
Auto-Partitioning Heterogeneous Task-Parallel Programs with
StreamBlocks

Mahyar Emami∗
mahyar.emami@epfl.ch

EPFL
Lausanne, Switzerland

Endri Bezati∗
endri.bezati@huawei.com

Computing Systems Laboratory, Huawei Technologies
Zurich, Switzerland

Jörn W. Janneck
jwj@cs.lth.se

Lund University
Lund, Sweden

James R. Larus
james.larus@epfl.ch

EPFL
Lausanne, Switzerland

ABSTRACT
FPGAs play an increasing role in the reconfigurable accelerator
landscape. A key challenge in designing FPGA-based systems is
partitioning computation between processor cores and FPGAs. An
appropriate division of labor is difficult to predict in advance and
requires experiments and measurements. When an investigation
requires rewriting part of the system in a new language or with a
new programming model, its high cost can delay design-space ex-
ploration. A single-language system with an appropriate program-
ming model and compiler that targets both platforms transforms
this tedious exploration to a simple recompile with new compiler
directives.

This work introduces StreamBlocks, a unified open-source soft-
ware/FPGA compiler and runtime that takes dataflow programs
written in Cal, and automatically partitions them across heteroge-
neous CPU/FPGA platforms. The explicit task-parallel semantics of
dataflow allows our compiler to simultaneously take advantage of
thread parallelism on software and spatial parallelism on hardware.

StreamBlocks is augmented with a profile-guided auto-
partitioning tool that helps identify the best hardware-software
partitions. We demonstrate the capability of our compiler in finding
the right balance between hardware and software execution on both
a high-end datacenter accelerator card and an embedded board. Our
experiments exhibit a 4 − 7× speedup over trivial partitions. This
speedup is achieved automatically with zero code modifications.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; Data flow architectures;Multicore architectures; •Hard-
ware → Hardware-software codesign; • Computing methodolo-
gies → Concurrent programming languages.

KEYWORDS
reconfigurable computing, Actors, partitioning
∗Both authors contributed equally to this research.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569659

ACM Reference Format:
Mahyar Emami, Endri Bezati, Jörn W. Janneck, and James R. Larus. 2022.
Auto-Partitioning Heterogeneous Task-Parallel Programs with Stream-
Blocks. In International Conference on Parallel Architectures and Compilation
Techniques (PACT ’22), October 10–12, 2022, Chicago, IL, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3559009.3569659

1 INTRODUCTION
The slowdown in performance gain of general-purpose processors
has increased interest in using FPGAs as reconfigurable accelerators,
particularly for cloud computing [8, 13, 42, 48].

A widely-accepted approach towards accelerator design is the
use of High-Level Synthesis (HLS) tools [2, 26, 35, 41] that allow
designers to develop accelerators in a software language such as
C/C++. In spite of being marketed as C/C++ compilers, the code
written for HLS follows different principles from software and
usually depends on specific HLS libraries. That is, to execute a
program on an FPGA using HLS, it should be written for HLS
from scratch. Furthermore, every time a new functionality is added
to or, subtracted from hardware, the hardware-software interface
needs to be modified to account for the change in communication
patterns.

A key challenge in designing accelerators is partitioning compu-
tation between processors and an FPGA. An appropriate division
of labor may be difficult to predict and only be revealed by ex-
periments and measurements. When such an experiment requires
rewriting part of a system in a new language, or with a new pro-
gramming model, to run on the other platform, the high cost of
exploration may retard studies of different configurations and limit
the evaluation.

A possible solution is a single-language system with an appro-
priately portable programming model and a compiler to generate
code for both platforms. In this case, exploring a new system config-
uration reduces to recompilation with different compiler directives.

A fundamental aspect is the programming model, which must
allow parts of a program to run on either a CPU or an FPGA and
interact transparently, regardless of where they execute. A unified
programming model should be able to take advantage of thread-
level parallelism on software and abundant spatial parallelism on
hardware. Its communication mechanisms should map well to the
available resources on both CPUs and FPGAs. Additionally, the
programming model should define encapsulation boundaries such

398

https://doi.org/10.1145/3559009.3569659
https://doi.org/10.1145/3559009.3569659
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569659&domain=pdf&date_stamp=2023-01-27

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

that a piece of functionality can be freely placed on either hardware
or software independent of other concurrent functionality.

The Actor model offers a natural fit to our requirements. An
Actor-based programming model describes a network of concurrent
tasks—actors—where each task has an independent state and only
communicates with others through messages. The message-passing
style of communication, called dataflow parallelism, is ubiquitous
in modern software and, interestingly is the de-facto model of task-
parallel programming in HLS [15, 16, 43, 49].

This work introduces StreamBlocks1, a prototype compiler
suite for heterogeneous task-parallel programs that enables an
exploratory approach to programming heterogeneous FPGA-
accelerated systems. StreamBlocks makes no distinction between
software and hardware code. It only restricts tasks with system call
invocations (e.g., reading a file) or legacy code to software execu-
tion, while allowing any other task to be placed on hardware or
software with zero code modification.

StreamBlocks compiles programs written in the Cal Actor lan-
guage. Programs written in Cal are directed dataflow graphs (cyclic
or acyclic) whose nodes are actors and edges are first-in-first-out
(FIFO) communication channels. A dataflow program specifies a
partial order of computation in which sequencing constraints arise
only from data dependencies. As a result, actors can execute con-
currently.

A dataflow program can be compiled to run on a processor, FPGA,
or a combination of the two. In addition, dataflow semantics do
not constrain an FPGA to operate only as a simple call-respond
accelerator. Instead, it allows the FPGA to operate as a streaming
coprocessor that executes concurrently with a processor and con-
tinually communicates with software actors. This generality allows
the direct migration of part of a computation from software to
hardware without rewriting the (dataflow) program, an essential
step in developing, evaluating, or evolving a heterogeneous system.

However, the design space of possible partitions of functionality
between the two platforms can be large and complex. An integral
part of StreamBlocks is a profile-guided auto-partitioning tool to
help identify the best-performing ones by design-space exploration.
It formulates the problem of CPU-FPGA partitioning as a mixed-
integer linear programming (MILP) model and optimizes mapping
of actors to one or more CPU threads, or dedicated hardware on an
FPGA for end-to-end performance.

Our work naturally focuses on new applications, without an
established code-base. In this situation, a teammust choose between
a single language (e.g., Cal) or two languages (e.g., C and C-HLS)
solution. The former brings abstractions that (1) free developers
from concurrencymanagement at the language level and (2) enables
automatic design-space exploration. The other, more conventional,
approach requires a team to define their abstractions using low-level
communication and concurrency mechanisms and does not provide
a methodology for exploring the design space of partitioning work
between the CPU and FPGA.

Existing applications must be rewritten for FPGAs (even when
using HLS), so writing code in a new language (e.g., Cal) that
targets both platforms helps avoid supporting separate hardware
and software implementations. Moreover, StreamBlocks supports

1https://github.com/streamblocks/streamblocks-platforms

code reuse since it can invoke C/C++ code through a thin wrapper
actor written in Cal. Our design-space exploration methodology
can constrain legacy actors to software execution. This is especially
useful when developers have prior knowledge that parts of the
application will not benefit from hardware execution.

Previous work has demonstrated that Cal can be efficiently com-
piled for both hardware [29] and software [31]. Cal does not inher-
ently limit the evaluation of our techniques and findings. However,
our goal is not to find the optimal implementation of an application
in the large space of possible implementations (originating from all
mixes of source languages), nor is it to replace a fine-tuned manual
hardware-software partitions backed by engineering insight and
platform expertise. Rather, Streamblocks is a new compiler that
treat an FPGA like other compute resources that may or may not
help achieve automated acceleration.

An optimizing compiler only needs to satisfy a performance goal,
not find the absolute optimal solution. In case auto-partitioning
fails to meet the goal, a developer could fallback to lower-level
optimization, or even fall back to standard methods of hardware
development like fine-tuned HLS or RTL code. This is a standard
practice in software development. For instance, many developers
choose Python for rapid experimentation and only fallback to C++
development if strict performance constraints are not met.

Note that our work simply uses Cal as medium to facilitate porta-
bility and design-space exploration. Any task-parallel programming
model that respects the portability requirements described earlier
is a viable frontend to which the techniques described in this paper
can be applied. The contributions of this work are:

• An open-source dataflow compiler for the Cal programming
language that targets heterogeneous platforms.

• An automatic task-partitioning methodology for placing
computations on heterogeneous platforms from a single
source language.

• A tool that uses this flexibility to find high-performing
hardware-software partitions of a system.

• Experimental results demonstrating that our compiler can
efficiently use the resources of a heterogeneous platform.

The paper is organized as follows. Section 2 provides an overview
of dataflow programming and the Cal programming language.
Section 3 describes the partitioning algorithm. Section 4 presents
the StreamBlocks compiler and its heterogeneous code generators.
Section 5 evaluates the compiler and the partitioning methodology.
Section 6 compares StreamBlocks with other systems and the paper
concludes with Section 7.

2 ACTORS AND DATAFLOW
Dataflow is a computation model used to express concurrent algo-
rithms operating on streams of data. It has a rich history with many
variants (e.g., [6, 21, 33, 39]) often targeted at a specific application
domain or designed to facilitate efficient analysis or implementa-
tion. In our work, we use a general form of dataflow, in which a
program is a network of computational kernels, called actors, that
are connected via input and output ports by directed, point-to-point
connections or channels. Actors may have an internal state that
is invisible to other actors. They interact exclusively by sending

399

https://github.com/streamblocks/streamblocks-platforms

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

packets of data called tokens along the channels. Channels are loss-
less and preserve the order in which tokens are sent. They are also
buffered so that the producer and consumer of a token need not
synchronize during a transfer. A token may be consumed any time
after it is produced.

