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Exponential Integrals 

Formulas  leading to the  c o m p u t a t m n  of M m e m b e r  sequences  of exponent ia l  integrals  EN+k(x), 
x _> 0, N -> 1, k = 0, 1 . . . .  M - 1, are p resen ted  here  and  n n p l e m e n t e d  in For t r an  subrou t ine  
E X P I N T .  Sequences  of exponent ia l  integrals  can be genera ted  in a numer ica l ly  s table  fashion if 
recurrence  is car rmd forward or backward away from the  integer closest  to x. In  keeping wi th  th is  
requi rement ,  we select  n, the  integer  closest  to x within the  cons t ra in t  N - n -~ N + M - 1, and  use  
E,(x) to s t a r t  t he  recursion E,(x) Is compu ted  by m e a n s  of the  power series on 0 ~ x ": 2 and  the  
conf luent  h y p e r g e o m e t n c  funct ion U(n, n, x) on 2 < x < o0. U(n, n, x) is, in turn,  compu ted  f rom the  
backward  recurswe  Miller a lgor i thm for U(n + k, n, x), k = 0, 1, . . . ,  wi th  a normalizing re l a tmn  
derived f rom the  two- te rm recur smn relat ion satisfied by E,(x) and E,+l(x). Trunca t ion  error  bounds  
are derived and  used  m error tes t s  m E X P I N T  Exponent ia l  scaling is also provided as  a subrou t ine  
optmn.  
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INTRODUCTION 

In [5], Gautschi  shows tha t  a sequence of exponential  integrals EN+k(X), X ~ O, N 
-- 1, k = 0, 1, 2 . . . . .  M - 1, can be computed  in a stable fashion if recurrence on 

kEh+l(x) + xEk(x)  = e -x (1) 

is carried forward or backward away from the integer closest to x, Ix + 0.5]. In 
keeping with this stability requirement ,  Gautschi  [2] computes  eXEl(x) by means  
of the series for x _< 1 and recurs forward with (1) for eXEn(x), n _ 1. For  x > 1,- 
the (Legendre) cont inued fraction [1, p. 229] is evaluated for n -- [x + 0.5], and 
the appropriate  application of (1) increases or decreases the index to desired 
values. Even  and odd convergents,  which bound the limit of the  cont inued 
fraction to arbi t rary  accuracy, are computed  from series representat ions  [4, p. 29] 
to guarantee  the accuracy of the starting value in (1). A similar implementat ion 
is described in [3] for E,~(x), a > 0. However,  the Algol code developed in [2] 
appears  to be the only one generally available for exponential  integrals. 

In this paper  we present  the analytical basis for a For t ran  subrout ine E X P I N T  
which computes  M member  sequences EN+k(X) or eXEN+k(X), N >-- 1, k = 0, 1, 
. . . .  M - 1 for real x _> 0. The  work in computat ion of En(X) o r  eXEn(x) to s tar t  
the recursion is comparable  to tha t  in [2], but  great  savings are achieved in the 
recurrence when N is large and x __ 1 or x is large and N + M - 1 is small. 

Th i s  work was suppor ted  by the  U.S. D e p a r t m e n t  of  Energy  unde r  Cont rac t  AT(29-1)-789. T h e  U.S. 
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Au tho r ' s  address '  Numer ica l  M a t h e m a t m s  Division, Sand]a  Laboratories ,  Albuquerque ,  N M  87185. 
© 1980 A C M  0098-3500/80/0900-0365 $00 75 

ACM Transactions on Matheraatmal Software, Vol. 6, No 3, September 1980, Pages 365-377. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355900.355908&domain=pdf&date_stamp=1980-09-01


366 Donald E. Amos 

For  x _< 2, the  power  series is implemented .  For  x > 2, the  backward  recursive 
Miller a lgor i thm for approximat ions  to U(n + k, n, x), k ffi 0, 1 , . . . ,  is used where 

E,(x) = e-Xx "-1U(n, n, x) 

and U(a, b, x) is the second confluent  hypergeomet r ic  function. T h e  analysis to 
follow is directed toward computa t ion  a t  an index n, the  integer  closest to x 
within the  const ra in t  N - n _< N + M - 1. Once E,,(x) is computed ,  (1) is used to 
genera te  the  r ema inde r  of  the sequence with indices N ___ k _ N + M - 1. T h e  
na ture  of  the  computa t ion  allows exponent ia l  scaling, which extends  the  compu te r  
a rgumen t  x over  m a n y  orders  of  magni tude,  to be in t roduced convenient ly  with 
no overal l  increase in the  a m o u n t  of  computa t ion .  

