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1. INTRODUCTION 

A l t h o u g h  t h e  n u m e r i c a l  e v a l u a t i o n  of  m u l t i p l e  i n t e g r a l s  h a s  r e c e i v e d  c o n s i d e r a b l e  
a t t e n t i o n ,  i t  r e m a i n s  a d i f f icu l t  p r o b l e m .  M o s t  g e n e r a l - p u r p o s e  t e c h n i q u e s  t o d a y  
a p p l y  to  i n t e g r a n d s  t h a t  a r e  r e l a t i v e l y  "we l l  b e h a v e d "  in  t h a t  t h e  i n t e g r a n d  can  
be  r e a s o n a b l y  wel l  a p p r o x i m a t e d  b y  a l o w - o r d e r  p o l y n o m i a l  w i t h i n  t h e  r eg ion  of  
i n t e g r a t i o n .  One  t e c h n i q u e  for  t r y i n g  to  d e a l  w i t h  i n t e g r a n d s  t h a t  a r e  n o t  so wel l  
b e h a v e d  is to  p a r t i t i o n  t h e  r eg ion  o f  i n t e g r a t i o n  " a d a p t i v e l y "  in to  subreg ions ,  
c h o s e n  so t h a t  t h e  i n t e g r a n d  is we l l  b e h a v e d  w i t h i n  e a c h  s u b r e g i o n  [6, 11, 12, 14, 
15, 17]. S t a n d a r d  t e c h n i q u e s  can  t h e n  be  a p p l i e d  to  e v a l u a t e  t h e  i n t e g r a l  in  e a c h  
sub reg ion ,  a n d  t h e  i n t e g r a l  ove r  t h e  e n t i r e  r e g i o n  is t a k e n  as  t h e  s u m  of  t h e  
i n t e g r a l s  o v e r  t h e  subreg ions .  

T h i s  p a p e r  p r e s e n t s  a n  a d a p t i v e  p a r t i t i o n i n g  a l g o r i t h m  for  m u l t i d i m e n s i o n a l  
q u a d r a t u r e  in w h i c h  t h e  s u b d i v i s i o n  s t r a t e g y  is b a s e d  on  t h e  use  o f  n u m e r i c a l  
o p t i m i z a t i o n .  A l t h o u g h  t h e  f u n c t i o n  e v a l u a t i o n s  r e q u i r e d  to  d e v e l o p  t h e  p a r t i t i o n  
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are not retained for the final integration, this approach appears to be competitive 
with existing methods on high-dimensional problems. This is because the initial 
investment in function values for the optimization and subdivision is repaid by 
the efficiencies resulting from a well-constructed partition. 

Several automatic partitioning strategies based on estimated properties of the 
integrand have been proposed. Some of these strategies rely on factored approx- 
imations [14, 15, 17], while the others are general multidimensional adaptive 
procedures [6, 11, 12]. All of these adaptive techniques (as well as the one 
presented here) are iterative and are based on top-down successive refinement. 
At each iteration a particular region is considered; initially this region is the 
entire integration region. A sampling of the integrand within the region is used to 
estimate various properties of the integrand, which then guide a strategy for 
division into several subregions. This process continues until the partitioning has 
achieved some specified reduction in the estimated error of the approximate 
integral. 

The effectiveness of a partitioning strategy depends, in large part, on the degree 
to which the properties of the integrand, deduced during the sampling, accurately 
reflect the characteristics of the function. If the function is badly behaved, its 
predicted and actual behavior may not even resemble one another; this may lead 
to ineffective or counterproductive partitions. This possibility is especially likely 
in high dimensions where even samplings of large cardinality are very sparse; for 
example, in ten dimensions a sampling of 60,000 points is equivalent to about 3 
points per coordinate. On the other hand, a complex partitioning strategy that 
requires a very large number of integrand evaluations may be inefficient because 
the additional evaluations might be better expended simply to increase the 
number of points used to compute the final integral estimate. Thus a good 
partitioning strategy must be based on a computationally feasible way of assessing 
the integrand's behavior. 

The main distinctions of the new partitioning strategy from previously proposed 
methods are 

(1) the behavior of the integrand within a region is estimated by means of 
multiparameter optimization rather than by sampling; 

(2) all subregions are defined by simple bounds on the coordinates. 