2.1 Cal Actor Language
The actors considered in this paper execute in a sequence of atomic
steps or firings [21]. During each firing an actor may (i) consume
input token(s), (ii) produce output token(s), and (iii) modify its
internal state. Instead of being written as a sequential process (Kahn
processes [33], i.e., a never-ending loop), languages such as Cal
are structured around the steps an actor may perform. In Cal, an
actor is a collection of actions, each describing a step that the actor
can perform, along with the conditions under which the step should
execute.

The Cal actor language [22] permits the description of actors
for a wide range of dynamic and static dataflow models, ranging
from Kahn process networks [33], dataflow process networks [39],
and synchronous and cyclo-static dataflow [6, 7, 38], among oth-
ers. Parts of the language have been standardized by the ISO/IEC
committees RVC-CAL [1] as one of the languages used to write the
reference implementations of MPEG video decoders.

namespace example:
external function rand(int x) --> int end
actor Source() int IN ==> int OUT:

int x := 0;
action ==> OUT:[rand(x)] guard x < 4096 do
x := x + 1;

end
end
actor Filter(int param) int IN ==> int OUT:
function pred(int param, int value) --> bool :
if (param > value) then true else false end

end
t0: action IN:[t] ==> OUT:[t] guard pred(param, t) end
t1: action IN:[t] ==> end
priority
t0 > t1;

end
end
actor Sink() int IN ==> :
action IN:[x] ==> do println(x) end

end
network TopFilter(int param) ==>:

entities
source = Source();
filter = Filter(param=param);
sink = Sink();

structure
source.OUT --> filter.IN; filter.OUT --> sink.IN;

end
end

Listing 1: A simple network of two actors in Cal.

Listing 1 contains a Cal dataflow program which we use to
explain StreamBlocks operational principles. This actor is composed
of four entities: three actors and a network. Actor Source has a
single output port OUT. Its single action describes the only step it
takes, incrementing a state variable x up to 4096 and producing a
token to be sent to its output port. rand is an external function
that links with legacy code.

The Filter actor’s parameter, param, is a number used by
the local function pred. Filter uses an input port IN and an
output port OUT. It comprises two actions. The first, labeled t0,
includes a guard condition, a logical expression that must be true

(in addition to an input token being available) for the actor to be
able to take the action—copying the input token to the output. The
second action, labeled t1, also consumes an input token but has no
guard and produces no output. A priority rule specifies that action
t0 has a higher priority than action t1. This means that whenever
conditions for both are satisfied, action t0 executes. In this way,
action t0 copies to the output all input tokens that satisfy its guard,
while action t1 “swallows” the other tokens. Finally, Actor Sink
consumes a token from its input port IN and prints it to the console.

The TopFilter network connects the three actor instances.
The dataflow network in TopFilter has no input and output
ports. It has three entities source, filter, and sink, which are
instantiations of actors Source, Filter, and Sink, respectively.
The filter instance is instantiated with a parameter received
from the network.

The TopFilter network connects the IN input port of the
network to the input IN of the rand instance. The output port
OUT of instance source is connected to the input port IN of
filter instance. The filter output port OUT is connected to
the input port IN of the instance sink.

3 DESIGN-SPACE EXPLORATION
Finding an appropriate balance between hardware and software
execution is a design-space exploration problem. StreamBlocks
facilitates this exploration process since an actor written in Cal
can run in hardware or software with no code changes.

Hardware-software partitioning can be modeled as a graph par-
titioning problem with a cost function. In this paper, we focus
on end-to-end execution time as the single metric to optimize. The
cost function used in design-space exploration should estimate the
execution time for a given partitioning.

Performance prediction is difficult for a variety of reasons: actors
in general can exhibit dynamic behavior, a multi-threaded software
runtime can behave unpredictably, software-hardware crossings
are difficult to model accurately, and an actors’ behavior is data-
dependent because of dynamic data dependencies in and among
actors.

We introduce an approximate performance model for a CPU-
FPGA platform that is directly applicable to any task-parallel system
built on top off OpenCL’s host (software) and device (hardware) ab-
straction. We make a few simplifying assumptions: First, we assume
a many-to-many mapping of actors to CPU threads and a single
FPGA. Second, we assume the existence of a virtual PartitionLink
(PLink) actor which asynchronously transfers data between the
hardware and software in a transparent way. We focus our atten-
tion to the performance model here; Section 4 gives a technical
overview of how StreamBlocks assembles the partitioned system.

Fig.1 outlines a hypothetical dataflow graph on the left and pos-
sible hardware-software partition (i.e., an implementation) on the
right. Each circle represents an actor with point-to-point chan-
nels delineated as arrows. Note that in the partitioned graph, all
hardware-software communication should go through the PLink.
In addition, the thickness of arrows are proportional to the com-
munication cost which varies based on the source and destination
partitions. Communication inside the FPGA is very cheap since
FIFOs can be implemented using on-chip memories with single

400

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

cycle access latency. In contrast, FPGA-PLink communication is
expensive since it usually involves a DMA transfer. FPGA-PLink
communication is therefore critical to system performance. Inter-
and intra-thread communication latency also differs because actors
on the same thread are more likely to communicate through lower
level caches, while inter-thread communication has coherency over-
head through last level caches or even the off-chip memory.

3.1 Performance Modeling
Our performance model is based on two key metrics: (i) modeling
pure execution time within and across partitions, and (ii) modeling
communication cost penalties within and across partitions.

Pure execution time: We assume software actors mapped to
the same thread execute serially, hence their execution time adds
up. In contrast, software actors mapped to different threads execute
concurrently and their execution time is dominated by the slowest
software actor.

Likewise, hardware actor execution time is dwarfed by the slow-
est actor since all actors on hardware execute in parallel.

Communication penalty: Intra-thread communication (actor-
to-actor inside a thread) of different threads overlap since threads
run concurrently, and inter-thread communication (actor-to-actor
across threads) adds up since they go through a shared communi-
cation medium (e.g., L3 cache). These two components serve as a
performance penalty for the total execution time.

We assume computation fully overlaps with communication and
communication therefore has no cost (i.e., FIFOs act as pipelines).
And finally, hardware-software communication time adds up to
hardware execution time, but it overlaps with software execution
time (since hardware executes concurrently with software).

3 4

5 6

21

7 3 4

5 6

21

7
PLink

FPGAThread 1Thread 2Thread 3

Figure 1: A dataflow graph (left) and a possible partitioning
(right). Each arrow’s thickness is proportional to the com-
munication cost across that link.

3.2 MILP Formulation
Our performance model has simple ideas that can easily be formu-
lated as a MILP optimization problem. The model is parameterized
by profiling information. StreamBlocks provides the mechanisms
to profile different system metrics (c.f. Section 4.5).

Given a set of 𝑛 + 1 partitions corresponding to 𝑛 threads from
the set 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, an FPGA partition 𝑎𝑐𝑐𝑒𝑙 , and a set
of actors 𝐴, we define the decision variables 𝑑𝑎𝑝 with the following
constraints:

∀𝑎 ∈ 𝐴,∀𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 ∪ {𝑎𝑐𝑐𝑒𝑙} : 𝑑𝑎𝑝 ∈ {0, 1}

∀𝑎 ∈ 𝐴 :
∑

𝑝∈𝑃𝑡ℎ𝑟𝑒𝑎𝑑∪{𝑎𝑐𝑐𝑒𝑙 }
𝑑𝑎𝑝 = 1

The first constraint states that the decision variables are Boolean,
i.e., an actor is either on a partition or not, and the second one
ensures that each actor 𝑎 maps to exactly one partition from the
set of partitions.

The execution time of an actor 𝑎 on partition 𝑝 is given by
𝑒𝑥𝑒𝑐 (𝑎, 𝑝), which is obtained through software or hardware profil-
ing. The time spent on a thread partition, 𝑇𝑝 , is the sum of all actor
execution times since actors run sequentially on a thread:

∀𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 : 𝑇𝑝 =
∑
𝑎∈𝐴

𝑑𝑎𝑝 × 𝑒𝑥𝑒𝑐 (𝑎, 𝑝) (1)

We delegate the performance modeling of hardware actors to
the PLink. We assume that all PLink operations are asynchronous
(i.e., data transfer can overlap with computation) and the PLink is
scheduled on one of the threads (e.g., on 𝑝1).

𝑇𝑝𝑙𝑖𝑛𝑘 =𝑚𝑎𝑥 ({𝑑𝑎
𝑎𝑐𝑐𝑒𝑙

× 𝑒𝑥𝑒𝑐 (𝑎, 𝑎𝑐𝑐𝑒𝑙) : 𝑎 ∈ 𝐴})

+𝑇 𝑟𝑒𝑎𝑑
𝑝𝑙𝑖𝑛𝑘

+𝑇𝑤𝑟𝑖𝑡𝑒
𝑝𝑙𝑖𝑛𝑘

(2)

The first term models hardware execution time as the maximum
of actor execution times since actors can run concurrently (i.e., in a
pipelined fashion) on the FPGA. The other two terms model Open-
CL/PLink read and write transfers, which depend on the number of
tokens and the OpenCL cost information and buffer size. Although
PLink’s operations are asynchronous, because there is a logical
dependence between write, execution and read, their total time is
their sum.

Similar to hardware, we model the multi-threaded execution
time as the maximum of individual thread execution times:

𝑇𝑒𝑥𝑒𝑐 =𝑚𝑎𝑥 ({𝑇𝑝 : 𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 } ∪ {𝑇𝑝𝑙𝑖𝑛𝑘 })
+𝑇𝑖𝑛𝑡𝑟𝑎 +𝑇𝑖𝑛𝑡𝑒𝑟

(3)

Observe that𝑇𝑝𝑙𝑖𝑛𝑘 is not added to any of thread execution times
even though it is scheduled on one of them because we assume the
PLink is asynchronous. However, if the hardware is slower than all
software threads, then execution time is dominated by hardware,
hence we take the maximum. The 𝑚𝑎𝑥 term models pure actor
execution time with no regard for communication cost between
actors. Actors that communicate heavily can exploit fast caches if
they are assigned to the same thread. Actors on different threads
will communicate through the shared and coherent cache or main
memory. 𝑇𝑖𝑛𝑡𝑟𝑎 and 𝑇𝑖𝑛𝑡𝑒𝑟 model the latency of intra- and inter-
core communication. The latter two terms help ensure that heavily
communicating actors reside on the same thread.

