
A GPU Multiversion B-Tree
Muhammad A. Awad
mawad@ucdavis.edu

UC Davis
Davis, CA, USA

Serban D. Porumbescu
sdporumbescu@ucdavis.edu

UC Davis
Davis, CA, USA

John D. Owens
jowens@ece.ucdavis.edu

UC Davis
Davis, CA, USA

ABSTRACT
We introduce a GPU B-Tree that supports snapshots and offers
updates, point queries, and linearizable multipoint queries. The
supported operations can be performed in a phase-concurrent,
asynchronous, or fully-concurrent fashion. Our B-Tree uses cache-
line-sized nodes linked together to form a version list and a GPU
epoch-based reclamation scheme to reclaim older nodes’ versions
safely. Our data structure supports snapshots with minimal over-
head in point queries (1.04× slower) and insertions (1.11× slower)
versus a B-Tree that does not support versioning. Our lineariz-
able B-Tree performs similarly to the non-linearizable baseline for
read-heavy workloads and 2.39× slower for write-heavy workloads
when performing concurrent range queries and insertions. In addi-
tion, we introduce different GPU-aware snapshot scopes that allow
the use of our data structure for phase-concurrent (synchronous),
stream-concurrent (asynchronous), and on-device fully-concurrent
operations.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Theory of computation → Data structures design and anal-
ysis.

KEYWORDS
GPU, B-Tree, versioning, snapshots, linearizable, multipoint queries

ACM Reference Format:
Muhammad A. Awad, Serban D. Porumbescu, and John D. Owens. 2022. A
GPU Multiversion B-Tree. In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’22), October 10–12, 2022, Chicago, IL,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3559009.
3569681

1 INTRODUCTION
GPU databases are becoming the norm in data science pipelines to
solve data analytics and machine learning inference and training
problems. Using GPUs in these pipelines has advantages that in-
clude leveraging their large compute capabilities and avoiding the
high latency required to move data between CPUs and GPUs. The
rate of growth of GPU performance motivates continued investi-
gation of the use of GPUs for database tasks; moreover, it appears
that beyond general-purpose compute, GPUs will have additional

PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9868-8/22/10.
https://doi.org/10.1145/3559009.3569681

on-chip special-purpose hardware for applications that include
databases [8].

Data scientists can today use multiple commercial and open-
source GPU databases, with increasingly easier-to-use and high-
level abstractions [6, 10, 18]. At the core of these databases lies the
set of underlying data structures that store data and provide ways
to update and query it. While GPU data structures have not his-
torically supported dynamic updates, recent work has successfully
shown that hash tables [2] and B-Trees [3, 21], among others [4, 16],
can support both queries and updates at rates up to billions of op-
erations per second. However, supporting multipoint queries, such
as range queries on B-Trees, in the presence of updates is a more
challenging task than the point queries currently supported by GPU
data structures.

The specific challenge when supporting efficient concurrent
multipoint queries (e.g., range queries) and updates is to provide
linearizable query results. Linearizability ensures that the effect of
a data structure operation must appear to take effect atomically at
a point—a linearization point—between the operation’s invocation
and response [11]. A sequence of concurrent operations is lineariz-
able if their result matches the result of one sequential execution
of these operations; this provides an intuitive understanding of the
result of concurrent operations. While the state of the art in GPU
B-Trees [3] supports concurrent updates and range queries, it does
not support linearizable range queries.

In our implementation, snapshots facilitate linearizability. A snap-
shot records the state of a data structure at a particular point in time.
We achieve linearizable multipoint queries by taking a snapshot of
the data structure and then performing queries on that snapshot.
Updates are performed on the most recent version of the data struc-
ture. Moreover, snapshots allow maintaining multiple versions of
the same data structure. Linearizability is composable, meaning
that a system consisting of linearizable components is linearizable.
For instance, using a data structure that supports snapshots, we
can compose a special-purpose data structure such as a graph data
structure [4]. The composed data structure will benefit from the
guarantees and the properties of the base data structure. A dynamic
graph data structure with support for snapshots facilitates maintain-
ing streams of graph updates (e.g., vertices and edges insertion and
deletion) while maintaining time information for queries through
timestamps.

Implementing snapshots on GPUs is a significant challenge. In
general, approaches that implement concurrent CPU data struc-
tures do not scale to the level of parallelism on the GPU. GPUs
require designs that achieve coalesced memory accesses, eliminate
branch divergence, and minimize contention between the hundreds
of thousands of threads [3]. Ensuring that the result of concurrent
multipoint queries and updates are linearizable adds to the data
structure’s complexity and requires solutions that follow the above-
mentioned design requirements while adding minimal overhead. At

481

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-6914-493X
https://orcid.org/0000-0003-1523-9199
https://orcid.org/0000-0001-6582-8237
https://doi.org/10.1145/3559009.3569681
https://doi.org/10.1145/3559009.3569681
https://doi.org/10.1145/3559009.3569681
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569681&domain=pdf&date_stamp=2023-01-27

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

a high level, we achieve efficient linearizable multipoint queries by
making each tree node a versioned node, treating each versioned
node as a single node (by only pointing to the head of the version
list), and maintaining each version list’s head at the exact location
expected by traversals from parent nodes.

In this work, we explore and provide a solution to taking snap-
shots of a GPU B-Tree data structure. Our solution builds in part
on a GPU implementation of a B-Tree [3] and the CPU work of Wei
et al. [20]. The following goals drive our design decisions:

• Maintain high performance when performing operations on
the data structure compared to the base data structure with
no support for versioning

• Snapshots should add minimal overhead
• Optimize for accessing new versions of the data structure
compared to older versions

• GPU-friendly solutions should introduce as few memory
accesses as possible and avoid contention.

Our contributions are:
(1) An efficient GPU B-Tree that supports snapshots
(2) Our data structure supports linearizable multipoint queries

in the presence of updates
(3) Our data structure supports phase-concurrent (synchronous),

stream-concurrent (asynchronous), and on-device fully-concurrent
operations

(4) Efficient handling of per-node versioning using fine-grained
locks and minimal locking

(5) Introducing GPU-aware scoped snapshots
(6) A GPU implementation of safe memory reclamation using

epoch-based reclamation.
One of our primary goals is to develop tools and implementation

components that enable designing future concurrent GPU data
structures. Currently, our community lacks robust and fundamental
data-structure building blocks such as flexible and efficient memory
allocators and safe memory reclamation schemes. To this end, we
make our implementations of these available.1

2 BACKGROUND AND PREVIOUS WORK
Our data structure supports concurrent queries and updates and
uses snapshots to achieve linearizable multipoint queries. Having
multiple snapshots requires safe memory reclamation techniques
to reclaim older tree versions once they are no longer used and are
not currently accessible by concurrent operations. In this section,
we will summarize the efforts of building concurrent GPU and CPU
data structures, snapshots, and safe memory reclamation.

2.1 Concurrent GPU Data Structures
Driven by a need for flexible and powerful data structures for data-
base and data-science applications, researchers have recently pro-
duced numerous dynamic GPU data structures. Only a few of these
data structures support concurrent updates and queries; these in-
clude hash tables [2], B-Trees [3, 21], dynamic graphs [4], and skip
lists [16]. Of this work, the GPU B-Tree of Awad et al. [3] is the only
one that supports concurrent range queries and updates; however,

1Our implementation is available at https://github.com/owensgroup/MVGpuBTree.

it provides no guarantees on the linearizability of these concurrent
operations.

Our work builds on this GPU B-Tree [3] which uses cache-line-
sized nodes, where each node has a branching factor of 15. In this
design, tree nodes on each level are chained, forming a linked list.
Additionally, each node stores its right sibling’s minimum key (i.e.,
high key)—the side-links alongside the node’s high key help allow
updates and traversals to run concurrently. A traversal operation
can traverse the side-links and reach a sibling when a concurrent
insertion performs a split on a tree node, and the traversal operation
reads an older instance of the node. Allowing concurrent updates
and traversals that do not require locking is essential to ensure high
performance. However, one consequence of this B-Tree design is
that range query operations are not linearizable.

