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1. INTRODUCTION 

When an algorithm is presented in the optimization literature, it has usually been 
tested on a set of functions. The purpose of this testing is to show that  the 
algorithm works and, indeed, that  it works better than other algorithms in the 
same problem area. In our opinion these claims are usually unwarranted because 
it is often the case that there are only a small number of test functions, and that  
the starting points are close to the solution. 

Testing an algorithm on a relatively large set of test functions is bothersome 
because it requires the coding of the functions. This is a tedious and error-prone 
job that is avoided by many. However, not testing the algorithm on a large 
number of functions can easily lead the cynical observer to conclude that  the 
algorithm was tuned to particular functions. Even aside from the cynical observer, 
the algorithm is just not well tested. 

It is harder to understand why the standard starting points are usually close to 
the solution. One possible reason is that the algorithm developer is interested in 
testing the ability of the algorithm to deal with only one type of problem (e.g., a 
curved valley), and it is easier to force the algorithm to deal with this problem if 
the starting point is close to the solution. 

Thus a test function like Rosenbrock's is useful because it tests the ability of 
the algorithm to follow curved valleys. However, test functions like Rosenbrock's 
are the exception rather than the rule; other test functions have much more 
complicated features, and it has been observed that  algorithms that succeed from 
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the standard starting points often have problems from points farther away and 
fail. Hillstrom [15] was one of the first to point out the need to test optimization 
software at nonstandard starting points. He proposed using random starting 
points chosen from a box surrounding the standard starting point. This approach 
is much more satisfactory, but it tends to produce large amounts of data which 
can be hard to interpret. Moreover, the use of a random number generator 
complicates the reproduction of the results at other computing centers. 

A final complaint against most of the testing procedures that  have appeared in 
the literature is that there has been too much emphasis on comparing the 
efficiency of optimization routines and not enough emphasis on testing the 
reliability and robustness of optimization software--the ability of a computer 
program to solve an optimization problem. It is important to measure the 
efficiency of optimization software, and this can be done, for example, by counting 
function evaluations or by timing the algorithm. However, either measure has 
problems, and with the standard starting points it is usually fairly hard to 
differentiate between similar algorithms (e.g., two quasi-Newton methods) on 
either count. In contrast, the use of points farther away from the solution will 
frequently reveal drastic differences in reliability and robustness between the 
programs, and hence in the number of function evaluations and in the timing of 
the algorithms. 

To deal with the above problems, we have produced a relatively large collection 
of carefully coded test functions and designed very simple procedures for testing 
the reliability and robustness of unconstrained optimization software. The heart 
of our testing procedure is a set of basic subroutines, described in Sections 2 and 
3, which define the test functions and the starting points. The attraction of these 
subroutines lies in their flexibility; with them it is possible to design many 
different kinds of tests for optimization software. Finally, in Sections 4 and 5 we 
describe some of the tests that we have been using to measure reliability and 
robustness. 

It should be emphasized that the testing described in this paper is only a 
beginning and that other tests are necessary. For example, the ability of an 
algorithm to deal with small tolerances should be tested. However, the testing of 
Sections 4 and 5 does examine reliability and robustness in ways that other 
testing procedures have ignored. 

2. THE BASIC SUBROUTINES 

Testing of optimization software requires a basic set of subroutines that define 
the test functions and the starting points. We consider the following three 
problem areas: 

I. Systems of  nonlinear equations. Given f~ : R" ~ R for i -- 1 , . . . ,  n, solve 

f,(x)---O, l<__i<__n, x E R  n. 

II. Nonlinear least squares. Given f~ : R n --> R for i -- 1 , . . . ,  m with m __ n, solve 

m i n { , _ ~ f ~ ( x ) : x E R n }  • 
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III. U n c o n s t r a i n e d  m in im i za t i on .  Given f :R" --. R ,  solve 

rain { [ ( x ) : x  ~ Rn} .  

The subroutines that define the test functions and starting points depend on 
the dimension parameters M and N and on the problem number NPROB. We 
first describe the subroutines for the test functions. 

For systems of nonlinear equations, the subroutine 

VECFCN(N, X, FVEC, NPROB) 

returns in FVEC the vector 

(f l (x) , . . . ,  fn(X)), 

and 

VECJAC(N, X, FJAC, LDFJAC, NPROB) 

returns in FJAC the Jacobian matrix 

of,(x) 
axj ' i = 1  . . . .  ,n, j = l  . . . .  ,n. 

(The parameter LDFJAC is the leading dimension of the array FJAC as defined 
in the main program.) In order to prevent gross inefficiencies with solvers that 
only require one component at a time, 

COMFCN(N, K, X, FCNK, NPROB) 

returns in FCNK the kth component fk(x). For nonlinear least squares 

SSQFCN(M, N, X, FVEC, NPROB) 

returns in FVEC the vector 

( fdx) ,  . . . , fro(x)), 

and 

SSQJAC(M, N, X, FJAC, LDFJAC, NPROB) 

returns in FJAC the Jacobian matrix 

of,(x) 
i f f i l  . . . . .  m, j = l  . . . . .  n. 

Oxj '  

For unconstrained minimization 

OBJFCN(N, X, F, NPROB) 

returns in F the objective function value f (x)  and 

GRDFCN(N, X, G, NPROB) 

returns in G the gradient vector 

of(x) of(x)~ 
' . . . .  OXn / 

For each problem area, the starting points are generated by a subroutine 

INITPT(N, X, NPROB, FACTOR) 
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which returns in X the starting point corresponding to the parameters NPROB 
and FACTOR. If  Xs denotes the s tandard starting point, then  X will contain 
FACTOR*Xs,  except tha t  if Xs is the zero vector and FACTOR is not  unity, 
then  all the components of X will be set to FACTOR. 

3. TEST FUNCTIONS 

Almost all of the test  functions tha t  have appeared in the optimization literature 
are nonlinear least squares. Given a nonlinear least squares problem defined by 
fx . . . . .  fro, we can obtain an unconstrained minimization problem by setting 

m 

f(x) = ~ f2(x). (3.1) 
t l l  

If  m = n, this problem can be posed as the system of nonlinear equations 

f,(x) = O, 1 <_ i _ n, (3.2) 

and if m > n, the optimality conditions for (3.1) lead to the system of nonlinear 
equations 

m ( ~ 
2 0 f ~ ( x )  f~(x) = O, l <_ j <_ n. (3.3) 

Note that,  in general, it is inefficient to solve nonlinear least squares problems by 
general minimization algorithms, since they  tend to ignore the structure in (3.1). 
As far as the nonlinear equations approach is concerned, (3.2) may  not  have any 
solutions, while (3.3) will have as a solution any critical point of (3.1). However, 
for testing purposes, (3.1), (3.2), and (3.3) are valid problems. All of our test  
functions are formulated for problem area II (nonlinear least squares). The 
corresponding test  function for problem area III (unconstrained minimization) is 
(3.1), while for problem area I (systems of nonlinear equations), the function is 
(3.2) if m = n and (3.3) if m > n. A given test function may  appear in more than  
one problem area; coding differences among its various versions depend on the 
particular area. 

