical Analysis Program Library User's Guide [3], or NAPLUG as it
is aptly known, is the heart of our library. It provides the main source of advice
to users on how to formulate their mathematical problem in a numerically
meaningful way and then how to get a solution. It also provides an educational
tool for new consultants, allowing some cumulation of expertise. Finally, it forms
the focal point of the library, the key document that forces explicit, careful
decisions and coherent organization [4].

Besides an introduction providing a general orientation to the library and a

ACM TransacUons on Mathemat ica l Software, Vol. 6, No 2, June 1980

A Numerical LIbrary and Its Support 139

description of how various parts of the system may be used, the NAPLUG
consists of a series of chapters on numerical topics, each containing

(1) observations on the state of the art,
(2) characterization of important problem classes,
(3) pitfalls in computation,
(4) library routine recommendations,
(5) suggested reading.

The latest version, released in June 1979, includes linear system, eigensystem,
and special function chapters based largely on LINPACK, EISPACK, and FUN-
PACK; an optimization chapter based mainly on the National Physical Labora-
tory library; an approximation and data fitting chapter dealing with a variety of
approximating forms and featuring the nonlinear fitting routine VARPRO; fast
Fourier transform and integration chapters; an ordinary differential equation
chapter based on fine codes from the Sandia and Lawrence Livermore Labora-
tories; and finally, a partial differential equation chapter which, because of the
primitive state of the art and relative lack of partial differential equation problems
locally, currently includes only the fast Poisson solvers from the National Center
for Atmospheric Research.

Each routine has a short individual description in a public WRITEUPS library.
Any on-line user can immediately obtain a particular routine's documentation.
The descriptions include the calling sequence of each routine (describing the type
and meaning of each parameter), possible error returns, and a short description
of the method used.

Many of the more complicated routines have short EXAMPLES programs
associated with them, which often help people in understanding how to use
routines. Since examples can frequently be modified into a form which will solve
the user's problem, the effort required to write and debug a program is reduced.
Such fill-in-the-blanks programming has become popular here.

The NAPLUG, as it discusses each problem area, refers to books and papers
that one might read for help in solving a difficult problem. Also mentioned are
user's handbooks for individual codes, which can vary from nonexistent (the
routine may only be documented by self-contained comments} to major sections
of an entire book (as in the case of Shampine and Gordon's ODE code [11]). The
packages produced by the NATS project, EISPACK and FUNPACK, are partic-
ularly noteworthy because they supply a machine-readable handbook describing
each routine in some detail. Whenever feasible, copies of reference materials are
added to the general SLAC library and to a special collection kept in the
consulting office.

As an example of how a user might take advantage of this documentation
structure, let us consider the problem of solving some ordinary differential
equations. The user may have a first-order system with appropriate initial
conditions. The user's guide would allow him to conclude that he has an initial
value problem, and upon further reading he might decide his problem is not stiff.
Combining this information with the amount of accuracy he demands would

ACM Transact ions on Mathematmal Software, Vol 6, No 2, June 1980

140 T.F. Chan, W. M. Coughran, Jr, E. H. Grosse, and M. T. Heath

enable him to select a particular code, say Shampine and Gordon's ODE. The
user could then obtain a description of the code and its calling sequence from the
public WRITEUPS library; further information could be obtained by running an
example of ODE from the public EXAMPLES library. If at a later time the user
wanted to understand ODE in more detail, he could come to the consulting office
and examine a copy of Shampine and Gordon's book [11].

While we strongly believe in the written word as the primary source of advice,
we realize that direct personal contact is also important [12]. Because of the core
library philosophy, we must supplement the NAPLUG by personally referring
users to experimental codes for nonstandard problems. Questions on such prob-
lems and on the core library provide feedback to us on what is considered
inconvenient or unclear and in what directions expansion of the library should
proceed. Summer visitors and other transients, who are rather common at a
national laboratory like SLAC, tend to be particularly heavy users of personal
consulting. Others who come in may have read our user's guide, but want to be
reassured that their own problem really is covered by our general routines.