ANALYSIS 

Series for x <_ XCUT, n _> 1, and XCUT = 1 or 2 

For  x <_ X C U T ,  the  series [1, p. 229] 

, , - ~  (_x)m 
E , ( x ) = - m . o  ~ ( m - n + l ) m !  

( -x )  m 

--~=n y" ( m - n + l ) m !  

( ~ X )  n - 1  

(n - 1) ~[ - ln  x + ~(n)] (2) 

was imp lemen ted  where  the  leading sum does not  appea r  for n = 1. Since the  
t e rms  of each sum are bounded  by  t e rms  of the  exponent ia l  series, it can happen  
tha t  t runca t ion  will occur in e i ther  the  first or the  second sum, depending on the  
size of  x and n. We therefore  consider the  t runca t ion  of (2) in two cases and, for 
convenience,  never  t e rmina te  on the t e r m  m = n - 1. I f  we t runca te  the  series a t  
index m = N, the  r emainder  is denoted  by  RN and we have  the following cases. 

Case I :  N + 1 >- n + 1, N ___ 2. In  this case, 

I °° ( - -x )m I X N+I X N 

IRNI  ~- N~+l(m_-n~-l)m! < ( N +  I ) ! ( N _ n +  2 ) < 3 N !  (3) 

since the  sum is an a l ternat ing series and N - n + 2 >_ 2. 

Case H: N +  1 <_ n - 2, N__ 2. 
m ~ n - 1 and 

n-2 X m 

Now, by  [1, p. 259], 

and 

In  this case we have  t m - n + 11 > 1 for all 

No te  t ha t  

xn -1  00 X m 

(n - 1) f [ - l n  x + ~(n)] + ~ ~-~t" 

~(n) < ln(n) 

n 
0 < - I n  x + , ( n )  < l n - ,  0 < x _ 2 ,  n _ 3 .  

X 

n - 1  n 
y - - -  I n - > 0  for n > 2  

X X 
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Computation of Exponential Integrals 367 

since y has  a single posit ive m i n i m u m  at  x = n - 1, n _ 2. Therefore ,  since N -- 
2 implies n _ 5, we have  

n n - 1  
0 < - I n  x + tp(n) < In - < 

X X 

and 

T h e n  

xn--1  x n - 2  

(n - 1)--------~ "[- ln x + ~(n)] < (n - 2)!" 

n-2  X m xn - -2  ~ X m 

N+I (n -- 2) ! 

n -3  X m x n - 2  ~ X m 

xN( x x ) 
RNI <~.v i +~gi - '~  (N+ 1)(N+2) 4-... 

x N N + 1 x N 
< N + I <  - 2 ,  RNJ < ~ . V N  + 1 - x - -  3 ~ .  v' _ n 

(4) 

N_>2.  

Notice tha t  the t e rm  m = n - 1 is proper ly  placed be tween  the  two sums  
according to its magni tude  and  tha t  (--x}N/N! is compu ted  (recursively) as pa r t  
of  each  term. There fore  the  t runcat ion error  bound BN ~ 3xN/N!  or 
BN = xN/(3N!)  is easily computed  as each t e r m  is generated.  T h e  actual  
t runca t ion  of the  series is made  on a relative error  tes t  

BN <-- I SNJ. T O L  (5) 

where  SN ~ En(x) is the  accumula ted  sum, and T O L  is the  relat ive accuracy  
desired. 