To define the test  functions, we have adopted the following general format:  

Name of  function [reference] 
(a) Dimensions 
(b) Function definition 
(c) Standard starting point (designated x0) 
(d) Minima 

In (d) we give the minima of the function {3.1) tha t  we have found, and if 
convenient, the corresponding minimizers. In a few cases a minimizer is, for 
example, of the form (a, fl, + ~). This means tha t  

lim Vf(a, fl, ,/) = 0, 
y - ~  +¢Q 

and thus  an algorithm may decide tha t  a minimizer is in a neighborhood of 
(a, fl, 7) for some large value of y. 
ACM Transactions on Mathematical Software, Vol 7, No 1, March 1981. 
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(1) R o s e n b r o c k  func t ion  [24] 
(a) n = 2, m = 2 
(b) f d x )  = 10(x2 - x 2) 

f2(x) = 1 - x l  
(c) Xo--  ( - 1 . 2 ,  1) 
(d) f = O  a t  ( 1 , 1 )  

(2) F r e u d e n s t e i n  a n d  R o t h  func t ion  [13] 
(a) n = 2, m = 2 
( b )  fl(x) = - 1 3  + Xl + ((5 - x2)x2 - 2)x2 

f2(x) -- - 2 9  + x l  + ((x2 + 1)x2 - 14)x2 
(c) Xo = ( 0 . 5 , - 2 )  
(d) f = 0  a t  (5, 4) 

f =  4 8 . 9 8 4 2 . . .  a t  (11.41 . . . .  - 0 . 8 9 6 8 . . . )  

(3) P o w e l l  bad ly  s ca led  func t ion  [22] 
(a) n = 2, m = 2 
(b) f l (x )  = 1 0 4 X l X 2  - -  1 

f2(x) = e x p [ - x , ]  + e x p [ - x 2 ]  - 1.0001 
(c) Xo = (o, 1) 
(d) f =  0 a t  ( 1 . 0 9 8 . . .  10 -5 , 9 . 1 0 6 . . . )  

(4) B r o w n  badly  sca led  func t ion  [ u n p u b l i s h e d ]  
(a) n = 2, m = 3 
(b) f d x )  = xl  - 106 

f 2 ( x )  ---- X2 - -  2 - 1 0  -6 

f3(x) = xlx2 - 2 
(c) Xo = (1, 1) 
(d) f = 0  a t  (106 , 2 . 1 0  -6 ) 

(5) B e a l e  func t ion  [2] 
( a )  n = 2 ,  m = 3 

(b) f,(x) = y, - Xl(1 - xJ) ,  
w h e r e  y l =  1.5, y2 = 2.25, y3 = 2.625 

(c) Xo = (1, 1) 
(d) f = O  at (3, 0.5) 

(6) J e n n r i c h  a n d  S a m p s o n  func t ion  [16] 
(a) n = 2 ,  m>>_n 
(b) f , (x)  = 2 + 2i  - (exp[ ix~]  + exp[ix2]) 
(c) Xo = (0.3, 0.4) 
(d) f = 1 2 4 . 3 6 2 . . ,  a t  x 1 = x 2 = 0 . 2 5 7 8 . . ,  fo r  m = l O  

(7) Hel i ca l  val ley  func t ion  [12] 
(a) n = 3, m = 3 

(b) f , (x)  =-- 10[x3 - lOO(Xl, x2)] 
f2(x) = lO[x2~ + x~) ~/2 - 1] 
f 3 ( x )  = x~ 
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where 

O(xl, x2) = 

1 (x2~, 
arctan \ ~ /  ff xl > 0 

1 
arctan + 0.5, if xl < 0 

(c) Xo = (--1, 0, 0) 
(d) f = 0  at (1,0,0) 

(8) Bard function [1] 
(a) n = 3 ,  m - - 1 5  

(b) fjx) = y~- (xl + u, ) 
V~X2 + WzX3 

where u~= i ,  v ~ f f i 1 6 - i ,  w , = m i n ( u ,  v3, and 

(9) 

t y i y t y 

1 0.14 5 0.29 11 0.73 
2 0.18 6 0.32 12 0.96 
3 0.22 7 0 35 13 1.34 
4 0.25 8 0.39 14 2.10 

9 0.37 15 4.39 
10 0.58 

(c) Xo = (1, 1, 1) 
(d) f ffi 8.21487.. .  10 -z 

fffi 17.4286...  at  (0.8406... ,  -0% -oo) 

Gaussian function [unpublished] 
(a) n = 3 ,  m = 1 5  

[ -x2(t~2 - 1 (b) f~(x) = x~ exp[  x3)2j - Y~ 

where t , = ( 8 - i ) / 2  and 

1, 15 0.0009 
2, 14 0.0044 
3, 13 0.0175 
4, 12 0.0540 
5, 11 0.1295 
6, 10 0.2420 
7, 9 0.3521 
8 0.3989 

(c) Xo -- (0.4,  1, 0) 
(d) f =  1.12793-.. 10 -s 
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(10) Meyer function [18] 
(a) n - - 3 ,  m = 1 6  

Ix2] (b) f,(x) = xl exp (t,-+x3)" - y' 

where  t ~ = 4 5 + 5 i  and  

y, l y, 

1 34780 9 8261 
2 28610 10 7030 

3 23650 11 6005 
4 19630 12 5147 

5 16370 13 4427 
6 13720 14 3820 

7 11540 15 3307 
8 9744 16 2872 

(c) Xo -- (0.02, 4000, 250) 
(d) f = 87.9458. . .  

(11) Gul f  research and  development  function [10] 
(a )  n = 3 ,  n _ < m ~ 1 0 0  

(b) f , ( x ) - - e x p [  , y, mixlX2 ,x3] _ t, 

where  t, = i/lO0 
and  y, = 25 + ( - 5 0  ln(t,)) 2/3 

(c) Xo = (5, 2.5, 0.15) 
(d) f = 0  a t  (50,25,1 .5)  

(12) Box  three-dimensional  funct ion [4] 
(a) n = 3, m >_ n var iable  
(b) f,(x) = exp[- t ,  xl] - e x p [ - t ,  x2] - x3(exp[ - t , ]  - exp [ -10 t , ] )  

where  t, = (0.1)i 
(c) Xo = (0, 10, 20) 
(d) f = 0  a t  ( 1 , 1 0 , 1 ) , ( 1 0 , 1 , - 1 )  

and  whereve r  (xl = x2 and  x3 = 0) 

(13) Powel l  s ingular  function [23] 
(a )  n = 4,  m = 4 

(b) fdx)  = x~ + 10x2 
f2(x) = 5~/2(x3 - x4) 
f3(x) = (x2 - 2x3) 2 
f~(x) = 10'/~(Xl - x4) 2 

(c) Xo = (3, - 1 ,  0, 1) 
(d) f = 0 at  the  origin 

(14) Wood function [9] 
(a) n ~ 4, m = 6 
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(b) f l ( x )  = lO(x2 - x l  2) 

f2(x) = 1 - x l  
A(x) = (90)~/2(x~ - ~ )  
f4(x) = 1 - x3 
f5(x)  = (10)1/2(X2 + X4 --  2) 

A ( x )  = ( 1 0 ) - ~ / 2 ( x 2  - x4) 
(c) Xo = ( - 3 , - 1 , - 3 , - 1 )  
(d) f - O  a t  ( 1 , 1 , 1 , 1 )  

(15) K o w a l i k  a n d  O s b o r n e  f u n c t i o n  [17] 
( a )  n = 4 ,  m = 11 

xdu  2 + u,x2) 
(b) f , (x)  = y, - (u 2 + u,x3 + x4) 

w h e r e  

t y, u, l y, u, 

1 0.1957 4.0000 7 0.0456 0.1250 
2 0.1947 2.0000 8 0.0342 0.1000 
3 0.1735 1.0000 9 0.0323 0.0833 
4 0 1600 0.5000 10 0 0235 0.0714 
5 0.0844 0.2500 11 0.0246 0.0625 
6 0 0627 0.1670 