This personal contact is facilitated by holding regular consulting office hours,
by being available by phone at other times {within reason), by occasional
seminars, and by visits. The seminars seemed to be most effective at the time the
library was introduced, but can be usefully rerun only every few years. They
emphasized the practical use of routines and what to watch out for, rather than
the theory behind the algorithms, which would have been more appropriate for
a mathematical audience. The visits to user groups include both "big game
hunting," in which system accounting information is used to identify heavy
computing projects where one hopes to have the greatest leverage, and "general
safari" trips, stimulated by interesting problems brought into the consulting office
or heard about through the grapevine.

Assisting in use of the library also extends to implementation details. To save
the user as much effort as possible, and at the same time to eliminate pointless
recompilation, the library routines are stored on-line in object form and are
automatically linked into programs, just like the SQRT function is. In order to
discourage divergent variants of the library routines, source text is kept off-line
and in some cases involving copyright protection made inaccessible.

4. MAINTAINING THE LIBRARY

In any computing environment, when one makes a piece of software {numerical
or not) generally available, problems arise with any attempt to upgrade. Some
users, because of investment or personality considerations, resist modifications to
the behavior of any software component. For numerical routine libraries this
implies that some sort of guarantee of static conditions must be advanced.

For the SLAC numerical library, upward compatibility is a grave difficulty
since it conflicts with the design goal of maintaining a state-of-the-art library. In
general, the solution has been to upgrade routines rather quickly if the calling
sequence and meaning of parameters for a routine have not changed (the routine
has changed in a manner transparent to the user). In the case of a routine being
substantially modified so that its user interface has changed, a determination is
made as to how heavily it is used. If the routine is used infrequently, then those

ACM TransacUons on Mathemat ica l Software, Vol 6, No 2, June 1980

A Numer,cal L,brary and Its Support 141

persons who do use it are contacted and the routine upgraded. On the other hand
if usage is heavy, a new name is usually introduced.

A routine that has become outdated, but not dangerous, also poses a problem.
The solution used at SLAC is to drop the routine from the NAPLUG, later drop
its short documentation from the WRITEUPS library, and finally remove papers
describing the routine from the consulting office and expunge the source from the
system libraries. The load module for the routine (i.e., the compiled machine code
for the routine) is left in place (if it causes no name conflicts); the source for the
routine can be obtained from a backup tape volume.

Three versions of a routine can be kept on the system by having three
independent system load module libraries designated as new, production, and old
[7]. The basic idea is to migrate routines through these libraries. For example,
suppose a routine in the production library breaks down in a particular case. The
numerical analyst in charge examines the problem and refers it to the proper
specialist who (we hope) fixes the code. The updated routine is compiled and the
resulting load module put into the new library; the users who discovered the
problem are advised to access the new version. After some time, the erroneous
production version of the routine is moved into the old library displacing any
previous version; subsequently, the patched version in the new library will be
moved into the production library. (If a disastrous problem is discovered in a
routine, a corrected load module may be immediately injected into the production
library without any "seasoning" time.)

Another technical problem arises from the fact that, since several separate
subroutines may be involved in one "routine" and Fortran only allows identifiers
to be six characters long, names (including COMMON block identifiers} may be
duplicated somewhere in the library. Further, since Fortran is not block struc-
tured, all routine names are essentially global unless great care is taken. In the
case of a unified library, where each piece of software is specifically designed for
inclusion in the package, routine names can be made unique (being derived from
the problem solved by a particular routine). However, in the case of our core
library, real name conflicts can exist and duplication of code does exist. Dupli-
cation of code means that when stand-alone (research) codes are imported for
use in the library they usually include all necessary routines and, since some tasks
(like forming an LU or Cholesky decomposition of a matrix} are quite common,
several different versions of a subroutine to do the same task may exist.