I f  one wished to t e rmina te  the  series on an absolute error  tes t  with a tolerance 
T O L  ffi 10 -14, no more  t han  23 t e rms  would be necessary.  However ,  the  relat ive 
error  tes t  in (5) is more  restr ict ive and puts  an addit ional  r equ i remen t  on the 
n u m b e r  of  terms.  This  r equ i rement  comes abou t  because SN ~ E, (x )  as a function 
of n decreases  like 

e-X e-X 
x + n < E . ( x )  <_ x + n - 1' n -  2. (6) 

T h e  m i n i m u m  index N, which makes  (5) t rue  with T O L  fixed, causes  BN to 
decrease with n because E,,(x) (and SN) decreases slowly with n. Since BN is 
mono tone  decreasing, N mus t  increase slowly with n (see the  last  line of  Tab le  I). 
In  fact, only 36 terms,  those  which are allowed in E X P I N T ,  are needed  to provide 
for n as high as 1012 with T O L  = 10 -14. Tab le  I shows the  m i n i m u m  index N 
required for (2) when  T O L  = 10 -3, 10 -s, 10 -14. 

T h e  function ~(n) = F'(n) /F(n) ,  somet imes  called the d igamma  function, is 
supplied as a CDC6600-7600 For t ran  function D I G A M ( N )  where  only integer  
a rguments  are permissible.  In  the  preceding pa rag raph  we noted  t ha t  36 t e rms  of 
the  series would accommoda te  n as high as 1012 at  a relat ive er ror  T O L  = 10 -14. 
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368 Donald E. Amos 

Table I. Truncat ion Index N for Series w i th  
Relat ive Errors BN ~ 10 -3, 10 -8, 10 -~4 

n 

x 1 2 4 8 16 64 1024 

0.2 4 3 4 5 5 5 6 
7 7 7 8 8 9 9 

11 11 11 11 12 12 13 

0.4 4 4 5 8 6 7 8 
9 9 9 9 10 10 11 

13 13 13 13 16 14 15 

O.6 5 5 6 8 7 8 9 
10 10 10 10 11 12 13 
14 15 15 15 16 16 17 

0.8 6 6 7 8 8 9 10 
11 11 11 12 13 13 14 
16 16 16 16 17 18 19 

1.0 5 7 7 8 9 10 11 
12 12 12 13 16 14 15 
17 17 18 18 18 19 20 

1.2 7 8 8 8 10 11 12 
12 13 13 14 16 15 16 
18 19 19 19 19 21 21 

1.4 7 9 9 9 11 11 13 
13 14 14 16 16 16 18 
19 20 20 20 20 22 23 

1.6 9 9 10 10 12 12 14 
15 15 15 16 16 17 19 
21 21 21 21 22 23 24 

1.8 10 10 11 11 12 13 14 
16 16 16 17 17 18 20 
22 22 22 22 23 24 25 

2.0 11 11 11 12 13 14 15 
17 17 17 17 18 19 20 
23 23 23 23 24 25 26 

Because the convergence of (2) is rapid, the n - 1 term, where ~(n) is needed, is 
reached only  when n is relatively small, and truncation always occurs on the first 
sum when  n is greater than 36. Consequently,  one need only supply a table of 
~(n) at integer arguments as high as 36 to cover most  single-precision require- 
ments.  However,  since E X P I N T  is almost portable, the implementat ion described 
below for DIG AM will allow an easy conversion to machines  having longer word 
lengths or higher precision and requiring correspondingly smaller relative errors. 

D I G A M  returns a value ~(n) from a table look-up if n <_ 100. This single- 
precision table was generated in CDC6600 double-precision arithmetic from the 
relations [1, p. 258] 

~(1) = - ~  --- -0 .577215664901532860606512. . .  (7) 

1 
~(n + 1) -- ~(n) + - ,  n _  1 

n 
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where y is the Euler constant. For n > 100, the asymptotic expansion 

1 ~ B2k 
2n k=l 2kn 2k 

~ ( n )  ~ In n - - - -  

is evaluated where [1, p. 810] 

1 - 1  1 Bs - 1  
B2 6' B4 30' B6 42' 30 

are Bernoulli numbers and the error is bounded by the next term of the sum. At 
n ffi 100, the relative error is 0.91 × 10 -19. If n > l0 s, the relative error, expressed 
by the first term of the sum, is less than  0.45 x 10 -~s, and only the two leading 
terms are used for #(n). 