(c) Xo = (0.25, 0.39, 0.415, 0.39) 
(d) f = 3 .07505 .  • • 10 -4 

f =  1 . 0 2 7 3 4 . . .  10 -3 a t  ( + ~ ,  - 1 4 . 0 7 . . . ,  - ~ ,  - ~ )  

(16) B r o w n  a n d  D e n n i s  f u n c t i o n  [6] 
(a) n ffi 4, m _ n v a r i a b l e  
(b) f , (x)  = (xl  + t,x2 - exp[ t , ] )  2 + (x3 + x4 s in( t , )  - cos( t , ) )  2 

w h e r e  t~ = ~/5 
(c) Xo = (25, 5, - 5 ,  - 1 )  
(d) f =  8 5 8 2 2 . 2 . . .  i f  m = 20 

(17) O s b o r n e  i f u n c t i o n  [21] 
(a) n ffi 5, m = 33 

(b) f , (x)  = y,  - (x l  + x2 e x p [ - t , x 4 ]  + xa e x p [ - t ~ x s ] )  
w h e r e  t , = l O ( i - 1 )  a n d  

t y, i y, t y, t y, 

1 0.844 10 0 784 19 0.538 28 0.431 
2 0.908 11 0.751 20 0.522 29 0.424 
3 0.932 12 0.718 21 0.506 30 0.420 
4 0.936 13 0.685 22 0.490 31 0.414 
5 0.925 14 0.658 23 0.478 32 0.411 
6 0.908 15 0.628 24 0 467 33 0.406 
7 0.881 16 0.603 25 0.457 
8 0 850 17 0.580 26 0.448 
9 0.818 18 0.558 27 0.438 
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(c) Xo = (0.5, 1.5, - 1 ,  0.01, 0.02} 
(d) f - -  5 . 4 6 4 8 9 . . .  i0  -5 

(18) Biggs EXP6 function [3] 

(a) n = 6, m >_ n variable 

(b) f , (x )  = x3 e x p [ - t , x , ]  - x4 exp[-t~x2] 
+ x6 exp[-t~x~] - y, 

whe re  t, = (0.1)i 
and  y, = e x p [ - t J  - 5 e x p [ - 1 0 t , ]  + 3 e x p [ - 4 t J  

(c) Xo-- (1, 2, 1, 1, 1, 1) 
(d) f = 5 . 6 5 5 6 5 . . .  10 -3 if m =  13 

f = 0  a t  ( 1 , 1 0 , 1 , 5 , 4 , 3 )  

(19) Osborne  2 func t ion  [21] 
(a) n = l l ,  m = 6 5  

(b) f~(x) = y, - (xl e x p [ - t ,  xs] + x2 e x p [ - ( t ,  - x9)2x6] 
+ xz e x p [ - ( t ,  - xlO)2XT] + x4 exp[ - ( t~  - Xll)2xs]) 

w h e r e  t, = (i - 1) /10 and  

i y, ~ y, ~ y, 

1 1.366 23 0.694 45 0.672 
2 1.191 24 0.644 46 0.708 
3 1.112 25 0.624 47 0.633 
4 1.013 26 0.661 48 0.668 
5 0.991 27 0.612 49 0.645 
6 0.885 28 0.558 50 0.632 
7 0.831 29 0.533 51 0.591 
8 0.847 30 0.495 52 0.559 
9 0.786 31 0 500 53 0.597 

10 0.725 32 0.423 54 0.625 
11 0.746 33 0 395 55 0.739 
12 0.679 34 0.375 56 0.710 
13 0.608 35 0.372 57 0.729 
14 0.655 36 0.391 58 0.720 
15 0.616 37 0 396 59 0.636 
16 0.606 38 0.405 60 0.581 
17 0.602 39 0 428 61 0.428 
18 0.626 40 0.429 62 0.292 
19 0.651 41 0.523 63 0.162 
20 0.724 42 0.562 64 0.098 
21 0.649 43 0.607 65 0.054 
22 0.649 44 0.653 

(20) 

(c) Xo = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5) 
(d) f =  4.01377 . . .  10 -2 

W a t s o n  f unc t i on  [17] 
(a) 2 _< n _  31, m = 31 
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(21) 

(22) 

w h e r e  t , = / / 2 9 ,  1 _ < i _ 2 9  
f M x )  = x l ,  f 3 1 ( x )  = x 2  - x 2 - 1 

(c)  xo = (0, . . . ,  O) 
f = 2.28767 . . .  10 -3 i f  n == 6 

(d) f = 1.39976 . . .  10 - s  if  n = 9 
f = 4 .72238 . . .  10 - l °  i f  n = 12 

Extended Rosenbrock function [25] 
(a) n v a r i a b l e  b u t  e v e n ,  m = n 
(b) f2 , - l (x)  = lO(x2, - x2,-1) 

f2 t (X)  ~- 1 - -  X2,-1 

(c) Xo = (~j) w h e r e  ~2j-1 = - 1 . 2 ,  ~2j = 1 

(d) f = O  a t  ( 1 , . . . , 1 )  

Extended Powell singular function [25] 
(a) n v a r i a b l e  b u t  a m u l t i p l e  of  4, 

(b) f4,-3(x) = x4,-3 + lOxat-2 
f a t - 2 ( X )  =- 51/2(X4,-1 - -  Xa,) 

] ~ , - I ( X )  = (X4,-2 - -  2X4t-1) 2 

f4~(X) ---- 1 0 1 / 2 ( X 4 , - 3  - -  X4 t )  2 

(c)  Xo = (~j )  
w h e r e  ~ 4 j - 3 = 3 ,  $ 4 i - 2 = - 1 ,  ~ 4 j _ 1 = 0 ,  

(d) f = 0 a t  t h e  o r i g i n  

(23) Penalty function I [14] 
(a) n v a r i a b l e ,  m == n + 1 
(b) f , ( x ) = a l / 2 ( x , - 1 ) ,  l _ _ i _ < n  

w h e r e  a = 10 .5 

(c) X o = ( ~ )  w h e r e  ~ j = j  
(d) f = 2.24997 . . .  10 -5 i f  

f =  7.08765 . . .  10 -5 i f  

(24) Penalty function H [14] 
(a) n v a r i a b l e ,  m = 2 n  
(b) fl(x) = x, - 0.2 

n = 4  
n - -  10 

f , ( x )  = 

f ( x )  = 

f 2n ( X )  = 

w h e r e  

ACM TransacUons on 

m -~ n 

~ = 1  
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rx,_°+,l 

a ), 

a o,O-  + e x ,  
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(c) x0 = (½ . . . . .  ½) 
(d) f =  9.37629 . . .  10 -6 i f  n = 4 

f = 2 . 9 3 6 6 0 . . .  10 -4 i f  n = 1 0  

(25) Var iab ly  d i m e n s i o n e d  func t ion  [ u n p u b l i s h e d ]  
(a) n v a r i a b l e ,  m -- n + 2 
(b) f~(x) = x , - 1 ,  i = 1 . . . . .  n 

(26) 

(27) 

n 
fn÷l (X)  = Z j ( x j  - 1) 

