Check for
Updates

A Comparison of Combination Generation
Methods

SELIM G. AKL
Queen’s University, Canada

It 1s empirically shown that the algorithm of Mifsud 1s the fastest existing combination generator
Thas contradicts recent efficiency claims concerning other algonthms.

Key Words and Phrases algorithm, combinations
CR Categories' 530

INTRODUCTION

In his pioneering 1960 paper, Lehmer [6] discussed computer solutions to various
combinatorial problems such as set inclusion, the evaluation of a function of
several variables, and the generation of combinatorial objects. In particular, he
presented an algorithm for generating all combinations of n objects taken % at a
time (see also [7]). To our knowledge, at least seven other algorithms have since
been described that perform the same basic task [1-5], [8-10].

Recently, Payne and Ives [11] provided a new implementation of the algorithm
of Liu and Tang [8] and compared it with a few other combination generators.
The main conclusion of their work is that the new implementation is “a most
attractive combination generator because it possesses so many advantageous
attributes.” One very important “attribute” with which the authors of {11] claim
their new implementation has endowed the algorithm of [8] is speed (of program
execution). Although this is an undeniable fact, we believe that it does not in any
way justify their conclusion. Indeed, as our experiments described in the next
section show, several other combination generation algorithms are faster than
the new method.

The algorithm of Mifsud [9], which we found to be the best in terms of speed
(for all values of n and k tried), is very briefly referred to in [11]. Ironically,
“speed” is not even mentioned by Payne and Ives among the attributes of
Mifsud’s algorithm, and the “operation-count” comparative analysis they report
ignores the algorithm altogether. (Also omitted from the comparison are the

Permission to copy without fee all or part of this material 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying 1s by permission of the Association
for Computing Machinery To copy otherwise, or to republish, requires a fee and/or specific
permission.

This work was supported by the National Sciences and Engineering Research Council of Canada
under Grant NSERC-A3336

Author’s address. Department of Computing and Information Science, Queen’s Unmiversity, Kingston,
Ont., Canada K7L 3N6.

© 1981 ACM 0098-3500/81/0300-0042 $00.75

ACM Transactions on Mathematical Software, Vol 7, No. 1, March 1981, Pages 42-45

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355934.355937&domain=pdf&date_stamp=1981-03-01

A Comparison of Combination Generation Methods . 43

Table 1. Running Times of the Various Algorithms on the Burroughs B6700/2 Computer

Execution time® when n, & =

Algorithm 10, 2 20, 6 20, 10 25, 8 25,12

Bitner et al. [1] 0:0:0:0 0:0:6:15 0:0 24-28 0:2-38°6 0:12:57:34
Chase [2] 000:0 0 0:7-57 0-0-31:29 0:3:34:12 0:14:9:16
Ehrlich {4] 0:0:0°0 0:0:5:35 0:0:27.18 0 2:21:0 0:11:9:44
Kurtzberg [5] 0:0.0.0 00 4:27 0:0:27:14 0:2:8:33 0.10:34:58
Lehmer [6] 00.0'0 0.0:2:45 0:0:28:27 0:1.24.20 0:13:3:13
Liu and Tang [8] 0.0:0:0 0:0:8:23 0:0:42.15 0°4.28:0 0-17-18:24
Mifsud [9] 0:0:0:0 0-0 2 22 0 0:18:12 0:1:8:26 0:7:46:7

Nijenhuis and 0:0:0:0 0:0:6:31 0:0:33:5 0:2-57:2 0:14:38:40

Wilf [10]
Payne and Ives [11] 0 0.0 O 0:0:7.15 0:0:28:22 0-3:3:7 0:14-31 26

* Given 1n hours : minutes : seconds - ticks.