BACKWARD RECURSIVE ALGORITHM FOR x > XCUT 

In [10] Temrae uses the three-term recursion relation 

kn+l(z) - -  b,  kn(z) + a,k,_~(z) = O, 

(n - ½)2 _ r2 
= bn - -  an n 2 -b  n ' 

f o r  

n =  1 , 2 , . . . ,  

2(n + z) 

n + l  

(8) 

kn(z) = (-1)n(r, n)UO, + ½ + n, 2r + 1, 2z), n = 0, 1, . . . ,  

F(½ + r + n ) r ( ½  - r + n) 
(v, n) = (-1)"  cos try 

vrn! 

to compute the K~(z) Bessel function, z > 0, 

K~(z) = ~ (2z)~e-zUO, + ½, 2~ + 1, 2z), -½ < r < ½. 

Temme shows, on the basis of the work in [8] and [9], tha t  kn(z) is a minimal 
solution of (8), making backward recursion appropriate for numerical stability. 
The Miller algorithm is employed to compute quantities/~N (Z) starting with 

~+, = o, ~ = 1. 

This yields convergent ratios -N ~N kn+l (z) /kn (z) and fixes an approximate solution of 
(8), kN(z), to within a multiplicative constant. This constant  is determined by 
truncating the normalizing relation 

ao 

k n ( z )  = (2z )  -~-(1/2) (9) 
k - - 0  

and replacing k,  by k N. Temme also analyzes the error [kn - k N [  given by Olver 
[6, p. 116; 7] when the infinite system (8) is t runcated to an N × N system, 
assuming the normalizing constant  ko(z) is known. Olver's equations are 

co 
e k  

E N =  y m 
~=Npkpk+l (10) 

] kn(Z) - kN(z) I = ENpn, n >-- 1 
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370 Donald E. Amos 

where pk > 0, k ffi 0, 1, . . . ,  is a computed  solution of (8) obtained f romp0 ffi O, p l  

= 1 by  forward recursion. T h e  fact tha t  b, _> 1 + an guarantees tha t  the sequence 
( p k }  is monotone  increasing. The  (e,} sequence is obtained from 

e o = k o ( z ) ,  

and is given explicitly by 

en~anen-1, n =  1, 2, . . . ,  

ko(z)(-1)"(p, n) 
e n  -~- 

(n + 1)! 

T e m m e  fur ther  analyzes EN in (10) to get a simple bound in terms of N and pN,  

k0 cos ~rpN-3/2pN2 
EN <-- 

2~r',/~z 

The re  is an additional error  te rm which comes from the t runcat ion of series (9), 
and this appears  to be the dominant  factor  in determining N in [10]. In the 
analysis tha t  follows, the normalizing relat ion terminates  and there  is no trunca- 
t ion error  f rom this source. 

To  compute  exponential  integrals, we propose to use the analysis outlined 
above on a reparameter izat ion of (8) so tha t  U(a,  a, x)  in 

Ea(x)  = e -Xx~- lU(a ,  a, x)  (11) 

can be computed.  Thus  

a a 1 x 
n = rn + 2 '  r 2 2' z 2 '  a even, m = 0, 1, 2 . . . .  

carries (8) over to a new recurrence 

ym+l(x)-bmym(X) + amym--l(X)~--O, m = l ,  2 , . . . ,  

(a + 2m + x) 

(12) 

(15) 

z U ( b ,  c + 1, z) = (c - b )U(b ,  c, z)  + U(b  - 1, c, z) 

w i t h b f f i a + l , c = a ,  a n d z f f i x f o r U ( a + l , a + l , x )  in ( l l ) .  Thus  

x U ( a  + 1, a + 1, x) = U(a,  a, x)  - U(a  + 1, a, x) ,  

ACM Transactmns on Mathematical Software, Vol 6, No 3, September 1980 

m { a  + m - 1) 
am =- bm - 

( a / 2  + m ) ( a / 2  + rn + 1)' ( a / 2  + rn + 1)' 

with an explicit solution, except  for normalizing constants independent  of m, 
given by 

(1)m(a)m 
U ( m  + a, a, x) .  (13) 