2. OVERVIEW OF THE ADAPTIVE REFINEMENT PROCEDURE 

Consider a hyperrectangular region R, defined by simple bounds on each coor- 
dinate: 

R = {xlxL<--x,<--xU,}, (1) 

where x is the vector (xl, x2, . . . ,  Xn) T. The essence of an adaptive strategy for 
partitioning R can be specified by three attributes: 

(1) a measure s(R} that indicates the "badness" of the integrand's behavior 
within R; 

(2) a method for subdividing the region after s(R) has been determined; 
(3) a procedure for processing the new subregions and for terminating the 

partitioning (a global stopping criterion). 
ACM Transactions on Mathematical  Software, Vol. 7, No. 1, March 1981, 
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The quantity used in the new algorithm to characterize the integrand is the 
difference of extreme values within R, weighted by the volume of R. Let 

v(R)  = m a x  f (x)  - m i n  f(x) ,  (2 )  
x ~ R  x ~ R  

where f(x) is a scalar-valued function (presently, the integrand function). The 
spread s(R) is then defined by 

s(R) ffi v(R).vol(R). (3) 

The spread measure s(R) bounds the uncertainty of a quadrature or Monte Carlo 
estimate of the integral over R and is taken to indicate the contribution of R to 
the uncertainty of a global estimate of the integral. 

The choice of the measure (3) depends in two crucial ways on the simply 
bounded form (1) of R. First, the volume of such a region is easy to compute: 

vol(R) ffi I] ( x Y -  XL). 
tml 

This would not be true if more complicated regions were allowed. The other term 
(2) may seem at first glance to be computationally intractable since two optimi- 
zation problems must be solved to calculate it. However, methods for optimization 
with simple bounds on the variables are well developed, and thus the subproblems 
associated with (2) can be solved quite efficiently if f is a reasonable function. 
Section 3 gives some details of the optimization procedure. 

Given that (3) is the spread measure, the second element of the partitioning 
algorithm involves dividing the single region (1) into disjoint simply bounded 
subregions. The strategy for subdivision is based on the assumption that the same 
quadrature rule will be applied in each subregion at the conclusion of the 
partitioning so that the aimed-for final result is a list of regions with "similar" 
spread measures. The method by which a given region is refined to achieve this 
goal is described in Section 4. 

Finally, after R has been partitioned, the daughter subregions are merged into 
the list of all regions. If the global stopping criteria are satisfied, the partitioning 
terminates; otherwise the list of regions is scanned for the one with the largest 
spread measure, which is then considered for refinement at the next iteration. 
Details of this aspect of the algorithm are given in Section 4. 

Figure 1 illustrates the partitioning achieved by applying this recursive parti- 
tioning procedure to the function 

f(x~, x2) = exp{-15[x~ + (x~ - 0.5)2]) 

+ exp{-15[(xl + 0.433) ~ + (x2 + 0.25)2]) 

+ exp{-15[(xl - 0.433) ~ + (x2 + 0.25)2]) 

with - 1  _< x~ _ 1 and - 1  _< x2 -< 1. Figure la  shows an isometric representation 
of the surface defined by y = f(xi, x2), Figure lb displays some isopleths of the 
function on the plane, and Figure lc shows the partitioning of the plane achieved 
by applying the above procedure recursively, in this case creating eleven subre- 
gions. The numbers indicate the order in which the corresponding cuts were 
made. 
ACM Transact ions  on Mathematwa l  Software, Vol 7, No 1, March  1981. 
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3. OPTIMIZATION WITH SIMPLY BOUNDED VARIABLES 

To compute the spread measure (3) at each step of the partitioning procedure, it 
is necessary to solve two bounds-constrained optimization problems of the form 

MI: min f(x) 
subject to x L ___ x __ x U 

M2: max f(x) 
subject to x L _< x _< x U, 

where the scalar-valued function f drives the partitioning; and the vectors x L and 
x U contain, respectively, the lower and upper bounds that define the desired 
region. 

The problem M2 can be treated as a minimization problem involving (-f(x)); 
therefore all subsequent discussion will concern minimization only. 

In a typical quadrature problem, f ( x )  wi l l  be twice continuously differentiable, 
or at least nonsmooth only at isolated points. The algorithm selected to solve 
problem M1 should consequently be able to perform well on a smooth function. 
However, in most instances the derivatives of f will not be available so that  the 
method of choice should require function values only. On the basis of these 
considerations, the optimization method used in the partitioning algorithm is a 
bounds-constrained quasi-Newton method with finite-difference approximations 
to first derivatives. 

Quasi-Newton methods for unconstrained optimization have a remarkable 
history, beginning with Davidon [2] and Fletcher and Powell [4]; a recent 
summary of their motivation and properties is given by Dennis and Mor~ [3]. 
Quasi-Newton methods have been extremely successful on a wide variety of 
problems; if properly implemented, they are quite robust and usually display 
superlinear convergence. The idea of a quasi-Newton method is to build up 
second-order information about the function to be minimized by incorporating 
the observed changes in the gradient into a matrix that  approximates the 
underlying matrix of second partial derivatives (Hessian matrix), so that  the 
method should eventually behave like Newton's method. 