For instance, two range queries and two insertions all concur-
rently running may result in non-linearizable results. Consider the
case when the two range queries read the nodes 𝑎 and 𝑏 and the
two concurrent insertions update the same nodes 𝑎 and 𝑏, creating
𝑎′ and 𝑏′. One possible overlapping of the operations that is not
linearizable will occur if each of the two query operations reads
the modified tree nodes in an order such that each query sees only
one of the newly inserted keys. In other words, the first query will
read 𝑎 and 𝑏′, while the second query reads 𝑎′ and 𝑏. The results
of the two range queries are not linearizable and do not match the
result of any sequential execution. Our work focuses on achieving
linearizable multipoint queries in a B-Tree.

2.2 Snapshots and Linearizable Data Structures
A snapshot of a data structure is a read-only version that contains
all the key-value pairs stored inside the data structure when a
take_snapshot operation is performed. Taking snapshots of a data
structure has been explored on the CPU for different contexts such
as recovery and backup. Rodeh [19] showed how to support snap-
shots using a shadowing technique where the entire path from the
root to the leaf is shadowed. A different use case of concurrent-
data-structure snapshots is to enable a consistent view of the data
structure for query operations that require reading multiple parts of
the data structure and produce linearizable results. Other solutions
for linearizable concurrent multipoint queries include persistent
hash tries, epoch-based reclamation schemes, or other versioning-
based schemes. In Ctrie [17], a persistent hash trie uses a lazy
copying technique after an update—lazy copying requires a variant
of double-word compare and swap. In the EBR-based scheme [1],
range queries traverse the data structure and the reclaimed nodes
to determine all keys that belong to the range query. K-ary search
trees by Arbel-Raviv and Brown [1] traverse and validate the range
query results using dirty bits in the tree nodes. Basin et al. [5]
proposed a chunk-based data structure (similar to a B-Tree) where
each key has a version and old versions are overwritten with no
ongoing scans.

Recently,Wei et al. [20] introduced a general approach, versioned
CAS objects (vCAS), to convert a concurrent data structure that uses
compare-and-swap objects to one that supports snapshots. Notably,
vCAS was the first algorithm that allows taking a snapshot of a
data structure in a constant number of steps and preserves the
data structure’s asymptotic time bounds. More importantly, vCAS

482

https://github.com/owensgroup/MVGpuBTree

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

only requires a single-word read and single-word CAS operations.
Wei et al. [20] applied their algorithm to existing concurrent data
structures, including a queue, linked list, and binary trees.

The challenge of achieving linearizability using snapshots is
making the traversal operations (in update or query), and the time-
stamp increment (take a snapshot) appear to happen atomically. In
Wei’s work, the atomicity is realized by using an invalid timestamp
to mark new nodes. Any data structure operation tries to initialize
the invalid timestamp when encountering a marked node. This
solution is suitable for a GPU data structure. Other solutions that
use locks would limit the performance of any operations on the
GPU. Prior to our current work, snapshots have not been explored
on the GPU. Our work builds on vCAS and implements its algo-
rithm on top of a GPU B-Tree. We make additional modifications to
build our B-Tree (described in Section 4.1) as the branching factor
of the B-Tree necessitates locks and cannot be implemented using
compare-and-swap objects, and efficient implementations on GPUs
require making design decisions that minimize any additional mem-
ory accesses. Our solution uses fine-grained locks alongside always
maintaining pointers (including side-links) to the most recent node
version, allowing us to perform concurrent reads and synchronize
with other updates efficiently.

2.3 Safe Memory Reclamation
Safe memory reclamation (SMR) for concurrent CPU data structures
also has a rich history. Solutions to the SMR problem include using
reference counting, hazard pointers, epoch-based techniques along
with other variants, and improvements of these techniques. Prior
to this work, SMR has not been explored on the GPU. Next, we
discuss the basics of these techniques and their appropriateness for
GPUs.

Reference counting (RC) is a simple technique where a reference
count is attached to each data structure node. Once the reference
count is zero, the node can be reclaimed. A significant issue with
using RC on the GPU is the additional overhead of memory oper-
ations on each access to a data structure node. Although DRAM
bandwidth on the GPU is high compared to the CPU, data struc-
ture operations on the GPU are generally memory-bound, so this
approach is undesirable.

In hazard pointers (HP) [15], each data structure operation first
tries to protect all pointers that it may access, followed by ensuring
that the protected pointers are still reachable from the data struc-
ture. Protecting a pointer means that the operation must share the
pointer with all other threads on the device (here, a GPU). Similar
to RC, this additional memory operation and the fact that we need
to perform additional reads to ensure that the pointer is reachable
makes the overhead of HP unsuitable for GPUs.

Epoch-based reclamation (EBR) [9] reclaims memory by main-
taining a global epoch count, a global array called the announce
array storing states of all operations (e.g., their observed epoch
number, and whether they are using the data structure or are in-
stead quiescent), and a per-process local limbo list where retired
pointers are stored then freed when it is safe to do so. Limbo lists
are maintained for three epochs {𝑒 − 1, 𝑒, 𝑒 + 1}. Only when we
reach epoch 𝑒 + 1 can we reclaim pointers that are retired in epoch
𝑒 − 1, since a process at an epoch 𝑒 might still be accessing pointers

in the previous epoch. Processes performing operations on the data
structure (e.g., insertions or queries) first announce their observed
epoch number, then inspect the state of all other processes to check
if they observed the current epoch. Only then do the processes ad-
vance the epoch and move to the next limbo list reclaiming pointers
from the oldest list. DEBRA [7] implements a distributed epoch-
based reclamation scheme with a key contribution of eliminating
the need for inspecting states of all other processes at the beginning
of leaving a quiescent state. Instead, DEBRA reads the state of other
processes incrementally over multiple operations.

In our implementation, we choose EBR (and follow DEBRA’s
approach) and map a CPU process to a CUDA block. We believe
EBR at a CUDA block granularity is more suitable for the GPU
than other techniques for two reasons. First, retired pointers are not
shared across processes (and hence can instead be stored inside a
fast local shared memory). Second, since the scan of other processes’
operations is performed in bulk (i.e., per process), coalescing the scan
(thus optimizing memory access) is straightforward. We discuss
our GPU EBR implementation in Section 4.4.

2.4 Graphics Processing Units
Graphics Processing Units (GPUs) contain a group of streaming
multiprocessors (SMs), each of which can run one to many GPU
blocks (also known as CTAs). All GPU blocks launched by a kernel
execute on the same CUDA stream and have the same number of
threads. A group of 32 threads (called a warp) are executed in SIMD-
style; however, recent GPU architectures [13] allow independent
thread scheduling (i.e., SIMT-style) where each thread can have its
own program counter (PC). While the SIMT-style execution model
allows porting concurrent CPU algorithms to the GPU, typical
CPU-based solutions generally do not scale to the GPU’s level
of parallelism. Thus new designs targeting scalability are often
necessary.

Memory Model. NVIDIA’s Parallel Thread Execution (PTX) ISA
follows a weakly-ordered and scoped memory model and was for-
malized recently by Lustig et al. [14]. Similar to C++’s standard,
memory instructions (e.g., load, store, and atomics) support different
memory orders such as relaxed, release, or acquire. Memory in-
structions can be qualified as weak, indicating a memory instruction
with no synchronization (i.e., can read stale data from the L1 cache).
PTX also provides memory fences to establish synchronization
between different memory accesses. Moreover, scopes define the
synchronization boundaries for a memory operation. Scopes can
synchronize memory operations on a CTA, GPU, or a whole-system
level. Scopes are unique to GPU architectures.

The efficient implementation and design of a GPU data struc-
ture requires understanding and using proper memory orderings
to guarantee correctness but also avoiding unnecessary synchro-
nizations that limit performance. For instance, data structure oper-
ations may still use stale data in the L1 cache while maintaining
correctness. Similarly, limiting scope to the smallest necessary level
guarantees correctness while avoiding synchronization across the
entire GPU or system. It is also worth noting that although different
memory orders are well-defined, the compiler may implement a
memory order using a more restrictive one. Inspecting the lower
level assembly (SASS) provides more insights into how the different

483

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

memory orders are implemented (i.e., how they map to memory-
and cache-flush operations).