J~ l  

f . + ~ ( x )  = x j  - 1 ~ 

(c) xo = ((~) w h e r e  ~j = 1 - ( j / n )  
(d) f = O  at (1 . . . . .  1)  

Tr igonometr ic  [unct ion  [25] 
(a) n v a r i a b l e ,  m = n 

(b) f~(x) = n - ~ cos  xl + i(1 - cos  x , )  - s i n  x, 
j--1 

(c) Xo = (1/n,  . . . ,  1 /n)  
(d)  f -  0 

B r o w n  a lmos t - l i near  func t ion  [5] 
(a) n v a r i a b l e ,  m = n 

(b) f ,(x) = x, + ~ x j -  (n + 1), l < _ i < n  

(28) 

(29) 

(c) xo = (½ . . . . .  ½) 
(d) f - 0  a t  (a  . . . . .  a ,  a l - n )  

w h e r e  a s a t i s f i e s  n a  n - (n  + 1) a n - '  + 1 = 0; in  p a r t i c u l a r ,  ~ = 1 

f = l  a t  ( 0 , . . . , 0 ,  n + l )  

Discrete  boundary  value  func t ion  [20] 
(a)  n v a r i a b l e ,  m = n 
(b) f~(x) = 2x, - x~-i - x~+~ + h2(x, + t~ + 1)3/2 

w h e r e  h = l / ( n + l ) ,  t , - i h ,  a n d  X o = X ~ + l = O  
(c) Xo = (~j )  w h e r e  ~] = t j ( t  I - -  1) 

(d) f = 0 

Discrete  in tegra l  equa t ion  func t ion  [20] 
(a) n v a r i a b l e ,  m - n 

= x, + h i ( 1  - t~) ~ tj(x~ + tj + 1) a (b) f , (x)  
L J- - '  

n ]/ 
+ t ,  ~ ( 1 - t ~ ) ( x ~ + t ~ + l )  ~ 2 

J~z+l  

w h e r e  h - - - 1 / ( n + l ) ,  t ~ = i h ,  and x o - - - x . ÷ l = O  
ACM Transactions on Mathematmal Software, VoL 7, No. 1, March 1981 
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(30) 

(31) 

(c) xo = (~) where  ~ = t~(tj - 1) 
(d) f = 0 

B r o y d e n  t r i d i a g o n a l  f unc t ion  [7] 
(a) n variable,  m = n 
(b) f ,(x) = (3 - 2x,)x, - x,-1 - 2x,+1 + 1 

where  Xo --~" X n + l  ~- 0 

(c) xo = (--1 . . . . .  --1) 
(d) f = 0 

B r o y d e n  b a n d e d  func t ion  [8] 
(a) n var iable ,  m = n 

(b)/~(x) = x,(2 + 5x~) + 1 - Y, xj(1 + xj) 
] E  J, 

where  J ,  = ( j : j  # i, max( l ,  i - mz) - < j  -< min(n ,  i + mu)} 
and  m r - - 5 ,  m . = l  

(c) Xo = ( - 1 ,  . . . , - 1 )  
(d) f - -  0 

(32) L i n e a r  f u n c t i o n - - f u l l  r a n k  [unpub l i shed]  
(a) n variable,  m _> n 

( b ) ~ ( x ) = x ,  - x~ - 1 ,  l _ ~ i ~ n  
m j 

(33) 

(34) 

- - -  x~ - 1 ,  n < i < _ m  
m j= l  

(C) Xo=  (1 . . . .  ,1 )  
(d) f = m - n  at  ( - 1 , . . . , - 1 )  

L i n e a r  f u n c t i o n - - r a n k  1 [unpub l i shed]  
(a) n variable, m >__ n 

(b) f ,(x) --- i - 1 

(c) Xo--- (1 . . . .  , 1) 

m ( m  1) 
a t  a n y  po in t  where  ~ jx~ = 

3 
(d) f - -  2 ~  + 1) j-1 2m +--'-----i 

L i n e a r  f u n c t i o n - - r a n k  1 w i th  zero  c o l u m n s  a n d  rows  [unpub l i shed]  
(a) n var iable ,  m >_ n 
(b) f l (x )  = - 1 ,  fro(x) = - 1  

n--1 

(c) xo = (1 . . . .  , 1 )  

m 2 + 3m - 6 m-1 
(d) f = at  a ny  po in t  where  ~ j x  1 = 

2(2m - 3) j-2 
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(35) Chebyquad function [11] 
(a)  n v a r i a b l e ,  m >_ n 

(b) f,(x) =-1 
n j - i  

where 7", is 
and hence, 

f~ T,(x) dx = 0 for i odd, 

-1  
f~ T,(x) dx = (i 2 _ 1) for i even 

T,(x~) - f ~  T,(x) dx 

the ith Chebyshev polynomial shifted to the interval [0, 1] 

(c) x0 = (5) where 5 = j / ( n  + 1) 
(d) f = 0  for m = n ,  l < _ n _ 7 ,  and 

f = 3 . 5 1 6 8 7 . . .  10 -a for m = n = 8  
f = 6 . 5 0 3 9 5 . . .  10 -3 for m = n = 1 0  

n = 9  

For ease of reference, we list the functions appearing in the three test problem 
collections. Note that the number in parentheses after the name of the function 
refers to the number of the function in the main list. Also note that  some of the 
basic subroutines of Section 2 can be used to test algorithms from more than one 
problem area. For example, GRDFCN effectively defines a collection of nonlinear 
equation problems and therefore can be used to test nonlinear equation solvers, 
while SSQFCN and SSQJAC can be used together to test unconstrained mini- 
mization algorithms. 

Systems of Nonlinear Equations 
1. Rosenbrock function (1) 
2. Powell singular function (13) 
3. Powell badly scaled function (3) 
4. Wood function (14) 
5. Helical valley function (7) 
6. Watson function (20) 
7. Chebyquad function (35) 
8. Brown almost-linear function (27) 
9. Discrete boundary value function (28) 

10. Discrete integral equation function (29) 
11. Trigonometric function (26) 
12. Variably dimensioned function (25) 
13. Broyden tridiagonal function (30) 
14. Broyden banded function (31) 

Nonlinear Least  Squares 
1. Linear function--full rank (32) 
2. Linear function--rank 1 (33) 
3. Linear function--rank i with zero columns and rows (34) 
4. Rosenbrock function (1) 
5. Helical valley function (7) 
6. Powell singular function (13) 
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7. Freudenstein and Roth function (2) 
8. Bard function (8) 
9. Kowalik and Osborne function (15) 

10. Meyer function (10) 
11. Watson function (20) 
12. Box three-dimensional function (12) 
13. Jennrich and Sampson function (6) 
14. Brown and Dennis function (16) 
15. Chebyquad function (35) 
16. Brown almost-linear function (27) 
17. Osborne i function (17) 
18. Osborne 2 function (19) 

Unconstrained Minimization 
1. Helical valley function (7) 
2. Biggs EXP6 function (18) 
3. Gaussian function (9) 
4. Powell badly scaled function (3) 
5. Box three-dimensional function (12) 
6. Variably dimensioned function (25) 
7. Watson function (20) 
8. Penalty function I (23) 
9. Penalty function II (24) 

10. Brown badly scaled function (4) 
11. Brown and Dennis function (16) 
12. Gulf research and development function (11) 
13. Trigonometric function (26) 
14. Extended Rosenbrock function (21) 
15. Extended Powell singular function (22) 
16. Beale function (5) 
17. Wood function (14) 
18. Chebyquad function (35) 

4. TESTING I 

With the basic subroutines and the test functions described in Sections 2 and 3, 
we have the tools for testing unconstrained nonlinear optimization algorithms. In 
this section we mention some of the possible tests that  can be carried out. 