Ym (1 + a/2)m 

In (13) m = 0 gives y0 = U(a,  a, x)  for (11). Now we notice tha t  this sequence can 
be normalized by means  of the two- term recursion relation (1) in the form 

aEa+l(x) + xEa(x )  ffi e -x (14) 

if Ea+l(x) can be expressed in terms Ofym, m = 0, 1, 2, . . . .  This  we do by means 
of the  contiguous relat ion 
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and the normalizing relation (14), in terms ofyo and y, from (11), (13), and (15), 
becomes 

(x + a)yo - (1 + a / 2 ) y l  = x '-a. (16) 

This relation specifies the (ym } sequence uniquely, and 

Ea(x) = e-Xxa-'yo, E,+,(x)  f f i  e-Xx a-1 yo -- . (17) 

While this approach appears to be new, it can actually be related to the 
continued fraction for E , ( x )  [1, p. 229]. This comes about by writing the continued 
fraction for ro = y j y o ,  

a~ 62 a 3  

b , -  b2- b3- " ' "  

doing an equivalence transformation (multiplying am, bin, and am+, by pm -- a/2 
+ m + I, m -- i, 2 , . . .  ) and using (16) and (17) with y, -- royo to express Ea(x) in 
terms of r0. The result is the even contraction of the Legendre continued fraction 
for Ea(x) [2]. 

Now we wish to analyze Olver's expression (10) for the error in the Miller 
algorithm when applied to (12). Since we are only interested in order-of-magni- 
tude estimates, we use <- and - in the sense of approximate inequality in many 
of the subsequent estimates, realizing that a multiplicative constant may have to 
be inserted in our final result to make any bound rigorous. Since 

eo = yo, em = a m e m - , ,  

we have explicitly 

(1),.(a)m 
em (a /2  + 1)m(a/2 + 2)m Y0 

F(m + 1)F(a + m) 
o 

F(a/2 + m + 1)F(a/2 + m + 2) 

m = 1 ,  2 . . . .  , 

F(a/2 + 1)F(a/2 + 2) 
F(a) 

(18} 

yo. 

The relations 

2 z-1 [ z \ F [ z  + 1\ F(z + a) za-b for Z - - - )  oo 

produce an estimate for the ratio 

r ( a / 2  + 1)r(a/2 + 2} = , f ~ ( a / 2 ) ( a l 2  + 1)r(a/2 + 1) ~ (a/2}3/2(a/2 + 1} 

F(a) 2"-T((a  + 1}/2} 2 a-' 

Since a and m can be large independently of one another in (18), asymptotic 
estimates for ratios of gamma functions in the first term of (18) are not appro- 
priate. In this case, we use the Stifling approximation for F(z), z > 0, and 
arrive at 

2yo(a12)312(a12 + 1) 
e,n ~ W ( m )  (19) 

(m + a / 2 ) ( m  + 1 + a /2)  
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372 Donald E. Amos 

where 

( m + a ~ a [ m ( m + a ) ] m ~ .  m 
- - < 1  W(m) ffi \ 2m + a] L(m + a /2)  2 m + a 

is monotone  decreasing for a > 2. This  can be seen by  logarithmic differentiation 
of W with the relations 

W' [ m(m + a) 1 a/2 
W - h  a/ J + 

l n r m ( m + a ) ~  [ a Z / 4 ]  
L-(- ~ ~ a /~2-  j = In 1 - (m + a /2)  2 <-- 

and 

W'  

m(m + a) 

-a2/4  
W - (m + a/2) 2 

m(m + a) ' (m + a/2)  2 

-a2/4 
(m + a/2) 2' 

< 1  

a/2 a [(1 - a/2)m 2 + a(1 - a/2)m + a2/4] 

m(m + a) 2 m(m + a)(m + a/2)  2 

While W(m) for a = 2 is monotone  increasing, W(m) only varies f rom 0.2436 to 
0.2500 for m _ 1. I t  is convenient  here  to invoke our  rule of approximate  inequali ty 
for order-of-magnitude est imates and use W(m + k) <_ W(m) for a >_ 2. 