3 DESIGN DECISIONS
3.1 In-place and Out-of-place Updates
An efficient implementation minimizes the cost of node updates.
Our implementation supports two different strategies for updating
a node: in-place and out-of-place. In an in-place update, tree nodes
are mutated directly, without replacing the node—Awad et al.’s
B-Tree [3] also performed in-place updates. In contrast, an out-
of-place update creates a copy of a node each time we update
it. We prefer in-place updates because they are faster: in-place
updates require only one write, out-of-place two. However, we
can only perform an in-place update when we can ensure that a
take_snapshot is not running concurrently with the update, and the
current global timestamp matches the modified node timestamp. If
either condition is false, we instead update out-of-place.

3.2 Scoped Snapshots
We have designed our data structure to be used in three scenar-
ios for simultaneous updates and queries: (1) phase-concurrent
(synchronous host-side calls), (2) stream-concurrent (asynchronous
host-side calls), and (3) fully-concurrent (on-device calls). These
three scenarios give our users maximum flexibility to use our data
structure; each offers a different tradeoff between control, function-
ality, and performance. Listing 1 summarizes the different APIs for
these three scenarios.

Recall that the linearization point of a take_snapshot operation
is when the timestamp changes from 𝑡 to 𝑡 + 1 [20]. This lineariza-
tion point is essential to our operations and their corresponding
optimizations. Our three use cases correspond to different synchro-
nization scopes around the take_snapshot operation:

Host-side snapshot. A take_snapshot operation is performed from
the CPU and it acts as a device-wide barrier. Using the timestamp,
future query kernels performing read-only queries can execute
safely alongside concurrent update operations. In this scope, read-
only kernels can fully utilize the incoherent L1 cache—this can
result in a 2× performance gain. Moreover, since the timestamp
will not change once we launch a GPU kernel, the same nodes
updated in concurrent update kernels are performed using in-place
updates. Performing in-place updates saves memory and improves
the modified operations’ performance (Section 3.1).

On-stream snapshot. A take_snapshot operation is performed
from the CPU on a specific CUDA stream. The difference between
this scope and the previous one is that we may take a snapshot
while an updating kernel runs (in a different stream). Since the
take_snapshot operation may execute concurrently with other
query and update operations, this scope (and the following one) pre-
clude using the L1 cache and instead perform out-of-place updates
in all scenarios.

Tile-wide snapshot. A CUDA tile is a group of threads whose
size does not exceed a CUDA block size. Here, a CUDA tile takes a
snapshot of the data structure (i.e., the operation happens on the
device) and broadcasts the version handle to the threads inside the

tile. All queries inside the tile use the timestamp to traverse the tree
alongside all the device threads performing any operations. When
the tile size is one, we take one snapshot per query operation.

1struct gpu_data_structure{
2// Host -side
3void insert(Pair* pairs , Stream stream);
4Timestamp take_snapshot(Stream stream);
5Result* query(/*.. query arguments ..*/, Stream stream);
6
7// Device -side
8void insert(Pair pair , Tile& tile , Reclaimer& reclaimer);
9Timestamp take_snapshot(Tile& tile);
10Result query(/*.. query arguments ..*/, Tile& tile);
11};

Listing 1: High-level APIs for different scopes.

3.3 Older Version Access in Versioned Nodes
Pointers in our tree data structure only point to head nodes of
version lists. That way, we can ensure that each version list has
a single entry point through its head (i.e., older versions are only
accessible through the version list and not side links). Section 4.1
discusses how we take advantage of this design decision to easily
perform updates concurrently with other tree traversal operations.

4 IMPLEMENTATION
Our Multiversion B-Tree is based on the implementation of Awad
et al. [3]. In both implementations, each tree node occupies a cache
line (i.e., 128 bytes). Using an entire cache line to represent a tree
node and operating on a tree node in a tile-wide fashion (i.e., SIMD-
style group of threads) allow achieving coalesced memory access
and avoiding branch divergence. Nodes in both implementations
hold a side-link pointer and the minimum sibling node key. The
Multiversion B-Tree node contains a timestamp field and holds an
additional pointer, to the next version of the tree node, thus reducing
the branching factor by one (assuming 8-byte key-value pairs, the
branching factor is 14). Additionally, our tree maintains a global
timestamp that we increment each time we take a snapshot. We
discuss the performance differences that result from this reduction
in Section 5.1. Our Multiversion B-Tree data structure supports the
following operations:

insert(𝑘, 𝑣): inserts a key-value pair (𝑘, 𝑣) into the Multiver-
sion B-Tree into the latest version of the data structure.

delete(𝑘): removes the key-value pair associated with the key
𝑘 from the latest version of the Multiversion B-Tree.

takeSnapshot(): takes a snapshot of the data structure and
returns a handle to the snapshot.

find(𝑘, 𝑡𝑠): finds the value associated with the key 𝑘 from the
Multiversion B-Tree at a timestamp 𝑡𝑠 .

rangeQuery(𝑘1, 𝑘2, 𝑡𝑠): Returns all key-value pairs in the range
defined by 𝑘1 ≤ 𝑘 ≤ 𝑘2 at timestamp 𝑡𝑠 .

Next, we will discuss each of the operations our data structure
supports. We extend the warp-cooperative work-sharing strategy
used by Awad et al. [3] and perform each operation in a tile-wide
fashion, where the tile width matches the tree-node width (i.e.,
tile width is 16). We use CUDA’s cooperative-groups abstraction2

2https://developer.nvidia.com/blog/cooperative-groups/

484

https://developer.nvidia.com/blog/cooperative-groups/

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

 0 8 0

0

 0 3 5 7 0 8

1

 8 9 12 0

2

(a) Initial Multiversion B-Tree at the initial timestamp, 𝑡 = 0. Side-
links are hidden.

 0 8 0

0

 0 2 3 5 7 1 8

1

 8 9 12 0

2

 0 3 5 7 0 8

3

(b) At the new timestamp, 𝑡 = 1, insertion is performed over two
steps. After locking the tree node, we copy the node to a newmemory
location (index = 3). Then the initial node (with index = 1) ismodified
in place. Notice that the pointer from the root node always points
to the most recent version of the node. Also, notice that the two
version-list nodes (nodes 1 and 3) are linked to the same sibling
(node 2).

Figure 1: An example of inserting a key in a Multiversion B-
Treewith a branching factor of 6. Intermediate and leaf nodes
are colored gray and olive green, respectively. Version-list
and side-links locations are colored in cyan and blue, showing
the node’s timestamp and the high-key, respectively.

to represent tiles and perform intra-tile communication. These
communications include threads voting and broadcasting keys (or
key-value pairs) within a tile. We omit the description and usage of
tiles for brevity.

4.1 Insertion
We adapt the insertion algorithm of Awad et al. [3] and extend it to
support snapshots and linearizable multipoint queries. To realize a
versioned B-Tree, we represent tree nodes as a version list where the
head of the list is the most recent version of the node. Any pointer
in the tree structure will only point to a head node of a version list.
Only pointing to the head node allows us to treat an entire version
list as a single tree node, which simplifies the traversal operations
because only one entry point to a version list exists. Whenever we
need to create a new version of the tree node, we must copy it using
a copy-on-write (COW) scheme. Traditionally, COW is performed
by copying the tree node, modifying the copy, and finally swinging
the pointer that points to the node (from its parent) to the new tree

node. COW is efficient since it does not block concurrent reads.
However, modifying a pointer in the parent node requires locking.
Since all the tree nodes will have multiple versions, COW would
introduce contention and scale poorly on the GPU. As Awad et al.
[3] showed, locking tree nodes on multiple levels and (particularly)
close to the root is unsuitable for the GPU. Thus we present an
alternate strategy to efficiently copy a tree node on the GPU.