We omit the full derivation of the communication cost for
brevity 2. Basically, 𝑇𝑖𝑛𝑡𝑟𝑎 is the maximum of communication cost
of individual intra-thread communication since threads execute
concurrently. Contrarily, 𝑇𝑖𝑛𝑡𝑒𝑟 penalizes the actor communication
across threads and is the sum of all inter-thread communication
costs because inter-thread messages have to traverse a medium
shared by all threads.

2See the Appendix for details.

401

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

Using a MILP formulation enables us to incorporate other con-
straints into the search. For instance, we can constrain the solutions
to have fewer than𝑚 FIFOs crossing the hardware-software bound-
ary. This is important when an FPGA platform has a limited number
of AXI master ports to off-chip memory. Additionally, we can pin
certain actors to software if they contain legacy code or perform
operations requiring operating system support.

TheMILP formulationwe have presented can be optimally solved
with the current state-of-the-art solvers, and we do indeed find the
optimal solutions in Section 5. However, since our model does
not capture all possible dynamic behaviors, the solutions are only
optimal with respect to the model.

Our MILP model optimizes only for performance. Other met-
rics, such as power, could be incorporated to obtain pareto-optimal
design points. We omitted power considerations from our formula-
tions as our focus is datacenter platforms where power is less of a
concern.

CALCALCAL

XCF
Tÿcho AM IR

Hardware
Backend

Software
Backend

Runtime

ProfilingPartitioning

EXE

XCLBIN

Figure 2: StreamBlocks heterogeneous compilation flow.
The compilation and synthesis results in a multi-threaded
executable that asynchronously launches an OpenCL RTL
kernel (XCLBIN). The XCF configuration file can either be
specified by a user or generated automatically by the parti-
tioning tool after profiling.

4 STREAMBLOCKS
We now detail how StreamBlocks stitches a partitioned system
together. We start with an overview, then cover hardware and
software code generation.

StreamBlocks is a suite of tools for designing, compiling, and
optimizing Actor-based applications. The framework consists of
three parts: Cal compiler frontend, backend code generators, and
a partitioning tool.

4.1 Overview
The Cal front-end is based on Tÿcho [14] with an intermediate
representation called the Actor Machine (AM) [27].

StreamBlocks extends Tÿcho with a type system, network pa-
rameterization, and actor instantiation with list comprehension
useful for generating regular dataflow graphs.

Tÿcho produces the AM intermediate representation, which is
fed to the homogeneous/heterogeneous StreamBlocks backends
to apply platform-specific transformations (Section 4.2 and 4.3).
Each platform supports a runtime responsible for actor scheduling.
Hardware actors are scheduled in parallel whereas software actors

are scheduled on cores following an actor-to-thread mapping. In
other words, hardware actors enjoy abundant spatial parallelism
and all execute in parallel, while actors on software are co-located
on multiple CPU threads. An XML configuration file (XCF) specifies
these actor-to-thread or actor-to-FPGA mappings3.

The final aspect of StreamBlocks is partitioning (Section 3). Each
runtime supplies methods for profiling a dataflow application on its
platform (Section 4.5). Profiling uses either hardware cycle timers
for CPUs or cycle counts from a cycle-accurate RTL simulation.
Also, StreamBlocks provides tools for profiling inter-actor com-
munication on a heterogeneous platform. The StreamBlocks par-
titioning uses profiling information to map actor instances to the
CPU threads in a homogeneous platform or across CPU threads
and FPGA on a heterogeneous platform.

Currently, StreamBlocks supports code generation for hetero-
geneous platforms that support the Xilinx OpenCL runtime, i.e.,
any Xilinx PCIe accelerator board or MPSoC. An overview of the
compilation flow is given in Fig. 2.

We perform design-space exploration by going through the com-
piler twice. First, an application is compiled and profiled for both
hardware and software. Then the profiling information is fed to the
partitioning tool which emits a set of XCF partitioning configura-
tions. The XCF files along with the application can then be used to
get to the implementation.

4.2 Hardware Code Generation
StreamBlocks’ hardware backend is responsible for creating an
FPGA implementation (i.e., Verilog) of the actors placed on hard-
ware. One choice is to directly translate Cal to Verilog, i.e., perform
high-level synthesis. However, doing so requires access to a library
of FPGA device-specific timing characteristics to perform operator
scheduling, but these are not publicly available. Another choice is
to emit a special HLS C++ class for each actor and use an already
existing HLS tool to generate Verilog. StreamBlocks takes the latter
approach and uses Vivado HLS for RTL generation.

Bear in mind that the current state-of-the-art HLS tools do not
support the general model of dataflow that StreamBlocks supports
and it is not possible to solely rely on HLS for implementation.
For instance, Vivado HLS does not allow feedback in a dataflow
graph [49]. StreamBlocks works around this problem by intercon-
necting actors directly in Verilog with custom FIFOs.

For each hardware actor, StreamBlocks emits an HLS C++ class.
This class implements a controller state machine that governs the
action selection process. Upon invocation, the controller state ma-
chine checks a set of conditions required to fire an action, performs
the selected action, and transitions to a new state with a new set of
conditions to check.

Listing 2 outlines the structure of such an HLS actor imple-
mentation for actor Filter in Listing 1. The top function for
HLS is operator() that implements the state machine. The
transition and condition functions implement the actions
and the conditions’ required for action firings.

Our general model of dataflow requires FIFO channels with a
side-effect-free peek (reading the head of a FIFO without consuming

3Provided either by the partitioning tool or manually by the user.

402

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

it) and count (number of tokens in the FIFO) interface. Unfortu-
nately, Vivado HLS’s streaming interface, hls::stream, imple-
ments neither. To circumvent this limitation, we created a custom
Verilog first-word fall-through (FWFT) FIFO whose outputs are its
size, count, and head queue element and that is compatible with
the hls::stream stateful read and write interface. We generate
a unique IO structure for each actor that contains the extended
interface (see Listing 2).

Listing 2: C++ class and top HLS function for the Filter
actor (Vivado/Vitis HLS).
struct IO {
int32_t IN_peek, IN_count;
int32_t OUT_size, OUT_count;

};
using Stream32 = hls::stream<int32_t>;
class class_filter {
private:
// -- State Variables
bool pred_1(int32_t l_param, int32_t l_value);
int32_t a_param, a_t__1, program_counter;
// -- Conditions
bool condition_0(Stream32 &IN, IO io); // input
bool condition_1(Stream32 &OUT, IO io); // output
bool condition_2(); // guard
// -- Transitions
void transition_0(Stream32 &IN, Stream32 &OUT);
void transition_1(Stream32 &IN);

public:
class_filter(int32_t param) { a_param = param; }
// -- Controller
int32_t operator()(Stream32 &IN, Stream32 &OUT, IO io);

};
// -- HLS Top Function, instantiated with param=10
int32_t filter(Stream32 &IN, Stream32 &OUT, IO io) {
static class_filter i_filter(10);
return i_filter(IN, OUT, io);

} // ---

At each invocation of operator(), the actor performs mul-
tiple checks to select an action to execute, then transitions to a
new state with possibly different enabled actions. This state is
recorded in the program_counter variable to allow execution
to continue between invocations. The controller state machine is
designed not to execute the same action multiple times in one in-
vocation in order to allow Vivado HLS to schedule all condition
evaluations in the first cycle of invocation in parallel. However, the
controller can execute different actions in a single invocation.

StreamBlocks automatically inserts some HLS directives (i.e.,
pragma) in appropriate places to optimize the hardware. For in-
stance, all scope, condition, and transition methods are inlined in
the controller. In addition, loops with fewer than 64 iterations are
unrolled to parallelize loops without incurring an unreasonable
resource cost. A developer can also directly annotate the Cal code
with other directives. For example, @loop_merge can be used to
merge input-read and output-write loops, and @external can place
an actor variable in an off-chip memory (e.g., DDR or HBM). In the
latter case, the compiler produces appropriate HLS pragmas to add
an AXI master interface to the actor.

FIFOs that cross the hardware-software boundary are connected
to Input and Output Stage actors on the FPGA. These special actors
transparently pass tokens between hardware and software (see
Section 4.4).

Each RTL actor (output of VivadoHLS) is instantiated in a Verilog
network along with its trigger module. The trigger is a hardware
scheduler that enables or disables its actor. Ideally all hardware
actors should execute asynchronously to maximize performance.

However, hardware should also dynamically detect when forward
progress is no longer possible (idleness) and inform software that
computation is complete and output data is available.

We use to triggers to perform a synchronized coordination be-
tween actors and detect idleness. The triggers continually mon-
itor network state and eventually perform a synchronized idle-
ness check. In this synchronized check, all actors (with variable
lantency) on hardware are stopped and then invoked a single time.
Synchronization ensures that there are no unobserved messages
and therefore any enabled action will fire. In other words, if none
of the actors end up performing an action then the network is idle
and no more forward-progress is possible.

4.3 Software Code Generation
Similar to hardware code generation, StreamBlocks compiler trans-
lates a software actor to a standard C++ class (not HLS) that runs
on a processor. Conceptually, it may seem appropriate to allocate a
thread to each actor since they execute independently. However,
the relatively high cost of context switches leads to sub-optimal
performance since an actor’s controller may not run for long before
it starves for data. A better use of resources is to map several actors
onto a thread and run them sequentially to amortize the context
switch cost over larger computation. The threads are assigned to
dedicated physical cores. Each pinned thread has an independent,
round-robin scheduling loop for its actors.