Now x _> 0 and a _> 2 imply tha t  bm >__ 1 + am for all m, and this guarantees [7] 
tha t  pm+l >-pro. Consequent ly  [10] becomes 

c o  

[ym yM[ pmEM, EM~Me-~mm - ffi , m - -  1 ,  2 . . . . .  ( 2 0 )  

However,  T e m m e  [10] notes tha t  (12) has minimal and dominant  solutions, with 
asymptot ic  est imates [8, p. 80], given by 

F(m + 1)F(m + a) 
dm(x) = U(m + a, a, x) 

F(m + 1 + a/2) 

r ( m  + 1 )  

F(m + 1 + a/2) 
Cl(X)n(a-1)/2Ka_l(2 ~xn), 

P(m + a) 
Din(x) -- 1Fl(m + a, a, x) 

F(m + 1 + a/2) 

(21) 

a 
F(m + a) C2(x)n(1-a)/eIa-l(2 ~xn), n = m + -  

F(m + 1 + a/2) 2 

where ym(X) = fldm(x) is also minimal and Ka-1 and Ia-1 are modified Bessel 
functions. Any o ther  solution of (12), namely,  p~, is a linear combinat ion of dm 
and Dm. This  makes pm dominant ,  and asymptotical ly 

pm ~ aC2(x)(m + a/2)-l/2L-l(2 ~/x(m + a/2)) .  (22) 

Now we insert  pm and em into (20) and replace the sum by a bounding integral to 
obtain 

2yo(a/2)3/Z(a/2 + 1) ~ I "  dm 
EM ~-- a2C2(x ) W(M) JM (m + a/2)I2-1(2 Jx(m + a/2))  " 
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Computation of Exponential Integrals 373 

This latter integral, with a change of variable v 2 = 4x(m + a/2), becomes 

f ® dv 
2 vI~-l(V) 

M 

= 2  
Ko-~(VM) 
L - ~ ( v M )  ' 

VM=2 X M +  , 

which is the Wronksian of the Bessel functions K.(z) and L(z)  written in integral 
form 

K~(z) fz ® dv 
L(z) = vlT~v) " 

Now we approximate K~ and L with first-term uniform asymptotic expressions 
[1, p. 378] 

~f~ /-7- ~ K~(z) - ~]~-~ e - ~ ,  L ( Z )  - ~ - - ~ r e  , 

1 1 l l n ( l +  t ~ 
t -  J l + ( z / r )  2' ~ - - 7 - 2  \ l - t ]  

to obtain an order-of-maguitude estimate of the ratio 

KAz) ~ qre_2~ ~ t 
L(z) 2rl~(z) 

(23) 

or, with (22), 

K.-1(2 ~/x(M + a/2)) a2C~(x) 

Ia-d2 ~/x (M + a/2)) 2p~(M + a/2) J (a  - 1) 2 + 4x(M + a/2) 

Thus with (19) we can write 

EM <-- yoBM (24) 

eM M + a/2 + 1 
BM = ~M" ~/(a -- 1) 2 + 4x(M + a/2)" 

If one uses the Bessel function expansions for large argument  (large M) in place 
of the uniform expansions, the additive term (a - 1) 2 under  the square root does 
not  appear and the bound is much too large when a is large. In an error test, this 
forces M to be too large and results in much higher accuracies and more 
computat ion than  desired. 

In order to compute the relative error in yo M, we apply (20) and (24) for m = 1, 

[yl - yM] <_ yoBM. 

Note tha t  y~ -- royo and yM = foMyo are both normalized on yo where 

Y' r0 -- --  and fM = 37M 
yo ) 7M" 

Then  

[ ro - fM[ <_ BM (25) 
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shows that  accurate ratios Fo M are produced as M--* oo. Now (16) yields 

xl-a 
Yo- 

x + a - (1 + a/2)ro' 

and we compute yM from this relation using Fo M in place of ro, 

X 1 - a  

yo = x + a - (1 + a/2)~o M" 

Therefore, 

yo - y M  = yoyMxa-X(1 + a/2)(ro -- FM). (26) 