The library ignores the code duplication problem since the local system has
adequate disk capacity to handle the superfluous code. The problems of name
conflicts that can arise with stand-alone codes are resolved with the CHANGE
facility of the IBM Linkage Editor [9] which allows one to modify the name of a
routine after it has been compiled. This has proved an effective solution since
unique names can be supplied for routines that users need not be aware of.

Library routines are monitored in a manner similar to that described by Bailey
and Jones [1]. The collection procedure is based upon the use of the run-time
LINK/LOAD facility and the System Management Facility of IBM's OS [7].
This monitoring serves two major purposes: determining the pattern of routine
usage and protecting users from old or obsolete versions of routines.

Enough statistical information is collected to study how heavily different parts

ACM Transact ions on Mathemat ica l Software, Vol 6, No 2, June 1980

142 T.F. Chan, W. M. Coughran, Jr., E. H. Grosse, and M. T Heath

of the library are used. For example, it appears that data-fitting routines are the
most important component of the library to most SLAC users while routines to
solve differential equations are infrequently used. (It is interesting that at other
Department of Energy laboratories this situation is reversed; this implies that
libraries and their supporting services should be adapted to the local environ-
ment.) Such information guides allocation of effort and is valuable in justifying
the library project as a whole.

Monitoring helps users in avoiding old versions of routines. This is important
when a user obtains a personal copy of a routine because later it may be
discovered that it is in error. The monitor normally informs the user whether he
is using such a routine by writing a message into the offending job's system
message log. For efficiency on subsequent calls of the library routine within the
same job, the monitor call is overwritten with a NO-OP instruction.

Each version of each routine is assigned a unique "maintenance number,"
which it passes to the monitor. The monitor looks up the number in a status
table to be sure that no recent changes have made the routine obsolete, then
writes out a system accounting record of which user made the call and optionally
what the parameters were. Note that the status table must be dynamically loaded
at run time, so that its data are current even if the user has his own (old) copy of
the monitor routine.

Other monitoring schemes are also used. When a user retrieves a source copy
of a routine, his identification and the name of the routine he requested are
recorded. This enables the systems staff to determine whether someone is trying
to obtain copies of routines belonging to packages that contractually cannot be
removed. Moreover, the monitoring of source retrieval insures that it is possible
to track down users with particular problems.

5. MANAGING THE OPERATION

A major, often unrecognized problem with the kind of thorough consulting
operation described here is staffing. Most computer people tend to ignore nu-
merical analysis. Numerical analysts, with a few prominent exceptions, have
tended to avoid the tar pits of software libraries. Users lack balance in the
knowledge of systems and numerical analysis and are, therefore, unable to do a
really professional job of mathematical software organization. We feel that our
solution has worked well, although we doubt that it can be very widely applied.

Two numerical analysis Ph.D. students are supported as research assistants
with overlapping terms, so that the new consultant can learn the ropes from the
older one. The Ph.D. students benefit by the exposure to a variety of practical
problems and gain experience in dealing with software collections. The computing
community benefits from the students' enthusiasm and, partly through the
students' link with the campus research group, numerical acumen and state-of-
the-art knowledge. We have observed that with increasing experience comes
rapidly decreasing enthusiasm; we see good people go in, burn out in a year, and
return to research. One reason seems to be the hard, frustrating choices (about
personal scheduling priorities, user problems, system questions, etc.) that must
be made; another is the clerical nature of much of the work. We conclude that no

ACM Transac t ions on Mathemat ica l Software, Vol 6, No 2, June 1980

A Numerical L0brary and Its Support 143

one student should be asked to work full-time on the library for an extended
period; anyone happy to do so may not be active enough in research to keep up
effectively.

Assuming a turnover in consultants, internal documentation of the library
becomes vitally important. At the very minimum, an annotated index of system
files, experimental programs, and monitoring logs should be kept, and the typical
life-cycle of a routine from initial installation through final removal should be
described. As much of this information as possible should be embedded in
programs, so that consultants can spend their time on higher level functions and
have mechanical operations performed mechanically.