A key difference between the generated hardware and software
state machines is that the software controller attempts to reduce
scheduler overheads by performing as many action firings as possi-
ble until it starves for data. This contrasts with generated hardware
code that only allows a single action to be triggered at a time to
optimize the HLS schedule.

FIFOs are implemented as lockless circular buffers. A structure
attached to every actor output port holds global and local FIFO
pointers. The global pointers are visible to all partition threads, but
a local one is visible only to its thread. Global and local pointers
do not change while the actors are running. Updates are cached
internally and synchronously applied after full iteration of the
round-robin scheduling.

The software runtime provides the threading mechanism and
FIFO implementation. In addition, it supports operating system
operations—such as file operations, image/video visualization, and
other functionality—and links with library and legacy code.

4.4 Hardware-Software Interface
StreamBlocks generates appropriate hardware-software interface
to enable heterogeneous execution. Fig. 3 depicts the interface
architecture.

The PLink (PartitionLink) is a special actor that (i) transfers
software FIFOs to FPGA DDR memory, (ii) starts the execution of
hardware, and (iii) receives data from the FPGA memory when
the FPGA network becomes idle. PLink treats the hardware net-
work like a coprocessor and is its software controller. It invokes
the coprocessor as long as the hardware-software execution can
make forward-progress. Underneath, PLink uses OpenCL’s API [46],
basically treating the hardware coprocessor as an OpenCL kernel.

403

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

PLink
OpenCL API

FPGA
DDR

Memory

Input
Stage

FPGASoftware

Output
Stage

Figure 3: The hardware-software interface. Circles represent
application actors. Arrows show communication paths. In-
put stage, output stage, and PLink are special actors that are
instantiated depending on hardware-software actor place-
ment.

FIFOs that cross the hardware-software boundary are allocated
in the FPGA DDR memory. We instantiate an input or an output
stage actor for any software-to-hardware or hardware-to-software
channel respectively. An input stage actor continuously reads the
data FPGA DDR memory in bursts and streams it to an on-chip
FIFO connected to consumer actors. An output stage actor carries
out a similar task and reads an on-chip FIFO and streams it to a
DDR bank.

The PLink takes advantage of OpenCL events and an out-of-
order command queue for asynchronous operations. Consequently,
the PLink never blocks the software thread it is scheduled on such
that other actors can perform useful work.

4.5 Profiling
The compiler provides a co-simulation solution that runs software
actors on the software runtime and instantiates hardware actors as
cycle-accurate SystemC models which is used for hardware profil-
ing. We rely on Verilator to translate Verilog to SystemC and the
PLink transparently establishes the interface between the software
and SystemC simulation domain. Co-simulation provides per-actor
and per-action cycle-accurate metrics. We use OpenCL profile coun-
ters to measure the OpenCL read and write bandwidth for a variety
of buffer sizes.

Likewise, the software runtime can profile similar information.
The runtime uses the rdtscp time counter for x86 code, whereas
ARM code uses the virtual cntvct counter scaled by clock fre-
quency. The runtime also measures inter- and intra-thread commu-
nication overhead and logs the number of tokens traversed on each
link.

The profiling information obtained from StreamBlocks are then
directly injected to the MILP formulas. All that remains is solving
the MILP optimization problem which then results in (multiple)
heterogeneous partitions.

5 EVALUATION
We performed our experiments on two systems. The first was a
single node in the an HACC4 cluster that contains an Intel Xeon
Gold 6234 8-core (16-thread) 3.3GHz processor and an Alveo U250
accelerator card connected to the system through a Gen3 PCIe x16
slot. This system is representative of data center accelerator plat-
forms, with a high-end processor and a large FPGA. To evaluate
4Heterogeneous Accelerated Compute Cluster

our approach for embedded systems, we used the ZCU106 develop-
ment board consisting of an MPSoC with 4 ARM64 cores running
at 1.2GHz and a medium-size FPGA.

5.1 Benchmarks
We used a suite of benchmarks of varying complexity from different
application domains. Table 1 summarizes these benchmarks, with
performance on the U250 platform. The benchmarks are:

• JPEG Blur performs 8 coarse tasks: parsing, Huffman decod-
ing, dequantization, cosine transform, macro block to raster
conversion, Gaussian blur filter [19], and raster to macro
block conversion.

• RVC-MPEG4SP video decoder is a reference implementa-
tion of the RVC-MPEG4SP ISO/IEC 14496-2 MPEG-4 stan-
dard. This design has been used in many Cal-related publi-
cations.

• Smith-Waterman is an implementation of the Smith-
Waterman string matching algorithm for DNA align-
ment [10].

• SHA1 is a straightforward implementation of the SHA1 al-
gorithm with eight SHA1 compute engines. Each engine has
a padding actor and a compute actor.

• Bitonic sort is an eight-element bitonic sort implementa-
tion.

• FIR a 64-tap pipelined FIR filter.
• IDCT Inverse cosine discrete transformation used in video
and image decoding.

The end-to-end throughput numbers in Table 1 reflect three
scenarios:

• hardware. All actors are placed on the FPGA with the ex-
ception of 2 or 3 actors that perform IO operations.

• single. All actors are placed on a single software thread.
• many. Each actor runs on its own thread, e.g., with 104
actors, 104 threads are used.

The speedup numbers in Table 1 use the single-thread perfor-
mance of each benchmark as its base-line. The speedup is reported
as the maximum achieved throughput of either the hardware or
themany-thread implementation. This shows what can be trivially
achieved by only taking advantage of task-parallelism in absence
of heterogeneous execution.

As evident in Table 1, using a thread per actor frequently de-
grades performance because of the cost of thread scheduling and
inter-thread communication. Furthermore, placing all actors in
hardware does not necessarily result in the best performance. The
three throughput measurements in Table 1 represent the three cor-
ners of the design space, but not necessarily the best performing
points. In fact, we demonstrate that when multiple software threads
work in tandem with the FPGA better performance is achieved.

Below, we focus only on JPEG Blur and RVC-MPEG4SP, as they
are fairly large and contain a set of computational kernels with
dynamic behavior.

5.2 Design Space Exploration
5.2.1 Methodology. We use the MILP formulation presented in
Section 3 to automatically explore the design space of the JPEG

404

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

Benchmark Actors FIFOs hardware single many unit speedup Domain

JPEG Blur 104 210 881.96 161.33 127.06 frames/second 5.47 Video decoding/stencil
RVC-MPEG4SP 60 123 1858.62 868.61 472.44 frames/second 2.14 Video decoding
Smith-Waterman 8 30 12911.56 3967.07 204.39 alignments/second 3.25 Sequence alignment
SHA1 20 26 130.64 53.75 177.66 MiB/second 3.31 Encryption
Bitonic Sort 28 57 6443K 5215K 5477K sort/second 1.23 Hardware sorting
FIR 34 45 56 7.2 0.16 MiB/second 7.8 1D convolution
IDCT 7 9 1612K 979K 2039K macroblock/second 2.08 Inverse cosine transform

Table 1: An overview of the benchmarks on Intel Xeon 6234 + Alveo U250.

Blur and RVC-MPEG4SP benchmarks on both platforms. To do so,
we solve the MILP formulation for a fixed number of threads, with
and without an FPGA. We vary the number of threads from 1-8 on
the datacenter platform and 1-4 on the embedded platform since
the Xeon processor has 8 cores and the ARM processor has 4. We
keep the top 8 to 10 optimization solutions given a core count.

The partitioning tool then checks all the solutions in range of
available number of cores and extracts the partitions that have
the same set of hardware actors. This ensures that we compile
each FPGA implementation (bitstream) only once. For instance, a
heterogeneous multi-threaded partition with 4 cores may use the
same set of hardware actors as a multi-threaded partition with 2
cores.

To demonstrate the advantages of heterogeneous auto-
partitioning, we also run a configuration in which the MILP opti-
mization is constrained not to use hardware to obtain multi-threaded
software-only partitions.

We allocate 1-4 MiB OpenCL buffers between the CPU and the
FPGA to decrease the host-device transfer overheads. Inside the
FPGA, FIFO sizes are set by the values in the Cal code or set to 4096
on Alveo U250 and 512 on ZCU106 (default value) if unspecified5.
Likewise, for multi-threaded software, we do not override the buffer
configuration since buffers that do not span software and hardware
are not as sensitive to payload size. The selection of buffer size
is reflected in the MILP formulation as parameters. Without this
design choice, hardware performance is severely bottlenecked by
poor hardware-software data transfers and, in fact, the MILP opti-
mizer fails to find meaningful hardware partitions. The outcome of
our experiments are summarized in Table 2.

5.2.2 JPEG Blur. Fig. 4 illustrates the various evaluated design
points of the JPEGBlur benchmark on the Alveo U250 and ZCU106
platforms.

• Alveo U250 The MILP optimization finds 34 hardware ac-
tor partitions (each containing multiple actors), 67 multi-
threaded heterogeneous partitions, and 63 multi-threaded
software-only partitions. Note that, the number of multi-
threaded heterogeneous partitions is more than the unique
hardware actor partitions because for a given hardware ac-
tor partition, there are many mappings of software actors to
threads (i.e., 67 > 34).

5Buffer dimensioning for optimal performance or deadlock avoidance can be done
with external tools, cf. TURNUS [11].

• ZCU106 Design space exploration yielded 12 hardware par-
titions, 17 heterogeneous multi-threaded partitions, and 30
multi-threaded software-only partitions.

We now give some insight behind the unexpected scaling behav-
ior shown in Fig. 4.

As expected, the throughput of a multi-threaded software imple-
mentation of JPEG Blur scales linearly with the number of cores
on both platforms.

Contrarily, scaling is not well-behaved in a heterogeneous
system: Alveo U250 exhibits a sub-linear speedup compared to
software-only execution, whereas ZCU106 sees a slowdown.