A typical iteration of an unconstrained quasi-Newton method begins with the 
current iterate, x; the gradient vector off, g; and an approximation to the Hessian, 
the matrix B. 

(i) If the norm of the gradient is sufficiently small, the procedure terminates. Otherwise 
proceed to step (ii). 

(ii) Solve the linear system 

B p  = - g  

for the search direction p. In practice, numerical stability is ensured by using a 
Cholesky factorization of the matrix B, so that p is always a direction of descent for 
f. This essential feature is due to Gill and Murray [7]. 

(iii) Find a step length a > 0 that yields a sufficient decrease in f, so that 

f ( x  + ap) < f(x) .  

The step-length algorithm used in the current procedure is the safeguarded quadratic 
interpolation procedure implemented by Gill and Murray [8]. 

(iv) Evaluate the gradient at x + ap, and produce an updated Hessian approximation by 
ACM Transactions on Matheraatlcal  Software, Vo|. 7, No 1, March 1981 
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modifying the Cholesky factorization of B with the BFGS quasi-Ne~vton update (see 
[9]). Return to step (i) with x + a p  as the next iterate. 

In the present algorithm, it is asumed that the analytic gradient of f is not 
available, so that the calculation of the vector g is carried out using finite 
differences. 

When the variables are constrained to be between simple bounds, the above 
algorithm can be modified in a straightforward manner. At each iteration, it is 
determined whether a given variable is "free" to vary or is to be held "fixed" at 
one of its bounds. After this decision, the unconstrained algorithm is applied with 
the following changes: 

(1) The gradmnt, direction of search, and approximate Hessian represent the free variables 
only. 

(2) The step length in step (iii) may need to be restricted to prevent a free variable from 
violating a bound during an iteration. In this case the variable subsequently becomes 
fLxed on that bound. 

(3) The updates to B involve only the free variables. 
(4) The test for convergence in step (i) is based on the norm of the gradient with respect 

to the free variables. When this quantity is sufficiently small, it is necessary to check 
whether freeing any variable currently held fixed on its bound will lead to a reduction 
in f. This determination is made by checking the sign of the gradient with respect to 
all fixed variables; for example, if the ith variable is fLxed on a lower bound and the ith 
component of the gradient is negative, the ith variable can be released from its bound. 

The many additional details of the algorithm are given in full in the software 
documentation [5], including user-controlled tolerances that  define, for example, 
"sufficiently small" in step (i). 

Before beginning to solve problems M1 and M2, the function f i s  evaluated at 
a random sample of points in R, and the point with the smallest (largest) function 
value is used as the initial point for the minimization (maximization). (The size 
of this sample is user controllable; values of 50 to 100 seem to be adequate, 
depending on the problem.) Although for some regions the extrema computed at 
previous states could be used as part of the initial sample, this information is not 
retained in order to improve robustness. Especially in high dimensions, conver- 
gence to a spurious saddle point might preclude any further search for the true 
extremum since the convergence criteria would be satisfied at the initial point. 

An additional feature of the algorithm that is designed to improve robustness 
is a "local search," to be used if the gradient is small at the initial point. The idea 
is again to avoid a spurious indication of convergence at a saddle point. "[he 
details of the local search are rather complicated, and only the general idea is 
sketched here. First, a point perturbed from the initial point is generated by 
moving a small, feasible amount along each coordinate until the function value 
changes sufficiently. Next, a feasible descent direction is constructed at whichever 
point is lower and an exact line search is carried out along that  direction. T~en, 
a second feasible descent direction, orthogonal to the first, is generated at the 
lowest point found, and a second exact line search is performed. If this traasfer 
fails to yield a "sufficiently lower" function value, the initial point is accepted; 
otherwise the quasi-Newton procedure begins at the new point. 

This local search cannot be guaranteed to move away from a saddle poit~ since 
the function is evaluated only at a finite number of points along two directions. 
In practice, the local search has been quite successful on all the examplestested. 

ACM Transactions on Mathernatlcal Software, Vol 7, No. 1, I~arch 1981. 
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4. REFINEMENT INTO SUBREGIONS 

Given that the spread measure (3) has been computed by the solution of two 
optimization problems, we next consider the numerical procedure by which the 
region is subdivided. In this section we are concerned with a particular region R 
defined by (1). Let x m~x and x m" denote the points in R where f achieves its 
maximum and minimum, respectively, with fmax and from the corresponding 
function values. For simplicity, we assume that there are no other local extrema 
in R; the implemented procedure contains provisions to handle situations where 
this assumption is not satisfied. 