Copying a tree node. To avoid modifying the parent node (when
copying one of its children), we maintain the invariant that the most
recent version of the child node occupies the same memory location
pointed by the pointer in its parent node. That way, any active
traversal through the parent node will always reach the most recent
version of the copied node. Recall that one of our goals is to optimize
accessing the most recent version of the tree. For example, if we
need to copy a locked child 𝑐 with a parent 𝑝 to a new location 𝑐′, we
first copy the node 𝑐 to 𝑐′, then update 𝑐 in place. The modified copy
of 𝑐 contains both the required mutation and a pointer to 𝑐′. Notice
that both 𝑐 and 𝑐′ will have the same right sibling even if the right
sibling has multiple versions. Traversals heading to the old node’s
version that read the node 𝑐 before updating it reach the required
tree node without additional steps. However, traversals that need to
reach 𝑐′ that read the modified 𝑐 will inspect its timestamp and then
traverse the version list to 𝑐′. The traversal will reach the required
node with the old timestamp in both cases. Other traversals that
need to mutate the node will be blocked by the thread performing
the copy (i.e., holding the node’s lock). These traversals will either
spin or restart their traversal. Figure 1 shows an example of copying
a tree node.

In-place and out-of-place insertions. We distinguish between in-
place and out-of-place insertion based on the scope of the snapshot
(i.e., how synchronization occurs around a take_snapshot opera-
tion). For a host-side snapshot, incrementing the snapshot counter
may follow the following sequence: (1) kernel that performs updates
on the data structure; (2) kernel that takes a snapshot (i.e., incre-
ments the snapshot counter); (3) query kernel. The take_snapshot
kernel introduces an implicit device-wide barrier. Once we incre-
ment the snapshot counter, any query operation using the snapshot
identifier can run concurrently with any future insertions. The bar-
rier between the take_snapshot kernel and others makes it possible
for later update operations to modify tree nodes in place whenever
possible.

Our rule for copying a tree node is to create a copy of a tree
node if its timestamp differs from the global timestamp; otherwise,
we perform the update in place. Insertion into a leaf node requires
modifying only that node. During insertion traversals, any tile that
reads a full node proactively attempts to split the node. Splitting a
full tree node can be broken down into multiple steps that follow
the same rule:

Splitting a full root node. We only need to check the root time-
stamp. If we need to copy the root, the new root will be at the same
location as the previous one. The two new children will have the
same timestamp as the modified root.

Splitting a full intermediate (or leaf) node. Splitting will update
both the full node and its parent node. We check both nodes’ times-
tamps and create a copy following our rule for node copying.

485

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

For other scopes (e.g., tile-wide snapshot or on-stream snapshot),
taking a snapshot is performed concurrently with a read-only oper-
ation. Our approach is similar toWei et al. [20]; the main differences
are how we perform copy-on-write and the B-Tree specific opera-
tions (e.g., splitting). Listing 2 shows how we perform concurrent
insertions when the snapshot is taken concurrently with read-only
operations. We refer the reader to Awad et al. [3] for the full de-
scription of the base insertion algorithm and the reasoning behind
the restart logic, but in summary: restarting the traversal from a
parent node happens in the following cases: (1) failure when trying
to acquire a lock, or (2) the parent is not correct due to another in-
sertion splitting that parent node. Restarting the traversal from the
root happens when the operation cannot proceed as the parent is
unknown, for instance, after a restart and finding that we restarted
from a full node or if the parent node is full during a split. Note
that we generally try to acquire locks and restart if acquiring the
lock fails. We only spin on a lock when we either update a parent
node during a split or traverse side-links after locking a tree node.

Now we discuss the modifications to the insertion algorithm
to perform out-of-place updates. We omit the description of the
in-place algorithm as it is similar to the base algorithm with the
addition of copying nodes when necessary.

Timestamp initialization. We always attempt to initialize the
node’s timestamp when traversing side-links (either with or with-
out holding locks) (lines 7 and 15). Note that we only need to initial-
ize the timestamp for leaf nodes; a call to initialize_timestamp
can quickly detect if the node’s timestamp is uninitialized using
intra-tile communication after loading the node. We initialize a
timestamp by atomically performing a compare-and-swap on the
node’s timestamp field to attempt swapping an uninitialized time-
stamp with the current value of the global timestamp.

Splitting a root node. We first start by allocating a node that
will hold the old root contents and two nodes that will hold the
two children (lines 21–22). We store a copy of the root into the
newly allocated node and retire it; then, we split the root setting all
the node timestamps to the current one (lines 23–25). Notice that
splitting does not change the contents of the key-value pairs stored
in the tree but only the layout of some nodes. It is a requirement
that the three nodes resulting from a split have the same timestamp;
this way, we ensure that all key-value pairs are accessible at any
timestamp. Once we finish splitting the root, we store the three
nodes and traverse to either of the children unlocking the other
child and the root (lines 26–34).

Splitting an intermediate node. The difference between splitting
an intermediate and a root node is that we need to acquire a lock
over the parent node, ensure that the parent is not full, and check
that the parent is the expected one (i.e., other tiles did not split
the parent). After successfully acquiring the lock, splitting occurs
similarly to splitting a root. We create copies of both the parent
and the full node before splitting.

Inserting into a leaf node. Once the traversal reaches the tree node
(line 39), we allocate a node to hold the tree node’s old contents,
store a copy at the newly allocated node, then retire it (lines 40–42).
Wemodify the leaf node in-place adding a link to the older tree node
version, then store the leaf node with an uninitialized timestamp

and unlock it (lines 43–45). Finally, we try to initialize the node’s
timestamp (line 46). The tile that performs the modification or the
tile that reads the uninitialized timestamp will successfully set the
timestamp. The addition of the version-list node is linearized once
we read the timestamp and successfully set the timestamp.

1void VBTree :: insert_out_of_place(Key key , Value value ,
Reclaimer& reclaimer){

2RootRestart: uint32_t node_index = root_index;
3uint32_t parent_index = root_index;
4bool links_used = false;
5do{
6VersionedNode node(node_index);
7links_used |= traverse_links_init(node , key);
8if(node.is_full () && node_index == parent_index &&

node_index != root_index){
9goto RootRestart;
10}
11if(node.is_full () || node.is_leaf ()){
12if(!node.try_lock ()){
13node_index = parent_index; continue;
14}
15links_used |= traverse_locked_links_init(node , key);
16if(node.is_full () && links_used){
17node_index = parent_index; continue;
18}
19}
20if(node.is_full () && node_index == root_index){
21auto old_root_index = allocate (1);
22auto [child0_index , child1_index] = allocate (2);
23node.store_copy_at(old_root_index);
24reclaimer.retire(old_node_index);
25auto two_children = node.split_as_root(child0_index ,

child1_index , old_node_index , cur_ts);
26two_children.right.store(); two_children.left.store();
27node.store(); node.unlock ();
28node_index = node.find_next(key);
29if(node_index == child0_index){
30two_children.right.unlock ();
31node = two_children.left;
32}else{
33two_children.left.unlock ();
34node = two_children.right;
35}
36}else if (node.is_full ()){
37// split as intermediate
38}
39if(node.is_leaf ()){
40auto old_node_index = allocate (1);
41node.store_copy_at(old_node_index);
42reclaimer.retire(old_node_index);
43node.insert(key , value);
44node.set_older_version(old_node_index);
45node.unlock ();
46node.initialize_timestamp (); return;
47}else{
48parent_index = node_index;
49node_index = node.find_next(key);
50}
51}while(true);
52}

Listing 2: Out-of-place Insertion.

4.2 Query Operations
A query operation requires read-only access to the data structure. A
query operation can be as simple as a point query or as complex as
scanning the entire data structure. Moreover, in our Multiversion B-
Tree, a query operation can have an additional argument specifying
the timestamp (i.e., a number mapping to a point in the history of
the data structure). In addition to having the ability to query an
older version of the data structure, snapshots (i.e., timestamped
queries) provide a linearizable view of the data structure.

Taking a snapshot of our Multiversion B-Tree is a simple op-
eration. A take_snapshot tries to increment the global timestamp

486

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

using a compare-and-swap operation atomically. Only one thread
in a tile reads the timestamp 𝑡 then tries to set it to 𝑡 + 1. Simi-
lar to Wei’s work [20], multiple concurrent take_snapshot opera-
tions may return the same timestamp. Only one of the concurrent
take_snapshots operations needs to succeed.