Suppose, for example, that we want to test a nonlinear least squares algorithm 
SOLVER on a given test function. This can be done by the following program 
outline. 

EXTERNAL FCN 
READ ( , ) NPROB, N, M, NTRIES 
FACTOR = 1.0 
DO K = 1, NTRIES 

CALL INITPT(N, X, NPROB, FACTOR) 
CALL SOLVER(FCN, M, N, X . . . .  ) 
FACTOR -- 10.0 * FACTOR 
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Table I 

• 3 1  

x. 10x, 100x~ 

Prob lem Scaling N F E V  N J E V  N F E V  N J E V  N F E V  N J E V  

1 I n m a l  12 9 34 29 FC FC 
Adapt ive  11 8 20 15 19 16 
C o n t m u o u s  12 9 14 12 176 141 

2 Initial 19 17 81 71 365 315 
Adapt ive  18 16 79 71 348 307 
Cont inuous  18 16 63 54 FC FC 

3 I n m a l  8 7 37 36 14 13 
Adap t we  8 7 37 36 14 13 
Con t inuous  8 7 FC FC FC FC 

4 Initial 268 242 423 400 FC FC 
Adapt ive  268 242 57 47 229 207 
Cont inuous  FC FC FC FC FC FC 

The choice of the integer NTRIES depends on the function defined by NPROB 
and on how stringently we want to test SOLVER. If the function contains rapidly 
growing subfunctions, such as exponentials, then NTRIES = 1 is probably all 
that should be allowed. For other functions, NTRIES = 3 may be a reasonable 
setting; this tests SOLVER with starting vectors of xs, 10xs, and 100xs, where x~ 
is the standard starting vector. The vectors x~ and 100x~ are regarded as being 
close to and far away from the solution, respectively; it is not unusual for 
algorithms to succeed with x~ but to fail with 100x~. 

In (4.1), SOLVER calls an interface subroutine FCN. The calling sequence for 
FCN should be identical to the calling sequence of the function subroutine in 
SOLVER; its main purpose is to call the testing functions with the appropriate 
value of problem number. For example, if the calling sequence of the function 
subroutine in SOLVER is 

FCN(M, N, X, FVEC, FJAC, LDFJAC, IFLAG), 

then the body of FCN could be 

COMMON/REFNUM/NPROB, NFEV, NJEV 
IF IFLAG = 1 
L CALL SSQFCN(M, N, X, FVEC, NPROB) 

NFEV = NFEV + 1 
IF IFLAG = 2 
L CALL SSQJAC(M, N, X, FJAC, LDFJAC, NPROB) 

NJEV = NJEV + 1 

Note that  the COMMON block REFNUM transmits the variable NPROB and 
provides counters for the number of function and Jacobian evaluations required 
by SOLVER. 

Nothing that has been said is intrinsic to the nonlinear least squares problem; 
the same type of driver can be used for nonlinear equations or unconstrained 
minimization. We emphasize that the test results provided by (4.1) can be quite 
revealing if NTRIES is set properly. For example, to compare the choices of 
scaling strategy, Table I was presented in [19]. In this table "FC" means failure 
to converge within 1000 function evaluations. 
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Table II. Summary of 28 Calls to NLSQI 

NPROB N ~ NFEV NJEV INFO FINAL L2 NORM 

I ~ 10 3 2 I 0.2236068D 01 
I 5 50 3 2 1 0.670820~D 01 
2 5 10 3 2 I 0.1~63850D 01 
2 ¢ 50 3 2 I 0.3482633D 01 
3 5 10 3 2 I 0.1909727D 01 
3 5 50 3 2 I 0.3691729D 01 

2 2 18 14  1 0.0 
5 3 3 12 9 I 0.9195638D-32 
6 4 ~ 68 62 1 0.9523~8D-35 
7 2 2 17 10 1 0 . 6 9 9 8 8 7 5 D  01 
8 3 15 7 6 1 0.9063596D-01 
9 q 11 23 21 1 0 . 1 7 5 3 5 8 ~ D - 0 1  

10 3 16 136 120 1 0 . 9 3 7 7 9 4 5 D  01 
11 6 31 9 8 1 0 . 4 7 8 2 9 5 9 D - 0 1  
11 9 31 9 8 1 0 . 1 1 8 3 1 1 5 D - 0 2  
11 12 31 10 9 1 0 . 2 1 7 3 1 0 ~ D - O q  
12 3 10 8 7 1 0 . 7 2 1 1 1 1 0 D - 1 6  
13 2 10 25 14 1 0 . 1 1 1 5 1 7 8 D  02 
l q  4 20 315 282 1 0 . 2 9 2 9 5 4 3 D  03 
15 1 8 1 1 1 0 . 1 8 8 6 2 3 8 D  01 
15 8 8 qq 2~ 1 0 . 5 9 3 0 3 2 4 D - 0 1  
15 9 9 11 8 1 0.330~872D-15 
15 10 10 24 lq I 0.8064710D-01 
16 10 10 17 15 1 0.8987~08D-15 
16 30 30 20 15 1 0.2170133D-lq 
16 q0 40 19 lq 1 0.1254229D-12 
17 5 33 19 16 1 0.7392~93D-02 
18 11 6S 18 lq 1 0.2003440D O0 

It is clear from this table that the adaptive scaling strategy is best in these four 
examples, and that we could not have reached this conclusion if we had only 
considered the standard starting points. 

We have shown how to use the basic subroutines to test different versions of 
the same algorithm, and in this case comparisons are straightforward. However, 
these subroutines will inevitably be used to test and compare different algorithms. 
Comparisons are then more difficult because the two algorithms will usually have 
different stopping criteria, and it may not be immediately clear how much of the 
success of the algorithm is due to its stopping criteria. However, the effect of the 
stopping criteria can be measured by running the program with different toler- 
ances or by looking at the progress of the iteration. 

To illustrate the use of the basic subroutines in the testing of algorithms, 
consider two nonlinear least squares subroutines NLSQ1 and NLSQ2. The names 
have been changed, but it should be realized that the development of each of 
these codes has received considerable attention; both of them appear in optimi- 
zation libraries. These subroutines have an output parameter that indicates the 
status of the computation, and in Tables II and III we have used the parameter 
INFO to report this information. If the subroutine claims success, then INFO is 
set to 1; otherwise it is set to 0. 
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Table III. Summary of 28 Calls to NLSQ2 

33 

NPROB N B NFEV NJEV INFO FINAL L2 NOR~ 

1 5 10 3 2 | 0 . 2 2 3 6 0 6 8 D  01 
1 5 50 3 2 1 0 . 6 7 0 8 2 0 4 D  01 
2 5 10 11 10 1 0 . 1 4 6 3 8 5 0 D  01 
2 5 50 11 10 1 0 . 3 4 8 2 6 3 0 D  01 
3 5 10 13 12 1 0 . 1 9 0 9 7 2 7 D  01 
3 5 50 13 12 1 0 . 3 6 9 1 7 2 9 D  01 
4 2 2 18 14 1 0 . 0  
5 3 3 12 9 1 0 . 3 7 3 1 6 5 1 D - 2 2  
6 4 4 23 22 1 0 . 7 2 1 2 6 3 ~ D - 1 2  
7 2 2 17 15 1 0 . 6 9 9 8 8 7 5 D  01 
8 3 15 7 6 1 0 . 9 0 6 3 5 9 6 D - 0 1  
9 4 11 18 15 1 0 . 1 7 5 3 5 8 4 D - 0 1  

