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Computation of Exponential Integrals

DONALD E. AMOS
Sandia Laboratories

Formulas leading to the computation of M member sequences of exponential integrals En+x(x),
xz20,N=1Lk=0,1,. ., M - 1, are presented here and implemented in Fortran subroutine
EXPINT. Sequences of exponential integrals can be generated in a numerically stable fashion if
recurrence 1s carried forward or backward away from the integer closest to x. In keeping with this
requirement, we select n, the integer closest to x within the constramt N < n < N+ M — 1, and use
E.(x) to start the recursion E.(x) 1s computed by means of the power series on 0 < x < 2 and the
confluent hypergeometric function U(n, n, x) on 2 < x < ., U(n, n, x) is, in turn, computed from the
backward recursive Miller algorithm for U{n + k, n, x), k = 0, 1, ..., with a normalizing relation
derived from the two-term recursion relation satisfied by E.(x) and E,.;(x). Truncation exror bounds
are derived and used 1n error tests mn EXPINT Exponential scaling is also provided as a subroutine
option.
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INTRODUCTION

In [5], Gautschi shows that a sequence of exponential integrals Enr(x), x =0, N
=1,k=0,1,2,..., M~ 1, can be computed in a stable fashion if recurrence on

kEkH(X) + xEi(x) =e7* 1)

is carried forward or backward away from the integer closest to x, [x + 0.5]. In
keeping with this stability requirement, Gautschi [2] computes e*E1(x) by means
of the series for x < 1 and recurs forward with (1) for e*E,.(x), n = 1. For x > 1,
the (Legendre) continued fraction [1, p. 229] is evaluated for n = [x + 0.5], and
the appropriate application of (1) increases or decreases the index to desired
values. Even and odd convergents, which bound the limit of the continued
fraction to arbitrary accuracy, are computed from series representations [4, p. 29]
to guarantee the accuracy of the starting value in (1). A similar implementation
is described in [3] for E.(x), « > 0. However, the Algol code developed in [2]
appears to be the only one generally available for exponential integrals.

In this paper we present the analytical basis for a Fortran subroutine EXPINT
which computes M member sequences En+1(x) or e*Enyr(x), N2 1, k=0, 1,

., M — 1 for real x = 0. The work in computation of E,(x) or e*E,(x) to start
the recursion is comparable to that in [2], but great savings are achieved in the
recurrence when N is large and x < 1 or x is large and N + M — 1 is small.

This work was supported by the U.S. Department of Energy under Contract AT(29-1)-789. The U.S.
Government’s right to retain a nonexclusive royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for US Government purposes is acknowledged.
Author’s address' Numernical Mathematics Division, Sandia Laboratories, Albuquerque, NM 87185.
© 1980 ACM 0098-3500/80/0900-0365 $00 75

ACM Transactions on Mathematical Software, Vol. 6, No 3, September 1980, Pages 365-377.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F355900.355908&domain=pdf&date_stamp=1980-09-01

366 . Donald E. Amos

For x = 2, the power series is implemented. For x > 2, the backward recursive
Miller algorithm for approximations to U(n + &, n,x), k=0, 1, ..., is used where

E.(x) = e *x"U(n, n, x)

and Ulaq, b, x) is the second confluent hypergeometric function. The analysis to
follow is directed toward computation at an index n, the integer closest to x
within the constraint N = n < N + M — 1. Once E,(x) is computed, (1) is used to
generate the remainder of the sequence with indices N< k=N + M — 1. The
nature of the computation allows exponential scaling, which extends the computer
argument x over many orders of magnitude, to be introduced conveniently with
no overall increase in the amount of computation.

ANALYSIS
Series for x < XCUT,n=1, and XCUT =1 or 2
For x = XCUT, the series [1, p. 229]

n—2 (_x)m (_x)n—-l .

B == 8 o D o DI et vl @)

men (M —n + 1)m!

was implemented where the leading sum does not appear for n = 1. Since the
terms of each sum are bounded by terms of the exponential series, it can happen
that truncation will occur in either the first or the second sum, depending on the
size of x and n. We therefore consider the truncation of (2) in two cases and, for
convenience, never terminate on the term m = n — 1. If we truncate the series at
index m = N, the remainder is denoted by Ry and we have the following cases.

Case N+ 1=zn+ 1, N=2. In this case,

_ @ (_x)m xN+l xN
| Bn| = NZH m-n+1)m! < (N+DI(N—-n+2) <W

3)

since the sum is an alternating seriesand N — n + 2 = 2.