Table II. Running Times of the Various Algorithms on the IBM 370/138 Computer

Execution time® when n, &k =

Algorithm 10, 2 20, 6 20, 10 25,8 25, 12

Bitner et al {1] 0.0.0:0 0:0:7.18 0:0.43.2 0:2:15:2 0:18:24:52
Chase [2] 0:0:0:0 0:0:8.19 0.0:48.40 0.3:2:5 0:18:22:30
Ehrlich [4] 0:0:0 0 0:0:6:28 0:0:44:49 0:2:16-38 0:14:29:58
Kurtzberg [5] 0:0:0:0 0:0:6:13 0:0:45:20 0:2:10:48 0:15:4:32
Lehmer [6] 0:0:0:0 0:0:4:4 0:0:45:26 0:1:48:49 0:18:25:12
Lm and Tang [8] 0:0:0:0 0:0:9:6 0:0:50:21 0:5:14:3 0:20:13:9
Mifsud {9] 0:0:0:0 0:0:3:50 0:0:37:59 0:1:20:9 0:8:3:18

Nijenhuis and 0:0:0:0 0:0:7:25 0:0.49.15 0:2:32:36 0:20:13:9

Wilf [10]
Payne and Ives [11] 0:0-0-0 0:0-8:20 0:0:45:6 0:2-56-3 0.18:45:56

® Given in hours : minutes seconds. ticks.

algorithms of Kurtzberg [5], Lehmer [6], and Nijenhuis and Wilf [10]). It is the
sole purpose of the present paper to rehabilitate this very efficient but almost
forgotten combination generation method.

EMPIRICAL ANALYSIS

The nine algorithms appearing in 1, p. 520; 2; 4, p. 691; 5; 6, pp. 184-185; 8; 9; 10,
pp. 30-31; and 11, p. 169] were all coded in FORTRAN and run on three different
computers:

(1) the Burroughs B6700/2 (using the MCP release 3.0 FORTRAN IV com-
piler);

(2) the IBM 370/138 (using the OS/VS1 release 21.8-level FORTRAN G
compiler);

(3) the DEC PDP 11/03 (using the FORTRAN IV compiler).

Tables I, II, and III contain the execution times of the programs running on
the different machines for various values of n and k. Each table entry is in the
form hours : minutes : seconds : ticks. The superiority of Mifsud’s algorithm in
terms of speed is obvious.

ACM Transactions on Mathematical Software, Vol 7, No. 1, March 1981.

44 . S. G. Akl

Table III. Running Times of the Various Algorithms on the PDP 11/03 Computer

Execution time® when n, & =

Algorithm 10, 2 20, 6 20, 10 25, 8 25, 12

Bitner et al. [1] 0:0:0:4 0:0 53:21 0:4:8:41 0:24:45:7 1.48:7-30
Chase [2] 0:0:0:5 0:1.1:2 0:4:30:10 0:28-8:11 1:57:56-40
Ehrlich [4] 0:0:0:4 0-0:53:50 0:4:28:43 0:23:45:15 1-52-35:47
Kurtzberg [5] 0-0:0-2 0:0:28:23 0:2:50:8 0:13-30:11 1:30:27-40
Lehmer [6] 0:0:0:1 0.0-18-48 0:3.58:48 0:9:33:53 1:58:59 16
Liu and Tang [8] 0:0-0:8 0:1:43 9 0:8:6.19 0.34-17:19 3:6:22:31
Mifsud [9] 0:0:0 1 0:0:16:51 0:2:6 41 0:8:13:52 0-52:57:58
Nijenhuis and 0:0:0:4 0:1.0:50 0-5:42:58 0 28 53:12 2:56:39-23

Wilf [10])
Payne and Ives [11] 0:0 0:4 0:1:3:20 0 5:10:14 0:28:58:7 2:5:6:24

* Given in hours : minutes : seconds : ticks.