Solving for yM and using {25}, we get 

yo yo _< 
1 -yoxa-~(1 + a/2)BM' 

and the relative error from (26) is bound by 

[yo - y M [  yox~-l(1 + a/2)BM 

yo -- 1 --y0x~-l(1 + a/2)BM 

Now, the term involving BM is intended to be small and yox a-1 = eXE~(x) can be 
approximated by the lower bound in (6). Since we are only interested in order-of- 
magnitude estimates and are willing to insert a multiplicative constant to keep 
inequality, we simplify this expression on the right and use the right-hand side of 

- 1 + a/2 [yo yM[ ~ _ _  BM (27) 
Yo X+ a 

as an error test. Table II shows the smallest M for three tolerances. 
While the asymptotic replacements did not always produce rigorous inequality, 

numerical experiments on the error reveal that (27) is indeed a bound which is 
fairly sharp near x = XCUT and becomes more conservative with increasing x. 
This simply means that  more accuracy is obtained using (27) in an error test than 
can be expected. 

Equation (17) with yo replaced by yM gives 

Ea(x) - CMyo M, Ea+l(x) "-- CM[iYo M ( 1 + ~  2)~M] 

in terms of the computed quantities :~o M and :pM from Miller's algorithm, where 
e-X 

CM = a[y. M _ (1 + a/2):~M/a] + xy  M" (28) 

One can see from these relations, as well as from (6), that exponential scaling is 
appropriate. This will increase the argument range of the subroutine variable x 
by many orders of magnitude at no overall increase in computation. To achieve 
this scaling, e -~ in (1) and (28) is replaced by 1, and series (2) is multiplied by e ~. 
The selection parameter KODE in EXPINT provides for this option. When 
scaling is not used, a nonfatal error flag IERR signals a potential underflow and 
returns zero values for EN+h(X), k = 0, 1 , . . . ,  M - 1. 

The accuracy of yM and yM from the Miller algorithm can be further improved 
[4, p. 40] if we replace :~M÷~ = 0, which is supposed to approximate yM+I/YM, with 

ACM Transact ions  on Mathernatmal  Software, Vol 6, No, 3, September  1980. 



Computation of Exponential Integrals . 375 

Table II. Starting Inchces for Backward 
Recursion with Relative Errors 

[(1 + a/2)/(x + a)] BM~ 10 -3, 10 -8, 10 -14 

n 

x 1 2 4 8 16 64 1024 

0.5 9 9 7 5 3 2 1 
51 51 43 26 14 6 3 

145 145 129 85 39 13 6 

1.0 6 6 6 4 3 2 1 
29 29 27 20 13 6 3 
79 79 75 59 34 13 6 

2.0 4 4 4 4 3 2 1 
17 17 18 15 11 6 3 
44 44 44 39 29 13 6 

4.0 3 3 3 3 3 2 1 
11 11 11 11 10 6 3 
26 26 27 26 22 12 6 

8.0 2 2 3 3 3 2 1 
7 7 8 8 8 6 3 

16 16 17 18 17 12 6 

16.0 2 2 2 2 2 2 1 
5 5 6 6 6 6 3 

10 10 11 12 13 11 6 

32.0 2 2 2 2 2 2 1 
4 4 4 5 5 5 3 
7 7 8 9 9 9 6 

64.0 2 2 2 2 2 2 1 
3 3 4 4 4 4 3 
6 6 6 7 7 8 6 

256.0 1 1 1 1 1 1 1 
3 3 3 3 3 3 3 
4 4 4 5 5 6 6 

512.0 1 1 1 1 1 1 1 
2 2 2 2 3 3 3 
4 4 4 4 4 5 5 

1024.0 1 1 1 1 1 1 1 
2 2 2 2 2 3 3 
3 3 3 4 4 4 5 

a m o r e  r e a l i s t i c  v a l u e .  T h i s  c a n  b e  d o n e  in  a c o n v e n i e n t  c o m p u t a t i o n a l  m a n n e r  

i f  w e  n o t e  t h a t  a s y m p t o t i c a l l y  P m ~  aDm a n d  ym ffi fldm f r o m  (21) a n d  (22) a r e  

a l m o s t  r e c i p r o c a l s .  T h i s  r e c i p r o c a l  r e l a t i o n  c o m e s  a b o u t  i f  w e  u s e  t h e  u n i f o r m  