Starting, from an FPGA-only partition, we can remove some
actors from hardware and place them on a software thread. If the
moved actors have better isolated performance on software, this
could result in a net-increase in performance even though by mov-
ing actors from “infinitely” parallel hardware to software we are, in
effect, removing parallelism. Effectively, actors with long sequential
actions6 are likely to perform better on processors due an order of
magnitude higher clock frequency.

6E.g., loops with inter-iteration dependencies or nested loops with dynamic bounds.

Benchmark JPEG Blur RVC-MPEG4SP

U
25
0

baseline (fps) 161.33 868.61

SW partitions 63 70
speedup 6.90 4.78

SW + FPGA partitions 67 66
bitstreams 34 38
speedup 7.68 4.40

ZC
U
10
6

baseline (fps) 22.13 109.87

SW partitions 30 30
speedup 3.83 3.92

SW + FPGA partitions 17 14
bitstreams 12 8
speedup 27.14 14.44

Table 2: Design space exploration summary of the JPEGBlur
and RVC-MPEG4SP benchmarks on the U250 data-center
and the ZCU106 embedded platforms. Speedup numbers cor-
respond to the maximum performance achieved with and
without hardware. Bitstreams counts the number of unique
hardware partitions (which may have multiple software-
thread partitions).

405

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

0

20

40

60

80

100

▶
Ab

so
lu

te
 p

re
di

ct
io

n
er

ro
r %

1 2 3 4 5 6 7 8
Number of cores

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (f

ps
)

JpegBlur on Intel Xeon 6234 + Alveo U250
Software Software + FPGA FPGA only

(a)

0

100

200

300

400

500

600

▶
Ab

so
lu

te
 p

re
di

ct
io

n
er

ro
r %

1 2 3 4
Number of cores

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (f

ps
)

JpegBlur on Ultrascale+ MPSoC ZCU106
Software Software + FPGA FPGA only

(b)

Figure 4: Evaluated JPEG Blur design points on (a) Alveo U250 and (b) ZCU106 platforms. Different colors labeled as Software
+ FPGA denote different FPGA bitstreams. The right axis shows the relative prediction errors for Software+FPGA points with
dashed lines showing median.

Another interesting observation is that the same hardware parti-
tion yields different performance depending on how the remaining
software actors are partitioned across threads. The heterogeneous
points in Fig. 4 are color-coded by their hardware actor partitions,
i.e., points that have the same color contain the same set of actors
on hardware.

Fig. 4a demonstrates that the optimum design point is not neces-
sarily a hardware-only or software-only configuration, but rather a
mixture. Without a common programming model to facilitate ex-
ploration of many partitions, exploring these design points would
be a tedious process involving code rewriting. This claim is rein-
forced by Fig. 5, which depicts the best performing partition on
Alveo U250. This partition places a substantial number of actors
on 6 software threads and boosts the speedup from about 5.5× (all
hardware) to 7.7× (heterogeneous). This partition places most of
the hardware-friendly actors on the FPGA and finds a balanced
thread-partitioning on software.

Figure 5: JPEG Blur configuration with the highest through-
put.

5.2.3 RVC-MPEG4SP. Fig. 6 depicts our design exploration results
for the RVC-MPEG4SP benchmark:

• Alveo U250 Our search resulted in 38 unique hardware
actor partitions, 66 heterogeneous multi-threaded partitions,
and 70 multi-threaded software-only configurations.

• ZCU106 We found 8 hardware actor partitions, 14 hetero-
geneous multi-threaded partitions, and 30 multi-threaded
software-only ones.

Again, we see a an almost linear scaling in the multi-threaded
software-only points and sub-linear scaling of multi-threaded het-
erogeneous points on Alveo U250.

On the ZCU106 platform, software scaling is almost perfectly
linear for the 4 available cores. The heterogeneous performance sees
a marginal increase with additional cores, unlike Fig. 4b, where
heterogeneous performance experiences a slight dip with more
cores.

The best heterogeneous Alveo U250 partition is outlined in Fig. 7.
Despite the fact that 87% of the actors are faster in isolation on
software, our MILP optimization identifies a heterogeneous par-
titioning that achieves a 4.4× speed up. This is because the MILP
optimization models actor communication costs and places heavily-
communicating actors on hardware to benefit from fast on-chip
FIFOs in tandem with a high degree of spatial parallelism.

Our experiments show the importance of design-space explo-
ration on modern heterogeneous platforms. FPGAs are usually the
go-to choice in an embedded platform with “wimpy” processors,
whereas powerful datacenter-grade platforms can benefit from het-
erogeneous partitionings. Again we stress that our approach can
achieve this performance automatically.

5.3 Limitations
We close our evaluation by discussing key limitations.

5.3.1 Frontend Language. StreamBlocks simultaneously eases
high-level programming of heterogeneous platforms and design-
space exploration by starting from a unified and portable program-
ming model. Of course the choice of the high-level language im-
poses many limitations on the end-to-end quality of results. That
said, StreamBlocks is certainly not the be-all-end-all compiler for
CPU-FPGA platforms, but a correct step in exposing FPGAs as

406

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

0

50

100

150

200

250

300

350

400

▶
Ab

so
lu

te
 p

re
di

ct
io

n
er

ro
r %

1 2 3 4 5 6 7 8
Number of cores

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (f

ps
)

RVC-MPEG4SP on Intel Xeon 6234 + Alveo U250
Software Software + FPGA FPGA only

(a)

0

10

20

30

40

50

60

▶
Ab

so
lu

te
 p

re
di

ct
io

n
er

ro
r %

1 2 3 4
Number of cores

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (f

ps
)

RVC-MPEG4SP on Ultrascale+ MPSoC ZCU106
Software Software + FPGA FPGA only

(b)

Figure 6: Evaluated RVC-MPEG4SP design points on (a) Alveo U250 and (b) ZCU106 platforms. Different colors labeled as
Software + FPGA denote different FPGA bitstreams. The right axis shows the relative prediction errors for Software+FPGA
points with dashed lines showing median.

Figure 7: Best performing heterogeneous partition for the
RVC-MPEG4SP benchmark.

programmable resources to a wider audience that do not wish to
deal with minute hardware optimizations. Furthermore, the Actor
model offers an opportunity to readily scale to multi-node CPU-
FPGA clusters, a future direction we are investigating.

5.3.2 Optionality. Our modeling makes simplifying assumptions
about the execution dynamics of a system in favor of a simple
analytical formula. Our results therefore do not reflect true global
optimal design points. Although we find optimal design points by
solving the MILP formulation, the optimally is with respect to our
approximate system model.

The right vertical axis in Fig.4 and 6 show the absolute prediction
error of our MILP formulation for Software + FPGA partitions. In
general, the errors grow with additional cores and can eventually
become unreasonably high. Our MILP formulation can not model
dynamic behavior and fine interactions between hardware and
software, both of which are more likely to happen with increased
inter-partition communication.

6 RELATEDWORK
Our work explores the possibility of using a unified programming
model for heterogeneous computing that allows automatic design-
space exploration for task partitioning. We focus on the related

research that aims to deliver portability and/or to expedite design-
space exploration.

6.1 Languages
Using a single source language to design both hardware and soft-
ware is a well-trodden research domain. However, most of the
work do not handle task-partitioning automatically, or do so in a
constrained environment.

TornadoVM [25] is a virtual machine for managing Java-based
streaming tasks on heterogeneous platforms incorporating CPUs,
GPUs, and FPGAs. It can dynamically reconfigure tasks written in
Java on available hardware resources. TornadoVM can dynamically
offload a single task to an FPGA based on runtime information.
Lime [3] is a dataflow Java-based unified programming language
for heterogeneous platform that supports offloading dataflow tasks
to an FPGA. SCORE [12, 20] proposes a stream computation model
with a system architecture capable of time-domain multiplexing. It
enables placing applications that require more spatial resources that
are available on an FPGA using loadtime and runtime scheduling
and placement techniques. None of the work above envisions a
heterogeneous multi-threaded auto-partitioning methodology like
StreamBlocks.

LINQits [17] takes a program written in LINQ and accelerates
query operation with a template library of hardware accelerators
for an embedded heterogeneous MPSoC. Unlike our work, LINQits
focuses on accelerating the whole program (or kernel) while Stream-
Blocks provides a flexible boundary for acceleration determined
through design-space exploration.

Although Cal is a high-level language, its guarded actions re-
semble the guarded rules that the BlueSpec HDL uses to facilitate
description of state machines. This has resulted in Cal being used
for hardware-software co-design. The early work focused on either
hardware code generation [5, 28, 30, 44] or pure software code such
as the Orcc compiler [52]. Exelixi [4] is a Cal compiler that targets

407

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

both hardware and software but it is tied to an embedded plat-
form without any means for design-space exploration. Unlike prior
work, StreamBlocks translate guarded actions to the Actor Machine
intermediate representation which codifies action selection and
memoizes conditional evaluation between invocations.

Vitis/Vivado HLS/OpenCL, Intel OpenCL SDK, Intel OneAPI,
Maxeler MaxJ, and the SOFF [32] OpenCL compiler are HLS compil-
ers with a clear distinction between host and device code. Naturally,
programs written in these compilers are not amenable to automatic
task-partitioning. It is worth noting that most HLS compilers of-
fer streaming primitives that are equivalent to those that are an
inherent part of Cal to support task parallelism.

Lastly, HeteroRefactor [37] and HeteroGen [53] try to address
the CPU-FPGA interoperability issue by transpiling C to C-HLS.
They show an interesting opportunity to automatically generate
code that is semantically equivalent and performs better than hu-
man translations. StreamBlocks could potentially use the same
techniques for transpiling C/C++ code to the AM intermediate
representation and reuse existing code for task partitioning.