CaseII'l N+ 1=n-2,N=2 Inthis case we have {m — n + 1| = 1 for all
m#n—1and

n—2 xm xn—l o xm

Now, by [1, p. 259],
Y(n) <In(n)
and

0<—mx+wm<m%, 0<x=2 n=3

Note that
n—1

y= —ln%>0 for n=2

X
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Computation of Exponential Integrals . 367

since y has a single positive minimum at x = n — 1, n = 2. Therefore, since N =
2 implies n = 5, we have

0< n-1
and
xn—l n—2
+
" 1),[ =In x + Y(n)] <=9
Then
n—-2 xm xn—2 o xm
| Bn <N§1W<T—T>z+ 2l
n—3 xn—2 0 xm
—————e - —
<Iateomt Ia @

iR|<xN1+ 4 v +

NI AN N+1 (N+DWN+2
Y N+1 - xV
NiN+1-x_ "NV

Notice that the term m = n — 1 is properly placed between the two sums
according to its magnitude and that (—x)"/N! is computed (recursively) as part
of each term. Therefore the truncation error bound By = 3x"/N! or
Bnx = xV/(3N!) is easily computed as each term is generated. The actual
truncation of the series is made on a relative error test

By =|Sny|-TOL (5)

where Sy ~ E.(x) is the accumulated sum, and TOL is the relative accuracy
desired.

If one wished to terminate the series on an absolute error test with a tolerance
TOL = 107", no more than 23 terms would be necessary. However, the relative
error test in (5) is more restrictive and puts an additional requirement on the
number of terms. This requirement comes about because Sy ~ E,(x) as a function
of n decreases like

|Ry|<— N+1l=n-2, N=z2

e~ e~
e < En(lx) < _“l'_r-;,——_]?’ nz=2. (6)

The minimum index N, which makes (5) true with TOL fixed, causes By to
decrease with n because E.(x) (and Sy) decreases slowly with n. Since By is
monotone decreasing, N must increase slowly with n (see the last line of Table I).
In fact, only 36 terms, those which are allowed in EXPINT, are needed to provide
for n as high as 10 with TOL = 107*. Table I shows the minimum index N
required for (2) when TOL = 1073, 1078, 107",

The function Y(n) = I'’(n)/T'(n), sometimes called the digamma function, is
supplied as a CDC6600-7600 Fortran function DIGAM(N) where only integer
arguments are permissible. In the preceding paragraph we noted that 36 terms of
the series would accommodate » as high as 10" at a relative error TOL = 107,
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368 . Donald E. Amos

Table I. Truncation Index N for Series with
Relative Errors By < 107%, 1078, 107

n

x 1 2 4 8 16 64 1024

02 4 3 4 5 5 5 6
7 7 7 8 8 9 9
1 11 11 1 12 12 13

04 4 4 5 8 6 7 8
9 9 9 9 10 10 11
13 13 13 13 16 14 15

06 5 5 6 8 7 8 9
10 10 10 10 11 12 13
4 15 15 15 16 16 17

08 6 6 7 8 8 9 10
1 11 11 12 13 13 14
16 16 16 16 17 18 19

10 5 7 7 8 9 10 11
12 12 12 13 16 14 15
17 17 18 18 18 19 20

1.2 7 8 8 8§ 10 11 12
12 13 13 14 16 15 16
18 19 19 19 19 21 21

14 7 9 9 9 11 1 13
13 14 14 16 16 16 18
19 20 20 20 20 22 23

16 9 9 10 10 12 12 14
15 15 15 16 16 17 19
21 21 21 21 22 23 24

1.8 10 10 11 11 12 13 14
16 16 16 17 17 18 20
22 22 22 22 23 24 25

20 11 11 11 12 13 14 15
17 17 17 17 18 19 20
23 23 23 23 24 25 26

Because the convergence of (2) is rapid, the n — 1 term, where Y(n) is needed, is
reached only when n is relatively small, and truncation always occurs on the first
sum when n is greater than 36. Consequently, one need only supply a table of
Y(n) at integer arguments as high as 36 to cover most single-precision require-
ments. However, since EXPINT is almost portable, the implementation described
below for DIGAM will allow an easy conversion to machines having longer word
lengths or higher precision and requiring correspondingly smaller relative errors.