10 3 16 174 133 1 0 , 9 3 7 7 9 ~ 5 D  01 
11 6 31 10 9 1 0 . 4 7 9 2 9 5 9 D - 0 1  
11 9 31 6 5 1 0 . 1 1 8 3 1 1 5 D - 0 2  
11 12 31 7 6 1 0 . 2 1 7 3 1 0 4 D - 0 4  
12 3 10 7 6 1 0 . 1 8 0 4 1 1 2 D - 1 5  
13 2 10 17 9 1 0 . 1 1 1 5 1 7 8 D  02 
14 4 20 377 325 1 0 . 2 9 2 9 5 4 3 D  03 
15 1 8 1 1 0 0 . 1 8 8 6 2 3 8 D  01 
15 8 8 31 21 1 0 . 5 9 3 0 3 2 ~ D - 0 1  
15 9 9 10 7 1 0 . 1 1 6 8 5 2 2 D - 0 7  
15 10 10 16 11 1 0 . 8 0 6 4 7 1 0 D - 0 1  
16 10 10 15 9 1 0 . 1 6 0 6 q 5 2 D - 1 2  
16 30 30 33 1~ 1 0 . 3 0 2 1 1 2 8 D - 1 0  
16 40 40 8 4 1 0 . 1 0 0 0 0 0 0 D  01 
17 5 33 167 117 1 0 . 7 3 9 2 4 9 3 D o 0 2  
18 11 65 15 13 1 0 o 2 0 0 3 4 4 0 D  00 

We first ran these algorithms with the standard starting points; the results are 
shown in Tables II and III. The following points are worthy of mention. 

Ca) There are three problems (10, 14, 17) in which NLSQ2 required more than 
100 function evaluations. On each of these problems NLSQ1 required fewer 
function evaluations. 

(b) For problem 15 with n = 1, the standard starting point is a critical point. 
NLSQ1 claimed success on this problem, while NLSQ2 classified this problem 
as a possible failure. 

(c) The results for problem 16 with n = 40 are not comparable because the 
algorithms converged to different local minima. 

(d) A look at the progress of the iteration shows that  both algorithms were 
converging at the same rate on problem 6, but differences in convergence 
criteria caused NLSQ1 to work much harder. 

(e) Problems 2 and 3 are rank-deficient linear problems, and the differences in 
performance can be traced to the fact that  NLSQ1 uses orthogonal transfor- 
mations to solve the linear least squares subproblems, while NLSQ2 uses 
Cholesky decomposition on the normal equations. 

if) On the remainder of the problems both algorithms required only a small 
number of function evaluations {fewer than 50). 
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The conclusion from Tables II and III is that, although the use of standard 
starting points reveals some differences, none of these differences are significant. 
This is not the case when NLSQ1 and NLSQ2 are run on the full set of starting 
points. These results appear in Tables IV and V, and the main differences are 
now as follows. 

(a) NLSQ1 only fails (failure is identified by the size of the final /2 norm) on 
problem 10, while NLSQ2 fails three timesmonce on problem 5 and twice on 
problem 10. Moreover, for both failures on problem 10, the INFO value of 
NLSQ2 incorrectly claims success. 

(b) Although this information does not appear in the tables, NLSQ1 does not 
generate any overflows, while NLSQ2 produces overflows on problem 16 with 
n = 10 and 30. The overflows for n = 30 are generated by the function 
subroutine and occur on the first iteration; they are due to a large initial step. 
The overflows for n = 10 are generated by NLSQ2 and occur toward the 
middle of the iteration. 

(c) On all of the problems where NTRIES was set to 3 (problems 4, 5, 6, 7, 8, 9, 
10, 11, 14, 15 with n = 1, and 16 with n = 10), the differences in performance 
between NLSQ1 and NLSQ2 are most pronounced for the farthest starting 
point, and here NLSQ1 is clearly superior to NLSQ2. For the standard 
starting point the algorithms perform very similarly, while for the interme- 
diate starting point NLSQ1 seems to perform slightly better than NLSQ2. 
These observations are also based on a detailed examination of the progress 
of the iteration. These results show that  Tables IV and V are not unduly 
influenced by the stopping criteria. The only exceptions occur when the 
problem has a continuum of solutions, and in these cases (problems 8 and 9 
where the final 12 norms are 4.174 . . .  and 0.03205 . . . ,  respectively), the 
convergence criteria of NLSQ2 are clearly inadequate. 

It should now be clear that  on the basis of the above testing, NLSQ1 is a better 
piece of software than NLSQ2. Again we point out that  the development of 
NLSQ1 and NLSQ2 received considerable attention; had this not been the case, 
then our testing would have uncovered more drastic differences. 

5. TESTING II 

The test functions defined in Section 3 represent a basic set; in order to further 
test optimization software, it is desirable to modify this basic set to yield related 
problems. For example, consider the nonlinear least squares problem defined by 
a function ~', which is related to a function F from the basic set by the change of 
scale 

F ( x )  = a F ( E x ) ,  :~o = E-lXo (5.1) 

where a is a positive scalar and E is a diagonal matrix with positive entries. 
A very desirable attribute of an optimization algorithm is scale invariance. This 

requires that  for the above problems the algorithm should generate iterates that  
satisfy 

• ~k = :X-lxk, k > O. 

ACM Transactions on Mathematmal Software, Vol. 7, No. 1, March 1981. 



Testing Unconstrained Optimization Software • 35 

N~BOB 

Table IV. Summary of 54 Calls to NLSQ1 

N ~ NfEV NJEV INFO FINAL L2 NORM 

1 5 10 3 2 1 0 . 2 2 3 6 0 6 8 D  01 
1 5 50 3 2 1 0 . 6 7 0 8 2 0 4 D  01 
2 5 10 3 2 1 0 . 1 4 6 3 8 5 0 D  01 
2 5 50 3 2 1 0.3482630D 01 
3 5 10 3 2 1 0 . 1 9 0 9 7 2 7 D  01 
3 5 50 3 2 1 0 . 3 6 9 1 7 2 9 D  01 
4 2 2 18 14 1 0 . 0  
4 2 2 8 5 1 0 . 0  
4 2 2 6 4 1 0 . 1 3 9 4 7 0 0 D - 1 5  
5 3 3 12 9 1 0 . 9 1 9 5 6 3 8 D - 3 2  
5 3 3 21 16 1 0 . 1 1 9 7 3 4 9 D - 3 4  
5 3 3 19 16 1 0 . 7 0 6 2 2 5 0 D - 2 9  
6 q q 68 62 1 0 . 9 5 2 3 4 4 8 D - 3 5  
6 4 q 62 61 1 0 . 9 5 a S 8 2 5 D - 3 3  
6 4 q 69 65 1 0 . 1 4 2 9 ~ 6 8 D - 3 2  
7 2 2 17 10 1 0 . 6 9 9 8 8 7 5 D  01 
7 2 2 22 13 1 0 . 6 9 9 8 8 7 5 D  01 
7 2 2 25 17 1 0.6998875D 01 
8 3 15 7 6 1 0.9063596D-01 
8 3 15 50 49 1 0 . 4 1 7 4 7 6 9 D  01 
8 3 15 28 27 1 0 . 4 1 7 4 7 6 9 D  01 
9 q 11 23 21 1 0 . 1 7 5 3 5 8 4 D - 0 1  
9 4 11 93 85 1 0 . 3 2 0 5 2 1 9 D - 0 1  
9 q 11 3~3 312 1 0 . 1 7 5 3 5 8 4 D - 0 1  