6.2 Design-Space Exploration
SystemCoDesigner [34] is an automated hardware-software design-
space exploration framework and SoC generator for SysteMoC [23]
actor programs. SystemCoDesigner generates a prototype FPGA
implementation with soft processors as the result of exploration.
LegUp [9] is an HLS compiler that semi-automatically partitions
C programs on a soft MIPS core and FPGA accelerated hardware.
StreamBlocks differs from the two latter work by targeting a broader
range of modern platforms, from heterogeneous, hard multi-core
SoCs to data center FPGA-accelerated platforms with powerful
processors. Our results for embedded platforms corroborates their
findings that on embedded systems with a less powerful processor,
it is usually best to offload all work to FPGAs.

StreamBlocks focuses on exploiting task-parallelism for
hardware-software co-design. Accelerating loops by hardware-
software co-design has been studied extensively [40]. RIP [54] is a
MILP-based SoC hardware-software partitioning and scheduling
tool for affine loops using an atomic task model. RIP’s model is less
expressive than the general dataflow model used in StreamBlocks.

TURNUS [11] is a design-space exploration and optimization
tool that uses post-mortem execution traces of a dataflow appli-
cation and profiling information to find partitions only for multi-
core platforms through repeated trace simulations and heuristics.
StreamBlocks supports both homogeneous and heterogeneous par-
titioning through our novel MILP formulation, that does not require
collecting and simulating huge program traces.

An orthogonal approach to task partitioning is task optimization.
Recent work focuses on transforming software-like code [18, 24, 36,
45, 47, 50, 51] to fine-tunedHLS code using design-space exploration
to ease accelerator development. StreamBlocks can be vertically
integrated with a task-optimizing design-space exploration engine
and use more optimized actor implementations as the input to its
partitioning tool.

7 CONCLUSION
This work presents StreamBlocks, a new dataflow compiler for
FPGA-based heterogeneous platforms. StreamBlocks unifies hard-
ware and software development under a single programming model.
StreamBlocks makes expressing complex task-parallel programs
that can cross hardware-software boundaries possible without any
hardware expertise.

StreamBlocks compiler generates and interconnects computa-
tion on software and hardware in heterogeneous platforms. Stream-
Blocks’ main contribution is a profile-guided auto-partitioning algo-
rithm that finds non-trivial heterogeneous partitions with speedups
ranging between 4× to 7× single-thread partitions and requires no
hardware expertise or code modification from the developer to do
so.

We believe StreamBlocks is a step towards democratizing FPGAs
as a readily-available compute resource in the cloud, especially for
non-hardware developers.

Our future work will include expanding our exploration method-
ology to multi-node heterogeneous systems and design-space ex-
ploration for optimizing individual hardware actors prior to parti-
tioning.

8 ACKNOWLEDGMENTS
We thank Sahand Kashani of Very Large Scale Computing Labo-
ratory at EPFL for his insightful discussion and internal reviews.
We thank Gurobi for providing us an academic license to use the
Gurobi Optimizer. This work was supported in part by AMD under
the Heterogeneous Accelerated Compute Clusters (HACC) program
(formerly known as the XACC program - Xilinx Adaptive Compute
Cluster program).

408

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

REFERENCES
[1] ISO/IEC 23001-4:2011. 2011. Information technology - MPEG systems technolo-

gies - Part 4: Codec configuration representation.
[2] Sassan Ahmadi. 2016. Toward 5G Xilinx Solutions and Enablers for Next-Generation

Wireless Systems. White paper. Xilinx Inc.
[3] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA Programming for

the Masses: The Programmability of FPGAs Must Improve If They Are to Be Part
of Mainstream Computing. Queue 11, 2 (feb 2013), 40–52. https://doi.org/10.
1145/2436696.2443836

[4] E. Bezati, S. Casale-Brunet, R. Mosqueron, and M. Mattavelli. 2019. An Heteroge-
neous Compiler of Dataflow Programs for Zynq Platforms. In ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
1537–1541. https://doi.org/10.1109/ICASSP.2019.8682525

[5] E. Bezati, M. Mattavelli, and J.W. Janneck. 2013. High-level synthesis of dataflow
programs for signal processing systems. In Image and Signal Processing and
Analysis (ISPA), 2013 8th International Symposium on. 750–754. https://doi.org/
10.1109/ISPA.2013.6703837

[6] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. 1995. Cyclo-static
data flow. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995
International Conference on, Vol. 5. 3255 –3258 vol.5. https://doi.org/10.1109/
ICASSP.1995.479579

[7] J. T. Buck and E. A. Lee. 1993. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In 1993 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Vol. 1. 429–432 vol.1. https://doi.org/10.
1109/ICASSP.1993.319147

[8] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow. 2014. FPGAs
in the Cloud: Booting Virtualized Hardware Accelerators with OpenStack. In
2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines. 109–116. https://doi.org/10.1109/FCCM.2014.42

[9] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
level Synthesis for FPGA-based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’11). ACM, New York, NY, USA, 33–36. https:
//doi.org/10.1145/1950413.1950423

[10] S. Casale-Brunet, E. Bezati, and M. Mattavelli. 2017. Design space exploration
of dataflow-based Smith-Waterman FPGA implementations. In 2017 IEEE Inter-
national Workshop on Signal Processing Systems (SiPS). 1–6. https://doi.org/10.
1109/SiPS.2017.8109982

[11] Simone Casale-Brunet, Abdallah Elguindy, Endri Bezati, Richard Thavot, Ghis-
lain Roquier, Marco Mattavelli, and Jorn W Janneck. 2013. Methods to explore
design space for MPEG RMC codec specifications. Signal Processing: Image
Communication 28, 10 (2013), 1278–1294.

[12] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek, and An-
dré DeHon. 2000. Stream Computations Organized for Reconfigurable Execution
(SCORE). In Proceedings of the The Roadmap to Reconfigurable Computing, 10th
International Workshop on Field-Programmable Logic and Applications (FPL ’00).
Springer-Verlag, Berlin, Heidelberg, 605–614.

[13] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M.
Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. 2016. A cloud-
scale acceleration architecture. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.
2016.7783710

[14] Gustav Cedersjö and Jörn W. Janneck. 2019. Tÿcho: A Framework for Compiling
Stream Programs. ACM Trans. Embed. Comput. Syst. 18, 6, Article 120 (Dec. 2019),
25 pages. https://doi.org/10.1145/3362692

[15] Yuze Chi, Licheng Guo, Jason Lau, Young kyu Choi, Jie Wang, and Jason
Cong. 2021. Extending High-Level Synthesis for Task-Parallel Programs.
arXiv:2009.11389 [cs.AR]

[16] J. Choi, Ruo Long Lian, S. Brown, and J. Anderson. 2016. A unified software
approach to specify pipeline and spatial parallelism in FPGA hardware. In 2016
IEEE 27th International Conference on Application-specific Systems, Architectures
and Processors (ASAP). 75–82. https://doi.org/10.1109/ASAP.2016.7760775

[17] Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: Big Data on Little
Clients. In Proceedings of the 40th Annual International Symposium on Computer
Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for Computing Machinery,
New York, NY, USA, 261–272. https://doi.org/10.1145/2485922.2485945

[18] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. 2016.
Source-to-Source Optimization for HLS. Springer International Publishing, Cham,
137–163. https://doi.org/10.1007/978-3-319-26408-0_8

[19] Jason Cong, Peng Li, Bingjun Xiao, and Peng Zhang. 2014. AnOptimalMicroarchi-
tecture for Stencil Computation Acceleration Based on Non-Uniform Partitioning
of Data Reuse Buffers. In Proceedings of the 51st Annual Design Automation Confer-
ence (San Francisco, CA, USA) (DAC ’14). Association for Computing Machinery,
New York, NY, USA, 1–6. https://doi.org/10.1145/2593069.2593090

[20] André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy Huang,
Stylianos Perissakis, Laura Pozzi, Joseph Yeh, and JohnWawrzynek. 2006. Stream
computations organized for reconfigurable execution. Microprocessors and Mi-
crosystems 30, 6 (2006), 334–354. https://doi.org/10.1016/j.micpro.2006.02.009
Special Issue on FPGA’s.

[21] Jack B. Dennis. 1974. First version of a data flow procedure language. In Sympo-
sium on Programming. 362–376.

[22] J. Eker and J. Janneck. 2003. CAL Language Report. Technical Report ERL
Technical Memo UCB/ERL M03/48. University of California at Berkeley.

[23] Joachim Falk, Christian Haubelt, Jürgen Teich, and Christian Zebelein. 2017.
SysteMoC: A Data-Flow Programming Language for Codesign. In Handbook of
Hardware/Software Codesign, Teich J Ha S (Ed.). Vol. 1. Springer, Dordrecht, The
Netherlands, 59 – 97.

[24] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-Traversing
Design Space Exploration for High Level Synthesis. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). 210–217. https://doi.org/10.1109/ICCD.
2018.00040

[25] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James
Clarkson, and Christos Kotselidis. 2019. Dynamic Application Reconfiguration
on Heterogeneous Hardware. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Providence, RI, USA)
(VEE 2019). Association for Computing Machinery, New York, NY, USA, 165–178.
https://doi.org/10.1145/3313808.3313819

[26] Mentor Graphics Inc. 2015. GOOGLE DEVELOPSWEBMVIDEODECOMPRESSION
HARDWARE IP USING TECHNOLOGY INDEPENDENT SOURCES AND HIGH-
LEVEL SYNTHESIS. White paper.

[27] J.W. Janneck. 2011. A machine model for dataflow actors and its applications.
In Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the
Forty Fifth Asilomar Conference on. 756–760. https://doi.org/10.1109/ACSSC.
2011.6190107

[28] Jörn Janneck, Ian Miller, David Parlour, Ghislain Roquier, Matthieu Wipliez, and
Mickaël Raulet. 2009. SynthesizingHardware fromDataflowPrograms: AnMPEG-
4 Simple Profile Decoder Case Study. Journal of Signal Processing Systems 63, 2
(2009), 241–249. http://dx.doi.org/10.1007/s11265-009-0397-5 10.1007/s11265-
009-0397-5.