DIGAM returns a value y{(n) from a table look-up if n =< 100. This single-
precision table was generated in CDC6600 double-precision arithmetic from the
relations [1, p. 258]

Y(1) = —y = —0.577215664901532860606512. . . )
1
¢(n+1)=¢(n)+;, n=1

ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980



Computation of Exponential Integrals . 369

where vy is the Euler constant. For n > 100, the asymptotic expansion
1 Boy
~lnn——-— v 22
\I/(n) nn 2n h=1 2kn2k
is evaluated where [1, p. 810]
1 -1 1 -1
Bz—é, B4—'§O—, BG—E, Bs—'3—0
are Bernoulli numbers and the error is bounded by the next term of the sum. At
= 100, the relative error is 0.91 X 107", If n > 10°, the relative error, expressed

by the first term of the sum, is less than 0.45 X 107%, and only the two leading
terms are used for y(n).

BACKWARD RECURSIVE ALGORITHM FOR x > XCUT

In [10] Temme uses the three-term recursion relation
kut1(2) = brkn(2) + ankn-1(2) =0, n=12..., 8)
2 2
e BTHE e
for
kn(2) = (1) (v, )U(p + $ + n, 2v + 1, 22), n=01...,

TG +v+nT(3—v+n)

(v, n) = (—=1)" cos m» '
an!

to compute the K,(z) Bessel function, z > 0,
K(2) =vV7 22)e*Ulv+ 4, 2v+1,22), —-i<wr<i

Temme shows, on the basis of the work in [8] and [9], that k.(z) is a minimal
solution of (8), making backward recursion appropriate for numerical stability.
The Miller algorithm is employed to compute quantities £ (z) starting with

EINV+1 = 0, k—% = 1.

This yields convergent ratios £3:(2)/kY (z) and fixes an approximate solution of
(8), k7 (2), to within a multiplicative constant. This constant is determined by
truncating the normalizing relation

Y ka(2) = (22)77? 9
k=0
and replacing &, by k). Temme also analyzes the error | k, —k% | given by Olver
[6, p. 116; 7] when the infinite system (8) is truncated to an N X N system,
assuming the normalizing constant ko(z) is known. Olver’s equations are

€

Enx=

k=N Pk Pr+1 ’ (10)

N
|kn(2) — kY(2)| = Expn, n=1
ACM Transactions on Mathematical Software, Vol. 6, No. 3, September 1980,



370 . Donald E. Amos

where p, =0,k =0, 1,...,is a computed solution of (8) obtained from p, = 0, p;
= 1 by forward recursion. The fact that b, = 1 + a, guarantees that the sequence
{ px} is monotone increasing. The {e,} sequence is obtained from

€ = kO(z), €n = Qnln-1, n=12 ...,

and is given explicitly by

_ ko(2)(=1)*(», n)
" n+1

Temme further analyzes Ex in (10) to get a simple bound in terms of N and px,

By < ko cos mvN~% 2p;,2.
2122

There is an additional error term which comes from the truncation of series (9),
and this appears to be the dominant factor in determining N in [10]. In the
analysis that follows, the normalizing relation terminates and there is no trunca-
tion error from this source.

To compute exponential integrals, we propose to use the analysis outlined
above on a reparameterization of (8) so that U(a, a, x) in

E.x) = e*x* 'Ul(a, a, x) (11)
can be computed. Thus
n=m+g, v=§—%, z=-J2E, a even, m=0,1,2,...
carries (8) over to a new recurrence
Ym+1(X) = b Ym(x) + A Yym—1(x) = 0, m=12 ..., (12)
m(a+m-—1) _(a+2m+x)

m m

T@Z+rm@2+m+1) T @2tm+ )

with an explicit solution, except for normalizing constants independent of m,

given by

_ (Dml@)m
1+ a/2)n

In (13) m = 0 gives yo = Ula, a, x) for (11). Now we notice that this sequence can
be normalized by means of the two-term recursion relation (1) in the form

aEoui(x) + xEq(x) =™~ (14)

Uim + a, a, x). (13)

m

if E.+1(x) can be expressed in terms of y,, m = 0,1, 2, .. .. This we do by means
of the contiguous relation

2UMb,c+1,2)=(c=bUWb,c,2)+Ub-1,c¢ 2)
withb=a+1,c=a,andz=xfor Ula + 1, a + 1, x) in (11). Thus

xUa@+1,a+1,x)=Ula, a x) — Ua+1, q, x), (15)
ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980