A partitioning strategy that allowed completely general regions might divide R 
into two disjoint parts with equal spread measures, as follows. Suppose that 
for a given value f, from -- f _ fm,x, one could determine an isoplethic surface 
{ x l f ( x )  --- f} that separates R into two parts, R max (which contains x max) and 
R ~m (which contains xmm). Under the uniqueness assumption, the differences of 
extreme function values within R max and R ram, respectively, would be (fm~ _ f)  
and ( t  - f~m). The desired choice for f would make the spread measures 
associated with R m~x and R mm equal; that is, 

(fm~x -- f)vol(Rm~X) __ ( ~ _  f,,m)vol(R~m). (4) 

The strategy just described is, of course, impractical because the determination 
of the isopleths would, in general, be an extremely complex numerical procedure. 
Since the resulting subregions R m~x and R mm would no longer be defined in 
general by simple bounds, the next optimization problem would also be much 
more complicated to solve. Furthermore, it would be much more difficult to 
compute the volume of such a general region. 

The strategy adopted in the present algorithm divides the region R into a 
collection of simply bounded subregions by constructing an axis-oriented hyper- 
rectangular approximation to either R m"x or R ram. Either f~" or from is selected as 
the "major" extremum (fM), that is, that  for which the corresponding function 
value is farthest from the mean function value 7 in R ( 7 is the average of function 
values at the initial random sample of points). 

If ( fmax +fm, . ) /  2 >__ f, then fM ffi fmax, fm ffi from; otherwise fM ffi from, fm ffi f~ax 
(with the corresponding choices for x M, xm). 

We then seek to define a region R M containing x M by two sets of "cuts" (8 +, 
8-) along the positive and negative coordinate directions from xM: 

RM = {x l  xM -- ~" <-- X, <-- xM -1- 8+ }, 8/', 8+ :> 0, i f f i l  . . . .  , n  

with 8 ÷, 8- chosen such that 

f ( xM + 8+~e') •ffi f (5) 

f ( x  M - 8?e~) = ~ i ffi l . . . . .  n 

whele e, is the ith column of the identity matrix. 
The equation to be satisfied by f i s  a rearrangement of (4), 

~ , f ~  + (1 - T)fm = ~ (6) 

where y -- v o l ( R M ) / v o l ( R ) .  
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Because R u is defined by simple bounds, 

vol(R M) = fi  (8 + + 8~-). 

Thus, the vectors 8 +, 8- are the solution of the 2n nonlinear equations: 

+e I]~n=l (8+ + 8~ -) f M + [  1 1Fin-1 (8 + + 37),]f,~, 
f ( x  M + 8, J - vol(R) vol(R) (7) 

f ( x M - - 8 " d e ' ) - - [ I n ' I ( 8 + ~ + 8 ? ) f M + [  i vol(R) I1'%1 (&+ + 87)] fro' vol(R) 

i =  l , . . . , n .  

Several considerations affect the choice of solution method for the nonlinear 
system (7). It is undesirable to expend too much effort in solving (7) since the 
solution need not be computed with very high accuracy. This means that a 
Newton-type method (for solving nonlinear equations) based on standard finite 
differences is unacceptable because of the 2n function evaluations required at 
every iteration to compute the Jacobian. A reasonable alternative is to use a 
secant-type method, where the elements of the Jacobian are approximated by 
differencing the function values from the previous iteration. The switch to a 
secant method is worthwhile because such methods display local superlinear 
convergence and are typically as effective as a Newton-type method in moving 
from a poor initial estimate of the solution to a reasonably good one (which is all 
that  is required in this case) [16]. 

Even a secant method for solving (7) could be considered objectionable because 
it requires the solution of a 2n × 2n linear system at each iteration. However, the 
special form of (7) allows it to be transformed to an equivalent, but simpler, 
nonlinear system. 

The right-hand side of (7) is a vector with equal components, and hence the 
vectors 8 +, 8- also satisfy the 2n nonlinear equations 

+ 
f ( x  M + 8 ~ e l )  - f ( x  M + 82 e2) - 0 

f ( x  M + 5+, - l e , -1 )  - f ( x  M + 5+~en) = 0 

f ( x  M + 8+ne,) - f ( x  M - 8"[el)  ~- 0 

[ ( x  M - K i e l )  - f ( x  M - 82e2) ---- 0 

(8) 

f ( x  M - 8 ; - 1 )  - f ( x  u - 8 ~ e n )  ffi 0 

f ( x  M + 8~{el) - [ ffi O. 