We show an example of a linearizable range query operation in
Listing 3. We first start the traversal from the root of the tree. Each
time we load a tree node, we attempt to initialize its timestamp
and traverse the side-links (while initializing each sibling time-
stamp), and then we traverse the version list (lines 4–6). During the
version-list traversals, we traverse the list until we find a node with
a timestamp that is at most the query’s timestamp. Initializing leaf
node timestamps ensures the linearizability property. Concurrent
insertion-performing splits may move our target key (or pivot) into
a sibling node, hence side-link traversal is necessary to improve
performance and reach the correct tree node. Performing side-link
traversal improves the performance of the top-down search as it
allows us to skip over parts of the tree. Notice that insertion guar-
antees that any older version of a tree node will have an initialized
timestamp; therefore, traversing the version list does not require
initializing the version-list nodes.

If we reach an intermediate node, we find the next node down the
tree (line 8). Otherwise, we start traversing side-links collecting all
pairs that belong to the range (lines 10–15). Similar to the traversal
part, we initialize each sibling node timestamp and traverse the
sibling’s version list. We terminate the search once the high-key of
the node is less than the sibling’s high-key (line 12).

Point queries are more straightforward and follow the same logic;
however, they don’t need to collect a range once their traversal
reaches the correct leaf node.

1void VBTree :: range_query(Key lower_bound , Key upper_bound ,
Timestamp timestamp , Pair result){

2uint32_t node_index = root_index;
3do{
4VersionedNode node(node_index);
5traverse_side_links_init(node);
6traverse_version_list(node , timestamp);
7if(node.is_intermediate ()){
8node_index = node.find_next(lower_bound);
9}else{
10do{
11node.get_in_range(lower_bound , upper_bound , result);
12if(upper_bound < node.get_high_key ()) return;
13node = node.get_sibling ();
14node.initialize_timestamp ();
15traverse_version_list(node , timestamp);
16}while(true);
17}
18}while(true);
19}

Listing 3: Range query.

4.3 Deletion
In deletion, we traverse the tree until we find the leaf node that
contains the key. Deletion is similar to an insertion that does not
perform any splits. Similar to insertion, we perform side-link tra-
versal and initialization of nodes with invalid timestamps. Once we
reach the target leaf node, we either perform the deletion in-place
or out-of-place. In an in-place deletion, we only create a copy of
the old tree node if the global timestamp differs from the node’s

timestamp. In an out-of-place deletion, we copy the node contents,
perform the modification, then retire the old copy. Whenever we
create a copy of the node, we link the new version of the node
with the copy to form the version list. We perform deletion either
in-place or out-of-place (similar to insertion) based on the different
snapshot scope.

4.4 GPU Epoch-based Reclamation
Our GPU EBR implementation follows DEBRA [7]. The main differ-
ences between our implementation and DEBRA are GPU-specific
implementation details. In general, we see three different possible
granularities for implementing EBR on a GPU: device-wide, block-
wide, or tile-wide. A device-wide reclamation scheme would wait
for all concurrent kernel launches to finish before freeing its limbo
bags. Such granularity is suitable if operations are performed only
from the CPU (i.e., host-side snapshot). We will focus on concurrent
operations performed on the device, requiring either a block-wide
or a tile-wide reclamation granularity.

Since EBR requires scanning the state (i.e., announce array) of
all the other processes (i.e., block or a tile), we must store the
reclamation scheme state in amemory accessible to the entire device
(i.e., device DRAM). Since memory accesses are expensive, we see
block granularity as the one that delivers the highest performance.
We note that tile-wide reclamation would give the data structure
user more flexibility since we need to synchronize only a tile (not
the entire block).

A critical optimization in our implementation is limiting the
number of thread blocks used by any kernel that uses our EBR imple-
mentation. In our implementation, kernels perform data structure
operations in a persistent-kernel style. This optimization allows us
to minimize the number of memory accesses we need to perform
when scanning the entire state of the GPU blocks. For instance,
if we use blocks of size 128 threads on a GPU with 80 streaming
multiprocessors with 16 resident blocks, we only need to scan 16
× 80 announce entries (i.e., 40 cache lines). We examine the entire
announce array entries cooperatively using the block then commu-
nicate through shared memory to detect if we should advance the
epoch number. In practice, the maximum number of concurrent
blocks is limited by the kernel usage of shared memory and register
usage, among other limiters. We detect and configure reclamation
maximum blocks dynamically during runtime.

Our block-wide EBR utilizes per-block (fast) shared memory to
avoid directly storing its local state (i.e., limbo bags) into (slower)
GPU DRAM. Once a data structure operation retires a pointer, the
EBR stores the pointer into the fast shared memory and atomically
increments the retired-pointers count. Note that except for reading
or modifying the announce array, all block-wide EBR operations
use a CTA scope. Since shared memory is a limited resource, our
EBR is configurable with a maximum number of pointers stored
into shared memory. If the shared-memory limbo bags overflow,
we store the pointers into a bag stored in the DRAM. Similar to
scanning the announce array, when we free pointers, the block
cooperatively loads the limbo bag (either from shared or global
memory) then deallocates the pointers.

487

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

5 RESULTS
In this section, wewill evaluate the performance of ourMultiversion
B-Tree and compare it to one that does not support versioning
or linearizable multipoint queries. We recognize and expect that
supporting snapshots and achieving linearizable multipoint queries
will come at a cost, and we would like to quantify that cost (recall
our goals in Section 1).

Methodology. We evaluate our implementations on an NVIDIA
Tesla V100 PCIe (Volta architecture) GPU with 32 GB DRAM and
an Intel Xeon Gold 6146 CPU. The GPU has a theoretical achiev-
able DRAM bandwidth of 900 GiB/s. Our code is complied with
CUDA 11.5. Except for the memory reclamation evaluation (Sec-
tion 5.2.3), all results are averaged over 20 experiments. All keys
(and values) are unsigned 32-bit randomly generated unique keys
and uniformly distributed between 1 up to the maximum unsigned
integer. We refer to a Multiversion B-Tree with in-place and out-of-
place updates as ViB-Tree and VoB-Tree, respectively. We compare
our results to Awad et al.’s B-Tree [3]. All the data structures in our
benchmarks use our modified version of SlabAlloc [2] configured
with a memory pool of 8 gigabytes. Our EBR is configured with
bags that can hold up to 128 pointers per bag and we store any
additional pointers in a private per-processor memory stored in
global memory.

Summary of results. Our data structure supports linearizable mul-
tipoint queries with minimal additional memory overhead (3.26%
overhead). We achieve similar performance (1.11× and 1.04× slower
for insertion and queries, respectively) to a B-Tree when using our
data structure to perform in-place updates (ViB-Tree). As the update
ratio increases for concurrent operations, the cost of insertions and
copying tree nodes starts to reduce our throughput. Our VoB-Tree
performs similarly to a non-linearizable baseline at low update
ratios and 2.39× slower at high update ratios.

5.1 Comparing to a B-Tree
In this benchmark, we analyze the performance of simple non-
concurrent (i.e., phase-concurrent) operations that do not require
versioning. The goal is to quantify the cost of using our data struc-
ture over a regular B-Tree. We build the data structure from scratch
using a different number of keys then we query all keys in the data
structure. Figure 2 shows the result of these benchmarks. In general,
all tree operations’ performance depends primarily on tree height.
For instance, point queries find their result once they reach a leaf
node. VB-Tree queries targeting the most recent timestamp will
not traverse the version list (i.e., no additional overhead since the
head of the version list is the most recent version). In addition to
the tree traversal, update operations are lock-based and have the
additional overhead of contention and memory fences.

Insertion. Our data structure achieves slightly lower performance
than a B-Tree when performing in-place builds (our ViB-Tree is on
average 1.11× slower). Reading the global timestamp and broad-
casting a node’s timestamp across the tile adds a very low overhead.
Out-of-place insertion in our data structure achieves lower perfor-
mance (2.5× slower). We expect out-of-place insertion to be slower
as it performs at least two writes instead of one for the typical case
of inserting into a leaf node. Moreover, the critical section length

increases as the out-of-place copy is performed within the critical
section. On average, the {B-Tree, ViB-Tree, VoB-Tree} have build
rates of {240.065, 216.512, 94.605} million keys per second.