Table IV. Average Number of Operations Required by Each Algorithm to Generate One

Combination
Algorithm n\k 1 2 3 4 5 6 7 8
Bitner et al. [1] 16 121.7 1205 116.8 122.7 120.8 126 0 124.9 129.5
32 201.8 200.3 196.3 203.3
Chase [2] 16 70.0 53.4 45.7 41.7 39.1 37.5 36.6 36.1
32 102.0 75.2 63.0 55.9
Ehrlich [4] 16 35.9 31.3 30.8 31.1 314 31.8 32.2 32.7
32 34.9 30.6 30.3 30.4
Kurtzberg [5] 16 16.7 18.3 19.3 204 21.6 23.0 24.7 26.8
32 16.9 177 18.0 18.5
Lehmer [6] 16 5.6 71 8.6 103 12.6 15.8 20.6 28.5
32 5.3 6.0 6.6 73
Liu and Tang [8] 16 771 56.2 45.6 42.2 38.0 379 36.1 37.3
32 1328 92.3 720 62.3
Mifsud [9] 16 4.6 6.7 8.4 10.2 12.3 14.8 17.6 21.1
32 4.3 5.3 6.0 6.8
Nijenhuis and Wilf 16 16.9 179 19.3 21.3 21.9 24.7 252 28.7
[10] 32 17.0 165 18.0 18.1
Payne and Ives[11] 16 13.6 16.2 17.0 18.0 18.9 20.2 21.6 234
32 13.3 15.6 159 16.3

This finding was confirmed by a second experiment where an operation counter
was inserted in each program and all operations (e.g., comparison, assignment,
branching, arithmetic, logical) were equally weighed. The results are given in
Table IV, which shows the average number of operations per combination for the
same values of n and £ used in [11]. The average was obtained by dividing the
total number of operations required to generate the (§) combinations by (%) .

CONCLUSION

Our results indicate that Mifsud’s algorithm is the fastest available combination
generator. This fact is confirmed by the consistent behavior of the program

ACM Transactions on Mathematical Software, Vol 7, No 1, March 1981.

A Comparison of Combination Generation Methods . 45

running on computers with different architectures. The use of this algorithm is
therefore recommended for applications in which speed is an important factor.
Interested readers are referred to [12] for a theoretical analysis of the algorithm.

REFERENCES

1.

2.

3.

10.

11.

12.

BITNER, J.R., EHRLICH, G, AND REINGOLD, EM. Efficient generation of the binary reflected
Gray code and its applications. Commun. ACM 19, 9 (Sept. 1976), 517-521

CHASE, P.J. Algonthm 382. Combinations of M out of N objects. Commun. ACM 13, 6 (June
1970), 368.

EnrLicH, G. Loopless algorithms for generating permutations, combinations, and other combi-
natorial configurations. J ACM 20, 3 (July 1973), 500-513.

. EnrLICcH, G. Algorithm 466. Four combinatorial algorithms. Commun. ACM 16, 11 (Nov. 1973),

690-691.

. KURTZBERG, J. Algorithm 94. Combination. Commun ACM 5, 6 (June 1962), 344.
. LEHMER, D.H Teaching combinatorial tricks to a computer. Proc. Symp. Applied Mathematics

X, R. Bellman and M. Hal, Jr (Eds), Amer. Math. Soc., Providence, R.I., 1960, pp. 179-193.
LeuMER, D.H. The machine tools of combinatoncs. In Applied Combinatorial Mathematics, E.
F Beckenbach (Ed.), Wiley, New York, 1964, pp 5-31.

. Liu, C.N,, AND TaNg, D.T. Algorithm 452, Enumerating combinations of m out of n objects.

Commun. ACM 16, 8 (Aug. 1973), 485.

Mirsup, C.J. Algorithm 154. Combination n lexicographical order. Commun. ACM 6, 3 (Mar.
1963), 103

N1SENHUIS, A., AND WILF, H.S. Combinatorial Algorithms. Academic Press, New York, 1975,
pp. 21-34.

PaynNE, W.H,, anD Ives, FM. Combination generators. ACM Trans Math. Softw. 5, 2 (June
1979), 163-172.

REiNcoLD, EM.,, NIEVERGELT, J., AND Dro, N. Combinatorial Algorithms. Prentice-Hall,
Englewood Chffs, N.J., 1977, pp. 179-181.

Received July 1979, revised July 1980; accepted August 1980.

ACM Transactions on Mathematical Software, Vol. 7, No. 1, March 1981