The attractive feature of the system (8) is that since each equation (except for 
the last) involves only two adjacent unknowns, the Jacobian displays the following 
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special structure: 

x x 0 . . . .  0 
0 x x 0 0 
0 0 x x 0 0 

(9) 

0 0 0 0 x x 
X X X X X 

If  no interchanges are necessary, the matr ix  (9) will be reduced tb upper  
tr iangular form very easily, by simply subtract ing multiples of each successive 
row from the last. This  means  tha t  solving the l inear system at  each i terat ion is 
ext remely  fast. 

Each  i terat ion of the secant me thod  for solving the nonlinear system (8) 
requires 2n function evaluations for the latest  values of (8, +, 8;-}. Typically,  three 
or four i terat ions are required in order  for (8) to be satisfied with reasonable 
accuracy. 

Numerous  safeguards are included in the secant p rocedure - - in  particular,  each 
variable &+, 87 is constrained to remain within the range where the solution must  
lie, and the norm of the vector  tha t  is the left-hand side of  (8) is required to 
decrease at  every  iteration. 

For  simplicity of exposition, certain complications were not  included in the 
preceding discussion of  the part i t ioning s t ra tegy- - in  particular, the fact tha t  not  
all possible directions are considered as candidates for cuts. Since the bookkeeping 
overhead for any cut  is the same, it is p rudent  to disregard cuts tha t  appear  to be 
ineffective. Certain directions are el iminated for two reasons. First, x M may  be 
very  close to an upper  or lower bound, so tha t  the cut  would be insignificant. 
Therefore ,  no cut  is made along the i th  positive direction if 

x ~  - x ,  ~ _</~(xY - x ~ ) ,  

nor  along the i th  negative direction if 

x ~  - x~ _</~(xY - x~),  

where 0 < fl < 1 (currently, fl = 0.05). 
Fur thermore ,  the solution values for 83 are constrained to satisfy 

0 < 8, + ~ a ( x ~  - x ~ ) ,  

0 < 8-[ < o~(x M - xL) ,  (10) 

where 0 < a < 1 (currently, a = ½). Before beginning the i terat ion procedure  to 
solve for the cuts, f is evaluated at the points where 8 +-,, i = 1, . . . ,  n, are a t  the 
upper  bounds given by (10); the values of y and )~from (6) are then  computed  at 
this initial configuration. Assume tha t  fM =. fmax (a similar analysis holds when 
fM ~_ /rain), and consider a possible positive cut  along the i th  coordinate.  By  
assumption, f is monotonic  along the i th  coordinate (moving away from the 
ex t remum) so that  the value of  f corresponding to the maximum 8, + will be 
smaller than f at  any o ther  8~ + in the acceptable range. In addition, the initial 
will be the maximum possible value. Thus,  if f at  the initial 8~ + exceeds /~ there  
ACM Transact ions  on Mathemat ica l  Software, Vol 7, No. 1, March  198L 
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can be no solution to (7) in the desired range, and so no attempt will be made to 
find 8~+ (the ith upper bound remains unaltered). 

The above procedure is carried out for all possible directions. It should be 
noted that if any direction is eliminated, the values of y and Iv in (6) must be 
recomputed. 

The inner region R M is hyperrectangular and can be inserted directly into the 
global list of current regions. The outer part is hyperrectangular only if a single 
solution for a 8~ exists (which is quite often the case). If solutions for several 8~ 
exist, then the outer region must be decomposed into hyperrectangnlar regions 
by using the values of the tl~ for successive nested bisections [11]. These regions 
are then inserted into the global list. This procedure can divide the original 
hyperrectangle into as many as 2n + 1 subregions (if x M is not located on a 
boundary). However, the restrictions imposed by (10) usually greatly reduce the 
number of subregions, which can be (and quite often are) as small as two. 

5. MULTIPLE INTEGRATION 

The result of applying the nested refinement procedure described in the previous 
three sections is a set of hyperrectangular subregions of the domain of integration 
that are mutually exclusive and collectively cover the integration region. The 
variation of integrand values within the regions has been designed to be substan- 
tiaUy less than between the regions. Since the regions are mutually exclusive, the 
integrals within each can be summed to form the global integral estimate. 

A variety of methods exist for evaluating the definite integral within each 
subregion. (For an excellent and rather complete survey, see Stroud [18].) These 
methods can be crudely characterized by the regularity they require of the 
integrand (and/or its derivatives to various orders) and their accuracy per 
integrand evaluation. At one extreme are the Monte Carlo methods [10], which 
usually require very little of the integrand (and thus are quite robust), but  which 
converge rather slowly. Monte Carlo methods also yield a simple uncertainty 
estimate. At the other extreme are the high-degree quadrature formulas [18], 
which can be applied only to very regular integrands, but  which can yield high 
accuracy for very few integrand evaluations. 