Computation of Exponential Integrals . 371

and the normalizing relation (14), in terms of y, and y; from (11), (13), and (15),
becomes

x+a)yo— 1+ a/2)y =x'" (16)
This relation specifies the { y.»} sequence uniquely, and
1+
Eo(x) = e x%'yo,  Egnlx) = e"‘x““l[yo —i———z-(-%]. 17

While this approach appears to be new, it can actually be related to the
continued fraction for E.(x) [1, p. 229]. This comes about by writing the continued
fraction for ro = y1/yo,

doing an equivalence transformation (multiplying a.., by, and @p+1 by pn = a/2
+m+1,m=1,2, ...) and using (16) and (17) with y;, = ro Yo to express E,(x) in
terms of ry. The result is the even contraction of the Legendre continued fraction
for E.(x) [2].

Now we wish to analyze Olver’s expression (10) for the error in the Miller
algorithm when applied to (12). Since we are only interested in order-of-magni-
tude estimates, we use < and ~ in the sense of approximate inequality in many
of the subsequent estimates, realizing that a multiplicative constant may have to
be inserted in our final result to make any bound rigorous. Since

€ = Yo, en = Am€m-1, m=12...,
we have explicitly
- (Dml@)m y
™ @/2 * Dml@/2 + Dm (18)
_ L'(im + DHI(a + m) ] Na/2 + DI (a/2 + 2)
TT(@2+m+ DI (a/2 +m+2) T(a) >

The relations

_t fz\ [z +1 'z+a) .,
F(Z) = \/;r F<§>F<T>, —F(—Z-'*’_b) 2 for z—

produce an estimate for the ratio

T(a/2 + DIa/2 + 2) _ Vm(a/2)(a/2 + DT'(@/2 + 1) _(a/2"*a/2+1) Vr
T(a) - 2 ((a + 1)/2) P :

Since @ and m can be large independently of one another in (18), asymptotic
estimates for ratios of gamma functions in the first term of (18) are not appro-
priate. In this case, we use the Stirling approximation for I'(z), z > 0, and
arrive at

2y0(a/2)¥*a/2 + 1) Vr

e d
" (m+a/2(m+ 1+ a/2)
ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980,
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372 . Donald E. Amos

m+a\’[ mm+a) " m
= <1
Wim) (2m + a) [(m + a/2)2] Nm+a
is monotone decreasing for a > 2. This can be seen by logarithmic differentiation
of W with the relations

where

W m(m + a) a/2 m(m + a)
W | m+a/2?| mm+a)  (m+a/2)P
mm+a) | _ __a*/4 -a’/4
l“[(m m a/2)2] = l“[l m+ a/z)z] =t a2’
and
W _ -a?/4 N a/2  _al(l-a/2m®+a(l ~ a/2)m + a®/4]
W (m+a/2F mm+a) 2 m(m + a)(m + a/2)*

While W(m) for a = 2 is monotone increasing, W(m) only varies from 0.2436 to
0.2500 for m = 1. It is convenient here to invoke our rule of approximate inequality
for order-of-magnitude estimates and use W(m + k) =< W(m) for a = 2.
Now x = 0 and a = 2 imply that b, = 1 + a,, for all m, and this guarantees [7]
that p,,+1 = pn. Consequently [10] becomes
o0 em
|Ym — Y| = pnEy, EwsY¥—, m=1L2,.... (20)
M pm
However, Temme [10] notes that (12) has minimal and dominant solutions, with
asymptotic estimates [8, p. 80], given by
T'(m + HI'(m + a)

dn(x) = Ton+ 1+ a/2) Uim+ a, a, x)

__Tm+)) (@12
Tom 17 /3y CHn ™ Kana2 van), o
D,.(x) = T'on + a) Jiim + a, a, x)

'm+1+a/2)

- I'(m + a)
P'm+1+ a/2)

Cot)nL,1(2 Van), n=m +g

where yn.(x) = Bd.{(x) is also minimal and K, and I,—; are modified Bessel
functions. Any other solution of (12), namely, pn., is a linear combination of d,.
and D,,. This makes p,, dominant, and asymptotically

P~ aCo(x)(m + a/2) % 1,—1(2 Vx(m + af2)). (22)

Now we insert p.», and e,, into (20) and replace the sum by a bounding integral to
obtain

By < 2@/ @2+ ) VL f °° dm\/
M= «2C3(x) u (m+ a/DI212 Vaim + a/2))

ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980



Computation of Exponential Integrals . 373

This latter integral, with a change of variable v*® = 4x(m + a/2), becomes

®  dv K. (vm) / a
2 = 2 s = 2 e B
L, vlZ_i(v) I (vm) o x<M * 2)

which is the Wronksian of the Bessel functions K,(z) and I,(z) written in integral
form

K.(2) _ ® dv
L(z) |, vIZ)

Now we approximate K, and I, with first-term uniform asymptotic expressions

[1, p. 378]
at t
~ —_p ~ ot
K.(2) \/2ve ,  L(2) \/27",6 )

(23)
S T sty
Y1+ (z/v)? t 2 \1-¢
to obtain an order-of-magnitude estimate of the ratio
K@) v
I(2) 21} (2)
or, with (22),
Ko-i(2 V(M + a/2)) «*C3(x)
Ioa@ vz M+ a/2) 20M+a/2) Ja- 17+ axdl + a)2)
Thus with (19) we can write
Em =< yoBu (24)

_em M+a/2+1
P @172+ 4x(M + a/2)

If one uses the Bessel function expansions for large argument (large M) in place
of the uniform expansions, the additive term (a — 1)? under the square root does
not appear and the bound is much too large when a is large. In an error test, this
forces M to be too large and results in much higher accuracies and more
computation than desired.

In order to compute the relative error in y¥, we apply (20) and (24) for m = 1,

M

|y1 — y¥| = yoBum.

Note that y, = royo and y¥ = Fi'y, are both normalized on y, where

~M
ro=2 and A= }-,I.IT,
Yo ¥o
Then
|ro — 7| < Bu (25)

ACM Transactions on Mathematical Software, Vol. 6, No. 3, September 1980.
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shows that accurate ratios 73! are produced as M — «. Now (16) yields
xl—a

Txta-(+a/2n

Yo

and we compute y¢! from this relation using 73 in place of ry,

1-a

M x
Yo x+a—(1+a/2Ft
Therefore,
¥o — y8! = yoy¥'x* (1 + a/2)(ro — 7). (26)

Solving for y¥ and using (25), we get

Yo
1 — yx®'(1 + a/2)Bu’

and the relative error from (26) is bound by
|y0 — 38| - ¥ox* (1 + a/2)Buy
yo  1=x%x""'(1+a/2)By’

Now, the term involving By is intended to be small and yox®™' = e*E,(x) can be
approximated by the lower bound in (6). Since we are only interested in order-of-
magnitude estimates and are willing to insert a multiplicative constant to keep
inequality, we simplify this expression on the right and use the right-hand side of

lyo — 38| 1+a/2 g
Yo x+a

as an error test. Table II shows the smallest M for three tolerances.

While the asymptotic replacements did not always produce rigorous inequality,
numerical experiments on the error reveal that (27) is indeed a bound which is
fairly sharp near x = XCUT and becomes more conservative with increasing x.
This simply means that more accuracy is obtained using (27) in an error test than
can be expected.

Equation (17) with y, replaced by yd' gives

M
Yo =

(27)

-~ - 1 2 ~A
E.(x) = Cuy¥, E (x) = CM[yé” _M]

a

in terms of the computed quantities &' and 73 from Miller’s algorithm, where

-X

e
a7 - (1 + a/2)57/a) + x5t

Cu (28)
One can see from these relations, as well as from (6), that exponential scaling is
appropriate. This will increase the argument range of the subroutine variable x
by many orders of magnitude at no overall increase in computation. To achieve
this scaling, e in (1) and (28) is replaced by 1, and series (2) is multiplied by e”.
The selection parameter KODE in EXPINT provides for this option. When
scaling is not used, a nonfatal error flag IERR signals a potential underflow and
returns zero values for Enx(x), k=0,1,... M- 1.

The accuracy of y& and y¥ from the Miller algorithm can be further improved
[4, p. 40] if we replace 74,1 = 0, which is supposed to approximate ya.r1/ yu, with

ACM Transactions on Mathematical Software, Vol 6, No. 3, September 1980.