10 3 16 136 120 1 0 . 9 3 7 7 9 4 5 D  01 
10 3 16 800 652 0 0 . 7 1 5 6 1 5 9 D  03 
10 3 16 279 245 1 0 . 9 3 7 7 9 4 5 D  01 
11 6 31 9 8 1 0 . 4 7 8 2 9 5 9 D - 0 1  
11 6 31 15 14 1 0 . 4 7 8 2 9 5 9 D - 0 1  
11 6 31 16 15 1 0 . 4 7 8 2 9 5 9 D - 0 1  
11 9 31 9 8 1 0 . 1 1 8 3 1 1 5 D - 0 2  
11 9 31 19 15 1 0 . 1 1 8 3 1 1 5 D - 0 2  
11 9 31 18 15 1 0 . 1 1 8 3 1 ~ 5 D - 0 2  
11 12 31 10 9 1 0 . 2 1 7 3 1 0 4 D - 0 4  
11 12 31 14 12 1 0 . 2 1 7 3 1 0 4 D - 0 4  
11 12 31 34 28 1 0 . 2 1 7 3 1 0 4 D - 0 4  
12 3 10 8 7 1 0 . 7 2 1 1 1 1 0 D - 1 6  
13 2 10 25 14 1 0 . 1 1 1 5 1 7 8 D  02 
14 4 20 315 282 1 0 . 2 9 2 9 5 4 3 D  03 
14 4 20 73 61 1 0 . 2 9 2 9 5 4 3 D  03 
14 4 20 328 300 1 0 . 2 9 2 9 5 4 3 D  03 
15 1 8 1 1 1 0 . 1 8 8 6 2 3 8 D  01 
15 1 8 30 29 1 0 . 1 8 8 4 2 4 8 D  01 
15 1 e 48 47 1 0 . 1 8 8 4 2 4 8 D  01 
15 8 8 44 24 1 0 . 5 9 3 0 3 2 4 D - 0 1  
15 9 9 11 8 1 0 . 3 3 0 4 8 7 2 D - 1 5  
15 10 10 24 14 1 0 . 8 0 6 ~ 7 1 0 D - 0 1  
16 10 10 17 15 1 0 . 8 9 8 7 4 0 8 D - 1 5  
16 10 10 13 8 1 0 . 1 7 0 8 9 9 8 D - 1 4  
16 10 10 44 42 1 0 . 5 6 2 3 5 0 2 D - 1 5  
16 30 30 20 15 1 0 . 2 1 7 0 1 3 3 D - 1 4  
16 q0 40 19 14 1 0 . 1 2 5 4 2 2 9 D - 1 2  
17 5 33 19 16 1 0 . 7 3 9 2 4 9 3 D - 0 2  
18 11 65 18 14 1 0 . 2 0 0 3 4 4 0 D  G0 

If an algorithm is scale invariant, it need not perform well on a problem; however, 
its performance will not change with the scaling of the problem. On the other 
hand, the performance of a scale-dependent algorithm usually deteriorates when 
it is applied to a badly scaled function R. 
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Table V Summary of 54 Calls to NLSQ2 

NPROB N M NFEV NJEV INFO FINAL L2 NORM 

1 5 10 3 2 1 0.2236068D 01 
1 5 50 3 2 1 0.670820~D 01 
2 5 10 11 10 1 0.1463850D 01 
2 5 50 11 10 1 0.3482630D 01 
3 5 10 13 12 1 0.1909727D 01 
3 5 50 13 12 1 0.3691729D 01 
4 2 2 18 l i  1 0.0  
4 2 2 6 4 1 0.0  
q 2 2 6 4 1 0 .0  
5 3 3 12 9 1 0 .3731651D-22  
5 3 3 34 27 1 0 .2734634D-17  
5 3 3 800 685 0 0.4494176D 03 
6 4 4 23 22 1 0 .7212634D-12  
6 4 4 26 25 1 0 .1126973D-11 
6 4 4 29 28 1 0.1760897D-11 
7 2 2 17 15 I 0.6998875D 01 
7 2 2 16 14 1 0.6998875D 01 
7 2 2 28 26 I 0.6998875D 01 
8 3 15 7 6 I 0.9063596D-01 
8 3 15 148 50 1 0.4174769D 01 
8 3 15 61 6 1 0 .4174769D 01 
9 4 11 18 15 1 0 .1753584D-01 
9 4 11 122 95 1 0 .3205219D-01 
9 4 11 470 382 1 0 .175358~D-01 

10 3 16 174 133 1 0.9377945D 01 
10 3 16 43 13 1 0.3765455D 05 
10 3 16 16 2 1 0.6237599D 05 
11 6 31 10 9 1 0 .4782959D-01 
11 6 31 16 15 1 0 .4782959D-01 
11 6 31 19 18 1 0 .4782959D-01 
11 9 31 6 5 | 0 .1183115D-02  
11 9 31 13 12 1 0 .1183115D-02  
11 9 31 43 31 1 0 .1183115D-02  
11 12 31 7 6 1 0 .2173104D-04  
11 12 31 36 21 1 0 .2173104D-04  
11 12 31 47 31 1 0 .2173104D-04  
12 3 10 7 6 1 0 .1804112D-15  
13 2 10 17 9 1 0.1115178D 02 
14 4 20 377 325 1 0.29295~3D 03 
14 4 20 824 686 1 0.2929543D 03 
14 4 20 890 760 1 0.2929543D 03 
15 1 8 1 1 0 0.1886238D 01 
15 1 8 29 28 1 0.1884248D 01 
15 1 8 56 55 1 0.18842~8D 01 
15 8 8 31 21 1 0 .5930324D-01 
15 9 9 10 7 1 0 .1168522D-07  
15 10 10 16 11 1 0°8064710D-01 
16 10 10 15 9 1 0 .1606452D-12 
16 10 10 22 18 1 0 .3501853D-14  
16 10 10 637 570 1 0 .4630529D-10  
16 30 30 33 14 1 0 .3021128D-10  
16 40 40 8 4 1 0.1000000D 01 
17 5 33 167 117 1 0 .7392493D-02  
18 11 65 15 13 1 0.2003440D 00 

For unconstrained minimization, the change of scale analogous to (5.1) is 

t ( x )  = af(F~x). 

If f comes from our basic set, the minimum of t is still nonnegative, so it may 
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also be worthwhile to choose fl so that  

[(x) = ~f(Xx)  + /~  
/ 

has a negative minimum. For nonlinear egdations , it is interesting to consider the 
more general change of scale / 

$'(x) =/XlF(X2x) (5.2) 

where both ZA and X2 are diagonal matrices with positive entries. 
It is very easy to arrange the above tests by suitable modifications of the 

interface function FCN. For example, for (5.1) the body of FCN would be 

DO J -- 1,N 
Z(J) = SIGMA(J) • X(J) 

IF IFLAG -- 1 
I CALL SSQFCN(M, N, Z, FVEC, NPROB) 

DO I = 1,M 
] .. FVEC{I) = ALPHA. FVEC(I) 

IF IFLAG = : 2  
L ALL SSQJAC(M, N, Z, FJAC, LDFJAC, NPROB) 

DO J = 1,N 
L DO I = 1,M 

[__ FJAC(I, J) = ALPHA* FJAC(I, J) • SIGMA(J) 

In the above program outline, we assume that FCN has assigned storage space to 
the one-dimensional arrays Z and SIGMA. The elements of SIGMA can either be 
generated once and passed to FCN via COMMON, or they can be generated each 
time FCN is called. We have found that setting 

F5(2 j -  n -  1)] 
SIGMA(J) = 10.* L ]'n ~'1~ " (5.3) 

(if n = 1 no scaling is performed) is adequate for investigating the scaling 
properties of algorithms. 