Limited experience has indicated that the more robust methods perform best 
in conjunction with this partitioning method. Of these, the greatest success has, 
so far, been obtained with the quasi-uniform Monte Carlo methods of Korobov 
[13]. Reasonable success has also been achieved with simple pseudorandom 
Monte Carlo methods [10]. 

The integration method used in each subregion for the examples of the next 
section is the quasi-uniform Monte Carlo method of Korobov [13], as described 
in Stroud [18]. (One exception is Ia of Table III, for which pseudorandom Monte 
Carlo was used.) The rate of convergence of this quasi-uniform method with 
increasing N depends on the smoothness of the integrand, but it is never slower 
than 1/N. This method {like most quadrature methods) does not provide a simple 
estimate of the uncertainty associated with the integral evaluation in each 
subregion. It has been found empirically that the quantity 

1S, 
2 N  
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provides a reliable (and usually quite conservative) estimate of the uncertainty 
associated with this method. Here S, is the spread of the ith region, N is the 
number of sample points, and the factor ½ is introduced because of the convention 
of reporting uncertainty as a symmetric (plus or minus) half-value about the 
estimate. Since the integral estimates in each subregion are independent, the 
total uncertainty a is taken as the square root of the sum of squares of the 
individual region uncertainties 

o -- ~-~  8,2 . ( 1 1 )  

Here M is the number of subregions. 
The uncertainty estimate (11) can be used as a basis for terminating the 

partitioning. At a given stage of partitioning, let there be M subregions and 
Np(M) integrand evaluations. If one wishes to estimate the integral with (pre- 
specified) uncertainty oo, then from (11) 

1 M S 2 
NdM)  -- ~o0 ' (12) 

integrand evaluations will be required to estimate the integral in each subregion. 
Therefore, the total number of integrand evaluations needed to achieve accuracy 
a0 if the partitioning is stopped after M regions is 

NT(M) ~- Np(M) + NI(M).  M. (13) 

As the partitioning proceeds (increasing M),  Np(M) increases (approximately 
linearly) while NI(M) decreases due to the reduction in spread. This reduction 
tends to be very rapid initially, tapering off to slow reduction for large M. 
Therefore, NT(M) tends to decrease for small (increasing) M, reaches a minimum, 
and then starts to increase slowly. An optimal strategy is to terminate partitioning 
at the point at which NT(M) achieves its minimum value. Since it is not possible 
to know (in advance) this optimum value, we terminate the partitioning at the 
first point for which NT(M) (13) fails to decrease for several (five) successive 
iterations. Equation (12) is then used to determine the number of evaluation '" 
points NI(M) needed to perform the final integration in each subregion. 

6. EXAMPLES 

In this section, we attempt to illustrate some of the properties of this nested 
refinement procedure for multiple integration by applying it to several examples 
presented by others to illustrate their integration procedures. 

Tables I-III present the results. For each example, we show the estimated 
integral value with associated uncertainty (11), total number of evaluations of 
the integrand (partitioning plus integral evaluation) NT, the number used for the 
partitioning stage alone Np, and the resulting number of subregions. The value of 
Np includes the function evah~ations used in (a) the initial random sampling, (b) 
solving the two optimization ~roblems, and (c) solving the nonlinear system (8), 
in each subregion. For each case the value of a0 in (12) was chosen to be the 
uncertainty achieved by the method with which the example was published. The 
results of an n product of an m-point Gauss-Legendre rule (see [1, Table 25.4]) 
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Table Ia 

• 8 7  

Integral  

[ 7] \ /-~] d P x e x p - 1 0 0 ~  ( x , - ~  

= 1.0 

This  me thod  LePage [15] Gauss-Legendre  

/9 

0.999 __ 0.007 0.994 ± 0.007 0.892 
NT = 7403 N r  = 10000 NT ---- 10000 
Np = 3851 
24 regions 

1.01 ± 0.008 1.001 ± 0.005 71.364 
NT = 277238 NT ---- 100000 N.r = 2.0 × 106 
Np = 83626 
388 regions 0.774 

N,r- -  109 

Table  Ib 

Integral  

1 ( 1 0 ~  p { e x p [ - 1 0 0 ~  ( x , - 1 )  2]  

+ e x p [ - 1 0 0 ~  ( x , - ~ ) e ] }  - -1 .0  

Thin me thod  LePage [15] Gauss-Legendre  

I2 1.000 _+ 0.003 0.999 + 0.002 
NT = 2279 NT ---- 300000 
Np-- 1339 
20 regaons 

14 0.998 + 0.007 1.003 ± 0.006 
NT = 10230 NT = 300000 
Np = 4662 
29 regaons 

I7 0.994 + 0.005 0.991 + 0.007 
N., = 190894 N'r = 2.4 x 106 
Np = 43449 
185 regaons 

/9 1.03 ± 0.025 0.96 + 0.04 
N T  = 303228 N T  = 1.5 × 106 
Np = 151033 
305 regions 

0.999 
N.r -- 2304 

0.927 
NT = 10000 

2.27 
N.r = 279936 

240.08 
N,r = 262144 
0.0065 
N.r = 1.95 x l0  s 

are also shown with each example. (The number of points taken on each 
coordinate rn is the nth root of the total number of points given.) 