a s y m p t o t i c  e x p r e s s i o n s  (23) f o r  Ia-1 a n d  Ka-1.  T h u s  w e  a r r i v e  a t  t h e  a p p r o x i m a t i o n  

yM+I dM+, (. M +  ! + a/21'°-"'2 e x p ( ( a -  1 ) ~ )  t ~  

yM dM \ M  + 1 + a /2]L  M + a / 2  J ex - - -~ZYi}-~M+l}  ~/ tM 

( M  + 1 ) ( M  + a) tM+l DM(X) 
( M  + 1 + a / 2 )  2 tM DM+I(X) 
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where the subscripts M and M + I denote  corresponding evaluations of t and ~ in 
(23) with ZM ffi 2 J x ( M  + a /2 ) .  Now, pM ~ aDM for M --* 0% and we use yM ffi 1 
together  with 

37MM+1 (M + 1)(M + a) / (a - 1) 2 + 4 x ( M  + a / 2 )  pM 

= (M + 1 + a /2)  2 ~ ] ( a  - 1) 2 + 4 x ( M  + 1 + a / 2 )  pM+I 

to s tar t  backward recursion after  M is determined by means  of a tolerance test  on 
(27). This  modification for yM+I # 0 adds up to three  extra digits of accuracy over 
the same computa t ion  when yM+~ = 0. The  effect is most  dramatic  when x is 
close to X C U T  and a is large bu t  diminishes as x increases. In order  to take 
advantage of this extra accuracy, it was de termined experimental ly tha t  error  
tolerances T O L  less than  or equal  to 10 -3 could be increased by a factor of nearly 
90 and still give the requested  accuracy with smaller values of M. To  be slightly 
conservative,  we use a factor of 20 in the error  test. 

If  N = 1, we generate Ee(x) and use (1) to compute  E l ( x ) ,  x > XCUT.  
T h e  implementa t ion of the recursion relat ions and the error  test  can be 

simplified to minimize the number  of multiplications, divisions, and square roots. 
We compute  am by means  of 

m ( m  + a - 1) dm 

aM -- (m + a / 2 ) ( m  + 1 + a /2 )  d z  + Cm + m + a2 /4  

where Cm = m + a /2 ,  dm -- m ( m  + a - 1) are computed  recursively by additions 
in the form 

a 
Co = - -  Cm = C,,,-1 + 1, m = 1, 2, . . .  

2 '  

d~ = a, dm = dm-1  -b Cm--1 "4- C m - - 1 ,  m = 2, 3 . . . . .  

The  quanti t ies  

1 fmffi 
~/(a - 1) 2 + 4 x ( m  + a / 2 ) '  

occur in the error  t e rm (27). Recursively, we have 

fm ffi Rm-l fm-1 = Rm-lRm-2 . . .  Rofo, 

where 

~ . (  ( a -  1) 2 + 4 x ( m  + a / 2 )  
Rm ffi a -~ T) ~'+ 4 x ( m  + a / 2  + 1) 1 

m = 1 , 2  . . . .  ,M,  

f~ 
R m  ---- 

fm+l 

2x 
( a -  1) 2 + 4 x ( m  + a / 2  + 1)" 

Thus  fm can be updated  by one multiplication and one division. Since the error  
test  f rom (27) can be arranged into the form 

eM(M + 1 + a /2 ) fM 1 + a / 2  < p 2 ,  

TOL x + a 
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we can compute every factor on the left, except M + 1 + a/2, by forward reeursion 
at the same time the {p~} sequence is being generated, 

(a  1 ) 2 +  4x(;)  go = - , g m =  g ~ - ~  + 4x,  m = 1, 2, 3 , . . . ,  

(1 + a/2)fo 
F0 -- (x + a ) .TOL '  F~ = F~-la~-~(1 - 2x/g~). 

Similarly, for yM+~, we have a reduction in computation by replacing RM with 
three terms of the series and expressing other factors in terms of available 
quantities, 

yM+I = dM+l + M + 1 + a2/4 PM+I 1 -- ~gM + 8 \ g M ]  J 
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