To illustrate the type of results that can be obtained, consider two subroutines 
for the solution of systems of nonlinear equations, NEQ1 and NEQ2. As in 
Section 4, we have selected these two subroutines (with names changed) from 
optimization libraries. 

We first ran these algorithms with the standard starting points; the results are 
shown in Tables VI and VII. It is not our intention to compare these results very 
carefully, but the following points are worthy of mention. 

(a) NEQ2 fails on problem 6 with n = 9 and quits near the solution of problem 
2, while NEQ1 succeeds on both problems. 

(b) Problem 7 with n = 8 is a system of nonlinear equations with no solution, and 
thus both algorithms fail. 

(c) NEQ2 quits near the solution of problem 8 with n = 40, while NEQ1 finds a 
point that minimizes the sum of squares that is not a solution to the system 
of nonlinear equations. 

These results seem to favor NEQ1, but they are far from conclusive. 
We next ran these algorithms on the scaled problem (5.2) where ~1 is the 

identity matrix and ~2 is chosen by {5.3); the results are shown in Tables VIII 
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Table VI. Summary of 22 Calls to NEQ1 

N~ROB N NFEV INFO FINAL L2 NORM 

1 2 24 I 0 . 1 0 5 1 2 4 2 D - 1 1  
2 4 32 1 0 . 5 2 7 9 8 9 7 D - 1 0  
3 2 182 1 0 . 1 1 5 1 5 2 1 D - 0 9  
q 4 94 1 0.39935709-13 
5 3 27 I O. 2753458D-12 
6 6 95 1 O. 9830624D-10 
6 9 135 1 0. 1307264D-  10 
7 5 16 1 0 . 2 6 3 0 1 7 8 D - 1 0  
7 6 28 1 0.Iq70389D-12 
7 7 23 1 0.307~985D-10 
7 8 114 0 0.7483098D-01 
7 9 52 1 0.6368168D-11 
8 10 31 1 0 . 9 0 ~ 9 1 8 0 D - 1 4  
8 30 74 1 0.1094541D-11 
8 40 182 0 0.1000000D 01 
9 10 15 1 0.1697678D-10 

10 1 6 1 0 . 8 5 4 8 7 1 7 D - 1 3  
10 10 15 1 0 . 5 4 2 2 0 2 1 D - 1 0  
11 10 4~ 1 0 . 9 2 7 2 2 5 3 D - 1 0  
12 10 55 I 0.1722142D-11 
13 10 23 1 0.7622868D-I0 
14 10 33 I 0.8251833D-10 

TableVII. Summaryof22CallstoNEQ2 

NP~CB N NFEV INtO ~INAL 12 NORM 

I 2 24 I 0.0 
2 4 89 0 0.3879041D-09 
3 2 89 I 0.3630099D-10 
4 q 33 1 0.31~76C9D-11 
5 3 34 1 0.1z38056D-10 
6 6 ~2 I 0.1118730D-I0 
6 9 600 0 0.2094271D 00 
7 ~ 16 I 0.1981472D-12 
7 6 35 I 0.7459022D-I0 
7 7 28 I 0.2546015D-11 
7 8 139 0 0.5933~94D-01 
7 9 34 I 0.4694295D-10 
8 10 29 1 0.1763058D-I0 
8 3C 184 1 0.2126396D-12 
8 40 451 0 0.2813878D-04 
9 10 33 I 0.8672105D-10 

10 I 6 1 0.8548717D-13 
10 10 16 I 0.3420128D-11 
11 10 ~2 1 0 . 3 2 8 0 1 8 0 D - 1 0  
12 10 69 1 0 . 8 4 3 5 9 8 2 D - 1 3  
13 10 25 1 0 . 5 3 0 6 9 1 5 D - 1 1  
14 10 34 1 0 . 7 9 1 9 6 5 0 D - 1 0  
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Table  VIII. S u m m a r y  of 22 Calls to NEQ1 

N~HCB N NFEV IN~C FINAl L2 NOR~ 

I 
2 
3 
4 
5 
6 
6 
7 
7 
7 
7 
7 
8 
8 
d 
9 

10 
10 
11 
12 
13 

2 24 I 0.2779025D-14 
4 32 1 0.505045~D-10 
2 29 C 0.1014940D-93 

I~8 1 0.233351~D-10 
3 ~5 I 0.5030085D-1~ 
6 ql 1 0.7532181D-12 
9 57 I 0.86185~7D-12 
5 22 1 0.86991q9D-10 
6 29 1 0.281965~D-11 
7 30 I 0.263908~D-08 
8 55 C 0.1495160D 00 
9 43 0 0 . 1 q 1 6 5 3 3 D  O0 

10 33 0 0.9882763D O0 
30 101 1 0.83~7604D 02 
40 204 1 3 .1000000D 01 
10 15 1 0 . 3 5 3 5 2 0 ~ D - 1 0  
1 6 1 0.85~8717D-13 

IC 16 1 0.2355356D-12 
10 31 0 0.8q11753D-01 
10 31 C 0.22qO213D 07 
10 23 I O.q~65230D-08 
10 29 I O. qO91723D-06 

Table  IX. S u m m a r y  of 22 Calls to NEQ2 

NPRCB N NFEV INFO FINAL L2 NORM 

1 
2 
3 
4 
5 
6 
6 
7 
7 
7 
7 
7 
8 
8 
8 
9 

10 
10 
11 
12 
13 
l q  

2 39 0 0.1977266D 01 
a 55 0 0.884852~D 01 
2 37 0 0.9997400D O0 
q 56 0 0 .61909q3D O~ 
3 12 0 0 . 4 9 7 5 1 0 8 D  01 
6 11~ 0 0 .6368151D  01 
9 107 0 0 . 2 2 6 1 7 0 2 D  02 
5 5~ 0 0.2015743D O0 
6 61 0 0.1675853D 00 
7 71 0 0.2078739D O0 
8 72 0 0.1595835D O0 
9 77 0 0.1~93q51D 00 

10 80 0 0.1142024D 01 
30 180 0 0. I094029D 01 
40 274 0 0.11180~7D 01 
10 66 0 0.3517726D-01 

1 6 1 0 . 8 5 4 8 7 1 7 D - 1 3  
10 66 0 0.2~95601D O0 
10 86 0 0.6825777D-01 
10 53 0 0.3289782D 01 
10 129 0 0.3500787D 01 
10 89 O 0.1675228D 02 
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and IX. It is now clear that NEQ1 is much less susceptible to changes in scale 
than NEQ2 and is thus the superior routine. We might add that the tests on the 
full set of starting points do not change this conclusion. 

To close this section w~ note that the routines NLSQ1 and NLSQ2 compared 
in Section 4 are both invariant with respect to scale changes, and thus the tests 
of this section would not affect their relative performance. 
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