Table I shows results for a series of integrals presented by LePage [15]. LePage 
employs a factored approximation of the form 

n 

](x) = H fdx,), (14) 

which is used as a basis for pseudorandom Monte Carlo importance sampling 
within the region of integration. This procedure should be especially suitable for 
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T a b l e  I I  

! 

f ~ d6x 
h = 0.01 .~ 

Jo II;_~ [0.1 + 0.01 + (x, + x,+~) 2] 

fo ~ d 6x /'~ = 0.01 [0 1 + ~ - 1 0 . l t ( x ,  - O.lt)2] 3 

fo 1 d 6 x Ia = 100 1.0 + [~.,6.1 (1.0 + 0.1t)x,]  4 

S a s a k i  [17] 

I n t e g r a l  T h i s  m e t h o d  M e t h o d  1 M e t h o d  2 G a u s s - L e g e n d r e  

I ,  0.7193 ± 0.0005 0.7182 ± 0.0005 0 7194 _+ 0.0003 0.71902 N,., = 15625 

NT = 40526 NT ---- 70000 NT = 84529 0.71902 NT = 46656 
Yp = 7010 

28 r e g i o n s  

Ib 0.1740 ± 0.0004 0 1718 + 0.0004 0 1721 ± 0.0004 0.1722 NT = 15626 

NT = 46656 NT ---- 70000 NT = 84529 0 1723 N r  = 46645 
No = 6183 
27 r eg ions  

/~ 0 5022 ± 0 0004 0.5005 ± 0 0004 0 5017 _+ 0.0004 0.498 NT ---- 4096 
NT = 10676 N r  = 70000 NT = 84529 0.502 NT = 15625 
Np = 2889 

13 r eg ions  

Id 0.8193 -- 0.0008 0 816 ± 0.001 0.8214 +-- 0.0008 0.8208 NT = 15626 

NT = 46663 NT = 70000 NT = 84529 0.8208 NT = 46645 
Np = 10798 
45 r eg ions  

the integrals presented in Table Ia since the factored approximation of (14) is 
exact. As seen in Table Ia, it considerably outperforms the one presented here in 
high dimensionality. However, the best procedure in this case would be to 
integrate each one-dimensional function separately and then form the combined 
integral as the product of the one-dimensional integrals. The integrals presented 
in Table Ib do not conform exactly to the factored approximation of (14), and the 
comparison for these cases is more favorable to the partitioning method presented 
here. 

Table II shows results of applying this procedure to four integrals presented by 
Sasaki [17]. He employs a factored approximation of the form 

n--1 

i (x)  ffi 1] f,(x,, X,+l). (15) 
t--1 

Each function f,(x, X,+l) is represented by an adaptive piecewise constant 
approximation on the plane. For the first two integrands of Table II, the factored 
approximation (15) is exact, while for the last two, it is not. The method presented 
here is seen to perform well in comparison to that of Sasaki for these integrands. 
However, as Table II indicates, these integrands are well approximated by IOW- 
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T a b l e  I I I  

89 

! 

'--- f0 , 
~x, = 1.0 

t - - l  

ff 1 
h = dSx f (x)  = ~ =  0.01851851 

0_<x,~l 
0 _ < x 2 _  < 1 /2  

f ( x )  = 1.0, ff 0 --< x3 --< 1 /3  
0 _< x4 <- 2 /3  
1 /3  <_ x~ -- 1 /2  

f (x )  = 0, o t h e r w i s e  

5 k 1 2 

I n t e g r a l  Th in  m e t h o d  H a l t o n  a n d  Z e l d m a n  [11] G a u s s - L e g e n d r e  

I .  1.03 -+ 0.02 0 944 +- 0 029 0.921 

NT = 91096 NT = 205677 NT = 59049 
Np = 50138 
273 r eg ions  

Ib 0.018519 ± 0.21 X 10 -~ 0.018516 ± 0.11 X 10 -4 0.01969 

NT = 26509 NT = 120145 NT = 32768 
Np = 16809 
100 r eg ions  

Is 0.999 ± 0.003 0.96 ± 0 02 1.155 
NT ---- 15378 NT ---- 105821 NT ---- 16807 
Np -- 7816 

38 r e g m n s  

1,0 0.98 + 0.01 0.90 ± 0.11 0.0076 
NT = 68233 NT = 453872 g w  = 1.05 X 106 
Np ---- 28092 

137 r eg ions  

order polynomials, and a simple Gauss-Legendre product rule outperforms both 
methods in this case. 