Point query. Searching the latest version of the tree does not
have any additional overhead as no version-list traversal is required.
The only factor that affects the performance of a point query is
the tree height. Recall that the branching factor of our versioned
tree is 14 and the B-Tree is 15. This decrease in the branching
factor shifts the number of keys that increase the tree height from
seven to eight from 14 million to 8 million. Interestingly, VoB-Tree
outperforms the others when the number of keys exceeds ≈23
million. We believe that TLB misses (an artifact from the memory
allocator) decrease query throughput as the tree size increases.
However, once insertions allocate enough tree nodes (i.e., enough
collisions happen in the allocator), the allocator starts allocating
memory from neighbor blocks, reducing the number of TLB misses
and improving the query performance. The TLB effect does not
appear when the memory allocated for the allocator pool, input,
and output is less than 8 gigabytes (L2-cached TLB entries coverage
is 8 gigabytes [12]). All of the B-Trees have a similar performance
trend; however, the higher number of allocations in the VoB-Tree
makes this effect appear earlier than the other two. On average, the
query throughputs in the {B-Tree, ViB-Tree, VoB-Tree} are {1512.964,
1453.697, 1549.977} million keys per second.

5.2 Multiversion B-Tree Performance
The major use case of our implementation is to support concurrent
queries and updates to the data structure, guaranteeing linearizable
multipoint queries. To evaluate the performance of the concurrent
operations in our VoB-Tree, we perform only two types of opera-
tions at a time where one of the operations is an update, and the
other is a read-only query. Limiting the number of concurrent op-
eration types allows us to better understand the performance of
each operation when it dominates the runtime of the kernel.

Benchmark setup. For any concurrent operations benchmark, we
first build an initial tree using in-place updates (ViB-Tree), then we
launch a persistent kernel that divides the GPU into two partitions
where each partition performs a single operation. Both partitions
execute in parallel, performing the operations over multiple itera-
tions. Each iteration performs a number of operations equal to the
block size. We instantiate a memory reclaimer within each block
and then perform the operation in a tile-wide fashion (i.e., we use
tile-wide snapshots and a VoB-Tree). The tile width matches the
tree node width. Each time a tile starts (or finishes) performing its
operations, it leaves (or enters) the quiescent state. Note that our
Multiversion B-Tree results are linearizable, but the B-Tree results
are not linearizable.

5.2.1 Concurrent Insertion and Range Query. In our first bench-
mark, we perform concurrent insertion and range query operations.
We build the initial data structure with either 1 or 40 million keys,
then we perform a number of operations divided between update
and query using the update ratio 𝛼 . We use two average range
lengths in our experiments (8 and 32) to evaluate the difference
between performing short and long level-wise and version-list tra-
versals (on average, each node is 2/3 full). Figure 3 and Table 1

488

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

0.0 0.2 0.4 0.6 0.8 1.0
Millions of keys

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 400

50

100

150

200

250

300

In
se

rt
Ra

te
 (M

Ke
y/

s)

0 10 20 30 401300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Fin
d

Ra
te

 (M
Ke

y/
s)

B-Tree
ViB-Tree
VoB-Tree

Figure 2: Insertion and find rates for trees containing differ-
ent number of keys and the different B-Tree implementa-
tions. Find operations search for all keys in the data structure.
Insertion performance is similar for the B-Tree and the ViB-
Tree. However, the additional copies for out-of-place updates
lower the insertion performance in a VoB-Tree. For queries,
VB-Trees split the root earlier than the B-Tree, increasing the
height and adding an additional read. Interestingly, VoB-Tree
query throughput improves after 20M keys due to better TLB
performance (Section 5.1).

show the results and summary of this benchmark. Interestingly,
our VoB-Tree outperforms the B-Tree for most workloads when the
update ratio is 5%. Compared to the VoB-Tree range query results,
the B-Tree ones include more pairs from the concurrent insertions.
The difference in the range query result size is because traversing
the snapshot stops the range traversal earlier than the ones in the
B-Tree (i.e., range queries in the B-Tree read more nodes and write
more results). As the update ratio increases, the high insertion cost
dominates the overall operations rate. Since updates are more costly
in a VoB-Tree than in a B-Tree, for high 𝛼 scenarios, the overall
throughput drops significantly in a VoB-Tree.

Figure 4 shows the result of varying the range query length while
performing the concurrent range query and insertion benchmark.
As the range query length increases, the total operations rate drops
since the range query operations serially traverse more leaf nodes
and version lists. For a tree with an initial size of 1 million keys,

1M pairs initial tree 40M pairs initial tree

RQ length 𝛼 B-Tree VoB-Tree B-Tree VoB-Tree

8
5% 212.932 233.537 228.694 248.86
50% 211.936 128.211 220.186 127.256
90% 219.688 95.073 222.729 95.391

32
5% 221.691 227.793 240.13 214.679
50% 210.405 120.956 213.199 117.642
90% 213.406 93.199 220.329 92.154

Table 1: Average concurrent insertion and range query rates
(million operations per second) for different update ratios,
initial tree sizes, and range query lengths.

𝛼 B-Tree VoB-Tree

5% 433.462 369.835
50% 424.131 367.432
90% 399.863 346.188

Table 2: Average concurrent delete and find rates for different
update ratios (million operations per second).

the total operations rate drops from {197.253, 127.895} to {43.534,
27.923} for {B-Tree, VoB-Tree}.

5.2.2 Concurrent Delete and Point Query. For our second bench-
mark, we perform concurrent delete and point query operations.
This benchmark uses an initial tree size of 45 million keys. We per-
form 𝛼 deletes and 1−𝛼 queries for different numbers of operations.
Figure 5 shows the results of this benchmark. For all ratios, the B-
Tree is 1.16× faster than the VoB-Tree averaged over all experiments.
Deletion in a VoB-Tree always performs two writes compared to
a single write in a B-Tree. Since deletes have a higher cost than
queries, the total rates start to drop when the update ratio increases.
Table 2 summarizes the results of this benchmark.

5.2.3 Memory Usage and Reclamation. One of the critical compo-
nents in our system is memory reclamation. To measure its perfor-
mance, we instrument one of the concurrent-insertion-and-range-
query benchmarks to query the allocator’s number of allocated
and freed bytes each time a block successfully advances an epoch.
Figure 6 shows the results of this benchmark. During the first 300
epochs, the allocator allocates around 11 megabytes per epoch (i.e.,
91 thousand nodes allocated per epoch) and reclaims 10 megabytes
per epoch. After epoch 300, blocks performing insertion start to exit,
thus lowering the allocation rate to 1 megabyte per epoch, ≈77% of
which are reclaimed. Notice that the first 300 epochs correspond to
≈72% of the kernel runtime in this experiment.

A ViB-Tree containing the same number of keys (67.5 million
keys) uses 950 megabytes; using our EBR while concurrently build-
ing and querying the tree, the memory usage in the last epoch
is 981 megabytes (thus, a 3.26% overhead for supporting version-
ing). The maximum memory overhead during the kernel’s runtime
(measured at each memory allocator call) is 3.5% compared to the

489

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Operations

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 400

50

100

150

200

250

300

Op
er

at
io

ns
 R

at
e

(M
Op

/s
)

Range length = 8

0 10 20 30 400

50

100

150

200

250

300

Op
er

at
io

ns
 R

at
e

(M
Op

/s
)

Range length = 32

╌╌╌ B-Tree
―― VoB-Tree

5% update
50% update
90% update

(a) Initial tree size of 1M.

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Operations

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 400

50

100

150

200

250

300

Op
er

at
io

ns
 R

at
e

(M
Op

/s
)

Range length = 8

0 10 20 30 400

50

100

150

200

250

300

Op
er

at
io

ns
 R

at
e

(M
Op

/s
)

Range length = 32

╌╌╌ B-Tree
―― VoB-Tree

5% update
50% update
90% update

(b) Initial tree size of 40M.