[29] Jorn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier, Matthieu
Wipliez, and Mickael Raulet. 2008. Synthesizing hardware from dataflow pro-
grams: An MPEG-4 simple profile decoder case study. In 2008 IEEE Workshop on
Signal Processing Systems. 287–292. https://doi.org/10.1109/SIPS.2008.4671777

[30] K. Jerbi, M. Raulet, O. Deforges, and M. Abid. 2012. Automatic generation of
synthesizable hardware implementation from high level RVC-CAL description.
In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Con-
ference on. 1597–1600. https://doi.org/10.1109/ICASSP.2012.6288199

[31] Khaled Jerbi, Daniele Renzi, DamienDe Saint Jorre, Hervé Yviquel, Mickaël Raulet,
Claudio Alberti, and Marco Mattavelli. 2014. Development and optimization
of high level dataflow programs: The HEVC decoder design case. In 2014 48th
Asilomar Conference on Signals, Systems and Computers. 2155–2159. https://doi.
org/10.1109/ACSSC.2014.7094857

[32] Gangwon Jo, Heehoon Kim, Jeesoo Lee, and Jaejin Lee. 2020. SOFF: An OpenCL
High-Level Synthesis Framework for FPGAs. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 295–308. https://doi.
org/10.1109/ISCA45697.2020.00034

[33] Gilles Kahn. 1974. The Semantics of Simple Language for Parallel Programming.
In IFIP Congress. 471–475.

[34] Joachim Keinert, Martin Streubūhr, Thomas Schlichter, Joachim Falk, Jens Gladi-
gau, Christian Haubelt, Jūrgen Teich, and Michael Meredith. 2009. SystemCoDe-
signer—an Automatic ESL Synthesis Approach by Design Space Exploration and
Behavioral Synthesis for Streaming Applications. ACM Trans. Des. Autom. Elec-
tron. Syst. 14, 1, Article 1 (Jan. 2009), 23 pages. https://doi.org/10.1145/1455229.
1455230

[35] Yongfeng Gu Kiran Kintali and Eric Cigan. 2014. Model-Based Design Using
Simulink, HDL Coder, and DSP Builder for Intel FPGAs. White paper. Matlab Inc.

[36] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application
Accelerators. SIGPLAN Not. 53, 4 (jun 2018), 296–311. https://doi.org/10.1145/
3296979.3192379

[37] Jason Lau, Aishwarya Sivaraman, Qian Zhang, Muhammad Ali Gulzar, Jason
Cong, and Miryung Kim. 2020. HeteroRefactor: Refactoring for Heteroge-
neous Computing with FPGA. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 493–505. https:
//doi.org/10.1145/3377811.3380340

[38] E.A. Lee and D.G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9
(Sept 1987), 1235–1245. https://doi.org/10.1109/PROC.1987.13876

[39] E.A. Lee and T.M. Parks. 1995. Dataflow process networks. Proc. IEEE 83, 5 (May
1995), 773 –801. https://doi.org/10.1109/5.381846

409

https://doi.org/10.1145/2436696.2443836
https://doi.org/10.1145/2436696.2443836
https://doi.org/10.1109/ICASSP.2019.8682525
https://doi.org/10.1109/ISPA.2013.6703837
https://doi.org/10.1109/ISPA.2013.6703837
https://doi.org/10.1109/ICASSP.1995.479579
https://doi.org/10.1109/ICASSP.1995.479579
https://doi.org/10.1109/ICASSP.1993.319147
https://doi.org/10.1109/ICASSP.1993.319147
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/SiPS.2017.8109982
https://doi.org/10.1109/SiPS.2017.8109982
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1145/3362692
http://arxiv.org/abs/2009.11389
https://doi.org/10.1109/ASAP.2016.7760775
https://doi.org/10.1145/2485922.2485945
https://doi.org/10.1007/978-3-319-26408-0_8
https://doi.org/10.1145/2593069.2593090
https://doi.org/10.1016/j.micpro.2006.02.009
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1109/ACSSC.2011.6190107
https://doi.org/10.1109/ACSSC.2011.6190107
http://dx.doi.org/10.1007/s11265-009-0397-5
https://doi.org/10.1109/SIPS.2008.4671777
https://doi.org/10.1109/ICASSP.2012.6288199
https://doi.org/10.1109/ACSSC.2014.7094857
https://doi.org/10.1109/ACSSC.2014.7094857
https://doi.org/10.1109/ISCA45697.2020.00034
https://doi.org/10.1109/ISCA45697.2020.00034
https://doi.org/10.1145/1455229.1455230
https://doi.org/10.1145/1455229.1455230
https://doi.org/10.1145/3296979.3192379
https://doi.org/10.1145/3296979.3192379
https://doi.org/10.1145/3377811.3380340
https://doi.org/10.1145/3377811.3380340
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846

Auto-Partitioning Heterogeneous Task-Parallel Programs with StreamBlocks PACT ’22, October 10–12, 2022, Chicago, IL, USA

[40] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and Jon
Stockwood. 2000. Hardware-Software Co-Design of Embedded Reconfigurable
Architectures. In Proceedings of the 37th Annual Design Automation Conference
(Los Angeles, California, USA) (DAC ’00). Association for Computing Machinery,
New York, NY, USA, 507–512. https://doi.org/10.1145/337292.337559

[41] ThierryMoreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng,
Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
2019. A Hardware-Software Blueprint for Flexible Deep Learning Specialization.
arXiv:1807.04188 [cs.LG]

[42] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, and et al. 2014. A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services. SIGARCH Comput. Archit. News 42, 3 (June 2014),
13–24. https://doi.org/10.1145/2678373.2665678

[43] Zhenyuan Ruan, Tong He, Bojie Li, Peipei Zhou, and Jason Cong. 2018. ST-Accel:
A High-Level Programming Platform for Streaming Applications on FPGA. In
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 9–16. https://doi.org/10.1109/FCCM.2018.00011

[44] N. Siret, M. Wipliez, J.-F. Nezan, and A. Rhatay. 2010. Hardware code genera-
tion from dataflow programs. In Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on. 113–120. https://doi.org/10.1109/DASIP.
2010.5706254

[45] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2021. Au-
toDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators.
arXiv:2009.14381 [cs.AR]

[46] J. E. Stone, D. Gohara, andG. Shi. 2010. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science Engineering 12, 3
(2010), 66–73.

[47] Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu.
2021. Correlated Multi-objective Multi-fidelity Optimization for HLS Directives
Design. In 2021 Design, Automation Test in Europe Conference Exhibition (DATE).
46–51. https://doi.org/10.23919/DATE51398.2021.9474241

[48] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner. 2016. Network-attached
FPGAs for data center applications. In 2016 International Conference on Field-
Programmable Technology (FPT). 36–43. https://doi.org/10.1109/FPT.2016.7929186

[49] Xilinx. [n. d.]. Vivado Design Suite User Guide - High-Level Synthesis. Xilinx Inc.
[50] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen

Neuendorffer, and Deming Chen. 2021. ScaleHLS: A New Scalable High-
Level Synthesis Framework on Multi-Level Intermediate Representation.
arXiv:2107.11673 [cs.PL]

[51] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason
Cong. 2018. S2FA: An Accelerator Automation Framework for Heterogeneous
Computing in Datacenters. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465827

[52] Herve Yviquel, Antoine Lorence, Khaled Jerbi, Gildas Cocherel, Alexandre
Sanchez, and Mickael Raulet. 2013. Orcc: Multimedia Development Made Easy.
In Proceedings of the 21st ACM International Conference on Multimedia (MM ’13).
ACM, 863–866. https://doi.org/10.1145/2502081.2502231

[53] Qian Zhang, Jiyuan Wang, Guoqing Harry Xu, and Miryung Kim. 2022. Hetero-
Gen: Transpiling C to Heterogeneous HLS Code with Automated Test Generation
and Program Repair. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (Lau-
sanne, Switzerland) (ASPLOS 2022). Association for Computing Machinery, New
York, NY, USA, 1017–1029. https://doi.org/10.1145/3503222.3507748

[54] Wei Zuo, Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Chung-Wei Lin,
Shinichi Shiraishi, and Deming Chen. 2017. Accurate high-level modeling and
automated hardware/software co-design for effective SoC design space explo-
ration. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1145/3061639.3062195

A APPENDIX
A.1 MILP Formulation Details
𝑇𝑤𝑟𝑖𝑡𝑒
𝑝𝑙𝑖𝑛𝑘

and 𝑇 𝑟𝑒𝑎𝑑
𝑝𝑙𝑖𝑛𝑘

are upper bound estimates of the runtime cost
of transferring data between host and FPGA. We represent the set
of all connection as the set 𝐶 and such that (𝑠, 𝑡) ∈ 𝐶 denotes a
connection from source port 𝑠 to target port 𝑡 . Furthermore, 𝑠 .𝑎 and
𝑡 .𝑎 denote the actor that the port belongs to.

We obtain the number of tokens traversed a connection (𝑠, 𝑡)
through profiling and denote it as 𝑛 (𝑠,𝑡) . Every connection also has
an associated buffer size 𝑏 (𝑠,𝑡) . OpenCL read and write operations
are most efficient if a full buffer (i.e., 𝑏 (𝑠,𝑡) tokens) are transferred.