Other management issues also enter into the consulting activity: requests for
fiscal resources, decisions about allocation of manpower, and justification of
computer resources used. It is sometimes possible for SLAC to procure improved
hardware and commercial program products such as sorting packages, compilers,
and operating system enhancements, but it is quite difficult to get monies set
aside for obtaining numerical codes. In fact, the entire project is run on a
relatively small budget since there are few code costs and research assistant
salaries are quite low when compared with the cost of a full-time member of the
professional staff. However, the number of Ph.D. student hours available is
limited, and some staff time is required, so manpower allocation questions must
be answered by management.

The automatic monitoring of routine usage provides some estimate of the
immediate impact of the library on SLAC computing. Visits by consultants to
groups which make heavy use of CPU resources can assist in qualitatively
determining the influence of the system on the SLAC community. Contact with
users seeking consulting or attending user seminars provides further feedback on
the effectiveness of the library. These measurements and observations provide
the basis upon which management must judge the relative success and merits of
the library project.

6. CONCLUSION

The SLAC library project seems to have reached an equilibrium. Although new
codes are being added and old ones removed, the basic organization of the library
has stabilized. The hard choices of which available routines are best suited for
inclusion in the core library are now made more routinely since the criteria by
which routines are judged have been formalized to some extent. The design of
the documentation hierarchy, the writing of the NAPLUG, the implementation
of a system to insure that all routines are automatically available without conflict,
and the design and implementation of a monitoring system for routine usage have
now been done. Experience with the costs of maintenance and providing user
consulting has been gleaned. Some idea of how users are affected by our library
has been formed.

The NAPLUG has been well received at SLAC and enables many users to
make proper code choices when faced with numerical problems. The simple
descriptions of problem formulations and the characteristics of problems relevant
to routine selection and the short discussions of inherent difficulties allow users

ACM Transact ions on Mathemat ica l Software, Vol 6, No 2, June 1980

144 T.F. Chan, W. M. Coughran, Jr., E H. Grosse, and M. T. Heath

to deal confidently with a variety of situations. The on-line WRITEUPS and
EXAMPLES libraries assist in the transition from selecting a particular routine
to actually using it. The unified load module libraries insure that all core
subroutines are automatically callable, without the need for special job control
information. The work referenced by the user's guide helps interested persons in
becoming more sophisticated from a numerical standpoint and gives them further
insights into the methods employed. The availability of numerical analysts to
function as consultants insures that the concerned user can find assistance for
almost any computational task.

The decision to select codes from a variety of high-quality sources enables the
library to be more responsive to new developments than commercially available
packages. However, the code duplication, naming conflict, and library stability
issues that arise from this policy complicate maintenance. Quality control consid-
erations are also of some concern since code authors have a variety of opinions
about what constitutes mathematical software and adequate testing.

Major difficulties seem to arise in staffing and management. The students
involved in the project never act as consultants for a long period of time.
Repetitive tasks, argumentative users, and detailed problems of selecting routines
and system organization eventually reduce interest. Personnel turnovers make it
difficult to insure that a seasoned consultant will be available since, in addition
to numerical knowledge, a consultant must be familiar with a number of system
details. Management has limited measurement tools to determine how to allocate
the available manpower resources. Finally, management must consider the con-
sequences of the fiscal constraints which limit the procurement of commercial
codes.

Developing widespread user confidence in any software product is a relatively
slow and somewhat arduous task. The means for reaching the user community is
limited to system messages, the monthly computer center bulletin, seminars, and
consulting contacts; hence, many of the physicists are not aware of day-to-day
developments in the computer center. Personal contact, either in the consulting
office or by visitations, seems to be extremely useful in converting reticent users
from their "home-brewed" codes to the library. (In some sense, users must be
"sold" on the value of a properly organized mathematical software library.)

The library project has required a substantial investment of intellectual effort
and machine resources over the past four years. User response has been favorable;
the overall library organization has proven its worth. As a resource for the
researchers at SLAC, our library forms an important foundation of high-quality,
state-of-the-art mathematical software which assists them in spending more of
thei~ time studying physics and not numerical analysis. Moreover, the symbiosis
between the Numerical Analysis Group and SLAC has aided in the practical
training of numerical specialists.