Figure 3: Concurrent insertion and range query for the B-
Tree and our VoB-Tree with different update ratios and initial
tree sizes.

0.00 0.25 0.50 0.75 1.00
Average Range Length

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000

50

100

150

200

Op
er

at
io

ns
 R

at
e

(M
Op

/s
) VoB-Tree

B-Tree

(a) Initial tree size of 1M.

0.00 0.25 0.50 0.75 1.00
Average Range Length

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000

50

100

150

200

Op
er

at
io

ns
 R

at
e

(M
Op

/s
) VoB-Tree

B-Tree

(b) Initial tree size of 40M.

Figure 4: Effect of varying the range query length on the
concurrent insertion and range query rates when performing
5 million operations with an update ratio of 50%.

0.0 0.2 0.4 0.6 0.8 1.0
Millions of Operations

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40200

250

300

350

400

450

500

Op
er

at
io

ns
 R

at
e

(M
Op

/s
)

╌╌╌ B-Tree
―― VoB-Tree

5% update
50% update
90% update

Figure 5: Performance of concurrent delete and point query
in the B-Tree and VoB-Tree using different update ratios for
a tree with an initial size of 45 million keys. Note that the
graph has a false bottom.

final tree size. Notice that the shared memory does not persist be-
tween kernels. Therefore, we must flush all the block’s reclaimer
limbo bags stored in shared memory to the private block storage in
global memory. After finishing kernel execution, we can free these
pointers or load them as shared limbo in future executions. In our
benchmarks, we saw no noticeable runtime overhead for our SMR
implementation.

6 CONCLUSION AND FUTUREWORK
In this paper we describe the design and implementation of a GPU
B-Tree with snapshots and linearizable multipoint queries. Our
design encompasses different GPU data structure common use cases
and can perform in-place updates and take advantage of L1 cache
whenever possible. Although fine-grained locks and restarts of
update operations reduce contention, supporting snapshots requires
performing additional operations inside the critical section (e.g.,
copying nodes), which reduces the overall update performance by a
factor of 2.4x. This reduced performance is the cost of supporting a
more capable data structure. We believe that linearizable multipoint

490

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

0.0 0.2 0.4 0.6 0.8 1.0
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400500

1000

1500

2000

2500

3000

3500

4000

4500

M
em

or
y

Us
ag

e
(M

iB
s)

with reclamation
without reclamation

(a) Memory usage in MiBs.

0.0 0.2 0.4 0.6 0.8 1.0
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
cla

im
ed

 b
yt

es
 /

To
ta

l b
yt

es
 a

llo
ca

te
d

(b) Ratio between reclaimed and
total-allocated bytes.

Figure 6: Memory usage for a Multiversion B-Tree perform-
ing 45 million concurrent insertion and range queries (50%
update ratio and average range length of 16). The initial tree
size is 45 million keys. Blocks that perform insertion start to
exit when the epoch number reaches ≈ 300, reducing the al-
location rate (left). Once three epochs pass, the ratio between
the reclaimed to total bytes allocated starts to exceed zero
(right).

queries, first implemented in this work, are common and useful in
real-world applications.

In the future, we will explore a multiversion dynamic graph data
structure where we will represent each vertex adjacency list as a
Multiversion B-Tree. Using the tools we developed, we want to
explore wait-free techniques to build tree structures on the GPU.
We believe that wait-free data structures will potentially reduce the
overhead of supporting snapshots, and more broadly, a broader tool-
box of techniques for building data structures will help advance the
GPU as a vibrant target for database and data science applications.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation (NSF)’s
grant # CCF-1637442; by the Department of Defense Advanced
Research Projects Agency (DARPA) under project HR0011-18-3-
0007; and by an NVIDIA gift and hardware donations. We also
thank the anonymous reviewers for their valuable feedback and
suggestions for improving our paper.

REFERENCES
[1] MayaArbel-Raviv and Trevor Brown. 2018. Harnessing Epoch-Based Reclamation

for Efficient Range Queries. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2018). 14–27. https:
//doi.org/10.1145/3178487.3178489

[2] Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A Dynamic
Hash Table for the GPU. In Proceedings of the 32nd IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2018). 419–429. https://doi.org/10.
1109/IPDPS.2018.00052

[3] Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martín Farach-Colton,
and John D. Owens. 2019. Engineering a High-Performance GPU B-Tree. In
Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2019). 145–157. https://doi.org/10.1145/3293883.
3295706

[4] Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D.
Owens. 2020. Dynamic Graphs on the GPU. In Proceedings of the 34th IEEE

International Parallel and Distributed Processing Symposium (IPDPS 2020). 739–
748. https://doi.org/10.1109/IPDPS47924.2020.00081

[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar
Hillel, Idit Keidar, and Moshe Sulamy. 2020. KiWi: A Key-Value Map for Scalable
Real-Time Analytics. ACM Transactions on Parallel Computing 7, 3, Article 16
(June 2020), 28 pages. https://doi.org/10.1145/3399718

[6] BlazingSQL. 2022. BlazingSQL. https://blazingsql.com/ [Online; accessed
2-February-2022].

[7] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Struc-
tures: There Has to Be a Better Way. In Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing (PODC 2015). 261–270. https:
//doi.org/10.1145/2767386.2767436

[8] William J. Dally, Stephen W. Keckler, and David B. Kirk. 2021. Evolution of
the Graphics Processing Unit (GPU). IEEE Micro 41, 6 (2021), 42–51. https:
//doi.org/10.1109/MM.2021.3113475

[9] Keir Fraser. 2004. Practical Lock-freedom. Technical Report UCAM-CL-TR-579.
University of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-579.pdf

[10] HEAVY.AI. 2022. HEAVY.AI. https://www.heavy.ai/ [Online; accessed 17-April-
2022].

[11] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

[12] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. CoRR
(April 2018). https://doi.org/10.48550/arxiv.1804.06826 arXiv:1804.06826

[13] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (March/
April 2008), 39–55. https://doi.org/10.1109/MM.2008.31

[14] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal
Analysis of the NVIDIA PTX Memory Consistency Model. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2019). 257–270. https://doi.org/10.
1145/3297858.3304043

[15] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
free Objects. IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004),
491–504. https://doi.org/10.1109/TPDS.2004.8

[16] Nurit Moscovici, Nachshon Cohen, and Erez Petrank. 2017. A GPU-Friendly
Skiplist Algorithm. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT). 246–259. https://doi.org/10.1109/PACT.2017.
13

[17] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Oder-
sky. 2012. Concurrent Tries with Efficient Non-blocking Snapshots. In Pro-
ceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New Orleans, Louisiana, USA) (PPoPP ’12). 151–160.
https://doi.org/10.1145/2145816.2145836

[18] RAPIDS. 2022. RAPIDS. https://rapids.ai/ [Online; accessed 2-February-2022].
[19] Ohad Rodeh. 2008. B-trees, Shadowing, and Clones. ACM Transactions on Storage

3, 4, Article 2 (Feb. 2008), 27 pages. https://doi.org/10.1145/1326542.1326544
[20] Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric

Ruppert, and Yihan Sun. 2021. Constant-Time Snapshots with Applications to
Concurrent Data Structures. In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2021). 31–46. https:
//doi.org/10.1145/3437801.3441602

[21] Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang. 2019. Harmonia: A
High Throughput B+tree for GPUs. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming (PPoPP 2019). 133–144. https:
//doi.org/10.1145/3293883.3295704

A ARTIFACT DESCRIPTION
A.1 Abstract
The artifact contains our source code as a docker image bundled
with all the required software dependencies. After loading the image
you can compile the code then start running our different bench-
marks to reproduce all figures and tables in Section 5. The docker
image contains an Ubuntu 20.04 OS and CMake 3.8, Miniconda,
Python and the CUDA 11.5 toolkit. We prepared the docker image
on Ubuntu 20.4 with an NVIDIA driver version 510.85.02 and using
docker version 20.10.6.