We measured the OpenCL transfer operation times from queue-
ing to completion using OpenCL event counters to obtain a function
𝜉𝑟 (𝑏) and 𝜉𝑤 (𝑏) that models OpenCL read and write time given a
buffer configuration 𝑏. Using this function we can estimate the best
case time required to write 𝑛 tokens over buffers with capacity 𝑏
as:

𝜏𝑤 (𝑛,𝑏) =
{
𝜉𝑤 (𝑛) 𝑛 ≤ 𝑏

𝜉𝑤 (𝑏) × ⌊𝑛
𝑏
⌋ + 𝜉𝑤 (𝑛 mod 𝑏) 𝑛 > 𝑏

(4)

Here, ⌊.⌋ and𝑚𝑜𝑑 are the floor and modulo operators. To esti-
mate read times, a function 𝜏𝑟 (𝑛,𝑏) is similarly defined by replacing
𝜉𝑤 (𝑏) with 𝜉𝑟 (𝑏). Now we can estimate PLink read and write times
as follows:

𝑇𝑤𝑟𝑖𝑡𝑒
𝑝𝑙𝑖𝑛𝑘

=
∑

(𝑠,𝑡) ∈𝐶
(¬𝑑𝑠.𝑎

𝑎𝑐𝑐𝑒𝑙
∧ 𝑑𝑡 .𝑎

𝑎𝑐𝑐𝑒𝑙
)𝜏𝑤 (𝑛 (𝑠,𝑡) , 𝑏 (𝑠,𝑡))

𝑇 𝑟𝑒𝑎𝑑
𝑝𝑙𝑖𝑛𝑘

=
∑

(𝑠,𝑡) ∈𝐶
(𝑑𝑠.𝑎

𝑎𝑐𝑐𝑒𝑙
∧ ¬𝑑𝑡 .𝑎

𝑎𝑐𝑐𝑒𝑙
)𝜏𝑟 (𝑛 (𝑠,𝑡) , 𝑏 (𝑠,𝑡))

(5)

Where∧ and ¬ are the logical conjunction and negation operators
respectively. The conjunction expressions ensure that read and
write times are only accounted for connections with one port on
the FPGA and the other on the CPU.

Similarly, for every partition 𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 , we define

𝑡
𝑝

𝑖𝑛𝑡𝑟𝑎
=

∑
(𝑠,𝑡) ∈𝐶

(𝑑𝑠.𝑎𝑝 ∧ 𝑑𝑡 .𝑎𝑝)𝜏𝑖𝑛𝑡𝑟𝑎 (𝑛 (𝑠,𝑡) , 𝑏 (𝑠,𝑡)) (6)

Where 𝜏𝑖𝑛𝑡𝑟𝑎 is models the intra-core communication time and is
obtained by profiling software FIFO read and write bandwidth. To
do this, we measure the roundtrip times of sending a token from
one port and receiving in from another port going through a pass-
through actor. Therefore, we use the same bandwidth value for
both read and write (i.e., time for read or write is round-trip time
divided by 2).

However, notice that if a connection (𝑠, 𝑡) has its source actor
on the first partition (i.e., 𝑝1 which also contains the PLink) and
its target actor is on the FPGA, the data should first be copied to
the PLink and then to the device. This can be modeled by 𝑡𝑝𝑙𝑖𝑛𝑘

𝑖𝑛𝑡𝑟𝑎
as

follows:

𝑡
𝑝𝑙𝑖𝑛𝑘

𝑖𝑛𝑡𝑟𝑎
=∑

(𝑠,𝑡) ∈𝐶

(
(𝑑𝑠.𝑎𝑝1 ∧ 𝑑𝑡 .𝑎

𝑎𝑐𝑐𝑒𝑙
) ∨ (𝑑𝑠.𝑎

𝑎𝑐𝑐𝑒𝑙
∧𝑑𝑡 .𝑎𝑝1)

)
𝜏𝑖𝑛𝑡𝑟𝑎 (𝑛 (𝑠,𝑡) , 𝑏 (𝑠,𝑡))

(7)

Where ∨ is the logical disjunction operator. We can now define
the local core communication cost for each partition 𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑
as:

𝑇
𝑝

𝑖𝑛𝑡𝑟𝑎
=

{
𝑡
𝑝

𝑖𝑛𝑡𝑟𝑎
𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 \ {𝑝1}

𝑡
𝑝

𝑖𝑛𝑡𝑟𝑎
+ 𝑡

𝑝𝑙𝑖𝑛𝑘

𝑖𝑛𝑡𝑟𝑎
𝑝 = 𝑝1

(8)

Since all the threads operate in parallel, then the total intra-core
communication time is obtained as the maximum of individual
ones:

𝑇𝑖𝑛𝑡𝑟𝑎 =𝑚𝑎𝑥 ({𝑇𝑝

𝑖𝑛𝑡𝑟𝑎
: 𝑝 ∈ 𝑃𝑡ℎ𝑟𝑒𝑎𝑑 }) (9)

410

https://doi.org/10.1145/337292.337559
http://arxiv.org/abs/1807.04188
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1109/FCCM.2018.00011
https://doi.org/10.1109/DASIP.2010.5706254
https://doi.org/10.1109/DASIP.2010.5706254
http://arxiv.org/abs/2009.14381
https://doi.org/10.23919/DATE51398.2021.9474241
https://doi.org/10.1109/FPT.2016.7929186
http://arxiv.org/abs/2107.11673
https://doi.org/10.1109/DAC.2018.8465827
https://doi.org/10.1145/2502081.2502231
https://doi.org/10.1145/3503222.3507748
https://doi.org/10.1145/3061639.3062195

PACT ’22, October 10–12, 2022, Chicago, IL, USA Emami and Bezati, et al.

16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB
32KiB

64KiB
128KiB

256KiB
512KiB

1MiB
2MiB

4MiB

Buffer size

0

10

20

30

40

Ba
nd

wi
dt

h
(G

iB
/s

)

software (intra)
software (inter)
OpenCL (read)
OpenCL (write)

(a)

16B
32B

64B
128B

256B
512B

1KiB
2KiB

4KiB
8KiB

16KiB
32KiB

64KiB
128KiB

256KiB
512KiB

1MiB
2MiB

4MiB

Buffer size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ba
nd

wi
dt

h
(G

iB
/s

)

software (intra)
software (inter)
OpenCL (read)
OpenCL (write)

(b)

Figure 8: Measured FIFO communication bandwidth on (a) Alveo U250 and (b) ZCU106.

Finally, we estimate the core to core communication cost as
follows:

𝑇𝑖𝑛𝑡𝑒𝑟 =
∑

(𝑠,𝑡) ∈𝐶

(
∑

𝑞∈𝑃𝑡ℎ𝑟𝑒𝑎𝑑\{𝑝1 }

((
(𝑑𝑠.𝑎𝑝1 ∨ 𝑑𝑠.𝑎

𝑎𝑐𝑐𝑒𝑙
) ∧ 𝑑𝑡 .𝑎𝑞

)
∨(

𝑑𝑠.𝑎𝑞 ∧ (𝑑𝑡 .𝑎𝑝1 ∨ 𝑑𝑡 .𝑎
𝑎𝑐𝑐𝑒𝑙

)
))

+
∑

𝑝∈𝑃𝑡ℎ𝑟𝑒𝑎𝑑\{𝑝1 }

∑
𝑞∈𝑃𝑡ℎ𝑟𝑒𝑎𝑑\{𝑝,𝑝1 }

((
𝑑𝑠.𝑎𝑝 ∧ 𝑑𝑡 .𝑎𝑞

)
∨

(
𝑑𝑠.𝑎𝑞 ∧ 𝑑𝑡 .𝑎𝑝

))
)
𝜏𝑖𝑛𝑡𝑒𝑟 (𝑛 (𝑠,𝑡) , 𝑏 (𝑠,𝑡)) (10)

This formula includes a cost for all of the connection that cross a
thread. Notice how the first partition 𝑝1 which contains the PLink
is treated slightly differently to handle connections from a thread
𝑞 ≠ 𝑝1 to 𝑎𝑐𝑐𝑒𝑙 or 𝑝1 and vice versa.

With the derivation of 𝑇𝑖𝑛𝑡𝑒𝑟 , 𝑇𝑖𝑛𝑡𝑟𝑎 and 𝑇 𝑟𝑒𝑎𝑑
𝑝𝑙𝑖𝑛𝑘

and 𝑇𝑤𝑟𝑖𝑡𝑒
𝑝𝑙𝑖𝑛𝑘

our
formulation is complete.

A.2 Communication Cost Measurements
In the MILP formulation, the communication cost is parameterized
as a function 𝜉 (𝑏) that represents the measured read or write times.
If we plot the communication bandwidth as 𝑏/𝜉 (𝑏), then we obtain
the Fig. 8a and Fig. 8b for the Alveo U250 and ZCU106 platforms
respectively.

Notice the large difference between inter- and intra-core commu-
nication bandwidth in Fig 8a. This is because when the two ends of
a FIFO are on the same core (i.e., pinned thread), the communication
goes through the private caches (e.g., L1 and L2) without coherence
traffic. When the two ends of a FIFO are on two different cores, the
tokens travel at least to the shared last-level cache (i.e., L3), which
incurs a coherence cost. As expected, the intra-core bandwidth

increases with larger buffer transfers But there is when payloads
become too large for private caches, then bandwidth drops.

Furthermore, we can observe that OpenCL read and write oper-
ations are considerably slower than software FIFO operations and
they only partially catch up around 1MiB.

The communication cost terms in the MILP formulation penalize
using too many threads or placing everything in hardware without
accounting for the considerable overhead of OpenCL read and write
operations or inter-core communication.

411

	Abstract
	1 Introduction
	2 Actors and Dataflow
	2.1 Cal Actor Language

	3 Design-Space Exploration
	3.1 Performance Modeling
	3.2 MILP Formulation

	4 StreamBlocks
	4.1 Overview
	4.2 Hardware Code Generation
	4.3 Software Code Generation
	4.4 Hardware-Software Interface
	4.5 Profiling

	5 Evaluation
	5.1 Benchmarks
	5.2 Design Space Exploration
	5.3 Limitations

	6 Related work
	6.1 Languages
	6.2 Design-Space Exploration

	7 Conclusion
	8 Acknowledgments
	References
	A Appendix
	A.1 MILP Formulation Details
	A.2 Communication Cost Measurements