ACKNOWLEDGMENTS

Some of the ideas contained in this paper are abstracted from a paper by
Coughran [6] which was an attempt to explain the library organization to the
interested SLAC user. The present paper attempts to reach a wider audience and
is less technically specific.

ACM TransacUons on Mathematmal Software, Vol 6, No 2, June 1980

A Numerical Library and Its Support 145

A major project like the one described here inevitably involves many individ-
uals. John Ehrman and Richard Lagerstrom must be singled out for their
numerous suggestions, guidance, technical support, and for their belief in the
project's efficacy. We wish to thank Robert Beebe, John Bolstad, June Genis,
Gene Golub, John Lewis, Franklin Luk, Joseph Oliger, Michael Overton, Lennox
Sweeney, and Margaret Wright for their contributions, and Marsha Berger,
Daniel Boley, Stephen Nash, and Lloyd Trefethen for their consulting efforts.
Numerous code authors have been generous in making their routines available
for use in the library. Countless SLAC users have made suggestions that have
improved the library. SLAC, SLAC Computing Services of the Stanford Center
for Information Processing (SCS-SCIP), and the Department of Energy also
deserve thanks for their support.

Requests for more detailed information on the current content and structure of
the SLAC numerical library or for copies of the SCS-SCIP documents should be
directed to

Numerical Analysis Consultant
SLAC Computing Services, Bin 97
Stanford Linear Accelerator Center
2575 Sand Hill Road
Menlo Park, CA 94025

REFERENCES
1. BAILEY, C.B., AND JONES, R E Usage and argument momtonng of mathematical library

routmes ACM Trans Math. Softw. 1, 3 (Sept 1975), 196-209.
2 BARINKA, L.L. Some experience with constructing, testing, and certifying a standard mathe-

matical subroutme hbrary ACM Trans. Math. Softw. 1, 2 (June 1975), 165-177.
3 BOLSTAD, J.H., CHAN, T F , COUOHRAN, W.M., JR., GROSSE, E.H., HEATH, M.T., AND LUK,

F.T Numerical analysis program hbrary user's guide. SCS-SCIP User Note 82, SLAC Computing
Servmes of the Stanford Center for Information Processing, Menlo Park, Calif, Aug. 1977.

4. BROOKS, F P , JR. The Mythical Man-Month. Addison-Wesley, Reading, Mass., 1975
5. CODY, W.J. The construction of numerical subroutine hbraries. SIAM Rev. 16, 1 (Jan 1974), 36-

46
6 COUGHRAN, W M , JR The construction of a numerical analysis program hbrary. SCS-SCIP

Techn. Memo. 107, SLAC Computing Services of the Stanford Center for Information Processmg,
Menlo Park, Cahf, Sept 1977

7 EHRMAN, J.R. Program hbrary maintenance and momtoring. SCS-SCIP Tech. Memo. 103,
SLAC Computing Servmes of the Stanford Center for Information Processing, Menlo Park, Calif.,
Jan. 1977.

8. IBM OS Fortran IV (H extended) compder programmer's guide. IBM Corp., New York, SC28-
6852-2, Nov. 1974

9 IBM OS linkage editor and loader, IBM Corp., New York, GC28-6538-9, Jan. 1972.
10. NEWBERY, A.C.R The Boeing hbrary and handbook of mathematmal routines. In Mathematical

Software, J Rme (Ed), Academic Press, New York, 1971, pp. 153-169.
l l . SHAMPINE, L.F, AND GORDON, M.K. Computer Solutmn of Ordtnary D~fferentml Equatmns:

The Inlttal Value Problem. Freeman, San Francisco, 1975
12 SMITH, L.B. Elements of success for user servmes. In Proc ACM SIGUCC User Services Conf

IV, Tucson, Ariz, Nov 1976

Received August 1978; accepted July 1979

ACM Transactions on Mathematmal Software, Vol 6, No 2, June 1980.