Computation of Exponential integrais . 375

Table II. Starting Indices for Backward
Recursion with Relative Errors
[(1+a/2)/(x + a)] By = 107, 1078, 10™

n

1 2 4 8 16 64 1024
05 9 9 7 5 3 2 1
51 51 43 26 14 6 3
145 145 129 85 39 13 6
10 6 6 6 4 3 1
29 29 27 20 13 6 3
79 79 7 59 34 13 6
20 4 4 4 3 2 1
17 17 18 15 11 6 3
4 4 4 39 29 13 6
40 3 3 3 3 3 2 1
1 11 1 11 10 6 3
26 26 27 26 22 12 6
80 2 3 3 3 2 1
7 7 8 8 8 6 3
16 16 17 18 17 12 6
16.0 2 2 2 2 2 1
5 5 6 6 6 6 3
10 10 11 12 13 11 6
320 2 2 2 2 2 2 1
4 4 4 5 5 5 3
7 7 8 9 9 9 6
640 2 2 2 2 2 2 1
3 3 4 4 4 4 3
6 6 6 7 7 8 6
256.0 1 1 1 1 1 1 1
3 3 3 3 3 3 3
4 4 4 5 5 6 6
512.0 1 1 1 1 1 1 1
2 2 2 2 3 3 3
4 4 4 4 4 5 5
10240 1 1 1 1 1 1 1
2 2 2 2 2 3 3
3 3 3 4 4 4 5

a more realistic value. This can be done in a convenient computational manner
if we note that asymptotically p,. ~ aD,, and y, = Bd,. from (21) and (22) are
almost reciprocals. This reciprocal relation comes about if we use the uniform
asymptotic expressions (23) for I,—; and K, ;. Thus we arrive at the approximation

yunr _dus [ M+1 \[M+1+a/2]7" explla=Déu}  [tare
M du M+1+a/2 M+ a/2 exp{(a — 1)érs1} ta

M+ 1)(M+ a) tmer Du(x)
M+1+a/2° ty Dua(x)
ACM Transactions on Mathematical Software, Vol. 6, No. 3, September 1980
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where the subscripts M and M + 1 denote corresponding evaluations of £ and § in
(23) with zx = 2 Va(M + a/2). Now, pu ~ aDy for M — o, and we use 74 = 1
together with

o M+ 1M+ a) (@a—1°+4x(M+a/2) pu
M T M+ 1+a/2° Y@= 102+ 4x(M + 1 + a/2) pant

to start backward recursion after M is determined by means of a tolerance test on
(27). This modification for 7%, 0 adds up to three extra digits of accuracy over
the same computation when 7%, = 0. The effect is most dramatic when x is
close to XCUT and a is large but diminishes as x increases. In order to take
advantage of this extra accuracy, it was determined experimentally that error
tolerances TOL less than or equal to 1072 could be increased by a factor of nearly
90 and still give the requested accuracy with smaller values of M. To be slightly
conservative, we use a factor of 20 in the error test.

If N = 1, we generate E,(x) and use (1) to compute Ei(x), x > XCUT.

The implementation of the recursion relations and the error test can be
simplified to minimize the number of multiplications, divisions, and square roots.
We compute a,. by means of

_ mm+a-1) _ dm
T (m+a/2)m+1+a/2) dn+cm+m+a’/d

am

where ¢, = m + a/2, d, = m(m + a — 1) are computed recursively by additions
in the form

a
co=§, Cm=cm—1+1) m=1’2""

d1=a: dn = dn-1 + C1 + Cmy, m=223,....

The quantities

fm = ! ) =1, 2) . M:
Via = 1)? + 4x(m + a/2)
occur in the error term (27). Recursively, we have
fm = Rm—lfm—l = Rm—lRm—Z e ROfO, Rm = _Z'Y_n_
fm+1
where
R _\/ (e—1)"+4dx(m+a/2) 2x
" (@—1)°+4x(m + a/2 + 1) (@—1)7%+4x(m+a/2 +1)°

Thus f. can be updated by one multiplication and one division. Since the error
test from (27) can be arranged into the form

eyM+1+a/2)fu 1+ a/2 <p?

TOL x+a 0

ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980
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we can compute every factor on the left, except M + 1 + a/2, by forward recursion
at the same time the {p.} sequence is being generated,

go=(a—1)2+4x<-g), 8m = &n-1 + 4x, m=123...,

Fo = 1+ a/2)f
" +a)-TOL’

Similarly, for y}{.,, we have a reduction in computation by replacing R with
three terms of the series and expressing other factors in terms of available
quantities,

v doe Py [, _2x 3(2Y
T+ dys1 + M+ 1+ a°/4 Pun gx 8\gu |

F, = Fr1am-1(1 — 2x/gy).
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