491

https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1145/3293883.3295706
https://doi.org/10.1145/3293883.3295706
https://doi.org/10.1109/IPDPS47924.2020.00081
https://doi.org/10.1145/3399718
https://blazingsql.com/
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1109/MM.2021.3113475
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.heavy.ai/
https://doi.org/10.1145/78969.78972
https://doi.org/10.48550/arxiv.1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/PACT.2017.13
https://doi.org/10.1109/PACT.2017.13
https://doi.org/10.1145/2145816.2145836
https://rapids.ai/
https://doi.org/10.1145/1326542.1326544
https://doi.org/10.1145/3437801.3441602
https://doi.org/10.1145/3437801.3441602
https://doi.org/10.1145/3293883.3295704
https://doi.org/10.1145/3293883.3295704

PACT ’22, October 10–12, 2022, Chicago, IL, USA Awad, Porumbescu, and Owens

A.2 Description
A.2.1 Check-list (artifact meta information).

• Algorithms: Insertion, find, delete, and range query operations
using our Multiversion B-Tree variants (ViB-Tree and VoB-Tree)
and reference B-Tree implementation

• Program: reproduce.sh runs multiple executables
• Data set: Data sets are generated during benchmarking
• Run-time environment:NVIDIA driver version 450.80.02 or higher
and linux OS

• Hardware: NVIDIA Volta GPU or later microarchitectures with at
least 20 GiB DRAM

• Execution: Approximately 7 hours on our system3

• Output: Graphs and tables in Section 5
• Experiment workflow: Compilation of the code, running unit

tests, running a script to collect benchmarking results, then running
a script to plot the results

• Publicly available?: Yes
• Code license: Apache License 2.0

A.2.2 How delivered. The docker image is available on Docker Hub
at https://hub.docker.com/repository/docker/maawad/mvgpubtree.

A.2.3 Hardware dependencies. Our implementation and bench-
marks require an NVIDIA Volta GPU or a later microarchitectures
with at least 20 GiB of DRAM. A modern CPU with at least 1 GiB
of DRAM is required (we only use the CPU to generate the input
datasets and launch GPU kernels). The docker image is 7.8 GiBs
(3.6 GiBs when compressed). Our experiments used an NVIDIA
Tesla V100 PCIe (Volta architecture) GPU with 32 GB DRAM and a
theoretical achievable DRAM bandwidth of 897 GiB/s. Other GPUs
will achieve similar performance trends; however, performance will
primarily depend on the achievable DRAM and atomic bandwidth
of the GPU.

A.2.4 Software dependencies. Docker 19.03 or higher (ideally the
same version we use) and an NVIDIA driver version 450.80.02 or
higher.

A.3 Step By Step Instructions
(1) Install docker4 and the NVIDIA GPU driver5 (if not already

installed)
(2) Clone the image from Docker Hub

$ docker pull maawad/mvgpubtree
(3) Launch the docker image in interactive mode

$ docker run -it --name trees --gpus all
maawad/mvgpubtree /bin/bash
Notice that on a system with multiple GPUs you can specify
the GPU index after the --gpus device flag (e.g., --gpus
device=0 to use the GPU with index zero). Use a different
image name (i.e., --name other-name) if you are already
using the name for a different container

(4) Navigate to the directory containing the source code
$ cd MVGpuBTree

3using an an NVIDIA Tesla V100 PCIe (Volta architecture) GPU with 32 GB DRAM
and an Intel Xeon Gold 6146 CPU.
4https://docs.docker.com/engine/install/ubuntu/
5https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

(5) Build the source code
mkdir build && cd build
cmake .. && make -j

(6) Run the unit tests
$./bin/unittest_btree
$./bin/unittest_versioning
Successful testing will output a log of the tests ending with
a message similar to: [PASSED] 10 tests.

(7) Run the benchmarks
$ cd .. && source reproduce.sh

(8) Generate the figures and tables
$ cd plots && source plot.sh

(9) From the host machine and while the docker image is still
running, copy the generated figures and text files back to
the host
$ docker cp trees:MVGpuBTree/plots/figs .
Note that . means copy the figs directory to the current
location on the host

(10) If you wish to view the raw data, copy the generated comma-
separated values files back to the host machine
$ docker cp trees:MVGpuBTree/results .

A.4 Evaluation and Expected Result
The figs directorywill contain the output figures and tables that we
used in our paper. The figs directory should include the following
files:
$ ls figs/

Tesla -V100 -PCIE -32GB

The plotting script will store all figures and tables in a

directory with the same name as the GPU used for

benchmarking

$ ls figs/Tesla -V100 -PCIE -32GB/

Figure 2

Rates for insertion and point query for B-Tree vs. VBTree

insertion_find_rates_slab.pdf

Tabular summary of the B-Tree vs. VBTree results

blink_vs_versioned.txt

Figure 3 and Table 1

Rates for operations (insert and RQ) on an initial tree size

of 1 million keys

insertion_rq_rates_slab1.pdf

Rates for operations (insert and RQ) on an initial tree size

of 40 million keys

insertion_rq_rates_slab40.pdf

Tabular summary of the concurrent insert RQ results

concurrent_insert_range.txt

Figure 4

Rates of operations using 1 million keys initial tree size

and variable range length

insertion_vary_rq_rates_initial1M_update50_num_ops5_slab.pdf

Rates of operations using 40 million keys initial tree size

and variable range length

insertion_vary_rq_rates_initial40M_update50_num_ops5_slab.pdf

Figure 5 and Table 2

Rates for operations (find and erase) on an initial tree

size of 45 million keys

erase_find_rates_slab45.pdf

Tabular summary of the concurrent find erase results

concurrent_erase_find.txt

Figure 6

Memory usage in MiBs

insertion_find_memory_45m_45m_50_16_slab.pdf

Ratio between reclaimed and total -allocated bytes

insertion_find_ratio_memory_45m_45m_50_16_slab.pdf

492

https://hub.docker.com/repository/docker/maawad/mvgpubtree
https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

A GPU Multiversion B-Tree PACT ’22, October 10–12, 2022, Chicago, IL, USA

If you copied the raw data, the results directory should contain
the following subdirectories
$ ls results/

Tesla -V100 -PCIE -32GB

$ ls results/Tesla -V100 -PCIE -32GB/

directory containing csv file for Figure 2

blink_vs_versioned

directory containing csv files for Figure 3, Figure 6 and

Table 1

versioned_insert_range

directory containing csv files for Figure 4

versioned_insert_range_variable_range

directory containing csv files for Figure 5

versioned_find_erase

The reproduced results should match our reported results if using
the same GPU as the one we use in our benchmarks. If a different
GPU is used, we expect the reproduced results to follow similar

trends but the achieved throughput will differ. Specifically, we ex-
cept the performance to improve as the achievable DRAM through-
put or atomic throughput increase. The TLB effect observed in our
Figure 2 may not be observed on other GPUs. For instance, we did
not observe the TLB effect on A100 or Titan V NVIDIA GPUs.

A.5 Notes
Our source code is publicly available at https://github.com/owensgroup/
MVGpuBTree. The GitHub repository also contains:

• The docker file used to generate the docker image
• Markdown files containing instructions to reproduce per-
figure results and more extensive validation

• Benchmarking and plotting scripts
• Markdown file containing documentation of our Multiver-
sion B-Tree APIs

• Archived results on different GPUs

493

https://github.com/owensgroup/MVGpuBTree
https://github.com/owensgroup/MVGpuBTree

	Abstract
	1 Introduction
	2 Background and Previous Work
	2.1 Concurrent GPU Data Structures
	2.2 Snapshots and Linearizable Data Structures
	2.3 Safe Memory Reclamation
	2.4 Graphics Processing Units

	3 Design Decisions
	3.1 In-place and Out-of-place Updates
	3.2 Scoped Snapshots
	3.3 Older Version Access in Versioned Nodes

	4 Implementation
	4.1 Insertion
	4.2 Query Operations
	4.3 Deletion
	4.4 GPU Epoch-based Reclamation

	5 Results
	5.1 Comparing to a B-Tree
	5.2 Multiversion B-Tree Performance

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Step By Step Instructions
	A.4 Evaluation and Expected Result
	A.5 Notes