Table III shows results on several of the integrals presented by Halton and 
Zeidman [11]. They describe a nested refinement procedure based on successive 
bisection. The procedure described in this report was motivated, to a substantial 
degree, by this Monte Carlo sequential stratification (MCSS) technique. Inspec- 
tion of Table III indicates that partitioning based on optimization described in 
this report compares favorably with the MCSS procedure. 

7. DISCUSSION 

The examples of the previous section illustrate that the use of function optimi- 
zation to construct a partition can be quite effective, even though at first sight 
the strategy might seem to be too expensive. 

The purpose of applying the partitioning is to divide the integration region into 
subregions, such that the behavior of the integrand within each is relatively good 
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when compared to its behavior over the entire integration region. In this context, 
"bad behavior" is ideally defined as error associated with a particular integration 
method. Our choice of spread (3) as such a measure is motivated by the relative 
ease and reliability with which it can be estimated (using function optimization), 
as compared to other properties of the integrand (such as the variance) that 
require adequate sampling to be reliably estimated. The partitioning procedure 
will be most effective in those cases for which the spread measure closely 
corresponds to the uncertainty in the integral estimate. 

The main objective of the isoplethic division strategy is to make finer divisions 
{locally) in those directions in which the integrand is most rapidly varying. The 
strategy tends to accomplish this even if the resulting hyperrectangle does" not 
closely correspond to a function isopleth. However, the resulting reduction in 
spread will be greater the closer the approximation is to a function isopleth. Thus 
the partitioning strategy will be most effective when the function isopleths tend 
to be convex over the bulk of the integration region and somewhat less effective 
to the extent that this is not the case. (It should be noted that this generally is 
the case for the examples of the previous section.) As with most numerical 
integration methods, this method has difficulty with highly oscillatory integrands. 

An important consequence of adopting the spread as an indication of difficulty 
is that one is less likely to be deceived into thinking that an integral estimate is 
accurate when it is not. Undersampling can cause both the integral and its 
associated error estimate to be seriously undervalued. This tendency is more 
pronounced the more difficult the problem. Owing to the fact that the estimation 
of the spread does not rely on sampling, it is less vulnerable to this problem. 

The memory requirement associated with the method is not severe. For each 
of the M hyperrectangular regions, one must store the spread measure S, (3) 
and the region boundaries x U, x L. The boundaries can be arranged in a binary 
tree requiring 3M - 2 integers and M - 1 real quantities. Thus, in all, storage for 
3M - 2 integers and 2M - 1 real numbers is required. For the examples of thb 
previous sections, the largest number of regions was M -- 388. Storage for several 
thousand regions could easily be accommodated on the most medium- to large- 
scale computers. 

There are several avenues of investigation that are not addressed in this report. 
It has been assumed that the object function used to drive the partitioning was 
identical to the integrand. This is not a fundamental requirement and different 
choices may prove to be useful. For example, if several integrals are to be 
evaluated with similar integrands over the same region of integration, it might be 
that a partitioning based on one of them will be effective for integrating all of 
them. Many integration formulas have the property that they are exact for linear 
functions. Thus, within any region, the linear component of the integrand is 
exactly integrated and one would like a partitioning of the domain of integration, 
such that the range or spread of derivatives within each subregion is small. An 
object function of the form 

,=' , - ,  t ax, ] 
might be useful for driving the partitioning in these cases. Another situation in 
which the integrand and object function might differ occurs when there are 
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factors or components in the integrand that are clearly oscillatory or unduly 
expensive to calculate. These factors could be replaced by average values or 
simple approximations for the purpose of determining the partitioning. 

The possibility of using this partitioning method in conjuction with other 
adaptive methods might also be considered. Owing to its robustness, this proce- 
dure might be applied as the first stage of a combined procedure. In those 
subregions for which the spread measure is relatively large, one could apply an 
adaptive procedure based on sampling. The methods of Genz [6], LePage [15], 
and Kahaner and Wells [12] appear as good candidates for this combined 
application. 

A FORTRAN program [5] implementing the nested refinement partitioning 
procedure described in this report, along with several numerical integration 
methods, is available from either author. 
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